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The Pacific Institute for the Mathematical Sciences 
(PIMS) sponsors and coordinates a wide assortment 
of educational activities for the K-12 level, as well 
as for undergraduate and graduate students and 
members of underrepresented groups. PIMS is 
dedicated to increasing public awareness of the 
importance of mathematics in the world around us. 
We want young people to see that mathematics is a 
subject that opens doors to more than just careers 
in science. Many different and exciting fields in 
industry are eager to recruit people who are well 
prepared in this subject.

PIMS believes that training the next generation 
of mathematical scientists and promoting 
diversity within mathematics cannot begin too 
early. We believe numeracy is an integral part of 
development and learning.

This is a snow art installation created by Simon 
Beck, an Oxford-educated engineer turned snow 
artist. Beck creates these images using snow shoes 
over a 12 hour period. This image was created in 
the French Alps. 

The picture is of a "Sierpinski triangle", a famous 
geometric figure studied by Waclaw Sierpinski.

To draw one, you start out with an equilateral 
triangle; and then remove an equilateral 
triangle in the middle of half the size 
(the central white area); next for 
each of the three remaining 
equilateral triangles 
remove triangles from 
their middles; 
and repeat. 

The Sierpinski triangle is a famous example of 
a fractal (its dimension is about 1.585), but has 
also been found in designs in medieval churches 
in Rome (where it was created centuries before 
Sierpinski's life).

More information on the Sierpinksi triangle can be 
found at:

https://en.wikipedia.org/wiki/Sierpinski_triangle

More information about Simon Beck can be found 
at his web page:

http://snowart.gallery

For more information on our education programs, 
please contact one of our hardworking Education 
Coordinators.

Melania Alvarez, UBC, Vancouver, BC  
melania@pims.math.ca

Malgorzata Dubiel, SFU, Burnaby, BC  
dubiel@cs.sfu.ca

Sean Graves, U of Alberta, AB 
sgraves@ualberta.ca

Darja Barr, U of Manitoba, MB 
kalajdzi@cc.umanitoba.ca

Indy Lagu, U of Calgary, AB
ILagu@mtroyal.ca

David Leeming, UVic, Victoria, BC 
leemingd@uvic.ca

Harley Weston, U of Regina, SK
weston@math.uregina.ca

Welcome to Pi in the Sky!

A Note on the Cover

Pi in the Sky is available online at  
www.pims.math.ca/resources/publications

Solutions to Math Challenges at the end of this issue 
will be published Pi in the Sky Issue 20. See details 
on page 28 for your chance to win $100!
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MATHEMATICS IS A WONDERFUL SUBJECT, 
but much of it requires years of study to fully 

appreciate. When I was recently asked to design a 
course in quantitative reasoning for Humanities 
students [8], I had to come up with mathematical 
ideas and examples which were interesting, relevant, 
exciting, and most importantly, comprehensible 
without much math background.
 
Now I do have some experience communicating 
mathematical ideas to non-mathematicians, 
including writing a bestselling general-interest book 
about probabilities [1], helping to uncover a major 
front-page lottery scandal [6], and writing about 
such diverse topics as the mathematics of music 
[2], probability and justice [7], sports statistics 
[5], the Monty Hall problem [3], and even family 
relationships [4]. But beyond that, what fundamental 
mathematical idea could I use to begin the course, 
to show these Humanities students the interest and 
power of mathematical thinking, without scaring 
them off or pushing them towards feelings of math 
anxiety?

After much consideration, I decided to begin my 
course with the concept of scaling. That is, how do 
various quantities change when an object’s size is 
modified?

The key to scaling is that it depends on the dimension. 
Consider first a one-dimensional object like a line. If 
you wanted to draw a second line which was twice as 
long as your first line, then how many times as much 
ink would it require? Why, twice as much, of course. 
Indeed, in one dimension, an object’s length or size or 
amount of ink are all pretty much the same thing, and 
there is little more to say.

In two dimensions, the situation is more interesting. 
Suppose you draw a square on a page, and then later 
wish to draw a second square which is twice as big 
(in all directions). How many times as much ink do 
you require now? Well, four times as much. 

This is because in two dimensions, an object’s area is 
proportional to its length times its height, and if an 
object is expanded then each of its length and height 
is  multiplied by two,  so the product is  2 × 2 = 4. 
Similarly, to draw a square three times as large (in all 
directions) requires 3 × 3 = 9 times as much ink.

The importance of this observation is that it actually 
applies to more than just squares. Indeed, any 
shape drawn on a page can be thought of as being  
made up of lots and lots of tiny disjoint squares. 
(Formally, this is justified by calculus, upon taking 
the limit of more and more smaller and smaller 
squares.) So, consider any shape drawn on a page 
(say, a child’s drawing of a heart on a mother’s day 
card). If you wanted to draw a new version which 
was identical except twice as large (in all directions), 
then it would require 2 × 2 = 4 times as much ink. 
This is true regardless of the chosen shape, and 
regardless of its actual area (which probably couldn’t 
be computed precisely anyway). 

More generally, if any two-dimensional region is 
stretched by one factor vertically and another factor 
horizontally, then the ratio of the area is simply the 
product of both stretch factors. For example, dimes 
are approximately one centimeter by one centimeter. 
So, how many dimes could be taped flat against my 
classroom’s wall, which is about four meters tall and 
twelve meters wide? Well, here the vertical scaling 
factor is 400, and the horizontal factor is 1,200, so 
the total number of dimes is 400 × 1,200 = 480,000, 
worth a total $48,000. That’s a lot of dimes.

For another example, suppose flowers are planted 
about 20 centimeters apart. Then about how many 
flowers are on a five meter by eight meter field? 
Well, roughly speaking, here each flower occupies 
a disjoint “region” of about 20 centimeters by 20 
centimeters. And the entire field can be viewed as a 
scaled up version of one such region. So, the number 
of flowers on the whole field is the product of the 
two scaling factors, namely (500/20) × (800/20) = 25 
× 40 = 1, 000. So, there are about a thousand of them 
- lots of flowers!

MATHEMATICS TO SCALE
BY JEFFREY S. ROSENTHAL

Professor in the Department of Statistical Sciences at the University of Toronto. 
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Next, consider scaling in three dimensions. If we 
have a three-dimensional cube, and then expand 
it to be twice as large (in all directions), then it 
has three different scaling factors, so its volume is 
multiplied by 2 × 2 × 2 = 8. That is, it is eight times 
as large!

And once again, this principle applies to more than 
just cubes, since any volume can be thought of as 
consisting of lots and lots of tiny disjoint cubes. For 
example, consider a glass of beer (a very relevant 
example for students!). If a second glass is twice as 
large in all directions, then it holds eight times as 
much beer – a fact which surprises many people. Or, 
suppose instead that a second glass is twice as tall, 
but only 2/3 as wide and deep. Most people would 
think the second glass holds more beer. But in fact, it 
holds 2 × (2/3) × (2/3) = 8/9 times as much. And 8/9 
< 1, so the second glass actually holds less.

Even more dramatically, consider a cone-shaped 
glass (like a fancy wine glass, or certain water-cooler 
cups). Suppose it is filled up to 2/3 of its full height. 
Then what fraction of its volume is full? Well, since it 
is cone-shaped, its bottom two-thirds is identical to 
the entire cup, except scaled by 2/3 in all directions. 
So, its bottom two-thirds holds (2/3) × (2/3) × (2/3) 
= 8/27 ≈ 30% of its full volume. So, with a cone-
shaped cup, if  the bartender fills 2/3 of its height, he 
is only giving you about 30% of a full glass of wine. 
Tell him to fill it up!

Another interesting application is to mass. A 
standard reference point is that a 10 cm × 10 cm × 
10 cm cube of water equals one litre, and weighs one 
kg. So what about a 1 m × 1 m × 1 m cube of water? 
Well, 1 m is ten times as long as 10 cm. So, a 1 m × 1 
m × 1 m cube has volume 10 × 10 × 10 = 1, 000 litres, 
and weighs 1,000 kgs (about 2,205 lbs) – much too 
heavy to lift! Similarly, a 160 cm × 200 cm × 20 cm 
waterbed has volume 16 × 20 × 2 = 640 litres, and 
weighs a massive 640 kgs (about 1,411 lbs). This is 
why waterbeds can only be put into sturdy houses, 
and cannot be moved without first being drained.

Another perspective comes from picturing crowds 
of people. If you are in a one-dimensional lineup 
of people spaced about 0.5 meters apart, then the 
number of people standing within ten meters of you 
(in front or behind) is about 20/0.5 = 40. 

But if you are in a two-dimensional crowd of people 
(at a concert or party or dance), all spaced about 0.5 
meters apart, then the number of people within ten 
meters of you is about (20/0.5) × (20/0.5) = 1,600 – 
lots more! (Or, if you really want to consider just a 
circle of people around you, not a square, then the 
answer is more like π(10/0.5)2 ≈ 1,257.) Or, if a flock 
of birds, flying in three dimensions, are spaced about 
0.5 meters apart, then the number of birds within 
ten meters of any one (central) bird is about (20/0.5) 
× (20/0.5) × (20/0.5) = 64,000, a massive number. 
That’s scaling, in different dimensions.

Similarly, stars in our galaxy are approximately 
five light-years apart on average. So if stars are 
visible up to, say, one hundred light-years away in 
all directions, then the number of visible stars is 
roughly (200/5) × (200/5) × (100/5) = 32,000. (Or, 
if you want to count only a half-sphere of visibility, 
then it’s about π(100/5)3/2 ≈ 12, 566.)  Starry starry 
night, indeed! So, scaling explains why on a clear 
night you can see so many stars, even though most 
stars are too far away to be visible.

Comparing two different people is also fun. Suppose 
that Person #2 is twice (say) as large as Person #1 
in all directions, otherwise identical. Then how 
many times as high can Person #2 reach? Answer: 2 
(since height is one-dimensional). How many times 
as much does Person #2 weigh? Answer: 8 (since 
weight is three-dimensional). How many times as 
many blades of grass does Person #2 trample if they 
each take one step on a lawn? Answer:  4 (since foot 
area is two-dimensional). How many times as much 
blood does Person #2’s arteries contain? Answer: 
8 (since volume is three-dimensional). How many 
times as much skin surface (e.g. for tattoos) does 
Person #2 have? Answer: 4 (since skin surface is 
two- dimensional). And so on. Again, these answers 
do not depend on the precise shape of the people or 
their feet or arteries, they just involve scaling. (And 
of course, similar answers apply to other scaling 
factors besides two.)

Next, consider pressure, i.e. the amount of force per 
unit area on e.g. the ground underneath our feet. 
Considering snowshoes is instructive. Snowshoes 
work by spreading our mass over a larger area, to 
reduce the pressure on each individual spot of snow. 
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Suppose I am wearing snowshoes which are twice 
as wide, and three times as long, as my regular boot. 
Then my same mass is spread over an area which is 
2 × 3 = 6 times as large. So, the amount of pressure 
I exert on any one spot of snow is only 1/6 as large. 
This is why I can (hopefully) stand on the top of the 
snow while wearing snowshoes, even if I would have 
sunk down deep in my normal  boots.

Consider now a giant lizard (like Godzilla). Suppose 
the giant is one thousand times as large as a regular 
lizard, in all directions. Then it weighs 1,000 × 
1,000 × 1,000 = 1,000,000,000 (one billion) times as 
much(!). And it has one billion times as much blood, 
and so on. On the other hand, its foot area is 1,000 
× 1,000 = 1,000,000 (one million) times as large.  So, 
the amount of pressure that it exerts on the ground 
is 1,000,000,000 divided by 1,000,000, or 1,000 (one 
thousand) times as much. That is why giants tend to 
crush whatever they step on. But because of scaling, 
the pressure is only multiplied by their scaling factor 
(e.g. a thousand), not by their full weight ratio (e.g. a 
billion).

Finally, consider rainfall. You might have noticed 
that rain amounts are normally re- ported as lengths, 
e.g. “downtown Toronto received 40.6 mm of rain 
today”. How could this be?  Well, consider two 
different bins left out during a rainstorm.  Suppose 
the second bin  is twice as large as the first (in all 
directions). Then the area at the top of the bin is 2 × 
2 = 4 times as large. So, the volume of rain collected 
by the second bin is 4 times as much. On the other 
hand, this rain is then spread over a base area which 
is also 2 × 2 = 4 times as large. This means that 
the height of the rain in the second bucket is 4/4 
= 1 times as high, i.e. the height of rain in the two 
buckets is identical! Similar considerations apply to 
any other buckets of any other sizes and shapes, as 
long as they have straight sides (so the area of each 
bucket is the same at the top and the bottom).  So, 
when reporting an amount of rainfall as a length, 
that length is equal to the height of water that would 
be left in any straight-sided bucket of any size 
whatsoever. And that is why rainfall amounts can be 
reported as simple lengths, not as “volume per unit 
bucket” or some other complicated standard.

So, the next time someone asks you for an easy-to-
understand example of how mathematical thinking 
applies to everyday life, tell them a tale or two about 
scaling!
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ON ASSESSING REAL WORLD 
PREDICTION SKILL
BY DAVID ALDOUS

Professor in the Statistics Department at U.C. Berkeley

Introduction

Let me start with a puzzle. Is it possible to devise 
a quiz contest (on any topic, not necessarily 

mathematical) with the following  properties?

Answers will be scored objectively – no subjective 
judgments (as would be needed for creative writing, 
for instance). Contestants who end with a better 
overall score will – beyond reasonable doubt – be 
better at the subject matter of the quiz.

The questions refer to substantive real-world matters, 
rather than fantasy (islands with liars and truth-
tellers) or self-referential “how would most other 
contestants answer this question?” No person (or 
computer, etc) knows or will ever know the correct 
answer to any of the questions.
 
So this looks impossible at first sight – how can one 
grade objectively without knowing the answers? Now 
puzzles like this inevitably involve some kind of trick. 
But my trick is rather mild – an everyday quiz can 
be graded quickly, but for my quiz you have to wait 
a while to find your scores. If you can think of a less 
tricky such quiz, please let me know!

The Good Judgment Project
Here are 4 questions that people with an interest in 
world affairs might be pondering as I write (September 
2017):
1. Before 2018, will Russia officially announce that it 

is suspending its participation in or withdrawing 
from the Intermediate-Range Nuclear Forces Treaty?

2. Before 2018, will 5 or more countries experience 10 
or more cases of poliovirus?

3. Before 2018, will there be a lethal attack on a US 
military vessel in the Red Sea, Gulf of Aden, Persian 
Gulf, or Gulf of Oman?

4. Before 2018, will China deploy a deep sea oil rig in 
another country's Exclusive Economic Zone without 
that country's permission?

In the current Good Judgment Project Classic 
Geopolitical Challenge [1] participants are asked to 
assess the current probabilities of such future events. 
To reiterate, they are not asked to give a Yes/No 
prediction, but instead are asked to give a numerical 
probability, and to update as time passes and relevant 
news/analysis appears. Unlike school quizzes, you are 
free to use any sources you can – if you happen to be a 
personal friend of Vladimir Putin then you could ask 
him for a hint on the first question.

Do you think it is ridiculous to pose such questions 
to non-experts? If so, do you think that trial by jury 
is ridiculous? In both cases the point is to look at 
evidence and at expert opinion before giving an 
answer.

What makes this setting conceptually interesting is 
that no one will ever know the correct probabilities. 
Nevertheless one can judge participants’ relative 
ability to assess such probabilities, after the outcomes 
are known. Explaining this paradox is the focus of this 
article.

Mean Squared Error
How can we assess someone’s ability? We will use 
several very basic concepts from probability. A 
random variable X is, informally, a quantity with 
a range of possible numerical values, the actual 
value being determined by chance in some way. 
The expectation of X is a real number, written E[X], 
analogous to the average of numerical data. If we 
seek to predict the value of a random variable X, our 
prediction has to be some constant x0. The (random) 
squared error of our prediction is the random variable 
(X − x0)2, and the expectation of that random 
variable, in symbols E[(X − x0)2], is called the mean 
squared error (MSE) of the prediction. And the “best” 
predictor in the sense of minimizing the MSE is just 
the constant x0 = E[X].
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As a specific example, for a single throw X of a fair die, 
the MSE from predicting x is

 

which is minimized at x0 = E[X] = 7/2. The idea 
of using squared errors goes back to Gauss in the 
context of errors in astronomy observations, and is 
widely used in classical statistics because of its nice 
mathematical properties, which we will exploit in 
several ways.

An event, in the probability context, will either happen 
or not happen, and we can represent an event as a 
random variable, taking value 1 if the event happens 
and value 0 if not. This allows us to use “squared 
error” to score our predictions. If we predict 70% 
probability for an event, then our “squared error” is

               (if event happens) (1.0 − 0.70)2 = 0.09

(if event doesn’t happen) (0.7 − 0)2 = 0.49.

So suppose you participate in a prediction tournament 
like the Good Judgment Project. For simplicity 
let’s suppose that participants just make a one-time 
forecast, a probability prediction, for each event. After 
the outcomes of all the events are known, your final 
score will be the average of these squared errors. As in 
golf, you are trying to get a low score.

In the next section I will argue that this is the right 
way to score. Just as in golf, your score really does 
indicate how good you are at the prediction game, give 
or take a small amount of luck.

A very little algebra
When you make a “probability p” forecast for a certain 
event, your squared error score will be

           score = (1 − p)2 if event occurs 
           = p2 if not.         (1)

Suppose you actually believe the probability is q. What 
p should you announce as your forecast? Under your 
belief, your mean score (by the rules of elementary 
mathematical probability) equals q(1 − p)2 + (1 − q)p2 
and a line of algebra shows this can be rewritten as

 (p − q)2 + q(1 − q).   (2)

Because you seek to minimize the score, and because 
all you are able to choose is p, you should announce 
p = q, your honest belief – with this scoring rule you 
cannot “game the system” by being dishonest, that 
is by announcing a value of p which is not your true 
belief for the probability.

Now write q for the true probability of the event 
occurring (recall we are dealing with future real-world 
events for which the true value q is unknown), and 
write p for your forecast probability. Then your (true) 
mean score, by exactly the same calculation, is also 
given by (2). The term (p − q)2 is the “squared error” 
in your forecast probability.

Now consider two participants, A and B, making 
forecasts pA and pB for the same event which has 
(unknown) probability q. Then (2) implies that

E[score (A)] − E[score (B)] = (pA − q)2 − (pB − q)2.   
(3)

In a prediction tournament there will be a large 
number n of events, with unknown probabilities 
(qi, 1 ≤ i ≤ n) and with forecasts (pA, i, pB, i, 1 ≤ i ≤ n) 
chosen by the participants. We would like to measure 
how good a participant is by the average squared-error 
of their forecast probabilities

MSE(A) =        (4)

But this is impossible to know, because we don’t know 
the q’s. However, (3) implies that for the final scores 
(the average of the scores on each event)

E[final score (A)] − E[final score (B)]
                                       = MSE(A) − MSE(B).     (4)

Now your actual final score is random, but by a “law of 
large numbers” argument, for a large number of events 
it will be close to its mean. Informally,

final score (A) = E[final score (A)]
                                       ± small random effect.   (5)

Putting all this together,
MSE(A) − MSE(B) = final score (A) − final score (B)

               ± small random effect.

Now we are done: the MSEs are our desired measure 
of skill, and from the observed final scores we can tell 
the relative skills of the different participants, up to a 
small amount of luck.
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The mathematical bottom line
Rephrasing the argument above, an individual’s score 
is conceptually the sum of three terms. Write qi for 
the (unknown) true probability that the i’th event 
happens.

• A term  from irreducible 
randomness. This is the same for everyone, but 
we don’t know the value. 

• Your individual MSE (4), where “error” is (your 
forecast probability - true probability)

• Your individual luck, from randomness of 
outcomes.

The analogy with golf continues to be helpful. A golf 
course has a “par”, the score that an expert should 
attain. Your score on a round of golf can also be 
regarded as the sum of three terms.

• The par score.
• The typical amount you score over par (your 

handicap, in golf language).
• Your luck on that round. 

So a prediction tournament is like a golf tournament 
where no-one knows “par”. That is, you can assess 
people’s relative abilities, but we do not have any 
external standard to assess absolute abilities.

And the real world? 
We’ve seen the mathematics, but what is the bigger 
picture? After all, one could just say it’s obvious that 
some people will be better than others at geopolitical 
forecasts, just as some people are better than others at 
golf.

To me it is self-evident that one should make 
predictions about uncertain future events in terms of 
probabilities rather than Yes/No predictions. So it is 
curious that, outside of gambling-like contexts, this is 
rarely done. Indeed the only common context where 
one sees numerical probabilities expressed is the 
chance of rain tomorrow. 

A major inspiration for current interest in this topic 
has been the work of Philip Tetlock. His 2006 book 
[2] looks at extensive data on how good geopolitical 
forecasts from political experts have been in the past 
(short answer: not very good). That book contains 
more mathematics along the “how to assess prediction 
skill” theme of this article.

What makes some people are better than others at 
forecasting, and can we learn from them? That is 
the topic of Tetlock’s 2015 book [3], which reports 
in particular on an IARPA [5] sponsored study of a 
prediction tournament similar to the current one [1], 
though where participants were assigned to teams 
and encouraged to discuss with teammates. Their 
conclusions relate success to both cognitive style of 
individuals and to team dynamics.

Finally, readers of this magazine may be interested in 
a recent paper [4] claiming that Canadian strategic 
forecasters are better than their U.S. counterparts!
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SNAKES & Ladders
Playing Time
BY DODDY KASTANYA 

A math enthusiast working as a Nuclear engineer

INTRODUCTION

The snake-and-ladder game is a traditional 
game which is well-known worldwide. It can 

be played by two or more participants. It is a board 
game which has a 10-by-10 grid. Each block in this  
grid  is numbered, starting from 1 all the way to 100. 
Each player has a unique game piece to mark his/her 
position on the board. At the beginning of the game, 
all players are outside the board. 

The number of steps taken will depend on the 
outcome of the roll of a die (or a pair of dice). If the 
game piece stops at the bottom of the ladder, the game 
piece will advance to the top of the ladder bringing the 
player closer to the goal (i.e., block number 100). If 
the game piece lands on the head of a snake, the game 
piece will be “eaten” by the snake bringing it down to 
its tail. As the game piece gets closer to the ultimate 
goal, the roll of the die needs to match the exact steps 
to reach the 100 block; otherwise, the game piece 
will not be moved and the player loses his/her turn. 
For example, when the game piece is at 97, the player 
needs to roll 3 (or less) in order to advance. 

The rule of this game is straightforward. However, 
depending on how lucky (or unlucky) you are, you 
could be stuck playing this game for a long time; 
especially, if there are several players involved. So, 
what would be nice is to know what the typicial 
playing time for this game is. This is exactly what we 
would like to do in this paper. So, without further ado, 
let’s roll the dice and get on with it.

FINDING OUT TYPICAL PLAYING TIME

To estimate a meaningful average playing time, we 
would like to run a significant number of trials, 
millions of them if possible. For this purpose, we will 
recruit the help of computers to do the experiments 
for us. 

There are a few things worth mentioning before 
introducing the algorithm to simulate a game. Firstly, 
the simulation is done only for a single player because 
it does not matter how many players are involved in 
the game, the game ends when a player reaches the 
goal (i.e., the 100 block). Secondly, though we can 
choose a pair of dice, a single die will be used in the 
evaluation. Thirdly, it is assumed that it takes five 
seconds to complete each turn; that is the time to roll 
the die and to move the game piece.

Algorithm for simulating a single game:
1. The game piece is placed outside of the board. 

This is equivalent of setting 0 as the current 
position for the game piece.

2. A random number between 1 and 6 is generated 
to simulate the roll of a die. The game piece is 
then moved according to the resulting number.

3. Four things can now happen. First, if the 
resulting position is a regular block, the player 
waits for his/her next turn. In this simulation, the 
player starts the next step by rolling the die again. 
Second, if the resulting position for the game 
piece is equal to one of the numbers marking the 
bottom of a ladder (the position of the bottom 
and top of each ladder has been determined prior 
to starting the game; they are determined as a 
part of setting up the board), then the position is 
updated to the location corresponding to the top 
of that particular ladder. Third, if the resulting 
position of the game piece is equal to one of the 
numbers marking the head of a snake, then the 
position is updated to the location corresponding 
to the tail of that particular snake. Finally, if the 
resulting position is a number higher than 100, 
the player loses his/her turn. In any case, the  
next step is executed once the final position is 
established. In the algorithm world, it is usually 
written in terms of a “go to” command. In this 
case: “go to Step 2”.  The game is over when the  
resulting position is exactly 100.
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Now that the rules of the simulation have been 
established, we need to determine the number of 
simulations needed to get a meaningful average 
playing time and the number of sets needed to 
calculate confidence level for the estimated average 
playing time. For this particular game, 100 games per 
set are deemed sufficient and 1000 sets of 100 games 
will be used to build the confidence level.

The last piece of the puzzle is related to the design 
of the board itself. I am sure you have seen many 
variations of the board. Besides the artistic component 
of the design, the main differences among these 
boards lie on the number of snakes and ladders as well 
as their lengths. In the current evaluation, we would 
take a look at a board design which has exactly five 
snakes and five ladders. So, we need to introduce three 
basic configurations for the snakes and three basic 
configurations for the ladders. 

These options and the possible combinations are 
nicely summarized in Table 1 (page 11). The name of 
the board reflects the size of the ladder followed by the 
size of the snake. For example, “S-L” means the board 
has five short ladders and five long snakes. Figure 1 
shows a board with short ladders (solid-black lines), 
medium ladders (solid-red lines), and long ladders 
(solid-yellow lines). Similarly, Figure 2 depicts a board 
with short snakes (dotted-black lines), medium snakes 
(dotted-red lines), and long snakes (dotted-yellow 
lines). These basic configurations are then combined 
to get the nine configurations identified in Table 1.

RESULTS 
Table 2 (page 11) summarizes the average playing time 
for various combinations of ladder and snake sizes. 
There are a couple of observations that could be made 
on the results presented in this table:

1. For a given size of snake (S, M, or L), the longer 
the size of the ladders, the shorter the average 
playing time will be. This result is not unex- 
pected since a fix size of snakes will bring about 
the same chance of being eaten and pushed back 
toward the starting point. However, having a 
longer size ladder will help accelerate the game 
piece back toward the ultimate goal.

2. A similar observation cannot really be made for a 
given size of ladder. For the sets of short ladders, 
an observation could be made that the longer the 
snakes, the longer the average playing time will be. 
This is not unexpected since the longer the snakes, 
the chance of the game piece moves toward the 
beginning of the board. Once a game piece is 
“eaten”, the acceleration toward the goal by taking 
advantage of the existing ladders is practically 
unchanged since the layout of the ladder is fixed. 
However, this generalization does not extend to 
the medium and long ladders. For these cases, the 
combination with medium size snake requires 
the least amount of playing time. This result 
suggests that there is an optimium combination 
of the length of snakes and the length of ladders. 
Moreover, the placement of the ladders and snakes 
plays an important role in determining the playing 
time as well.

Fig. 1: Basic Ladder Configurations Fig. 2: Basic Snake Configurations
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Figure 3 (page 12) shows the variation of the estimated 
playing time for a specific combination of ladder and 
snake sizes, namely short ladders and medium snakes. 
The x-axis of this figure shows the estimated playing 
time (expressed in seconds) and the y-axis shows the 
frequency - or the number of occurrences - that falls 
under each category in the x- axis. 

The average playing time for this particular 
combination is 626 seconds and it is located in the 
middle of the distribution. From this figure, one can 
see that while the game could take as long as around 
800 seconds, there are still chances to finish the game 
in less than 500 seconds.

CAN WE MAKE IT QUICKER?
Unless you have ten or more friends who would like 
to play a single game of snakes-and-ladders together, 
or results indicate that this game is not too time- 
consuming. 
An average game involving four people would likely 
last about an hour or so (provided that the lengths of 
the ladders and snakes are similar to the ones used 
here). 

However, we still need to mention some ideas which 
could make this game end faster. 

Table 1: Combination of Ladders and Snakes

Table 2: Estimated Average Playing Time (in seconds)
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One would expect the game to finish faster 
when:

• The number of ladders is increased.
• The number of snakes is reduced.
• The sizes of the ladder are long.
• The sizes of the snake are short.
• We have significantly more ladders than snakes.

Fig. 3: Summary of Estimated Playing Times for a Combination of Short Ladders and Medium Snakes

FINAL NOTES
The results presented in this paper are based on some idealized situations where certain 
uniformity was assumed. In real life, the expected average playing time would vary depending 
on various aspects such as the number of snakes, the number of ladders, non-uniform length of 
snakes and/or ladders, the distribution of the snakes and/or ladder, the number of player playing 
the game, and the use of a pair of dice. 

Of course, in real life people (read: kids) do not really care about how long the game will last 
since they can stop it anytime they want   to or when one of the players gets frustrated from being 
eaten by a snake one too many times... They just roll the die and have fun.
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We live in the information age. Most of what we do is hugely influenced by our access to massive amounts of 
data — whether this is through the Internet, on our computers, or on our mobile phones. The buzz word to 

describe this deluge of information is Big Data. In 2012 the UK government identified Big Data as one of the eight 
great technologies of the future. So what does the challenge of Big Data entail and how can we meet it? 

where does big data come from
Perhaps the leading source of current Big Data is the Internet. According to a recent estimate, about 1021 bytes (a 
zettabyte) of information are added to the Internet every year, much of which is graphical in content. The internet 
penetration in the UK is over 80%, and in all but a few countries it is over 20%. 

 
A major source of this data is the ever growing content on social media websites. For example, Facebook was 
launched in 2004. It now has 2 billion registered users (about a quarter of the world’s population!) of which 1.5 
billion are active. Around 2.5 billion pieces of content (around 500 terabytes of information) are added every day 
to Facebook, with most of this data stored as pictures. The search engine Google is estimated to seek information 
from around 15 exabytes (1015 bytes) of data (which it searches using a clever mathematical algorithm).

Big Data
BY CHRIS BUDD

This article first appeared in Plus Magazine http://plus.maths.org.

This map illustrates the total number of Internet users in a country as well as the percentageof the population that has 

Internet access in 2011. Image: Stefano De Sabbata and Mark Graham, CC BY 3.0.
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Another source of Big Data are mobile and smart phones. There are now more mobile phones than people in the 
world, with the potential for 25,000,000,000,000,000,000 possible simultaneous conversations. The forthcoming 
plans for a 5G network will offer data rates at 1 gigabyte per second simultaneously to tens of workers on the same 
office floor. 

Another fast-approaching technology are sensors that can provide constant monitoring of, say, our state of 
health (with significant ethical implications). The 5G network will support several hundreds of thousands 
simultaneous connections for massive sensor deployments. Indeed the future is rapidly approaching: soon our 
devices will simply communicate with each other (for example the cooker talking to the dishwasher and also to the 
supermarket every time a meal is prepared) with little or no human interference — it’s called the Internet of things.

Significant amounts of data, of significant interest to the social sciences, also come from the way that we use our 
devices and the information this gives about our lifestyles. Again there are significant ethical issues here. Every 
time we make a purchase on Amazon, use our bank on-line, switch on an electrical device, or simply use a mobile 
phone or write an email, we are creating data which contains information that can in principle be analysed. For 
example, our shopping habits can be determined, or our location tracked and recorded. Mathematics can be used 
at all stages of this, but we must never lose sight of the moral dimension in so doing.

THe NATURe OF BIg datA
In one sense, Big Data has been the subject of mathematical investigation for at least 100 years. A classical example 
is meteorology, in which huge amounts of numbers need to be crunched to produce reliable weather forecasts. 
Similarly large data sets arise in climate models, geophysics and astronomy.

Smart watches can give you up-to-date health information wherever you are.
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However, the data sets in these problems, while very large, are also well-structured and well-understood, with 
known levels of uncertainty. That’s because they come from physical processes that, on the whole, scientists 
understand well. 

The real challenges of understanding and dealing with Big Data come from the biological sciences, the social 
sciences and in particular from people-based activity. Such data is often garbled, incomplete, unreliable, complex, 
anecdotal and fast-arriving. It is often qualitative rather than quantitative, it isn’t homogeneous, and it’s about 
relations between things, rather than the things themselves, in a way that physical data isn’t.

whaT questions do we want to ask of Big DatA?
How do we visualise Big Data, make speculations from it, model it, and understand it? How do we experiment on 
the systems that generate it, and ultimately how might we control those systems? The mathematical and scientific 
challenges behind these questions are as varied as they are important, and the very scale of Big Data makes 
automation necessary. This automation in turn relies on mathematical algorithms.

Questions we might ask from Big Data include:
•	 How do we rank information from vast networks in web browsers such as Google?
•	 How do we identify consumer preferences, loyalty or even sentiment and how do we make personalised 

recommendations?
•	 How do we model uncertainties in health trends for individual patients?
•	 How do we achieve and deal with real-time health monitoring (especially in the environment that 5G will 

lead to)?
•	 How to use smart data in energy supplies?

It is fair, I think, to say that many of the future advances in modern mathematics (together with theoretical 
computer science) will either be stimulated by the applications of Big Data or driven by the needs to understand 
Big Data. Many existing mathematical techniques (some of which until recently were considered as pure 
mathematics) are now finding significant applications in our understanding of Big Data. A key example of this is 
the mathematics of network theory.

neTworks everywhere
As the name suggests, network theory describes 
objects, called nodes, that are linked together by 
what are called edges. The nodes could be computers 
or websites, and the edges connections between the 
computers or links between the websites. The nodes 
can also be people and the connections their friends 
on Facebook or Twitter, or they could be mobile 
hand sets and the links conversations or simply a 
close proximity which might lead to interference. 
Network theory explains the nature of networks, 
allows us to search for connections between 
individual points in data sets, and can describe the 
movement of information around a network.

A partial map of the Internet based on 2005 data found 

on The Opte Project. CC BY 2.5.
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Indeed, managing the mobile phone network (which is of course also used to download data) is a significant and 
growing application of the theory of graph colouring: finding ways of colouring the edges or nodes in a network 
according to specific constraints, such as adjacent nodes having to have different colours. For example, the 
colours might represent frequencies assigned to mobile phone transmitters, which have to be chosen to minimise 
interference and so need to be different for adjacent transmitters. Graph colouring was until recently regarded as 
belonging firmly in the domain of pure mathematics.

Other examples of networks which lead to big data include organisational networks (such as management 
networks, crime syndicates, even the voting behaviour in the Eurovision Song contest), technological networks 
(such as the power grid or electronic circuits), information networks (made up of genes, protein-protein 
interactions, word-of-mouth dissemination of information, myths and rumours), transport networks (such as 
airlines, food logistics, underground and overground rail systems), and ecological networks (food chains, diseases 
and infection mechanisms). 

the power of neTwork theory 

Network theory can address many other questions related to Big Data. When you are dealing with very large 
networks it is not always easy to identify clusters — groups of nodes that are highly interlinked — or to segment 
the data into groups that share common features. Such information is vital in data mining and pattern recognition. 
It is especially relevant to the retail industry, who are interested in the behaviour and preferences of their 
customers, but can also be used to identify friendship groupings in social networks, to investigate the organisation 
of the brain, and even to finding voting patterns in the Eurovision Song contest. Network theory provides the 
algorithms both for identifying clusters and for segmenting data.

Information, gossip, infectious diseases: they all spread through social networks.
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Such analysis can also help with another very significant problem encountered in many applications: linking data 
bases with different levels of granularity in space and time. An example is weather forecasting, where some of the 
data might be coming from satellites orbiting the Earth and transmitting MBytes of data a second. Other data 
might be from individuals in isolated ground stations who might only give a few measurements every day. Some 
of the data might even be historical such as records of sea captains 100 years ago. All three such data sets are useful 
and they have to be linked together in a seamless manner. 

Equally important is the question of how connected a network is on the whole: are individual nodes connected 
to many others throughout the network, or are the connections sparse? What is the shortest path through 
the network? These questions are essential for efficient routing in the Internet, interpretation of logistic data, 
understanding the speed of word-of-mouth communications and even marketing. Network theory is also 
essential in searching for influential nodes in huge networks. Highly connected nodes — whether they represent 
people, websites, or airports — are hugely important for the robustness of a network, since removing them would 
significantly alter its overall connectedness. Such information can be used to break up terrorist organisations, stop 
epidemics from spreading, or keep air traffic rolling when a region is affected by bad weather.

whAt else can maths do?
Network theory is just one of a variety of mathematical techniques used to study Big Data. Much of Big Data 
takes the form of images, so mathematical algorithms that classify, interpret, analyse and compress images are 
extremely important. Statistical methods have long been used to analyse and interpret images, but there has 
recently been a significant growth in novel mathematical algorithms, drawing on ideas from pure mathematics 
people previously thought had no direct applications in the real world. Some of these algorithm are based on the 
analysis of complicated equations, leading to some powerful and unexpected applications of highly technical tools 
from the relevant theory of equations. Algebraic topology, an area of maths that investigates properties of shapes 
using algebra, plays a very useful role in classifying images. And techniques from category theory, an area that 
investigates mathematical structures and concepts on a highly abstract level, can be used to “parse” an image to see 
how the various components fit together. In the context of machine learning this allows for machines to “perceive” 
what the objects in an image are and to make “reasoned” decisions about it.

This is only a short list. There are many other areas of mathematics and computer science that have also found 
applications in the study of Big Data. So watch this space! I am confident that we will see great advances in pure, 
applied and computational maths arising from these challenges.
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WORLDS IN YOUR POCKET: 
2D Screens to 3D Touch
BY HARRISON CUI

Undergraduate student in Computer Science at Cornell

A simple touchscreen can drop you right in the middle of a football game or a psychological thriller. 
Growth in the mobile gaming space and advances in the processing power of handheld devices have led to 

the development of complex 3D games for cell phones and tablets. Popular games like Madden, Five Nights at 
Freddy’s, and Minecraft Pocket Edition enable players to interact with complex 3D worlds, all through a small 
2D screen. How do they do it?

The touchscreen is your window into the game’s world. The 3D world is projected onto the 2D screen in a 
specific viewing direction, from a certain location, which can be changed to show a different perspective of the 
3D world. This is similar to using a camera to take a picture of an object: moving or turning the camera shows 
a different picture of the object. When you touch the screen, the game engine must figure out which object 
you want to interact with. This task is handled by a method known as ray casting, in which a ray is projected 
from the touch point on a 2D display screen into the imaginary 3D world generated beyond the screen. The ray 
continues until it encounters an object, and the game engine then knows with which object you wish to interact. 

This method enables gamers to select blocks with a simple touch of the screen as shown in Figure 1. 
Mathematically, a ray can be described by

<< x₀, y₀, z₀ >> + t << vx, vy, vz >>

where (x₀, y₀, z₀) is the point the ray starts from and  << vx, vy, vz >> is the direction the ray points in. The 
variable t here is a “parameter”—corresponding points along the ray are obtained by substituting values of t 
from zero up to the smallest value of t where the ray hits something.

Fig. 1
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The difficult part is thinking up an efficient method for ray casting. Traditional ray casting has a major 
drawback: it is computationally expensive and can very easily take up 95% of rendering time. A more practical 
method for finding the closest object in the direction of the casted ray is known as the Voxel Traversal 
Algorithm [1].

We divide the 3D world into small cubes with a unit length of one. These cubes are generally referred to in the 
game community as voxels. To make the algorithm more understandable, we can present it in 2D as shown in 
Figure 2 where the voxels are represented as squares rather than cubes. 

Imagine the ray as a particle starting out at the initial touch point—the origin of the ray, (x₀, y₀)—and moving 
in the positive x-direction with a velocity vx and in the positive y-direction with a velocity vy. Voxels that do 
not contain objects represent air blocks the particle can freely pass through, whereas voxels that do contain 
objects represent impassible blocks the particle cannot move through. The particle’s goal is to detect the first 
voxel it cannot pass. The particle can go no further than the borders of an impassible voxel; thus, the algorithm 
only requires the particle to check the edges of the voxels to determine whether an object exists at that voxel. 

However, this presents an interesting problem: how can we effectively calculate the distance the particle must 
travel to reach the next voxel in its linear path? Because we know the square voxels have sides with a unit length 
of one, the particle must either have an x or y coordinate of integer length when it encounters the border of a 
voxel.  Then, to determine the first voxel the particle encounters, we must find the first integer x or y coordinate 
that the particle reaches. We are able to calculate the time, tx0, for the particle to reach the first integer 
x-coordinate, with the equations:

          

Fig. 2
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Similarly, we are able to calculate the time, ty0, for the particle to reach the first integer y-coordinate, with the 
equation:

The smaller time value represents the time it takes for the particle to encounter its first new voxel. If either 
vx or vy is zero, its respective times go to infinity. The time for the other one will always be less than infinity, 
so the ray will continue traveling only in one direction. Suppose tx0 is less than ty0. Then the first voxel the 
particle encounters will be in time tx0. When it reaches this voxel, we know the next coordinate with an integer 
x-coordinate it approaches will be a distance of 1 unit away — the length of a side of the voxel. The additional 
time, tx, required to reach this point can be calculated with the equation:

tx = 

Thus, the total time it takes to reach this integer x-coordinate is simply:

tx0 + tx

And the total time it takes to reach an nth integer x-coordinate can be expressed as:

tx0 + ntx

Similarly, with the same logic, we can represent these equations in terms of y as well:

ty0 =

ty0 + ty

ty0 + nty

Thus, we have a set of numbers that represents the times it takes for the particle to reach each consecutive 
integer x-coordinate along the ray:

{ tx0, tx0+tx, tx0+2tx, tx0+3tx, ..., tx0+ntx } 
 
Similarly, we have a set of numbers that represents the times it takes for the particle to reach each consecutive 
integer y-coordinate along the ray:

{ ty0, ty0+ty, ty0+2ty, ty0+3ty, ..., ty0+nty } 

To move the particle to a new voxel along the ray, we first calculate the times it takes to reach the next integer 
x-coordinate and y-coordinate. For example these times are tx0 + tx and ty0 at the next step. The smaller of the 
two is the time it takes for the particle to move to the neighboring voxel. Because we know the times it takes for 
the particle to reach each new voxel, calculating the distance the particle must travel to reach them is simple.
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x = vyt

y = vxt

Now that we have described the algorithm in a 2D case, we can easily extend this to a 3D case by simply adding 
a z-axis.

Thus, the algorithm presents an efficient method of determining the point in space at which an object exists. 
Using a minimal number of computations, it determines the distance to the next voxel and checks whether that 
voxel is an air block or an obstacle. If it’s an air block, the algorithm continues to the next voxel; however, if 
there’s an obstacle, the algorithm terminates.

Since voxels in video games are generally tiny, further optimizations such as clumping voxels together into 
super-voxels (maybe a 100x100x100 cube of voxels) can make this algorithm even faster. These super-voxels can 
then be divided into two groups: the empty super-voxels containing all air blocks and the non-empty super-
voxels containing some obstacles. This enables the same checking system on a larger scale, but we can now 
check less often.

We can apply similar optimization to various areas other than math and computer science—like determining 
the point in space in which breakfast exists after waking up late for school. Next time you do anything, take a 
lesson from voxels and try discovering a more efficient method. You might free up time for some math!

REFERENCES
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Simple Set Game Proof 
Stuns Mathematicians 
BY ERICA KLARREICH FOR QUANTAMAGAZINE.ORG

A NEW SERIES OF PAPERS HAS SETTLED A LONG-STANDING QUESTION related to the popular game 
in which players seek patterned sets of three cards.

In a series of papers posted online in recent weeks, mathematicians have solved a problem about the pattern-
matching card game Set that predates the game itself. The solution, whose simplicity has stunned mathematicians, 
is already leading to advances in other combinatorics problems. 
 
Invented in 1974, Set has a simple goal: to find special triples called “sets” within a deck of 81 cards. Each card 
displays a different design with four attributes — color (which can be red, purple or green), shape (oval, diamond 
or squiggle), shading (solid, striped or outlined) and number (one, two or three copies of the shape). In typical 
play, 12 cards are placed face-up and the players search for a set: three cards whose designs, for each attribute, are 
either all the same or all different. 
 
Occasionally, there’s no set to be found among the 12 cards, so the players add three more cards. Even less 
frequently, there’s still no set to be found among the 15 cards. How big, one might wonder, is the largest collection 
of cards that contains no set?

 
 

Image Credit: Olena Shmahalo, Quanta Magazine



23

The answer is 20 — proved in 1971 by the Italian mathematician Giuseppe Pellegrino. But for mathematicians, 
this answer was just the beginning. After all, there’s nothing special about having designs with only four attributes 
— that choice simply creates a manageable deck size. It’s easy to imagine cards with more attributes (for instance, 
they could have additional images, or even play different sounds or have scratch-and-sniff smells). For every whole 
number n, there’s a version of Set with n attributes and 3n different cards. 
 
For each such version, we can consider collections of cards that contain no set — what mathematicians confusingly 
call “cap sets” — and ask how large they can be. Mathematicians have calculated the maximal size of cap sets for 
games with up to six attributes, but we’ll probably never know the exact size of the largest cap set for a game with 
100 or 200 attributes, said Jordan Ellenberg, a mathematician at the University of Wisconsin, Madison — there are 
so many different collections of cards to consider that the computations are too mammoth ever to be carried out.

Yet mathematicians can still try to figure out an upper bound on how big a cap set can be — a number of cards 
guaranteed to hold at least one set. This question is one of the simplest problems in the mathematical field called 
Ramsey theory, which studies how large a collection of objects can grow before patterns emerge. 
 
“The cap set problem we think of as a model problem for all these other questions in Ramsey theory,” said Terence 
Tao, a mathematician at the University of California, Los Angeles, and a winner of the Fields Medal, one of 
mathematics’ highest honors. “It was always believed that progress would come there first, and then once we’d 
sorted that out we would be able to make progress elsewhere.” 
 
Yet until now, this progress has been slow. Mathematicians established in papers 
published in 1995 an 2012 that cap sets must be smaller than about 1/n the size of the full deck. Many 
mathematicians wondered, however, whether the true bound on cap set size might be much smaller than that. 
 
They were right to wonder. The new papers posted online this month showed that relative to the size of the 
deck, cap set size shrinks exponentially as n gets larger. In a game with 200 attributes, for instance, the previous 
best result limited cap set size to at most about 0.5 percent of the deck; the new bound shows that cap sets are 
smaller than 0.0000043 percent of the deck. 
 
Previous results were “already considered to be quite a big breakthrough, but this completely smashes the 
bounds that they achieved,” said Timothy Gowers, Fields medalist and mathematician at the University of 
Cambridge. 
 
There’s still room to improve the bound on cap sets, but in the near term, at least, any further progress is likely to 
be incremental, Gowers said. “In a certain sense this completely finishes the problem.” 
 

Game, Set, Match 
To find an upper bound on the size of cap sets, mathematicians translate the game into geometry. For the 
traditional Set game, each card can be encoded as a point with four coordinates, where each coordinate can take 
one of three values (traditionally written as 0, 1 and 2). For instance, the card with two striped red ovals might 
correspond to the point (0, 2, 1, 0), where the 0 in the first spot tells us that the design is red, the 2 in the second 
spot tells us that the shape is oval, and so on. There are similar encodings for versions of Set with n attributes, in 
which the points have n coordinates instead of four.

The rules of the Set game translate neatly into the geometry of the resulting n-dimensional space: Every line in the 
space contains exactly three points, and three points form a set precisely when they lie on the same line. A cap set, 
therefore, is a collection of points that contains no complete lines.
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Previous approaches to getting an upper bound on cap set size used a technique called Fourier analysis, which 
views the collection of points in a cap set as a combination of waves and looks for the directions in which the 
collection oscillates. “The conventional wisdom was that this was the way to go,” Tao said. 
 
Now, however, mathematicians have solved the cap set problem using an entirely different method — and in only a 
few pages of fairly elementary mathematics. “One of the delightful aspects of the whole story to me is that I could 
just sit down, and in half an hour I had understood the proof,” Gowers said. 
 
The proof uses the “polynomial method,” an innovation that, despite its simplicity, only rose to prominence on 
the mathematical scene about a decade ago. The approach produces “beautiful short proofs,” Tao said. It’s “sort of 
magical.” 
 
A polynomial is a mathematical expression built out of numbers and variables raised to powers — for instance, x2 
+ y2 or 3xyz3 + 2. Given any collection of numbers, it’s possible to create a polynomial that evaluates to zero at all 
those numbers — for example, if you pick the numbers 2 and 3, you can build the expression (x – 2)(x – 3); this 
multiplies out to the polynomial x2 – 5x + 6, which equals zero if x = 2 or x = 3. Something similar can be done to 
create polynomials that evaluate to zero at a collection of points — for instance, the points corresponding to Set 
cards. 
 
At first glance, this doesn’t seem like a very deep fact. Yet somehow, these polynomials often seem to contain 
information that isn’t readily visible from the set of points. Mathematicians don’t fully understand, Ellenberg said, 
just why this approach works so well, and which types of problems it can be useful for. Until a few weeks ago, he 
added, he considered cap set “an example of a problem where the polynomial method really has no purchase.” 
 
That changed on May 5, when three mathematicians — Ernie Croot of the Georgia Institute of Technology, 
Vsevolod Lev of the University of Haifa, Oranim, in Israel, and Péter Pál Pach of the Budapest University of 
Technology and Economics in Hungary — posted a paper online showing how to use the polynomial method to 
solve a closely related problem, in which each Set attribute can have four different options instead of three. For 
technical reasons, this problem is more tractable than the original Set problem.

Image Credit Lucy Reading-Ikkanda for Quanta Magazine
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In this game variant, for any collection of cards with no set, Croot, Lev and Pach considered which additional 
cards could be laid down on the table to complete a set. They then built a polynomial that evaluates to zero on 
these completion cards, and figured out an ingeniously simple way to split the polynomial into pieces with smaller 
exponents, which led to a bound on the size of collections with no sets. It was a “very inventive move,” Ellenberg 
said. “It’s always incredibly cool when there’s something truly new and it’s easy.”

The paper soon set off a cascade of what Ellenberg called “math at Internet speed.”  Within 10 days, Ellenberg and 
Dion Gijswijt, a mathematician at Delft University of Technology in the Netherlands, had each independently 
posted papers showing how to modify the argument to polish off the original cap set problem in just three pages. 
Yesterday, they posted a joint paper combining their results. The trick, Ellenberg said, is to realize that there are 
many different polynomials that evaluate to zero on a given set of points, and that choosing just the right one gets 
“a little bit more juice out of the method.” A cap set, the new proofs establish, can be at most (2.756/3)n as large as 
the whole deck. 
 
Mathematicians are now scrambling to figure out the implications of the new proof. Already, a paper has been 
posted online showing that the proof rules out one of the approaches mathematicians were using to try to create 
more efficient matrix multiplication algorithms. And on May 17, Gil Kalai, of the Hebrew University of Jerusalem, 
wrote an "emergency" blog post pointing out that the cap set result can be used to prove the “Erdős-Szemerédi 
sunflower conjecture,” which concerns sets that overlap in a sunflower pattern. 
 
“I think a lot of people will be thinking, ‘What can I do with this?’” Gowers said. Croot, Lev and Pach’s approach, 
he wrote in a blog post, is “a major new technique to add to the toolbox.” 
 
The fact that the cap set problem finally yielded to such a simple technique is humbling, Ellenberg said. “It makes 
you wonder what else is actually easy.”

Special Thanks to Quanta Magazine  
Reprinted with permission from QuantaMagazine.org, an editorially independent publication of the Simons 
Foundation whose mission is to enhance public understanding of science by covering research developments and 
trends in mathematics and the physical and life sciences.
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Introduction
My name is Tamar, I am a tenth-grade student at the 
Democratic school in Lev HaSharon, and am in the 4-5 
credit mathematics course.

Some time ago, I solved an exercise in geometry, and I 
noticed that it could be solved in a simpler way, with 
a much simpler theorem, which I later realized had 
not yet been formulated. I checked with Shawn, 
my teacher, I asked relatives outside of Israel who 
work in mathematics, and I got advice from my 
parents. We sent the article to Professor Ron Livne 
at Hebrew University in Jerusalem, and to other 
experts, and I came to understand that the theorem 
truly had not been previously formulated anywhere, 
despite the fact that it is very basic and logical. With 
some help from Shawn and my father, who is also a 
teacher, I wrote the following proof with some additional 
conclusions.

The Theorem:
If three or more line segments of equal length leave a single point and reach the boundary of 
a circle, the point is the center of the circle and the lines are its radii.

Proof for the Theorem:

The Three Radii Problem
BY TAMAR BARABI

Teacher: Shawn Gavriel Morris, Democrati Lev HaSharon Israel

Proof: We will prove the theorem 
for the case of three lines

Suppose we are given a point M 
and three points, A, B and C lying 
on a circle such that AM=BM=CM.
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We must show that M is the center of the circle,  and that MA, MB, MC are radii

1. We will draw the chords AB and BC.

2. The triangles AMB and BMC are isosceles. Derived from the given information.

3. We will draw segments to the base of the isosceles triangles, MD and ME

4. MD and ME are perpendicular bisectors of the segments AB and BC, respectively. This derives from 
points 2 and 3, and from the fact that “in an isosceles triangle, the perpendicular bisector to the base 
passes through the third vertex/

5. ME and MD pass through the center of the circle. This derives from point 4 and the theorem the 
perpendicular bisector to any chord in a circle passes through the center of the circle.

6. M is the center of the circle. This derives from point 5, because M is the only common point of the two line 
segments.

7. MA, MB, and MC are radii of the circle. This derives from point 6 and from the fact that each of them 
moves from M to the edge of the circle.

Q.E.D (6 and 7)

Applications of the Theorem
Conclusion A:  
No more than one circle may pass through three points.

Explanation:  
Through the negation—If two circles passed through the same three points, we would reach the situation in which 
three congruent line segments or more could pass between two points—the two centers of the circles—something 
which contradicts the theorem.

Conclusion B:  
A special case of the theorem—from a point outside the circle, it is not possible to pass more than two equal line 
segments to the circle’s circumference.

Explanation:  
When more than two lines that pass from a point to the edge of the circle are equal, according to the theorem we 
proved, the point must be the center of the circle.

Conclusion C:  
If two equal chords bisect each other in a circle, they are diameters.

Explanation:  
If equal line segments intersect, we receive four equal line segments leaving a point to the edge of the circle; 
according to the theorem, the point will be the edge of the circle, and a segment that passes through the center of 
the circle is a diameter.
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2017 MATH QUICKIES
Solutions will be published in the next issue of PI IN THE SKY.

1 Find the number of the nonempty subsets of the set of the first nine positive 
integers which contain the same number of even and odd integers.

2 Find the tens digit of 22016 + 22017.

3 If an = an-1 + 3an-2, n ≥ 2 and a1 = a2 = 1, find the remainder when a2016 is divided 
by 5.

4 Let x, y, z be any real numbers such that 3x + y + 2z ≥ 3 and -x + 2y + 4z ≥ 5 Find 
the minimum value of 7x + 5y + 10z.

5 Find all real numbers x which are solutions of the equation: 

6 Find the minimum value of , where a, b, c e [2,3] and a + b + c = 8.

7 Find the maximumarea of a convex quadrilateral having sides of length 2, 5, 10 
and 11.

8 Find the maximum number of non-congruent integer-side rectangles, which can 
be obtained when an 8 x 8 square is cut into pieces with all cuts parallel to its 
sides.

PRIZE!
PIMS is sponsoring a prize of $100 to the first high school student (from within the PIMS operating 

region: Alberta; British Columbia; Manitoba; Saskatchewan; Oregon; Washington) who submits the 

larges number of correct answers before December 1, 2017. Submit your answers to: pims@uvic.ca
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1. Find all positive integers n for which n5 2+  is an integer.

solutIon: 
If a positive integer k is congruent to 0, ± 1, ± 2 (mod 5) then k2     0 or k2     ±1 (mod 5) and consequently there is 
no positive integer such that 5n + 2 = k2.

2.  Find all the integers m such that m m3 502 + -  is divisible by 192.

solutIon:
We first have 
                                                                   m2 + 3m − 50 = (m + 11)(m − 8) + 38

If m is an integer such that m2 + 3m − 50 is divisible by 192 then we must have

19|(m + 11)(m − 8) 19|(m + 11) or 19|(m − 8)

and since (m + 11) − (m − 8) = 19 we conclude that 19|(m + 11) and 19|(m − 8) and hence 192|(m + 11)(m − 8). 
Therefore 192|38, which is a contradiction. Consequently there is no integer m with the requested property.

3. Find the number of positive integers  ≤ 1000 which are not divisible by any of 5, 7, and 11.

solutIon:
The number of positive integers which are ≤ 1000 and divisible by 5, 7, 11, 35, 55, 77, 385 = 5 x 7 x 11 is 
respectively 200, 142, 90, 28, 18, 12, 2. The requested number is 1000 - (200+142+90)+(28+18+12)-2 = 624. 

4.  Let x, y be any real numbers. Find the smallest possible value of x x y y3 2 100- + - + + - .

solutIon: 
For any real numbers a, b we have the triangular inequality |a| + |b| ≥ |a + b| . Hence

|x − 3|+|x − y + 2|+|100 − y| ≥ |x − 3 + y −x − 2 + 100 − y| = 95  

for any real numbers x, y. The equality is attained if 5 ≤ x + 2 ≤ y ≤ 100.

5. Let P(x) be a polynomial of degree four and let a ≥ 1, b  ≥ 1 be distinct numbers such that P(a) = P(1 − a),  
      P(b) = P(1 − b). Show that P(x) = P(1 − x), for any real number x.

solutIon: 
The numbers a, b, 1 − a, 1 − b are distinct and they are roots of the polynomial Q(x) = P(x) − P(1 − x). Since Q  
is a degree three polynomial with four distinct roots, we conclude that it should be the zero polynomial.

2015 math qUickIes
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6. Let a1, a2, ..., an be real nonnegative numbers such that a1 + a2 + ... + an = k. Find the maximum value of 
       a1a2 + a2a3 + ... an−1an.

solutIon: 
We have 
                                                      a1a2 + a2a3 + ... an−1an  ≤  (a1 + a3 + · · ·)(a2 + a4 + · · ·)

a1 a2 + a2 a3 + · ·dddd −1 an  ≤  [(a1 + a3 + · · ·) + (a2 + a4 + · · ·)]2

3 + · ·dddd                                       4

a1 a2 + a2 1               =  (a1 + a3 + · · · + an)2 = k
2

3 + · ·dddd                                    4                      4
                                                                                                     k 
The maximum value is attainted if for example, a1 = a2 =    4                      

7.  Let M = {1, 2, 3, ..., 2016} and k a positive integer. Find the minimum value of k for which any subset of M
     with k elements contains at least two distinct numbers such that one of them is a multiple of the other.

solutIon: 
If k ≤ 1008 then the set {1009, 1010, ..., 2016} contains 1008 elements and does not contain at least two distinct 
numbers one of them a multiple of the other. Let us show that any subset of M with 1009 elements contains at least 
two distinct numbers such that one of them is a multiple of the other. If A = {a1, ..., a1009} is any subset of M with 
1009 elements then for any ai e A there is a nonnegative integer bi such that

1009 ≤ ai2bi ≤ 2016

Since there are 1008 integers between 1009 and 2016 , by the pigeonhole principle we must have two distinct 
numbers ai < aj in A such that

ai2bi = aj 2bj 

Hence bi > bj and aj  = ai2bi–bj, that is aj is a multiple of ai. Therefore, the requested minimum value of k is 1009.

8. The point P is inside a convex quadrilateral ABCD of area 168 such that PA = 9, PB = PD = 1 and PC = 5. 
      Find the perimeter of the quadrilateral.

solutIon: 
Let α, β, γ, δ denote the angles APB, BPC, CPD and respectively, DPA. The area of the quadrilateral  
can be written as

2 · 128 = 9 · 12 sin α+ 12 · 5 sin β+ 5 · 12 sin γ+ 12 · 9 sin δ

Since 9 · 12 + 12 · 5 + 5 · 12 + 12 · 9 = 2 · 168 = 336 the above equality holds if and only if α = β = γ = δ = 90°. 
Therefore, by Pythagorean theorem we obtain AB = 5, BC = 13, CD = 13 and DA = 15. The perimeter of the 
quadrilateral is 46.
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