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This column is an open forum that welcomes opinions
on all mathematical issues: research, education and com-
munication. Please feel free to write.

Opinions expressed in this forum do not necessarily re-
flect those of the editorial board, PIMS, or its sponsors.

The Red Violin of Science

by Tomasz Kaczynski

The first scene of the Canadian film The Red Violin,

directed by François Girard, takes place in Renaissance
Italy. Master instrument maker Nicolo Bussotti inspects
a violin just finished by his assistant. The instrument is
fine but too ordinary—the master smashes it against a
table and shouts at the poor boy, “Put your anger into

your work!”

Recently I was struck by the following title of a talk at
the Canadian Mathematical Society Winter 2000 Meeting:
Chinese excellence in mathematics teaching: can we match

in North America?

How fast the times change! Until a decade ago there
was a similar fascination about the quality of mathematics
teaching in the Soviet Union and in Eastern Europe. Let
us recall that communist states created special schools at
central locations for talented kids from all over the coun-
try. I remember one such school in my home city of War-
saw, but the most famous one was in Moscow. It was a real
factory specializing in mass production of International
Mathematical Olympiad winners. An intriguing observa-
tion is that those schools, besides their principal mission,
were renown for accommodating children of high rank gov-
ernment or Communist Party officials. Now, with Soviet
communism gone, special elitist schools have collapsed and
the majority of Russian geniuses have emigrated to Amer-
ica. The centre of attention has now moved to the last
bastion of communism left in the world. What is the se-
cret of the system that imposed such high standards in
the domain of science, while being so destructive for the
economy and human rights? Is it just the excellence

in teaching, or is it the exceptional motivation of

students that is needed for a high-quality mathe-

matics education?

Let me tell you my personal view on how college stu-
dents of my generation were attracted to mathematics.
In communist Poland, the life was grim, politics dis-
gusting, communistic propaganda omnipresent and career
prospects very obscure. Choosing mathematics was

an escape from the gruesome reality to an area that

was out of reach of the bureaucrats and politicians,

who were unable to understand it.

But our dreams of finding a refuge in this abstract do-
main appeared to be just an illusion. The conscience did
not let us stay indifferent to what was happening, and we
became engaged in a political battle with the regime. This
was not a unique Polish phenomenon. Prominent math-
ematicians were among the students rioting in Berkeley
against the Vietnam War in 1967, on the barricades of
Paris the same year and, certainly in large numbers, in
Tiananmen Square in 1989. Of course, it would be fool-
ish to assign to every mathematician of that époque the
revolutionary label. First of all, we were fascinated by the
challenge of solving problems and by the legends of famous
conjectures; we tried to follow the examples of educational
and scientific idols. What I want to say is that to study
mathematics one needed passion, not a cold estimate of
job opportunities.

Today, mathematics is seen as a means to benefit so-
ciety through its applications to sciences, engineering, in-
dustry, and medicine. Mathematicians are under constant
pressure to demonstrate the usefulness and potential for
immediate pay-off from their research. There is a growing
feeling that mathematics is being misunderstood as a set
of cooking recipes and that its “spirit” is passing away. A
dozen years ago at a conference in Corner Brook, New-
foundland, I listened to a talk by Professor Swaminathan
of Dalhousie University about famous equations of math-
ematics. The first equation he presented was

2 + 2 = 4.

Is it too obvious? Less than it looks. An obvious
equation would be 2 fingers + 2 fingers = 4 fingers or
2 kg + 2 kg = 4 kg or $2 + $2 = $4. What distinguishes
the first equation written above from the others? It is the
absence of contextual units. The first man who discov-
ered that we may write this equation without any units
and it will still hold true in any practical context was the
greatest mathematician of all time. This is exactly what
makes mathematics so powerful and universal, and why
many mathematical discoveries have preceded their prac-
tical applications by more than a century. In the present
world of quick profits, our favorite equation is put on trial.

Towards the end of The Red Violin, a highly sophisti-
cated scientific researcher helps to uncover the tragic mys-
tery of the instrument—I will not explain more since you
might want to see the film. Maybe one day a genetics re-
searcher will help to uncover the mystery of the first man
who wrote 2 + 2 = 4 without contextual units.

Tomasz Kaczynski was born in Poland, where he obtained his Master
Degree in Mathematics at Warsaw University. He obtained his PhD from
McGill University and presently works at Université de Sherbrooke. You
can view a personal web page of Tomasz Kaczynski at:

http://www.dmi.usherb.ca/personnel/prof maths/tomasz.kaczynski/index.html

or send him an E-mail message at: kaczyn@dmi.usherb.ca
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Counting

with Base Two and

the Game of Nim

by Akbar Rhemtulla

Here we will learn to count using base two arithmetic,
and then play a game of Nim where base two math will
be a powerful tool!

Counting with Base Two
The usual way of expressing numbers involves ten sym-

bols {0, 1, 2, . . . , 9}. Some say this evolved historically be-
cause we have ten fingers on our two hands. When we
want to express a number greater than 9, we use combi-
nations of these symbols with their place values. So, for
example, ten is 10, and

2542 = 2× 103 + 5× 102 + 4× 101 + 2.

Mathematicians call this the decimal system. But there
is nothing special about using ten symbols. Indeed, in
computers we have only two positions for switches ‘off’
and ‘on’, so we count using only two symbols {0, 1}. This
is called base two.

How then do you write the number 2? Well, following
the decimal system, where 10 comes after 9, we write 10
for the number that follows 1. Here are the numbers from
zero to ten:

0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010.

Let us see what the decimal format is for the number
that is written in base two as 10011.

11011 = 1×24+1×23+0×22+1×21+1 = 16+8+2+1 = 27.

Here are some more numbers in base two and base ten,

1001←→ 9 111←→ 7 10011←→ 21.

Addition is similar to the base ten system. So:

Base two convert Base ten
111 ←→ 7

+ 101 ←→ 5
+ 1101 ←→ 13
= 11001 ←→ 25

Game of Nim

This game is played by two players. A bunch of match
sticks are arranged in several rows and each player alter-
nately picks some (at least one) from any one row. The
player who picks the last match stick(s) is the winner. Let
us try a game.

| | | | | | | (111 = 7 sticks)
| | | | (100 = 4 sticks)
| | | | | (101 = 5 sticks)
| | | (011 = 3 sticks)

A and B are the players and A has the first move. He
takes three sticks from row two.

| | | | | | | (111 = 7 sticks)
| (001 = 1 stick)
| | | | | (101 = 5 sticks)
| | | (011 = 3 sticks)

Now it is the turn of clever player B. She is in the losing
position (we will see why), but she hopes that A will make
a false move. She removes one stick from row one.

| | | | | | (110 = 6 sticks)
| (001 = 1 stick)
| | | | | (101 = 5 sticks)
| | | (011 = 3 sticks)

Player A now removes three sticks from row three.

| | | | | | (110 = 6 sticks)
| (001 = 1 stick)
| | (010 = 2 sticks)
| | | (010 = 2 sticks)

This is just what B is hoping for. She now removes all
six sticks from row one.

(00 = 0 stick)
| (01 = 1 stick)
| | (10 = 2 sticks)
| | | (11 = 3 sticks)

Player A is doomed! If he takes the stick from row two,
B will take one stick from row four and then copy A’s
move onwards. If he takes two sticks from row three, then
B will remove two sticks from row four. He decides to take
one stick from row three.
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(00 = 0 stick)
| (01 = 1 stick)
| (01 = 1 stick)
| | | (11 = 3 sticks)

B now removes all three sticks from row four to put A
in the following position.

(0 = 0 stick)
| (1 = 1 stick)
| (1 = 1 stick)

(0 = 0 stick)

A removes the stick in row two and B clears row three
and wins.

Strategy

Player B was counting the sticks in each row using the
base two system. Here are the numbers and totals in
columns at each stage, starting from initial setup with
A to move.

Initialsetup A moves B moves A moves
111 111 110 110
100 001 001 001
101 101 101 010
011 011 011 011

3, 2, 3 2, 2, 4 2, 2, 3 1, 3, 2

B moves A moves B moves B wins
000 000 000 000
001 001 001 000
010 001 001 001
011 011 000 000

0, 2, 2 0, 1, 3 0, 0, 2 0, 0, 1

B added the number of ones in each column (we will use
the decimal system to count the total). In the first column,
the numbers (in base two format) are 111, 100, 101 and
011. Three of these end in digit ‘1’ and two have ‘1’ as
their second digit and three have ‘1’ as the third digit. The
bottom numbers 3,2,3 give a count of these. Her strategy
was to make every one of these an even number.

She could do it if she were to start. For example, remov-
ing enough sticks in row one to get the number from 111 to
010 would do, since it would bring the bottom count from
3,2,3 to 2,2,2. She could even achieve this by removing
enough sticks from row two to change the number from
100 to 001 (making the bottom line change from 3,2,3 to
2,2,4). Finally she could attack row three, removing all
the matches to bring the number from 101 to 000 (and
the bottom line from 3,2,3 to 2,2,2). However, she could
not make all the columns even by attacking row four.

She would like to start, but it is player A’s turn to start.
The first move of A is great! He manages to bring the
number of 1s in each of the three columns to even numbers.
B can only hope for A to make an error. The rule of the

game is that you must remove at least one match stick
and you cannot remove the sticks from more than one
row. So whatever B does, one of the 1s in at least one of
the columns will change from an even to an odd number.
So she removes one stick and prays.

Well, A goofs. All he had to do was remove one stick
from either of rows two, three or four. Instead, he removes
three sticks from row three and the count of 1s changes to
1,3,2.

B has the game under her control at this point. Notice
she brings the totals to 0,2,2. A’s move results in a count of
0,1,3, and again B makes all those digits even. The game
ends when B finally makes the bottom count all even with
0,0,0.

This is the game of Nim. Play with your friends and
show the power of mathematical tools. Could you have
done this if you were counting in powers of ten (decimal
system)?

There are versions of the game where the last person
to remove a match stick is the loser. The strategy is very
similar to above. On her second move, player B had com-
plete control of the game and if she had chosen to lose the
game, there would be nothing A could do to stop her!

Note: If you know any other game with a winning strat-
egy, or if you are the author of a computer game involving
such a feature, please send us the details. We would defi-
nitely give consideration to your submission and possibly
include it in one of our upcoming issues.

Find more about the author at the following web site:
http://www.math.ualberta.ca/People/Facultypages/Rhemtulla.A.html

You can also send your comments directly to the author by E-mail at

ar@ulberta.ca

c©Copyright 2000 by Zbigniew Jujka
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Relating Mathematical
Ideas to Simple
Observations

by Jim G. Timourian

I went to college in the northeastern part of the U.S. The
highways there are often carved through rocky, hilly areas,
so that as you drive by you can see various geological fea-
tures. I envied my friends who were taking an elementary
geology course since they could pass the traveling time by
explaining to us how the layers of rock were formed. At
the time, it didn’t seem as if I could relate anything I saw
in the world to the mathematics I was taking.

I soon learned that there are mathematical features il-
lustrated all around us. I thought that most were too so-
phisticated to be identified by beginning students. More
recently, I realized that there are in fact many simple ob-
servations that demonstrate relatively elementary math-
ematical ideas. I started assembling a list of these, with
the hope that as the years go by many more can be added.
Here is my start.

Exercise: Each observation below is associated with a
basic mathematical idea. Describe it.

a) You jog for an hour on a motorized treadmill and go
nowhere.

b) The mirror image of a mirror image of the letter R
looks like the letter R again.

c) You study twice as hard for a test as your friend, but
you do not learn twice as much.

d) An instructor raises all grades on a test by 20 points.

e) An instructor raises all grades on a test by 20%.

f) Two teams of equal strength fight a tug of war to a
tie.

g) A broken clock displays the correct time twice a day.

Answers:

a) If you go nowhere, your running speed must be the
same as that of the treadmill, but in the opposite
direction. On a straight line, speed can be given a plus
or minus sign to distinguish the direction. We call the
combination of speed and direction velocity. In this
case, if your velocity is x, then the velocity of the
treadmill belt is −x and the sum of the two velocities
is 0. Numbers x and −x are called additive inverses
of each other, and each number on the number line
has such an additive inverse.

b) Draw horizontal and vertical axes on a sheet of paper,
and write the letter R on the sheet. When you hold
the paper up to a mirror you get a backwards R. The
mirror image of that backwards R is again the original

∗ Find more about the author at the following web site:
http://www.math.ualberta.ca/People/Facultypages/Timourian.J.html
You can also send your comments directly to the author by E-mail at
jtimouri@math.ualberta.ca

R. If you label the axes x and y, then each point in the
R you have drawn has an address (x, y). When you
hold the paper to the mirror and look at the mirror
image, each point (x, y) in the R you drew moves
to the point (−x, y) in the mirror. When you take
the mirror image of the mirror image, you get back
to (x, y). This illustrates the mathematical property
that multiplying two minuses equals a plus.

c) If the graph of a function is a straight line, the func-
tion is particularly simple. It is called a linear func-
tion (technically the function must have value zero at
zero) and has a certain proportionality property. For
example, if the amount you learn is measured as a
function of the time you spend studying, and if the
relationship is linear, it would be true that if you stud-
ied for 0 hours you would learn 0, if you studied for
x hours you would learn twice as much as what you
would learn if you studied for only half of that time,
and three times as much as what you would learn if
you studied for only one third of that time. Most
processes in real life are not linear (they are formally
called nonlinear). A little experience with learning
any skill, whether it is mathematics, playing a musical
instrument or developing a golf swing, demonstrates
that the “learning function” is nonlinear.

d) Suppose the original grades are marked as numbers on
a straight line. If an instructor raises all grades by 20
points, one can imagine that all of the points on the
line are being translated 20 units to the right. That
is, each point x is moved to the point x + 20. Such a
translation can be identified with the idea of “adding
by 20”, with the feature that the relative distances
between the grades stay the same. A translation such
as this is an example of a rigid motion (of the line),
an important idea in Euclidean geometry.

e) Suppose the original grades are marked as numbers
on a straight line. If an instructor raises all grades by
20%, one can imagine that the point 0 is fixed while
the rest of the line is stretched to the right and left,
so that each point x is moved to the point (1.20)x.
This movement would be represented by a magnifica-
tion of the line and can be identified with the idea of
“multiplying by 1.20.” A magnification such as this is
an example of a motion that is not rigid since relative
distances change among the grades.

f) This example is similar to a), except there are two
forces that are equal in intensity, but in opposite di-
rections. A force has both intensity and direction, so
if one team pulls with force x, the other team must be
pulling with force −x, and the sum of the two forces
is zero.

g) A clock works with modular arithmetic. Imagine that
the numbers on a number line represent time. Two
times are equivalent if their difference is divisible by
12. We re-label all the numbers just using numbers x
where 0 < x ≤ 12. Define addition mod 12 by saying
that if y is another number, then x ⊕ y is equal to
the remainder you get if you divide the usual x + y
by 12. This puts x⊕ y into the interval from 0 to 12.
In this system, the number 12 is the additive identity:
x ⊕ 12 = x for any x. If the time the clock broke is
x, then every 12 hours it will again show the correct
time x.
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There really are only two types of people in the world, those that
DON’T do MATH, and those that take care of them. (Larry James)

Philosophy is a game with objectives and no rules. Mathematics
is a game with rules and no objectives. (Ian Ellis)

Theorem: All numbers are equal to zero.

Proof: Suppose that a = b. Then a = b, so a2 = ab. By subtracting
b2 from the last equality we get a2

−b2 = ab−b2, hence (a+b)(a−b) =
b(a − b), thus a + b = b, therefore finally a = 0. (Benjamin J. Tilly)

Theorem: All positive integers are interesting.

Proof: Assume the contrary. Then there is the lowest non-
interesting positive integer. But, hey, that’s pretty interesting! A
contradiction.

In earlier times, they had no statistics, and so they had to fall
back on lies. (Stephen Leacock)

Two mathematicians walk into a restaurant for lunch. One chal-
lenges the other to a wager, loser pays the tab. The challenger says,
“The waiter will not know the correct formula for (a + b)2.”

“You’re on!” is the reply.
They place their order and the waiter is asked the formula for

(a + b)2. The waiter replies,
“Obviously, (a + b)2 = a2 + b2.”
“Provided, of course, that a and b are anticommutative!”

(Oscar Lanzi III)

Mathematics is the systematic misuse of a nomenclature devel-
oped for that specific purpose. (Poul-Henning Kamp)

The four branches of arithmetic—ambition, distraction, uglifica-
tion and derision. (Lewis Caroll: “Alice in Wonderland”)

Algebraic symbols are used when you do not know what you are
talking about.

Logic is a systematic method for getting the wrong conclusion...
with confidence.

Surely ‘statistics’ is a systematic method for getting the wrong
conclusion... with 95% confidence.(Rafy Marootians)

c©Copyright 2000 by Wieslaw Krawcewicz

One attractive young businesswoman to another, over lunch: “My
life is all math. I am trying to add to my income, subtract from my
weight, divide my time and avoid multiplying.”

How about the apocryphal story about the MIT student who
cornered the famous John von Neumann in the hallway:

Student: “Er, excuse me, Professor von Neumann, could you
please help me with a calculus problem?”

John: “Okay, sonny, if it’s real quick—I’m a busy man.”
Student: “I’m having trouble with this integral.”
John: “Let’s have a look.” (brief pause) “All right, sonny, the

answer’s two-pi over 5.”
Student: “I know that, sir, the answer’s in the back—I’m having

trouble deriving it, though.”
John: “Okay, let me see it again.” (another pause) “The answer’s

two-pi over 5.”
Student (frustrated): “Uh, sir, I know the answer, I just don’t see

how to derive it.”
John: “Whaddya want, sonny, I worked the problem in two dif-

ferent ways!”
(Mark A. Thomas)

Someone who had begun to read geometry with Euclid, when he
had learned the first proposition, asked Euclid, “But what shall I get
by learning these things?” whereupon Euclid called in his slave and
said, “Give him three pence since he must make gain out of what he
learns.” (Stobaeus)
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The Number π and
the Earth’s
Circumference

by W. Krawcewicz

The most famous quantity in mathematics is the ratio
of the circumference of a circle to its diameter, which is
also known as the number pi and denoted by the Greek
letter π :

circumference

diameter
= π.

The symbol π was not introduced until just over two
hundred years ago. The ancient Babylonians estimated
this ratio as 3 and, for their purposes, this approximation
was quite sufficient. According to the Bible∗, the ancient
Jews used the same value of π. The earliest known trace
of an approximate value of π was found in the Ahmes
Papyrus written in about 16th century B.C. in which, in-
directly, the number π is referred to as equal to 3.1605.
Greek philosopher and mathematician Archimedes, who
lived about 225 B.C., estimated the value of π to be less
than 31

7 but more than 310
71 . Ptolemy of Alexandria (c.

150 B.C.) gives the value of π to be about 3.1416. In the
far East, around 500 A.D., a Hindu mathematician named
Aryabhata, who worked out a table of sines, used for π the
value 3.1416. Tsu Chung-Chih of China, who lived around
470, obtained that π has a value between 3.1415926 and
3.1415927, and after him no closer calculation of π was
made for one thousand years. The Arab Al Kashi about
1430 obtained the amazingly exact estimated value for π of
3.1415926535897932. There were several attempts made
by various mathematicians to compute the value of π to
140, then 200, then 500 decimal places. In 1853, William
Shanks carried the value of π to 707 decimal places. How-
ever, nobody seemed to be able to give the exact value for
the number π.

What is the exact value of the number π? I talked to
my daughter about this problem and we decided to find
our own estimation of the number π by an experiment.
For this purpose, we used an old bicycle wheel of diameter
63.7 cm. We marked the point on the tire where the wheel
was touching the ground and we rolled the wheel straight
ahead by turning it 20 times. Next, we measured the
distance traveled by the wheel, which was 39.69 meters.
We divided the number 3969 by 20 × 63.7 and obtained
3.115384615 as an approximation of the number π. Of
course, this was just our estimate of the number π and we
were aware that it was not very accurate.

The problem of finding the exact value of the number π
inspired scientists and mathematicians for many centuries

∗ Kings 7:23 He [Solomon] made the Sea of cast metal, circular in
shape, measuring ten cubits from rim to rim [diameter = 10] and five
cubits high. It took a line of thirty cubits to measure around it [circum-
ference = 30].

before it was solved in 1761 by Johann Heinrich Lambert
(1728-1777). Lambert proved that the number π cannot
be expressed as a fraction or written in a decimal form us-
ing only a finite number of digits. Any such representation
would always be only an estimation of the number π. To-
day, we call such numbers irrational. The ancient Greeks
already knew about the existence of irrational numbers,
which they called incommensurables. For example, they
knew that the length of the diagonal of a square, with side
of length equal to one length unit, is such a value. This
value, which is denoted

√
2 and is equal to the number x

such that x2 = 2, cannot be expressed as a fraction.
Today in schools we use the estimation 3.14 for the num-

ber π, and of course this is completely sufficient for the
type of problems we discuss in class. However, it was
quickly noticed that in real life we need a better estimate
to find more accurate measurements for carrying out con-
struction projects, sea navigations and military applica-
tions. For most practical purposes, no more than 10 digits
of π are required. For mathematical computation, even
with astronomically precise calculations, no more than
fifty exact digits of π are really necessary: 3.1415926535
8979323846 2643383279 5028841971 6939937510. How-
ever, with the power of today’s supercomputers, we are
able to compute more than hundreds of billions of digits
of the number π. You can download at the Web site

http://www.verbose.net/
files with the exact digits of the number π up to 200 million
decimals. We also have the following approximations of
the number π:
3.1415926535 8979323846 2643383279 5028841971 6939937510

5820974944 5923078164 0628620899 8628034825 3421170679

8214808651 3282306647 0938446095 5058223172 5359408128

4811174502 8410270193 8521105559 6446229489 5493038196

4428810975 6659334461 2847564823 3786783165 2712019091

4564856692 3460348610 4543266482 1339360726 0249141273

7245870066 0631558817 4881520920 9628292540 9171536436

7892590360 0113305305 4882046652 1384146951 9415116094

3305727036 5759591953 0921861173 8193261179 3105118548

0744623799 6274956735 1885752724 8912279381 8301194912

9833673362 4406566430 8602139494 6395224737 1907021798

6094370277 0539217176 2931767523 8467481846 7669405132

0005681271 4526356082 7785771342 7577896091 7363717872

1468440901 2249534301 4654958537 1050792279 6892589235

4201995611 2129021960 8640344181 5981362977 4771309960

5187072113 4999999837 2978049951 0597317328 1609631859

5024459455 3469083026 4252230825 3344685035 2619311881

7101000313 7838752886 5875332083 8142061717 7669147303

5982534904 2875546873 1159562863 8823537875 9375195778

There is a lot of information on the number π available
on the Internet. Check out our Math Links section for
sites related to the number π (page 28).

Since the number π is the ratio of the circumference of
a circle to its diameter, we can write a formula for the
circumference of a circle, which is

C = πd,

where C denotes the circumference and d denotes the di-
ameter of the circle. If r denotes the radius of the circle
than d = 2r, and we can rewrite the formula for the cir-
cumference as

C = 2πr.
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Of the mathematical achievements of the Greek as-
tronomers none is more interesting than the measurement
of the circumference and the diameter of the earth by Er-
atosthenes (born at Cyrene in 274 B.C and died in 196
B.C). Eratosthenes was an astronomer of the Alexandrian
school who had the idea the sun is so distant from the
Earth compared with its size, that the sun’s rays inter-
cepted by all parts of the Earth approach it along seem-
ingly parallel lines. This is a simple fact based on the
observation that the more distant the source of light, the
smaller the angle between the rays (see diagram above).
For a source infinitely distant, the rays travel along paral-
lel lines. We know that the sun is not infinitely far away
from the Earth, but the angle between the rays of light
coming from the sun at any place on the Earth is less

than one third of a minute (1
3

′
), which is very small. As a

consequence, at every location on the Earth, people who
can see the sun or stars are all looking in the same direc-
tion. This concept was also used in celestial navigation at
sea.

Eratosthenes noticed that at Syrene in Egypt (now
called Aswân), on the first day of summer, sunlight struck
the bottom of a vertical well at noon, which indicated
that Syrene was on a direct line from the center of the
Earth to the sun. At the corresponding time and date in
Alexandria, which was 833 km from Syrene (in the time of
Eratosthenes Greeks were using stadium as a length unit,
which was equal to about 1

6 km), he observed that the sun
was not directly overhead but slightly south of zenith, so
that its rays made an angle with the vertical equal to 1

50
of a circle. Therefore, Alexandria must be one-fiftieth of
the Earth circumference north of Syrene, and the Earth

circumference must be 50 × 833 km, or 41, 666 km (see
diagram at left). The correct value of the Earth circum-
ference is 40, 000 km. The diameter of the Earth is found
from the circumference by dividing the latter by π, so it
is equal to 12, 738 km.

We can only speculate what would happen if these facts
were known to Columbus sixteen centuries later. How-
ever, it is very unfortunate that for almost one thousand
years Western civilization was living in complete darkness,
unaware of the great scientific discoveries of the ancient
Greeks. This one thousand years was a great loss for
mankind.†

By using geometrical construction, the last Greek
astronomer of antiquity—Claudius Ptolemy, who lived
around 140 A.D.—was able to obtain a nearly correct
value for the distance to the moon, which is 382, 680 km.
His construction, which requires more knowledge about
the properties of triangles, will be discussed in an upcom-
ing issue.

If you find this story interesting and would like to learn more about the
number π, its history and how to compute its exact digits, you definitely
should read the article “The Amazing Number π,” published on our
web site http://www.pims.math.ca/pi. The article was written by Peter
Borwein, who is one of the best experts on this issue.

Mathematician’s bakery: House of Pi.

Q: How does a mathematician support himself?
A: With brackets.

This isn’t really a joke—it supposedly happened in a UK GCSE
exam some years ago, but it may amuse you:

Q: How many times can you subtract 7 from 83, and what is left
afterwards?

A: I can subtract it as many times as I want, and it leaves 76
every time. (Peter Taylor)

In modern mathematics, algebra has become so important that
numbers will soon have only symbolic meaning. (Peter Bengtsson)

† We should mention that a group of prominent Russian mathemati-
cians, after extensive studies of the numerial and astronomical data con-
tained in historical documents available today, denies the existence of
the so called “dark ages.” They claim that the ancient history was in-
correctly dated and should be shifted at least 1000 years closer to our
present time. This is another story that we may feature in one of the
upcoming issues of π in the Sky.
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Collector’s Problem

by Byron Schmuland
If you’ve ever collected sports cards, you know what it’s

like. At first, every pack you buy adds to your rapidly
growing collection, but pretty soon you are collecting a
lot of duplicates, and in a short time your duplicate pile
is bigger than your collection. Eventually, getting a new
card for your collection is a rare event; most of the time the
whole pack goes straight into the duplicate pile. Finally,
you need only one last card, the elusive Bobby Orr, and
you spend several weeks buying pack after pack before you
finally finish off your collection.

Are you being ripped off? Does it make sense that your
duplicate pile should end up being two or three times big-
ger than your collection? Is the card company artificially
creating rare cards to increase sales?

Let’s try to understand the mathematics of the collec-
tor’s problem. For simplicity, we’ll assume that you buy
cards one at a time, and that every player’s card has an

Find more about the author at the following web site:
http://www.stat.ualberta.ca/people/schmu/dept page.html
You can also send your comments directly to the author at
schmu@stat.ualberta.ca

equal chance of turning up. This says that the card com-
pany is not cheating—there are as many Bobby Orr’s as
there are Bobby Schmautz’s. We let n be the total num-
ber of different cards. When I collected hockey cards, n
was about 250. This is hard to handle, so let’s warm up
with a simpler problem where n = 4.

Start with a well-shuffled deck of cards. Randomly pull
out a card, replace and repeat. How long does it take, on
average, to get all four suits? Try it a few times, and you’ll
see that you very rarely get all four suits with the first four
cards, usually it will take eight or nine, and occasionally
over a dozen cards before all four suits show up. Here are
some sample results:

7 cards:
↓
♠♠

↓
♣
↓
♦♣♦

↓
♥♥♣ . . .

5 cards:
↓
♣
↓
♥♥

↓
♦
↓
♠♦ . . .

14 cards:
↓
♣♣

↓
♥♥♣♥♣♣

↓
♠♣♣♠♥

↓
♦♣ . . .

I’ve marked each new suit with a little arrow, and the
fourth new suit means we’re done. To do the mathematics,
it is convenient to divide the total into the four pieces T1,
T2, T3, and T4 between new suits. Let’s call

E(T1) = 1,

E(T2) = average number of cards between 1st and 2nd new suit,

E(T3) = average number of cards between 2nd and 3rd new suit,

E(T4) = average number of cards between 3rd and 4th new suit.

The average number of cards to get all four suits is E(T1)+
E(T2) + E(T3) + E(T4).

Flip it over!

If the chance of a random outcome is p,
then on average you need 1/p trials until
this outcome occurs.

For instance, if you toss a fair coin, you
need 2 throws on average to get a head, and
with a fair die you need 6 throws on average
to get a . .

... . I guess this makes sense. The
rarer the outcome, the longer it takes to see
it.

Back to the card problem. The first equation E(T1) = 1
is easy since the first card always gives a new suit. Now
after you have one suit, the chance of a new suit is 3/4 and
the average number of cards until this happens is (flip it
over!) E(T2) = 4/3. After you have two suits, the chance
of a new suit is 1/2 and the average number of cards until
this happens is E(T3) = 2. Finally, after you have three
suits, the chance of a new suit is 1/4, so E(T4) = 4. This
gives the final answer of

E(T1) + E(T2) + E(T3) + E(T4) = 4 ( 1
4+ 1

3+ 1
2+ 1

1 ) = 8 1
3 .

The nice thing is that the same pattern works no matter
how big the problem. Going back to the hockey cards,
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if there are a total of n cards to be collected, then the
average number of random selections until all n different
cards appear is

n
(

1
n

+ 1
n−1 + 1

n−2 + · · ·+ 1
1

)

≈ n(log n + 0.577),

where log n means the natural log of n. Plugging in
n = 250, I find that the average number of cards purchased
to get a full collection is about 1525. By the time you’re
done, the average duplicate pile should be five times larger
than the collection. Well, that explains a lot!

However average doesn’t mean typical. Some hockey
card collectors will need to buy 1525 cards or so, but some
lucky people will get away with less, and some unlucky
people will need more. Further analysis of the collector’s
problem gives us the following chart.

Probability to complete a collection of size n = 250:

1000 1500 2000 2500 3000
0.0

0.2

0.4

0.6

0.8

1.0

Number of cards

From this chart, we can see that virtually everybody
will need to buy between 1000 and 2500 cards to com-
plete their collection. The card companies don’t need to
create shortages deliberately—as with casino owners, ran-
dom chance alone guarantees big sales.

So what’s a poor hockey card collector to do? The an-
swer: trade with your friends! Some of the cards you
want are in your friend’s duplicate pile and vice versa.
The mathematics is more difficult, but if two collectors
cooperate, the average number of purchases to obtain two
complete collections is about n(log n + log(log n) + 1.09).
If n = 250, you and your friend can expect to buy about
2080 cards before getting two full collections. That’s about
1040 purchases per person, considerably fewer than the
1525 when you go it alone. In fact, the more friends you
have trading, the cheaper you all get your complete col-
lections.

Probability to complete two collections of size n = 250:

1000 1500 2000 2500 3000
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0.6

0.8
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Number of cards

c©Copyright 2000 by Zbigniew Jujka

My mother is a mathematician, so she knows how to induce good
behaviour. “If I’ve told you n times, I’ve told you n + 1 times....”
(Quantum Seep)

Hungarian mathematician Frigyes Riesz needed two assistants for
his lectures: one was reading aloud his (Riesz’s) book, the second
was writing everything on the board, while Riesz was standing next
to the board nodding. (Aniko Szabo)

Mathematics is the art of giving the same name to different things.
(Jules Henri Poincare (1854-1912)—French mathematician)

A student at our high school a few years back, having had his
fill of drawing graph after graph in senior high math class, told his
teacher, “Mrs. Smith, I’ll do algebra, I’ll do trig, and I’ll even do
statistics, but graphing is where I draw the line!” (Kevin Carver)

If God is perfect, why did He create discontinuous functions?

During an oral examination by the Polish mathematician M. Kac,
a student was asked about the behaviour of the Rieman zeta function
ζ(s) at s = 1. When the student had no idea, Kac gave the hint:
“Think of me.” The answer came immediately: “Aah, it has a simple
pole.”

“The number you have dialed is imaginary. Please rotate your
phone 90 degrees and try again.” (Mark Chrisman)

You’re aware the boy failed my grade school math class, I take it?
And not that many years later he’s teaching college. Now I ask you,
is that the sorriest indictment of the American educational system
you ever heard? [pauses to light cigarette.] No aptitude at all for
long division, but never mind. It’s him they ask to split the atom.
How he talked his way into the Nobel prize is beyond me. But then,
I suppose it’s like the man says, “It’s not what you know...” (Karl
Arbeiter—former teacher of Albert Einstein)
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Mathematics is Everywhere:
But Whom is it Reaching?

by Krisztina Vasarhelyi

People may be divided into two groups: there are those
who are instinctively attracted to mathematics and those
whose interest is not easily awakened. Reaching both
groups lie at the hearts of many programmes on the PIMS
Education Agenda. The Mathematics is Everywhere
poster campaign is no exception in this regard.

Each month, the poster features a snapshot of the fa-
miliar world around us: a sunflower, a child playing the
violin, a soccerball, the full moon above the city skyline.
Nothing is out of the ordinary. Or perhaps it is? The
moon at Equinox rising over Vancouver. What time was
the photo taken? Not necessarily the sort of thing that
moongazers contemplate on a clear spring evening.

The motivating force behind this PIMS project, con-
ceived and created by Klaus Hoechsmann, is the desire
to increase public awareness of the surprising ways math-
ematics touches many aspects of our lives. At the very
least, the hope is to catch the attention of many, capture
the imagination of some, and convince a few to dig deeper.

The eye catching pictures with thought-provoking ques-
tions are displayed monthly on selected bus lines in Van-
couver and Victoria and in secondary schools in Calgary.
They are also posted on the PIMS web site to allow anyone
around the world to enter a solution and have a chance at
winning the $100 prize. In fact, it is hoped that by the
end of 2000, which is UNESCO World Mathematical Year,
participation in the monthly contest will become truly in-
ternational.

The questions are designed to highlight a wide range of
mathematical topics, such as combinatorics, probability,
logarithmic curves, Fibonacci numbers, and more. They
also vary in difficulty to stimulate public interest among
all age groups, from elementary school students to adults.
The questions are posed in such a way that unambiguous
numerical answers can be given. Each month, one winner
is drawn among the correct answers submitted through
the web site. However, it is nourishing the mind, rather
than nourishing a competitive spirit, which is the primary
goal of this project. This is most evident to those who
venture to probe the intricate connections the sometimes
deceivingly simple questions conceal. This exploration can
be initiated by browsing the informative web site and links
made available with each month’s question.

Whom is the poster campaign actually reaching? Evi-
dently, a growing number of people are connecting to the
poster web site. In February, only 193 individuals looked
at the “sunflower” page, but about 1800 unique connec-
tions were made to the “equinox” page in June. While
most connections and entries to the contest were initially
from western Canada, the poster campaign appears to be
gaining an international following.

April Poster

May Poster

June Poster

Visit the Mathematics is Everywhere web site

http://www.pims.math.ca/education/everywhere

Here are some of the winners:

Pam Liem, winner of the February contest “The Sun-
flower Spiral Count,” is an active 14-year-old student at
Vancouver Technical School, with sports and tambourine
dancing as her favourite hobbies. She hopes to pursue
studies in Commerce at UBC.

Stefan Lukits, winner of the March contest “The Vi-
olin String,” is a 27-year-old pastor at Emmanuel Baptist
Church in Vancouver. Prior to studying theology at Re-
gent College, Stefan received training in mathematics in
Graz, Austria. He enjoys literature, bicycling, and talking
with friends in his free time.

Katy Cheng, winner of the April contest “Soccerball
Symmetries,” is a 35-year-old accounting contractor in
Vancouver.

Jordan Wan, winner of the May contest “Chance and
Randomness,” is a 15-year-old high school student at Aden
Bowman Collegiate in Saskatoon. He loves to participate
in sports such as basketball and volleyball, play the piano,
and work on his computer. Jordan says his future plans
are not yet clear, but will likely include both math and
sciences.

In addition to these and future winners, it is safe to
say that all those whose curiosity is aroused and those
inspired to investigate further will have won something
too—perhaps an insight into a small corner of a mysterious
and fascinating world.

If you would like to have the Mathematics is Everywhere poster
displayed in your school, contact the PIMS office in Vancouver: Pacific
Institute for the Mathematical Sciences, 1933 West Mall, University of
British Columbia, Vancouver, B.C., V6T 1Z2, Canada.
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The Banach–Tarski Paradox

or What Mathematics and

Miracles Have in Common

by Volker Runde

As he went ashore he saw a great throng; and he had
compassion on them, and healed their sick. When it was
evening, the disciples came to him and said: “This is a
lonely place, and the day is now over; send the crowds away
to go into the villages and buy food for themselves.” Jesus
said: “They need not go away; you give them something to
eat.” They said to him: “We have only five loaves here and
two fish.” And he said: “Bring them here to me.” Then
he ordered the crowds to sit down on the grass; and taking
the five loaves and the two fish he looked up to heaven, and
blessed, and broke and gave the loaves to the disciples, and
the disciples gave them to the crowds. And they all ate and
were satisfied. And they took up twelve baskets full of the
broken pieces left over. And those who ate were about five
thousand men, besides women and children.

Mt 14:14–21

Why does an article that is supposed to be about math-
ematics start with the feeding of the five thousand?

In the 1920s two Polish mathematicians—Stefan Ba-
nach and Alfred Tarski—proved a mathematical theo-
rem that sounds a lot like the feeding of the five thou-
sand. In their honor, it is called the Banach–Tarksi
paradox † . Consequences of the Banach–Tarski paradox
are, for example:

An orange can be chopped into a finite number
of chunks, and these chunks can then be put to-
gether again to yield two oranges, each of which
has the same size as the one that just went into
pieces .

Another, even more bizarre consequence is:

A pea can be split into a finite number of pieces,
and these pieces can then be reassembled to yield
a solid ball whose diameter is larger than the
distance of the Earth from the sun.

More generally, whenever you have a three-dimensional
body (with a few strings attached), you can obtain any
other such body by breaking the first into pieces and re-
assembling the parts. To turn five loaves and two fish into
enough food to feed a crowd of more than five thousand
then appears to be a minor exercise.

If you have read this far, your attitude will presum-
ably be one of the following:

• Your belief in the absolute truth of mathematical the-
orems is so strong that it makes you swallow the
Banach–Tarski paradox.

† The theorem is proved in the article: S. Banach and A. Tarski, Sur
la décomposition des ensembles de points en parts respectivement con-
gruents. Fund. Math. 6 (1924), 244–277.

• You are a staunch skeptic, so that you neither take the
feeding of the five thousand nor the Banach–Tarski
paradox at face value.

Copyright Gospel Films, Inc. http://www.reverendfun.com

If you fall into the first category, there is probably little
incentive for you to read any further. Otherwise, I guess,
your attitude is best described as follows: You may believe
in the story of the feeding of the five thousand but not take
it literally, and if you hear of a mathematical theorem
whose consequences are obviously nonsense, you tend to
think that the theorem is wrong.

Take an orange, a sharp knife and a chopping block.
Chop the orange into pieces, and try to form two globes
of approximately the same size out of the orange chunks. If
the chunks are small enough, each of these two globes will
bear reasonable resemblance to a ball, but, of course, each
has a volume that is only about half of that of the original
orange. Perhaps you just didn’t chop up the orange in
the right way? Give it another try. The result will be the
same. You can try your luck on hundreds of oranges: you
will produce tons of orange pulp, but no corroboration of
the Banach–Tarski paradox. Doesn’t this show that the
Banach–Tarski paradox is wrong?

The Banach–Tarski paradox is a so-called existence the-
orem: there is a way of splitting up a pea such that the
pieces can be reassembled into, say, a life-sized statue of
Stefan Banach. The fact that you haven’t succeeded in
finding such a way doesn’t mean that it doesn’t exist—
you just might not have found it yet. Let me clarify with
an example from elementary arithmetic. A positive inte-
ger p is called prime if 1 and p itself are its only divisors;
for example, 2, 3, and 23 are prime, whereas 4 = 2 · 2
and 243 = 3 · 81 aren’t. The ancient Greeks knew that
every positive integer has a prime factorization: if n is a
positive integer, then there are prime numbers p1, . . . , pk

such that n = p1 · · · · · pk. For small n, such a prime fac-
torization is easy to find: 6 = 2 · 3, 243 = 2 · 3 · 3 · 3 · 3, and
6785 = 5 · 23 · 59, for example. There is essentially only
one way of finding a prime factorization —trying. Already
finding the prime factorization of 6785—armed only with
pencil and paper—would have taken you some time. And
now think of a large number, I mean, really large:

7380563434803675764348389657688547618099805.

This is a perfectly nice positive integer, and the the-
orem tells you that it has a prime factorization, but—
please!—don’t waste hours, days or even years of your
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life trying to find it. You might think: what were com-
puters invented for? It is easy to write a little pro-
gram that produces the prime factorization of an ar-
bitrary positive integer (and it may even produce one
of 7380563434803675764348389657688547618099805 in a
reasonable amount of time). However, the average time
such a program would take to find the prime factorization
of an integer n goes up dramatically as n gets large: for
sufficiently large n, even the fastest super-computer avail-
able today would —on average—take longer to find the
prime factorization of n than the age of the universe.

So, although a prime factorization of a positive integer
always exists, it may be impossibly hard to find. In fact,
this is a good thing—it is at the heart of the public key
codes that make credit card transactions on the internet
safe, for example. Now, think again of the Banach–Tarski
paradox. Just because you couldn’t put it to work in your
kitchen (just as you couldn’t find the prime factorization
of some large integer), this doesn’t mean that the theorem
is false (or that this particular integer doesn’t have a prime
factorization).

Let’s try to refute the Banach–Tarski paradox with
the only tool that works in mathematics: pure thought.
What makes the Banach–Tarski paradox defy common
sense is that, apparently, the volume of something in-
creases out of nowhere. You certainly know a number
of formulae to calculate the volumes of particular three-
dimensional bodies. For example, if C is a cube whose
edges have length l, then its volume V (C) is l3; if B
is a ball with radius r, then its volume V (B) is 4

3πr3.
But what’s the volume of an arbitrary three-dimensional
body? No matter how the volume of a concrete body
is calculated, the following are certainly true about the
volumes of arbitrary, three-dimensional bodies:

• If the body B̃ is obtained from the body B simply by
moving B in three-dimensional space, then V (B̃) =
V (B);

• If B1, . . . , Bn are bodies in three-dimensional space,
then the volume of their union is less than or equal
to the sum of their volumes, i.e.,

V (B1 ∪ · · · ∪Bn) ≤ V (B1) + · · ·+ V (Bn);

• If B1, . . . , Bn are bodies in three-dimensional space
such that any two of them have no point in common,
then the volume of their union is equal to the sum of
their volumes, i.e.;

V (B1 ∪ · · · ∪Bn) = V (B1) + · · ·+ V (Bn).

So, let B be an arbitrary three-dimensional body, and
let B1, . . . , Bn be subsets of B such that any two of
them have no point in common and B = B1 ∪ · · · ∪ Bn.
Now, move each Bj in three-dimensional space, and ob-

tain B̃1, . . . , B̃n. Finally, put the B̃j together and obtain

another body B̃ = B̃1 ∪ · · · ∪ B̃n. Then we have for the
volumes of B and B̃:

V (B) = V (B1 ∪ · · · ∪Bn)

= V (B1) + · · ·+ V (Bn), by (iii),

= V (B̃1) + · · ·+ V (B̃n), by (i),

≥ V (B̃1 ∪ · · · ∪ B̃n), by (ii),

= V (B̃).

This means that the volume of B̃ must be less than or
equal to the volume of B—it can’t be larger. Banach and
Tarski were wrong! Really?

Our refutation of Banach–Tarski seems to be picture
perfect. All we needed were three very basic proper-
ties of the volume of three-dimensional bodies. But was
this really all? Behind our argument, there was a hidden
assumption—every three-dimensional body has a volume.
If we give up that assumption, our argument suddenly col-
lapses. If only one of the bodies Bj has no volume, our
whole chain of (in)equalities makes no longer sense. But
why shouldn’t every three-dimensional body have a vol-
ume? Isn’t that obvious? What is indeed true is that every
orange chunk you can possibly produce on your chopping
block has a volume. For this reason, you will never be able
to use the Banach–Tarski paradox to reduce your food bill.
A consequence of the Banach–Tarski paradox is therefore
that there is a way of chopping up an orange so that you
can form, say, a gigantic pumpkin out of the pieces—but
you will never be able to do that yourself using a knife.
What kind of twisted logic can make anybody put up with
that?

Perhaps, you are more willing to put up with the ax-
iom of choice:

If you have a family of non-empty sets S, then
there is a way to choose an element x from each
set S in that family.

That sounds plausible, doesn’t it? Just think of a finite
number of non-empty sets S1, . . . , Sn: Pick x1 from S1,
then proceed to S2, and finally take xn from Sn. What
does the axiom of choice have to do with the Banach–
Tarski paradox? As it turns out, a whole lot: If the axiom
of choice is true, then the Banach–Tarski paradox can be
derived from it and, in particular, there must be three-
dimensional bodies without volume. So, the answer to the
question of whether the Banach–Tarski paradox is true
depends on whether the axiom of choice is true.

Certainly, the axiom of choice works for a finite number
of non-empty sets S1, . . . , Sn. Now think of an infinite
sequence S1, S2, . . . of non-empty sets. Again, pick x1 from
S1, then x2 from S2, and just continue. You’ll never come
to an end, but eventually you’ll produce some element
xn from each Sn. So, the axiom of choice is true in this
case, too. But what if we have a truly arbitrary family
of sets? What if we have to deal with the family of all
non-empty subsets of the real line? It can be shown that
this family of sets can’t be written as a sequence of sets.
How do we pick a real number from each set? There is
no algorithm that enables us to pick one element from one
set, a second element from another set and, eventually, to
pick an element from every set in the family. Nevertheless,
the axiom of choice still seems plausible—each set S in our
family is non-empty and therefore contains some element
x—why shouldn’t there be a way of choosing a particular
element from each such set?

On the other hand, accepting the axiom of choice im-
plies strange phenomena like the Banach–Tarski paradox.
If it’s true, we have to put up with the mysterious dupli-
cation of oranges. If it’s false, then why? Please, don’t
try to prove or to refute the axiom of choice—you won’t
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succeed either way. The axiom of choice is beyond proof
or refutation. We can suppose that it’s true, or we can
suppose that it’s false. In other words, we have to believe
in it or leave it. Most mathematicians these days are be-
lievers in the axiom of choice for a simple reason—with
the axiom of choice, they can prove useful theorems, most
of which are much less baffling than the Banach–Tarski
paradox.

Are you disappointed? Instead of elevating the feed-
ing of five thousand from a matter of belief to a con-
sequence of a bullet-proof mathematical theorem, the
Banach–Tarski paradox demands that you accept another
article of faith—the axiom of choice—before you can take
the theorem for granted. After all, the Banach–Tarski
paradox is not that much removed from the feeding of the
five thousand. . .

c©Copyright 2000 by Zbigniew Jujka

Most prime numbers are even. Proof: Pick up any math text
and look for a prime number. The first one you find will probably
be even.

Never say “n factorial”; simply scream “n” at the top of your
lungs.

(Mark David Biesiada)

Some engineers are trying to measure the height of a flag pole.
They have only a measuring tape and are quite frustrated trying to
keep the tape along the pole; it falls down all the time. A mathe-
matician comes along and asks what they are doing. They explain
it to him. “Well, that’s easy...” He pulls the pole out of the ground,
lays it down and measures it easily. After he has left, one of the
engineers says, “That’s so typical of these mathematicians! What
we need is the height - and he gives us the length!”

A mathematician, an engineer, and a computer scientist are vaca-
tioning together. They are riding in a car, enjoying the countryside,
when suddenly the engine stops working. The mathematician says,
“We drove past a gas station a few minutes ago. Someone should go
back and ask for help.”

The engineer says, “I should have a look at the engine. Perhaps
I can fix it.”

The computer scientist says, “Why don’t we just open the doors,
slam them shut and see if everything works again?”

Two men are sitting in the basket of a balloon. For hours, they
have been drifting through a thick layer of clouds, and they have lost
their orientation completely. Suddenly, the clouds part, and the two
men see the top of a mountain with a man standing on it. “Hey! Can
you tell us where we are?!” The man doesn’t reply. The minutes
pass as the balloon drifts past the mountain. When the balloon is
about to be swallowed again by the clouds, the man on the mountain
shouts: “You’re in a balloon!”

“That must have been a mathematician.”
“Why?”
“He thought long and thoroughly about what to say. What he

eventually said was irrefutably correct. And it was of no use what-
soever...”

In the old days of the cold war, when it was very hard for West-
erners visit the Soviet Union, a British mathematician traveled to
Moscow to speak in the seminar of a famous Russian professor. He
started his talk by writing a theorem on the board. When went to
prove it, the professor interrupted him: “This theorem is clear!” The
speaker was, of course, annoyed, but managed to conceal it. He con-
tinued his talk with a second theorem, but, again, when he went to
start with the proof, he was interrupted by his host: “This theorem
is also clear!” With a stern face, he wrote a third theorem on the
board and asked, “Is this theorem clear, too?!” His host nodded.
The visitor grinned and said, “This theorem—is false...”

c©Copyright 2000 by Zbigniew Jujka

Why did the calculus student have so much trouble making Kool-
Aid? Because he couldn’t figure out how to get a litre of water into
the little package.
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The Slingshot Effect of
Celestial Bodies

by Florin Diacu
Try the following outdoor experiment: Place a tennis

ball on top of a basketball and let them fall from shoul-
der height. The outcome is unexpected—the bounce of
the basketball will send the tennis ball at high speed
well above your head (see diagram below). This sur-
prising energy-transfer phenomenon has recently been un-
der careful mathematical investigation. Full understand-
ing will help us find new fuel-free acceleration techniques
for space shuttles and ways of travelling astronomical dis-
tances faster.

Everything started in 1687, when Isaac Newton pub-
lished his masterpiece Principia, in which he founded sev-
eral branches of science, including calculus (studied today
by freshmen students), the theory of differential equations
(which is part of the sophomore science curriculum) and
celestial mechanics. The first two apply to many fields
of human activity ranging from physics and economics to
psychology and art. Based on these mathematical theo-
ries, celestial mechanics aims to understand the gravita-
tional motion of stars, planets, asteroids and comets, and
to compute the orbits of spacecrafts.

Since Newton, many famous mathematicians, includ-
ing Bernoulli, Euler, Lagrange, Laplace, Gauss, Jacobi,
Poincaré, Birkhoff and others, tried to predict the trajec-
tories of celestial bodies. But the differential equations
describing the orbits are so complicated that any hope of
obtaining a complete solution was abandoned long ago.
Still, interesting results appear from time to time.

One of them shows that the close encounter of three

celestial bodies leads to a slingshot effect as in the earth-
tennis-basketball experiment. This property was discov-
ered in 1966 through computer simulations done by Victor
Szebehely and Myles Standish at Yale University and by
Eduard Stiefel at ETH-Zurich. From the vertices of a tri-
angle having 3-, 4- and 5-length-unit sides, they released
bodies of 3-, 4- and 5-mass units. Gravitation first led to
an erratic behaviour, but then made 2 bodies orbit around
each other and the third move away at high speed (see the
picture below).
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4
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These computer results can be followed in the graphs
represented below, in which the orbits of the 3-, 4- and
5-mass-unit bodies are drawn as dotted, dashed and con-
tinuous lines, respectively. The numbers along each line
denote time units; they allow us to locate each particle.
The graphs (a) and (b) show a complicated motion with-
out any pattern, graph (c) indicates that the heavier parti-
cles tend to move around each other and graph (d) makes
clear how the lighter particle is expelled with high veloc-
ity away from the other two after a close triple encounter
(which takes place between the time units 59 and 60).
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In 1973, Jörg Waldvogel from ETH-Zurich initiated
computer investigations of the general motion of three
bodies. Again, after coming close to each other, the bodies
first moved unpredictably and then followed the slingshot
pattern. Ignorant of these results, Richard McGehee of the
University of Minnesota in Minneapolis rigorously proved
in 1974 that, if on a line, the bodies must encounter a
slingshot effect near triple collision.

These results led to the theoretical discovery of motions
that become unbounded in finite time. In other words,
celestial bodies could move so fast that they reach infinity
in a couple of seconds. How could this happen? Imagine
that a body is accelerated through consecutive slingshot
effects such that it travels the first mile in a second, the
second mile in half a second, the third mile in a quarter
of a second, etc. This means that after 1 + 1

2 + 1
4 + 1

8 +
. . . seconds the body travels infinitely many miles. But
mathematicians know that the above infinite sum has the
value 2. So as inconceivable as it may be, a body could
reach infinity in only 2 seconds.

The difficulty was to prove that a proper sequence of
slingshot effects can lead to the above scenario. Success
came in 1992 when Zhihong Xia, a young Ph.D. student at
Northwestern University, published his thesis. In his work
he showed that, if properly positioned, five bodies can
move under the influence of gravitation such that four of
them escape to infinity in finite time, while the fifth oscil-
lates back and forth among the others. At a recent meeting
in Vancouver, Xia received the Blumenthal Award, made
every four years in recognition of distinguished achieve-
ments in mathematics.

Ed Belbruno (on the left) and Zhihong Xia (on the right) at a con-
ference in Seattle in 1995.

In the meantime, space scientists tried to use the sling-
shot effect for practical purposes. Through related work
done in 1991, Edward Belbruno, a consultant with Jet
Propulsion Laboratory in Pasadena, California, managed
to find a Japanese satellite lost several months earlier and
proposed a mathematical solution for rescuing it. The
Japanese used his solution and succeeded in their mission,
an event that made headlines in 1994.
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The slingshot effect is an intriguing phenomenon, still
under the scrutiny of mathematicians and space scientists.
It is amazing how a simple observation of a ball experi-
ment and dedicated mathematical research can lead to
such spectacular achievements.

Florin Diacu is a mathematics professor at the University of Victoria and
the University of Victoria Site Director of the Pacific Institute for the
Mathematical Sciences. His award-winning book Celestial Encounters,
co-authored with Philip Holmes of Princeton University, is a runaway
bestseller. You can find more information at:

http://www.math.uvic.ca/faculty/diacu/index.html

c©Copyright 2000 by Gabriela Novakova

This is a guide to translating the language of math text-
books and professors.
1) “It can be proven... ”

This may take upwards of a year, and no fewer than four hours, and
may require something like five reams of scratch paper, 100 pencils, or
100 refills (for those who use mechanical pencils). If you are only an
undergraduate, you need not bother attempting the proof as it will be
impossible for you.
2) “It can be shown...”

Usually, this would take the teacher about one hour of blackboard
work, so he/she avoids doing it. Another possibility, of course, is that
the instructor doesn’t understand the proof himself/herself.
3) “It is obvious...”

Only to PhDs who specialize in that field, or to instructors who have
taught the course 100 times.
4) “It is easily derived...”

Meaning that the teacher figures that even the student could derive it.
The dedicated student who wishes to do this will waste the next weekend
in the attempt. Also possible that the teacher read this somewhere, and
wants to sound like he/she really has it together.
5) “It is obvious...”

Only to the author of the textbook, or Carl Gauss. More likely only
Carl Gauss. Last time I saw this was as a step in a proof of Fermat’s
last theorem.
6) “The proof is beyond the scope of this text.”

Obviously this is a plot. The reader will never find any text with the
proof in it. The proof doesn’t exist. The theorem just turned out to be
useful to the author.
7) “The proof is left up to the reader.”

...sure, let us do all the work. Does the author think that we have

nothing better to do than sit around with THEIR textbook, and do the

work that THEY should have done? (Michael J. Bauers)

Anatomy of Triangles

by Klaus Hoechsmann†

A triangle has, of course, three vertices, three sides and
three angles. It also has further threesomes that do not
meet the eye quite as readily. If you draw three lines
at random, chances are that they will yield the sides of
some triangle—it would be unusual if they met at a single
point. But that is what happens with the following triples
of lines, which are associated with any triangle.

If you move from the vertex A into the triangle ABC,
always making sure that your distance to the side AB is
the same as that to AC, you are cruising along the angle
bisector of A. Similarly, every point on the angle bisector
of B is equidistant from the sides AB and BC. The point
J of intersection of these two angle bisectors is therefore
equidistant from all three sides. Hence the angle bisector
of C must also go through J — see?—and J is the centre
of the inscribed circle of the triangle.

�

A B

C

J

If you move from the side AB into the triangle ABC,
always making sure that your distance to the vertex A is
the same as that to B, you are cruising along the per-
pendicular bisector of AB. Similarly, every point on the
perpendicular bisector of BC is equidistant from the ver-
tices B and C. The point K of intersection of these two
perpendicular bisectors is therefore equidistant from all

† You can find more information about the author and other interesting
articles at:

http://www.math.ubc.ca/∼hoek/Teaching/teaching.html
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three vertices. Hence the perpendicular bisector of CA
must also go through K—see?—and K is the centre of
the circumscribed circle of the triangle.

�

A

B

C

K

A perpendicular line segment from a vertex to the oppo-
site side is called an altitude of the triangle; it runs inside
the triangle if and only if the angles at the other two ver-
tices are both acute.

The altitudes of a given triangle ABC are just the per-
pendicular bisectors of its fourfold enlargement, as shown.
Hence the three of them meet in a single point H, namely
the circumcentre of the enlargement.

A B

C

H

By trisecting all sides, any triangle can be subdivided
into nine smaller ones, as shown. If you move from the
vertex A toward the intersection M of the three yellow
triangles, you are cruising along the diagonal of a little
white and yellow parallelogram, and if you continue be-
yond M , you echo the first half of your trip (through the
white triangle at A). You will therefore arrive at the mid-
point of the side BC.

A B

C

M

The line connecting a vertex to the midpoint of the
opposite side is called the median of that side, and the
description just given shows that the three medians go
through the same point M, which lies two thirds of the
way along each median. M is known as the centroid of
the triangle.

Bisectors, medians, and altitudes occur in many parts
of the theory of triangles. So do the three points (namely
K, M and H) that are the subject of our next and last
example—but the most surprising fact about them seems
to be more of a curiosity: K, M and H lie on a single line,
with MH twice as long as KM . The line containing them
is named after the great eighteenth century mathematician
Leonhard Euler.

The point M is the centroid of both the triangle ABC
and its enlargement A∗B∗C∗. As we have seen above, the
intersection H of the altitudes is also the circumcentre
of the triangle A∗B∗C∗, so it would make sense to write
H = K∗.

�

�

�

K
M

H
A

B

C

A∗

C∗

B∗

Consider the following transformation of the plane: with
M as the centre, turn the plane through 180 degrees and
simultaneously double the distance of every point from M .
How would this affect the points A, B, and C? How does
it explain the mystery of Euler’s line?
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by Wieslaw Krawcewicz
All the problems discussed in this section come from

actual diploma exams that have been given in European
or Asian countries in recent years.

Problem 1† . Solve the following inequality

lim
n→∞

[

2− sin 3x + 4− sin 3x + . . . + (2n)− sin 3x
]

≤ 1.

Solution. Notice that (geometric progression)

2− sin 3x + 4− sin 3x + . . . + (2n)− sin 3x

= 2− sin 3x +
(
2− sin 3x

)2
+ . . . +

(
2− sin 3x

)n

= 2− sin 3x

(
1− 2−n sin 3x

1− 2− sin 3x

)

.

Thus, for the existence of the limit

lim
n→∞

2− sin 3x

(
1− 2−n sin 3x

1− 2− sin 3x

)

=
2− sin 3x

1− 2− sin 3x
− 1

1− 2− sin 3x
lim

n→∞

(
2− sin 3x

)n
,

we need 2− sin 3x < 1 and, in this case, we have

lim
n→∞

2− sin 3x

(
1− 2−n sin 3x

1− 2− sin 3x

)

=
2− sin 3x

1− 2− sin 3x
.

Indeed, for every 0 < a < 1 we have

lim
n→∞

an = lim
n→∞

en ln a = e−∞ = 0.

Consequently, we obtain the following two inequalities

21−sin 3x ≤ 1, 2− sin 3x < 1,

which are equivalent to

1− sin 3x ≤ 0, − sin 3x < 0,

so

1 ≤ sin 3x⇐⇒ 3x =
π

2
+ 2kπ, k = 0, ±1,±2, . . .

⇐⇒ x =
π

6
+

2kπ

3
, k = 0,±1,±2, . . . .

† Problem from a May 1998 European diploma exam

Problem 2† . Solve the following equation

sin8 x + cos8 x =
17

32
.

Solution. Notice that we have the following identities

sin8 x + cos8 x = (sin4 x + cos4 x)2 − 2 sin4 x cos4 x

=
[
(sin2 x + cos2 x)2 − 2 sin2 x cos2 x

]2

− 2 sin4 x cos4 x

= (1− 2 sin2 x cos2 x)2 − 2 sin4 x cos4 x.

By applying the substitution t = sin2 x cos2 x we obtain
that the given equation is equivalent to

(1− 2t)2 − 2t2 =
17

32
,

where 0 ≤ t ≤ 1 (indeed, the product sin2 x cos2 x must
always be non-negative and smaller than or equal to 1),
and after expanding it we obtain the quadratic equation

2t2 − 4t +
15

32
= 0,

or equivalently

64t2 − 128t + 15 = 0,

for which we compute the roots using the usual formulas

t12 =
64±

√
642 − 64 · 15

64
,

i.e.,

t1 =
1

8
, t2 =

15

8
.

Therefore, we obtain that

sin2 x cos2 x =
1

8
,

so

sin x cos x = ± 1

2
√

2
.

Since sin x cos x = 1
2 sin 2x, we have

sin 2x = ±
√

2

2
;

thus, the solution set for 2x is
{

±π

4
+ kπ : k = 0,±1,±2,±3, . . .

}

,

so that the solution set for x can be expressed as
{π

8
+ k

π

4
: k = 0,±1,±2,±3, . . .

}

.

† Problem from a 1993 European university entrance exam

20



The Rearrangement
Inequality

by Dragos Hrimiuc
In this note we reveal a nice result that provides a very

simple but powerful inequality that can be used for proving
many other inequalities.

Let’s consider two triplets (a1, a2, a3) and (b1, b2, b3)
of real numbers. If we take all rearrangements (permu-
tations) (x1, x2, x3) of (b1, b2, b3) we can generate 3! =
1 · 2 · 3 = 6 sums of the following form:

(1) S = a1x1 + a2x2 + a3x3.

Question: Which one of the above sums is the largest
and which one is the smallest?

Before answering this question, let’s introduce a simple
concept:

Definition: Two triplets (a1, a2, a3) and (b1, b2, b3) are
said to be:

• similarly arranged if both are increasing (i.e., a1 ≤
a2 ≤ a3 and b1 ≤ b2 ≤ b3) or both are decreasing (i.e.,
a1 ≥ a2 ≥ a3 and b1 ≥ b2 ≥ b3).

• oppositely arranged if one is increasing and the other is
decreasing.

Examples

1. (−1, 1, 3) and (2, 5, 7) are similarly arranged while
(−1, 1, 3) and (7, 5, 2) are oppositely arranged.

2. If 0 < a ≤ b ≤ c, then (a, b, c) and
(

1
a

, 1
b
, 1

c

)
are

oppositely arranged, while (a, b, c) and
(

1
b+c

, 1
c+a

, 1
a+b

)
are

similarly arranged.

3. If 0 < a ≤ b ≤ c and m is a positive real number,
then (a, b, c) and (am, bm, cm) are similarly arranged while
(a, b, c) and

(
1

am , 1
bm , 1

cm

)
are oppositely arranged.

4. If a ≤ b ≤ c and n is an odd integer, then (a, b, c) and
(an, bn, cn) are similarly arranged.

The Rearrangement Inequality

Let (a1, a2, a3), and (b1, b2, b3) be two triplets of real
numbers and (x1, x2, x3) a permutation of (b1, b2, b3).

• If (a1, a2, a3) and (b1, b2, b3) are similarly arranged,
then

(2) a1b1 + a2b2 + a3b3 ≥ a1x1 + a2x2 + a3x3.

• If (a1, a2, a3) and (b1, b2, b3) are oppositely arranged,
then

(3) a1b1 + a2b2 + a3b3 ≤ a1x1 + a2x2 + a3x3.

Proof: Let’s take two triplets (a1, a2, a3) and (b1, b2, b3)
increasingly arranged and let (x1, x2, x3) be a permutation
of (b1, b2, b3). Assume that x1 ≥ x2.

Let S = a1x1+a2x2+a3x3 and S′ = a1x2+a2x1+a3x3.
S′ is obtained from S by interchanging x1 and x2. We have

S′ − S = a1x2 + a2x1 − a1x1 − a2x2

= a2(x1 − x2)− a1(x1 − x2)

= (x1 − x2)
︸ ︷︷ ︸

+

(a2 − a1)
︸ ︷︷ ︸

+

≥ 0.

Hence S′ ≥ S. That is, interchanging x1 and x2 can only
increase the value of the sum S. Therefore, if we inter-
change all pairs (xi, xj) so that xi ≥ xj for i < j, the
sum can only get larger. The largest sum is that one that
corresponds to (b1, b2, b3), that is a1b1 + a2b2 + a3b3.

The above argument works similarly if (a1, a2, a3) and
(b1, b2, b3) are both decreasing. We may also use the same
argument to prove (3).

Notice: The equality in (2) or (3) occurs if and only if
b1 = b2 = b3 or a1 = a2 = a3.

Now, let’s apply the Rearrangement Inequality in some
examples:

Example 1: Let a, b, c ∈ R. Then

(i) a2 + b2 + c2 ≥ ab + bc + ca,

(ii) an + bn + cn ≥ an−1b + bn−1c + cn−1a for every even
positive integer n.

Solution:
(i) is a particular case of (ii). Let’s show (ii). Assume

a ≤ b ≤ c. Since the triplets (a, b, c) and (an−1, bn−1, cn−1)
are similarly arranged by using (2) we get:

aan−1 + bbn−1 + ccn−1 ≥ abn−1 + bcn−1 + can−1,

which is just (ii).

Example 2: If a, b, c > 0, then

(i) a+b+c
abc

≤ 1
a2 + 1

b2
+ 1

c2 ,

(ii) a2

b2
+ b2

c2 + c2

a2 ≥ b
a

+ c
b

+ a
c
,

(iii) a2

b
+ b2

c
+ c2

a
≥ a + b + c.

Solution: (i) The triplets
(

1
a

, 1
b
, 1

c

)
and

(
1
a

, 1
b
, 1

c

)
are

similarly arranged (we may assume that a ≤ b ≤ c). Thus

1

a

1

a
+

1

b

1

b
+

1

c

1

c
≥ 1

a

1

b
+

1

b

1

c
+

1

c

1

a
,

that is (i).

(ii) The triplets
(

a
b

, b
c
, c

a

)
and

(
a
b

, b
c
, c

a

)
are similarly

arranged. Hence

a

b

a

b
+

b

c

b

c
+

c

a

c

a
≥ a

b

b

c
+

b

c

c

a
+

c

a

a

b
,
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which is (ii).
(iii) The triplets (a2, b2, c2) and

(
1
a

, 1
b
, 1

c

)
are oppo-

sitely arranged. Hence

a2 1

a
+ b2 1

b
+ c2 1

c
≤ a2 1

b
+ b2 1

c
+ c2 1

a
,

that is, just (iii).

Notice: In the above inequalities, the equality occurs if
and only if a = b = c.

Example 3: If a, b, c > 0, then

a

b + c
+

b

a + c
+

c

a + b
≥ 3

2
.

Solution: The triplets (a, b, c) and
(

1
b+c

, 1
c+a

, 1
a+b

)
are

similarly arranged (we may assume a ≤ b ≤ c).
Thus

a
1

b + c
+ b

1

c + a
+ c

1

a + b
≥ a

1

c + a
+ b

1

a + b
+ c

1

b + c
,

and also

a
1

b + c
+ b

1

c + a
+ c

1

a + b
≥ a

1

a + b
+ b

1

b + c
+ c

1

c + a
.

Adding these two inequalities we find:

2
( a

b + c
+

b

c + a
+

c

a + b

)

≥ a

c + a
+

b

a + b
+

c

b + c

+
a

a + b
+

b

b + c
+

c

c + a
= 3.

Therefore, the required inequality is obtained. Equality
holds if and only if a = b = c.

The Rearrangement Inequality may be used to prove
some classical inequalities.

Example 4: (Chebyshev’s Inequality) If (a1, a2, a3),
(b1, b2, b3) are similarly arranged, then

a1b1 + a2b2 + a3b3

3
≥

(
a1 + a2 + a3

3

) (
b1 + b2 + b3

3

)

.

Solution: Using the Rearrangement Inequality we get:

a1b1 + a2b2 + a3b3 = a1b1 + a2b2 + a3b3

a1b1 + a2b2 + a3b3 ≥ a1b2 + a2b3 + a3b1

a1b1 + a2b2 + a3b3 ≥ a1b3 + a2b1 + a3b2.

Adding these inequalities we obtain

3(a1b1 + a2b2 + a3b3)

≥ a1(b1 + b2 + b3) + a2(b1 + b2 + b3)

+a3(b1 + b2 + b3),

which is the desired result. Equality holds if a1 = a2 = a3
or b1 = b2 = b3.

Remark: If (a1, a2, a3) and (b1, b2, b3) are oppositely ar-
ranged, then
(

a1b1 + a2b2 + a3b3

3

)

≤
(

a1 + a2 + a3

3

) (
b1 + b2 + b3

3

)

.

Example 5: (Root Mean Square—Arithmetic Mean In-
equality)

Let a1, a2, a3 be real numbers. Then

a1 + a2 + a3

3
≤

√

a2
1 + a2

2 + a2
3

3
.

Solution: We may assume that a1 ≤ a2 ≤ a3. Then the
triplets (a1, a2, a3) and (a1, a2, a3) are similarly arranged;
the required inequality follows from using Chebyshev’s In-
equality.

Example 6: (The Arithmetic Mean—Geometric Mean
Inequality)

If a1, a2, a3 are positive numbers then

a1 + a2 + a3

3
≥ 3
√

a1a2a3.

Solution: Let

x1 =
a1

P
, x2 =

a1a2

P 2
, x3 =

a1a2a3

P 3
= 1

and

y1 =
1

x1
, y2 =

1

x2
, y3 =

1

x3
= 1,

where P = 3
√

a1a2a3.
We may assume without loss of generality (by rela-

belling if necessary) that (x1, x2, x3) is increasing; then
(y1, y2, y3) is decreasing.

Hence

x1y1 + x2y2 + x3y3 ≤ x1y3 + x2y1 + x3y2;

that is,

1 + 1 + 1 ≤ a1

P
+

a2

P
+

a3

P
,

which is just the required inequality.
The equality holds if and only if x1 = x2 = x3, or

equivalently, a1 = a2 = a3.

Now try to solve the following problems yourself:

Problem 1.
(i) If (a1, a2) and (b1, b2) are similarly arranged, then

a1b1 + a2b2 ≥ a1b2 + a2b1.

(ii) If (a1, a2) and (b1, b2) are oppositely arranged, then

a1b1 + a2b2 ≤ a1b2 + a2b1.

(iii) In (i) and (ii), the equality occurs if and only if
a1 = a2 or b1 = b2.
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(iv) State and prove Chebyshev’s Inequality for two
pairs of real numbers.

(v) Prove the inequality

an + bn

a + b
≥ 1

2
(an−1 + bn−1)

for a and b positive real numbers, and n a positive integer.

Problem 2. If a, b ≥ 0, then
(i) 2(a5 + b5) ≥ (a3 + b3)(a2 + b2).
(ii) a9 + b9 ≥ a2b2(a5 + b5).
(iii) (a + b)n ≤ 2n−1(an + bn).

Problem 3. If a, b, c > 0, then
(i) ab + bc + ca ≥ a

√
bc + b

√
ac + c

√
ab.

(ii) (a + b + c)
(

1
a

+ 1
b

+ 1
c

)

≥ 9.

(Hint: Use Chebyshev’s Inequality or the AM–GM Inequality of Example

6.)

(iii) a+b+c
3 ≤ n

√
an+bn+cn

3 .
(Hint: See Example 5.)

Problem 4. If a, b, c > 0 and n is a positive integer, then

an

b + c
+

bn

c + a
+

cn

a + b
≥ an−1 + bn−1 + cn−1

2
.

(Hint: If we assume that a ≤ b ≤ c, then (an, bn, cn) and
(

1
b+c

, 1
c+a

, 1
a+b

)

are similarly arranged. See also the solution of Ex-

ample 3. You may also use (v) from Problem 1.)

Problem 5. If a, b, c > 0, then

aabbcc ≥ (abc)
a+b+c

3 .

(Hint: If a ≤ b ≤ c, then (a, b, c) and (log a, log b, log c) are similarly

arranged, use Chebyshev’s Inequality and some properties of the loga-

rithmic function.)

Problem 6. Let A, B, C be the angles (measured in ra-
dians) of a triangle with sides a, b, c and p = 1

2 (a + b + c).
Then

A

p− a
+

B

p− b
+

C

p− c
≥ 3π

p
.

(Hint: We may assume that A ≤ B ≤ C. Then (A, B, C) and
(

1
p−a

, 1
p−b

, 1
p−c

)

are similarly arranged. Use Chebyshev’s Inequality

and then the inequality of Problem 3(ii).)

Problem 7. Let a, b, c be positive real numbers such that
abc = 1. Prove that†

1

a3(b + c)
+

1

b3(c + a)
+

1

c3(a + b)
≥ 3

2

(Hint: Set x = 1
a

, y = 1
b

, z = 1
c
. Since abc = 1 we obtain xyz = 1.

With this new notation the required inequality transforms into

x2

y + z
+

y2

x + z
+

z2

x + y
≥ 3

2
.

This inequality follows easily from Problem 4, combined with AM–GM

Inequality.)

† This problem was proposed at the International Mathematical
Olympiad in 1995.

Project #1.

• Investigate the Rearrangement Inequality for three or
more positive triplets of real numbers.

•Write a proof and find some interesting examples. Can
you extend Chebyshev’s Inequality?

Project #2.

• Investigate the Rearrangement Inequality for two n-
tuples (a1, a2, . . . , an), (b1, b2, . . . , bn) of real numbers.

• Find some interesting examples. (You may extend some
from this article.)

• Write a proof of the AM–GM inequality and Cheby-
shev’s inequality in this general case.

If you proceed with either of the projects, please send
your results to us. We are going to publish the best notes
in the next issues of π in the Sky .

John Napier (1550-1617), who was an engineer, physicist and
the mathematician considered to be the inventor of logarithms,
was also regarded by his contemporaries as a dealer in black
magic. One day he announced that his coal black rooster would
identify for him which of his servants was stealing from him.
The servants were sent one by one into a darkened room with
instructions to pat the rooster on the back. Unknown to the
servants, Napier had coated the bird’s back with lampblack,
and the guilty servant, fearing to touch the rooster, returned
with clean hands.

Although Euler is pronounced oil-er, it does not follow that
Euclid is pronounced oi-clid.

c©Copyright 2000 by Wieslaw Krawcewicz
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Some Remarks on the

Quadratic Polynomial†

Consider the quadratic polynomial

(1) f(x) = ax
2 + bx + c, a 6= 0.

Denote as usual

(2) ∆ = b
2 − 4ac (the discriminant).

The following results for the roots x1 and x2 of the equation
f(x) = 0 are known:

• The roots are given by the quadratic formula

(3) x1 =
−b −

√
∆

2a
; x2 =

−b +
√

∆

2a
,

• x1, x2 ∈ R ⇐⇒ ∆ ≥ 0; x1 6= x2 ⇐⇒ ∆ > 0,

• The sum S = x1 + x2 and product P = x1x2 are given by

(4) S = − b

a
; P =

c

a
.

The graph of the function y = f(x) is a parabola.

a > 0 (− b
2a

, −∆
4a

)
�

��

x1 x2

a < 0

x x

y y

• The parabola opens upward if a > 0.

• The parabola opens downward if a < 0.

• (− b
2a

, −∆
4a

) is the vertex.

• The x axis intercepts (if exist) are (x1, 0) and (x2, 0).

An useful observation: Let A, B be two real numbers. Then

(i) A > 0, B > 0 ⇐⇒ AB > 0 and A + B > 0,

(ii) A < 0, B < 0 ⇐⇒ AB > 0 and A + B < 0,

(iii) A < 0, B > 0 ⇐⇒ AB < 0.

† Topics presented in this section can be used by teachers in math classes
and with students of different ability levels. We also recommend it to
all motivated students to improve their understanding of mathematical
concepts and ideas. This article was contributed by the teacher Venera
Hrimiuc (vhrimiuc@ualberta.ca). We invite other teachers to send us
their suggestions or articles for this section.

In some situations, the coefficients a, b, c of (1) do not have
numerical values. In this case, the expressions of x1 and x2 as
written in (3) may be complicated and very difficult to manip-
ulate. However, we still can investigate some properties of x1

and x2 without using (3).

Example 1. Let m ∈ R be a parameter (the numerical value
of m is not specified). Consider the quadratic equation

x
2 + 2(m + 1)x + m(m − 1) = 0,

with solutions x1, x2. Find all the values of m for which x1, x2 ∈
R satisfy the condition

(i) 0 < x1 < x2; (ii) x1 < x2 < 0; (iii) x1 < 0 < x2.

Solutions: x1 and x2 have to be in each case distinct and real,
hence ∆ > 0. We have

∆ = 4(m + 1)2 − 4m(m − 1)

= 4(3m + 1).

Hence

∆ > 0 ⇐⇒ 3m + 1 > 0

⇐⇒ m > −1

3
⇐⇒ m ∈

(

−1

3
,∞

)

(i) 0 < x1 < x2 ⇐⇒ ∆ > 0 and x1x2 > 0 and x1 + x2 > 0 ⇐⇒
∆ > 0 and P > 0 and S > 0.

Since

P =
c

a
= m(m − 1), S = − b

a
= −2(m + 1),

and

m(m − 1) > 0 ⇐⇒ m ∈ (−∞, 0) ∪ (1,∞)

−2(m + 1) > 0 ⇐⇒ m + 1 < 0 ⇐⇒ m ∈ (−∞,−1),

the condition (i) holds if simultaneously

m ∈
(

− 1

3
,∞

)

, m ∈ (−∞, 0) ∪ (1,∞),

m ∈ (−∞,−1).

−1 − 1
3 0 1

As you can see, there is no m ∈ R that satisfies all the
requirements.

(ii) x1 < x2 < 0 ⇐⇒ ∆ > 0 and x1x2 > 0 and x1 +x2 < 0 ⇐⇒
∆ > 0 and P > 0 and S < 0. Since

P > 0 ⇐⇒ m(m − 1) > 0 ⇐⇒ m ∈ (−∞, 0) ∪ (1,∞)

S < 0 ⇐⇒ −2(m + 1) < 0 ⇐⇒ m ∈ (−1,∞),

therefore m should satisfy simultaneously

m ∈
(

− 1

3
,∞

)

, m ∈ (−∞, 0) ∪ (1,∞), m ∈ (−1,∞).
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−1 − 1
3 0 1

We obtain

m ∈
(

− 1

3
, 0

)

∪ (1,∞).

(iii) x1 < 0 < x2 ⇐⇒ ∆ > 0 and x1x2 < 0 ⇐⇒ ∆ > 0 and
P < 0. Since

P < 0 ⇐⇒ m ∈ (0, 1),

we must have

m ∈
(

− 1

3
,∞

)

and m ∈ (0, 1),

thus
m ∈ (0, 1).

We can now work with a more general problem.

Problem 1. Let α ∈ R be a given number. If x1, x2 are solu-
tions of (1), find necessary and sufficient conditions expressed
in terms of a, b, c such that:

(i) α < x1 < x2, (ii) x1 < x2 < α, (iii) x1 < α < x2.

Solution. (i) Let’s assume a > 0. The parabola y = f(x)
opens upward and intersects the x axis at x1 and x2.

(−b
2a

,
−∆
4a

)

x1 x2 x

y

�

����

α

−b
2a

��
f(α)

α < x1 < x2 ⇐⇒ x1, x2 are real
and distinct, α is outside the in-
terval [x1, x2] and on the left of
[x1, x2].

We can translate these require-
ments with mathematical tools:

∆ > 0, f(α) > 0, α < − b

2a
.

(−b
2a

,
−∆
4a

)

x1 x2 x

y

�

�	
�
α

−b
2a

�

f(α)

If a < 0 the parabola opens down-
ward and
α < x1 < x2 ⇐⇒ ∆ > 0, f(α) < 0,
α < − b

2a
.

We remark that in each case f(α)
has the sign of a, that is, equiva-
lently, af(α) > 0.

We conclude

α < x1 < x2 ⇐⇒







∆ > 0
af(α) > 0
α < − b

2a
.

(ii) As above

x1 < x2 < α ⇐⇒







∆ > 0
af(α) > 0
− b

2a
< α.

(iii)

a < 0

��

x1 x2

a > 0

x x

y y

��

x1 x2

��

α

α

�

�
f(α)

f(α)

x1 < α < x2 ⇐⇒ af(α) < 0

Notice: If af(α) < 0, then automatically ∆ > 0. Indeed, if
∆ ≤ 0, the parabola is above or below the x axis or it is tangent
to the x axis. In each of these cases, af(α) ≥ 0 for every α ∈ R.

Example 2. Let m ∈ R, m 6= −1 be a parameter and x1, x2

the real roots of the equation

f(x) = (m + 1)x2 + 2mx + m − 2 = 0.

For which values of m does each of the following conditions
hold?

(i) x1 < 1 < x2, (ii) − 1 < x1 < x2 < 1.

Solution. Using the results of Problem 1 we get

(i) x1 < 1 < x2 ⇐⇒ (m + 1)f(1) < 0

⇐⇒ (m + 1)(4m − 1) < 0

⇐⇒ m ∈
(

− 1,
1

4

)

.

(ii) −1 < x1 < x2 < 1 ⇐⇒ ∆ > 0, af(−1) > 0,

af(1) > 0 and − 1 < − b

2a
< 1.

∆ > 0 ⇐⇒ m + 2 > 0

⇐⇒ m ∈ (−2,∞),

af(−1) > 0 ⇐⇒ (m + 1)(−1) > 0

⇐⇒ m ∈ (−∞, 1),

af(1) > 0 ⇐⇒ (m + 1)(4m − 1) > 0

⇐⇒ m ∈ (−∞,−1) ∪
(1

4
,∞

)

,

−1 < − b

2a
< 1 ⇐⇒ −1 <

m

m + 1
< 1

⇐⇒ m ∈ (−∞,−1).

The intersection of the above intervals is (−2,−1); therefore

−1 < x1 < x2 < 1 ⇐⇒ m ∈ (−2,−1).

Example 3.

Let m ∈ R, m 6= 0 and

f(x) = mx
2 − 2(m − 2)x − m + 2.

Find the values of m such that each of the following condi-
tions holds:
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(i) f(x) > 0 for every x ∈ R,

(ii) f(x) > 0 for every x ∈ (0,∞),

(iii) f(x) > 0 for every x ∈ (0, 1).

Solution. (i)

y

x

The parabola should be above x

axis. This is equivalent to a > 0,
∆ < 0 ⇐⇒ m > 0, (m−2)(m−1) <

0 ⇐⇒ m ∈ (1, 2).

(ii) There are two possibilities: (a) a > 0 and ∆ < 0 or (b)
x1 < x2 < 0.

��

y

x

y

xx1 x2

(a) a > 0 and ∆ < 0 ⇐⇒ m ∈ (1, 2) (see (i)).

(b) a > 0, ∆ ≥ 0, x1 ≤ x2 ≤ 0 ⇐⇒ a > 0, ∆ ≥ 0, af(0) ≥ 0,
−b
2a

≤ 0 ⇐⇒ m > 0, m ∈ (−∞, 1]∪ [2,∞), m ∈ [0, 2], m ∈ (0, 2]
⇐⇒ m = 2.

The condition (ii) is satisfied for m ∈ (1, 2].

(iii)

������

x1

x1

x1x2

x2
x2
�	

1

1

As the above picture shows, there are four possibilites:

(a) a > 0, ∆ < 0 ⇐⇒ m ∈ (1, 2) (see(i));

(b) a > 0, ∆ > 0 x1 < x2 < 0 ⇐⇒ m ∈ (1, 2] (see (ii));

(c) a > 0, ∆ > 0 1 < x1 < x2;

(d) a < 0, ∆ > 0 x1 < 0 1 < x2.

(c) a > 0, ∆ ≥ 0, 1 ≤ x1 ≤ x2 ⇐⇒ a > 0, ∆ ≥ 0, af(1) ≥ 0,
− b

2a
≥ 1 ⇐⇒ m > 0, m ∈ (−∞, 1] ∪ [2,∞), m ∈ [0, 2], m < 0

⇐⇒ m ∈ ∅.

(d) a < 0, ∆ > 0, x1 < 0, 1 < x2 ⇐⇒ a < 0, ∆ > 0,
af(0) < 0, af(1) < 0 ⇐⇒ m < 0, m ∈ (−∞,−1) ∪ (2,∞),
m ∈ (−∞, 0) ∪ (2,∞) ⇐⇒ m ∈ (−∞,−1).

Therefore, from (a), (b), (c), and (d) the condition (iii) is
satisfied for m ∈ (−∞,−1) ∪ (1, 2].

Example 4. For what values of the parameter m does the
equation

(m − 2)x3 − (2m − 1)x2 + (m + 3)x = 0

have exactly three non-negative real roots?

Solution. We have that x3 = 0 is always a root, and x1 and
x2 roots of

f(x) = (m − 2)x2 − (2m − 1)x + (m + 3) = 0,

where ∆ > 0, S > 0, P > 0 i.e. −8m + 25 > 0, 2m−1
m−2

> 0 and
m+3
m−2

> 0.

−3 1
2 2 25

8

Consequently, the required condition is satisfied for

m ∈ (−∞,−3) ∪ (2,
25

8
).

Example 5†. For what values of the parameter m does the
equation

(2 + m) log2
2(x + 4) + 2(1 − m) log2(x + 4) + m − 2 = 0

have two different negative solutions?

Solution. −4 < x < 0 ⇐⇒ 0 < x+4 < 4 ⇐⇒ log2(x+4) < 2.
Therefore, there are two different negative solutions x1 and x2

if and only if the equation

f(X) = (2 + m)X2 + 2(1 − m)X + m − 2 = 0

has two solutions X1 = log2(x1 + 4) and X2 = log2(x2 + 4),
satisfying X1 < X2 < 2. We have

X1 < X2 < 2 ⇐⇒ ∆ = 20 − 8m > 0, (2 + m)f(2) > 0,
−2(1−m)
2(2+m)

< 2 ⇐⇒ 5
2

> m, (m + 2)(m + 10) > 0, m+5
m+2

> 0 ⇐⇒
m ∈ (−∞,−10) ∪ (−2, 5

2
).

−10 −5 −2 5
2

c©Copyright 2000 by Wieslaw Krawcewicz

† Problem from 1998 diploma exam in Poland.
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Problem 1. Let a, b, c be positive numbers. Show that

bc

b + c
+

ca

c + a
+

ab

a + b
≤ 1

2
(a + b + c).

Hint: Read Math Strategies in this issue of π in the Sky.

Problem 2. In a tournament with n players, everybody plays
against everybody else exactly once. Prove that at any moment
during the tournament there are always at least two players
who have played exactly the same number of games.
Hint: Read Math Strategies in the June issue of π in the Sky.

Problem 3.

�

�

�

�

B

A

CD

E
M

N

Let E be a point on the altitude AD

of the triangle ABC. Assume that
the line passing through C and E

intersects AB at the point M and
the line passing through B and E

intersects AC at the point N . Prove
that AD is a bisector of the angle
MDN (see the diagram).

Problem 4. Let f(x) = x
2 − 2(a + 1)x + a

2, a ∈ R. Find all
the values a such that |f(x)| ≤ 17

4
for every x ∈ [−1, 1].

Hint: Check out the Math Studio section in this issue of π in the Sky.

Problem 5. Prove that every positive integer n and every
x ∈ R we have

sin2n
x + cos2n

x ≥ 1

2n−1
.

Send your solutions to π in the Sky: Math Challenges.

Solutions to the Problems Published in the June Issue

of π in the Sky:

Problem 1: Substitute X = 4√16x + 1 in order to reduce the equation
to X2 − 2X − 3 = 0, which has two solutions X1 = 3 and X2 = −1.
Therefore, 3 = 4

√
16x + 1, so x = 5.

Problem 2: Notice that the mosaic of side length k is made of 1 + 3 +
5 + . . . + (1 + 2k) = (1 + k)2 pieces. Since

√
15878 ≈ 126.00783 . . ., the

maximal side of the mosaic is equal to 125 and there will be 2 pieces left
over.

Problem 3: By cutting the square of side length 0 < x < 6, we obtain
the box of dimensions (12 − x) × (18 − 2x) × x. The volume of this box
is equal to V (x) = (12 − 2x)(18 − 2x)x = 4x3 − 60x2 + 216x. Since

the derivative V ′(x) is zero at x1 = 5 −
√

7 and x2 = 5 +
√

7, and

V (0) = V (6) = 0, the volume attains its maximum for x = 5 −
√

7 ≈
2.354248689 . . ..

Problem 4:

P T

r
r

r

5

r

Y

O

X

Y X

O

Tr

r
r

2α 2α α

α

We have that r2 + 102 = (r + 5)2 so r = 15
2 and T = X, so the length x

of XY can be determined from the equation 2 cos2 α − 1 = cos 2α = x
2r

,

i.e. x = r2+10r+25
r

= 35
6 .

Problem 5: Three cards:
K♠ Q♠ Q♥

Problem 6: If the height this year is H, then the last year it was

Ho = H
1.1 and the year before H∗ = Ho

1.2 = H
1.1×1.2 = H

1.32 , so your

height increased 32% during the last two years.

Problem 7: (a) After n bets, if the gambler has k wins and n−k losses,
then his balance is x = 1 + k − (n − k) = 1 + 2k − n. Thus, if x + n is
even, Pn(x) = 0; otherwise

Pn(x) =
( n

x−1+n
2

) (
1

2

)n

.

(b) Instead of removing the gambler from the game, we can allow him
to continue to play if we subtract the probability Qn(x) that a second
‘daemon’ player G′ also has x dollars. Player G′ starts with a balance
of −$1 dollar and wins $1 whenever the gambler loses, and vice versa,
so that when he has zero dollars, so does G′. Thereafter, the probability
of a positive win x by the gambler after n bets equals the probability
of a positive win x by G′ since the probability of k losses equals the
probability of k wins.

If n + x is odd, the probability Pn(x) − Qn(x) is

( n
x−1+n

2

) (
1

2

)n

−
( n

x+1+n
2

) (
1

2

)n

.

Hence, the probability that the gambler will still be in the game after
n bets is

n+1
∑

x=1

Pn(x) −
n−1
∑

x=1

Qn(x) =
k=n∑

k=d n
2

e

(n

k

) (
1

2

)n

−
k=n∑

k=d n
2

e+1

(n

k

) (
1

2

)n

,

where dxe denotes the smallest integer greater than or equal to x. On
simplifying this telescoping series, we find that the probability that the
gambler will still be in the game after n bets is

( n

dn
2 e

) (
1

2

)n

.

Problem 8: Problem 9:

6

2 4 2

4 6 6

10

10

2

8 4 9

4

6 6

5 6

Y

V

B

G

Y

O

R

Problem 10:

2

4

2

2

1

4

2

3

3

4

3

2

3

1

5

2

3

5

4

3

4

These three problems were taken
from Paul Vaderlind’s book (in

Swedish) “Är Detta Mathematik.”

We received the solutions to all of the Math Challenge problems
in the June issue from Robert Wong, a math teacher at Vernon
Barford Junior High School. Good work!
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I enjoyed the first issue of π in the Sky, but you might like to
note that on p.14 the name of a great mathematician, Norbert
Wiener, was incorrectly spelled (twice). Andy Liu’s editorial
was especially interesting. Peter Zvengrowski

We apologize for the mistake. Indeed, we spelled Norbert Wiener’s
name incorrectly.

—Editors

Dear Editors of π in the Sky,
I enjoy π in the Sky very much and am very happy with

the content in it. However, I found a little mistake in one of
the articles in the June 2000 issue, particularly in Dr. Dragos
Hrimiuc’s ‘The Box Principle’ article. In question 4, when you
get the number 11...100...0 from subtracting, and cancelling all
the zeroes, you get a number 11...1. This number, as said, is
divisible by 1999, so when divided by 1999, gives remainder 0.
However, this number is one of the numbers from 1, 11, 111,
..., 11...1. We assumed that the remainders of these numbers
is not 0, but that number in question has remainder 0, hence
it’s a contradiction. This is not mentioned, and makes it seem
that this contradiction is not realized.

Thanks again for the wonderful magazine. Jeffrey Mo
Yes, you are absolutely right. Alternatively, one can express the

solution as a direct proof. Consider the integers 1, 11, . . . , 11 . . . 1
︸ ︷︷ ︸

2000 digits

.

If we divide these 2000 integers by 1999, we get the remainders
0, 1, . . . , 1998. At least two numbers have the same remainder (Box
Principle) when they are divided by 1999. Therefore, their difference
111 . . . 10 . . . 00 will be divisible by 1999. Canceling all zeros from the
end, we get a number consisting of ones and divisible by 1999.

—Editors

This play will be presented at 8:00 pm on December 10,

2000 at the Frederic Wood Theatre, on the University of
British Columbia campus. Written by Klaus Hoechsmann and
Ted Galay, it is organized around three mathematical skits.
The principal ambition of this play is to show mathematics on
stage—not just talking about it, but actually doing it—in what-
ever form the public can take.

Hypatia, the last of the Alexandrian scholars recorded by history,
was brutally murdered by a fundamentalist mob in March of 415 AD.
Her father Theon, a mathematician, philosopher, and director of the
University (called the “Museum”) of Alexandria, had seen to it that
his talented daughter received the best available training in all conceiv-
able disciplines from rhetoric through music to mathematics. Blessed
with physical strength and beauty, she was by all accounts a model
of rectitude and modesty. It is difficult to exaggerate the esteem in
which she was held by contemporaries, whether in Athens, Rome, or
Alexandria itself.

Math for Students
with the Help of Students

This site contains a steadily growing library of math
materials that are interactive and multimedia en-
hanced. Most of the programming and the multime-
dia work has been implemented by students.

http://www.ualberta.ca/dept/math/gauss/fcm

Puzzles
The site http://www.mathpuzzle.com contains an
exciting collection of dissection puzzles and problems.
Here is an example. Divide a square into 7 trian-
gles so that one triangle has edge lengths in the ratio
3:4:5 and the other 6 triangles can be arranged into
another square! Can it be done with less than seven
triangles?

http://www.mathpuzzle.com/weihwatri.html

http://www.mathpuzzle.com/mine.html

How To Write Proofs

This site explains and provides examples of various proof
techniques: Direct Proof, Proof by Contradiction, Proof
by Contrapositive, Proof by Mathematical Induction,
Proof Strategies, Constructive Versus Existential Proofs,
Counterexamples, Proof by Exhaustion (Case by Case).

http://zimmer.csufresno.edu/∼larryc/proofs/proofs.html

International Mathematical Olympiad

The annual International Mathematical Olympiad
(IMO) is the world championship mathematics com-
petition for high school students and is held each year
in a different country. The first IMO was held in
1959 in Romania, with seven countries participating.
It has gradually expanded to over 80 countries from
all five continents. Learn more at these sites:

http://imo.math.ca/

http://www.cms.math.ca/Olympiads/

Famous Curves

An interactive site offering interesting facts about famous
curves, their history, related names and other related curves.
http://www-history.mcs.st-andrews.ac.uk/history/Curves/Curves.html
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