
�

Issue 10,
January 2007

Pi 10 master.indd   1 1/3/2007   10:10:26 AM



�

Pi in the Sky is a publication of the Pacific Institute for 
the Mathematical Sciences (PIMS). PIMS is support-
ed by the Natural Sciences and Engineering Research 
Council of Canada, the Government of the Province 
of Alberta, the Government of the Province of British 
Columbia, Simon Fraser University, the University of 
Alberta, the University of British Columbia, the Uni-
versity of Calgary, the University of Victoria, the Uni-
versity of Washington, the University of Lethbridge, 
and the University of Regina.

Significant funding 
for Pi in the Sky is 

provided by

Editor in Chief
Ivar Ekeland (PIMS and University of British Columbia)
Tel: (604) 822-3922, E-mail: director@pims.math.ca

Managing Editor
David Leeming (University of Victoria)
Tel: (250) 472-4271, E-mail: leeming@math.uvic.ca

Guest Editor
Mark MacLean (University of British Columbia)
Tel: (604) 822-5552, E-mail: maclean@math.ubc.ca

Editorial Board 
John Bowman (University of Alberta)
Tel: (780) 492-0532, E-mail: bowman@math.ualberta.ca
John Campbell (Archbishop MacDonald High School, Edmonton)
Tel: (780) 441-6000, E-mail: jcdotcalm@shaw.ca
Florin Diacu (University of Victoria)
Tel: (250) 721-6330, E-mail: diacu@math.uvic.ca
Sharon Friesen (Galileo Educational Network, Calgary)
Tel: (403) 220-8942, E-mail: sfriesen@ucalgary.ca
Gordon Hamilton (Masters Academy and College, Calgary)
Tel: (403) 242-7034, E-mail: gamesbygord@gmail.com
Dragos Hrimiuc (University of Alberta)
Tel: (780) 492-3532, E-mail: dhrimiuc@ualberta.ca
Klaus Hoechsmann (University of British Columbia)
Tel: (604) 822-3782, E-mail: hoek@pims.math.ca
Michael Lamoureux (University of Calgary)
Tel: (403) 220-8214, E-mail: mikel@math.ucalgary.ca 
Mark MacLean (University of British Columbia)
Tel: (604) 822-5552, E-mail: maclean@math.ubc.ca
Anthony Quas (University of Victoria)
Tel: (250) 721-7463, E-mail: aquas@uvic.ca
Volker Runde (University of Alberta)
Tel: (780) 492-3526, E-mail: vrunde@ualberta.ca
Wendy Swonnell (Greater Victoria School District)
Tel: (250) 477-9706, E-mail: wswonnell@shaw.ca

Editorial Coordinator
Breeonne Baxter (PIMS)
Tel: (604) 822-0402, E-mail: bbaxter@pims.math.ca

Pi in the Sky 
449 Central Academic Bldg
University of Alberta
Edmonton, Alberta
T6G 2G1, Canada 
Tel: (780) 492-4217
Fax: (780) 492-6826

Pi in the Sky
1933 West Mall 
University of British Columbia 
Vancouver BC
V6T 1Z2, Canada
Tel: (604) 822-3922
Fax: (604) 822-0883

Contact Information
E-mail: pi@pims.math.ca

All issues of Pi in the Sky can be downloaded for free from http://www.
pims.math.ca/pi.

Pi in the Sky magazine is aimed primarily at high school students and 
teachers, with the main goal of providing a cultural context/landscape for 
mathematics. It has a natural extension to junior high school students and 
undergraduates, and articles may also put curriculum topics in a different 
perspective.

Contributions Welcome
Pi in the Sky accepts materials on any subject related to mathematics and 
its applications, including articles, problems, cartoons, statements, jokes, 
etc.  Copyright of material submitted to the publisher and accepted for 
publication remains with the author, with the understanding that the pub-
lisher may reproduce it without royalty in print and electronic forms. Sub-
missions are subject to editorial review and revision. We also welcome 
Letters to the Editor from teachers, students, parents, and  anybody inter-
ested in math education (be sure to include your full name, phone number 
and E-mail address).

Cover Page
A multitude of mathematical games and puzzles, by Breeonne Baxter.

Table of Contents

The Draw of Mathematical Games and Puzzles
by Mark MacLean................................................................3

Games, Puzzles and Problems
by Gordon Hamilton.............................................................4

Mathematical Haiku Contest Winners
by David Leeming................................................................6

Math Jokes...........................................................................6

Seeking Solutions to Sudoku Squares
by Diane Donovan, Carlo Hämäläinen and Anne Penfold 
Street...................................................................................7

Monty Hall and Probability
by Ivar Ekeland...................................................................10

Nim and Friends
by Anthony Quas................................................................13

Das Mathematikum
by Klaus Hoechsmann........................................................16

Asking the Right Question
by David Leeming..............................................................20

Divisibility by Seven
by David Leeming and Jeremy Tatum................................21

Math Challenges - Solutions to Issue 9 Problems
by Dragos Hrimuic.............................................................22

Math Challenges - Problems
by Dragos Hrimuic.............................................................24

Pi 10 master.indd   2 1/3/2007   10:10:28 AM



�

The Draw of Mathematical Games and Puzzles

I was waiting in an airport recently and was surprised at the number of my 
fellow passengers who were working away at solving Sudoku number puz-

zles while they waited for our flight to board. Although these logic number 
puzzles have been around since the late 1970s, Sudoku became an interna-
tional craze last year and now appears in most major newspapers on a daily 
basis. People who otherwise deal with almost nothing mathematical in their 
lives are attracted to the relatively simple rules and the challenges these 
Sudoku puzzles present. (The last mathematical puzzle that captured public 
attention was Rubik’s Cube, which had a recent brief return to popularity.)

While many non-mathematicians enjoy Sudoku, three mathematicians 
at the University of Queensland, Australia, spent some time examining the 
mathematical basis of these popular puzzles. Their lovely article in this is-
sue, “Seeking Solutions to Sudoku Squares,” explores not only methods for solving these puzzles, but includes 
the mathematics behind the puzzle if you want to construct one of your own. Scattered throughout this issue of Pi 
in the Sky are Sudoku puzzles to test out what you learn from the article. (If you want a real challenge, try visiting 
http://www.samurai-sudoku.com.)

If you add strategy to logic, you get an interesting family of games known as Nim. These games are tradition-
ally played with piles or rows of matches. In one version, players alternately remove some number of matches 
from one of these piles or rows, with the object to be the player who removes the last match on the table. (Other 
versions make the person who removes the last match the loser.) Anthony Quas’s article, “Nim and Friends” talks 
about two versions, Nim and Nim Lite. In it, he explores the key mathematical question: “Is there a winning strat-
egy?” I suggest that you get a box of matches or toothpicks to help you as you read through this article. It might 
be helpful to play a few games with a friend as you try to understand the strategy.

Games become more complicated (and interesting for some) if there is an element of risk attached to the 
play. The television game show Deal or No Deal is highly popular. Prize money is distributed unevenly amongst 
26 briefcases and the contestant chooses one of these cases. He or she then gets to open, one at a time, six 
of the remaining cases to reveal the amounts in each case. At this point, a mysterious “Banker” tries to buy the 
contestant’s original case for some amount of money. The contestant chooses to take the deal, or go on playing. 
If the contestant elects to refuse the deal, he or she chooses five cases and the process is repeated, and so on, 
with each round seeing four, three, two and finally one case opened until either the contestant takes the deal, or 
until there are two cases left and the contestant must decide whether or not to switch cases before opening one 
to see the prize. Deal or No Deal is a sophisticated version of an old game show, Monty Hall’s Let’s Make a Deal, 
and Ivar Ekeland presents a clear discussion of the probability involved in this game in his article, “Monty Hall and 
Probability.”

We have many other wonderful articles in this issue on Mathematical Puzzles and Games. I hope you enjoy 
them. I encourage you to work through the challenge problems and puzzles we present in these pages, for surely 
the best part of mathematics is doing it.

1 3 4

9 8

5 9

8

1

4

7

9

8

65 1

8

7

9 4

3

8

7

3

7

2

3

2

61

5

4

8

2 7

5

Sudoku
puzzles

Easy Hard

Solutions on page 22.
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3Sudoku is a logic-based 
placement puzzle. The 

object is to fill the grid so 
that every column, every 
row and every 3×3 box 
contains the digits 1 to 9. 

To learn more on Sudo-
ku puzzles, including a 

focus on the mathematical 
ideas that create Sudoku 
and similar puzzles, turn 
to page 7.

by Mark MacLean, Guest Editor, University of British Columbia

Mark MacLean and a trio of 
children in Colombia.
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Nano-Hopscotch
Snap together a bunch of carbon rings to form a plat-
form and then move from one carbon ring to another 
by rolling a dice. If a dice roll directs you to a carbon 

ring previously visited - ig-
nore it and roll again. 

Also ignore any rolls 
that direct you off the 
platform. You win the 
game if you can visit 
all the carbon rings.

For example, start-
ing at the dot on the 

heart-shaped platform 
below (Fig. a) - you couldn’t 

move until you rolled a 3 or 6. You rolled a 3 and then 
couldn’t move until you rolled a 2 or 4 (Fig. b). Finally 
you rolled a 4 and were stuck (Fig. c).

1) Where could you start on the heart-shaped plat-
form in order to guarantee that you win? Where could 
you start so that you will win some of the time, but not 
all of the time? 

2) If possible, snap together a platform so that it is:
•impossible for you to win. 
•impossible for you to lose. 
•impossible for you to win from every carbon ring 
except one. 
•possible, but not guaranteed, for you to win from 
every carbon ring.
•possible for you to win from every carbon ring 
with the same probability, p, where 0<p<1. (I do not 
know the answer to this problem.)
3) Find a carbon ring in some platform where the 

chance of winning is exactly 3/4 if you start on it. (I 
do not know if 3/4 is the largest possible fraction less 
than 1.) 	

Fig. a Fig. cFig. b

Games can be broken down into a sequence of puz-
zles alternating between players. 

Usually, these game-based puzzles/problems be-
come progressively more difficult to solve, as one 
moves backwards from the last move to the beginning 
of the game.

Games, Puzzles and Problems

In 1898 Emanuel Lasker (chess 
world champion from 1894 to 

1921) played Victor Wahltuch in 
England. 

Puzzle: Below, find the decisive 
move for Lasker (white).

Earlier in the same game between 
Emanuel Lasker and Victor Wahltuch. 

Problem: Find a decisive move for 
Lasker (white).

by Gordon Hamilton, Masters Academy and College

Let’s call these game-puzzles if they are solved and 
game-problems if they are unsolved. This makes the 
challenge to find a decisive first move for chess a game-
problem, because nobody has determined which first 
move guarantees a win. On the other hand, we refer 
to Nim (see related article on page 13), tic-tac-toe and 
rock-paper-scissors as a game-puzzle, because you 
can determine which first move will guarantee a win.

Beyond asking “what is a winning next move,” games 
like Nano-Hopscotch (below) naturally provide a rich 
source of inspiration for game-puzzles and game-
problems. Reciprocally, puzzles like the Polyanimal 
Puzzles later in this article are a rich source of inspira-
tion for game designers. 
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3) Another farmer doesn’t have too much money and 
can only rent a Polyanimal of size 6. Which Polyanimal 
should he rent to eradicate the most Pentomino pests? 
If he gets a two-for-one deal, which two creatures of 
size 6 should the farmer get?

4) Find seven Polyani-
mals of sizes 4, 5, 6, 7, 
8, 9 and 10 that can be 
happy together in a 7-by-
7 cage (Polyanimal Fig. 3).  
For instance, the full cage 
contains Polyanimals of 
the right sizes, but the 
red fly (size 5) is unhappy 
because the green Venus 
flytrap (size 9) can eat 
her.

Twinkle Twinkle
Games, puzzles and problems feed off each other. 

The idea for this problem came when playing connect-
the-dots with a kindergarten student:

Randomly scatter S stars in a unit square universe. 
For each star – connect it 
to its two closest neigh-
bours. Constellations 
result. On the right are 
the constellations creat-
ed when 100 stars were 
scattered randomly.

The smallest constel-
lation is a triangle. De-
scribe how the largest 
constellation scales as 
S Y infinity. (I do not 
know the answer to this 
problem.)

Polyanimal Puzzles
A Polyanimal can eat another Polyanimal if it fits in-

side. For example, in Polyanimal Fig. 1, the ugly brown 
giant slug (size 10) can eat the cute green garter snake 
because the garter snake (size 6) can be flipped over 
so that it fits inside the giant slug. 

5) Noah was told to build a refrigerator to rescue an 
infinite number of Polyanimals from global warming. 
What is the maximum number of Polyanimals of size 3 
that he could safely rescue? After Noah rescued these, 
what is the maximum number of Polyanimals of size 
4 that he can safely rescue? After Noah rescued these, 
what is the maximum number of Polyanimals of size 5 
that he can safely rescue?

6) Design a Polyanimal Game. 

Polyanimal Fig. 1

Polyanimal Fig. 2

Polyanimal Fig. 3

Dr. Gordon Hamilton (gamesbygord@gmail.com) 
is a consultant for K-12 math/science with Master’s 
Academy & College, Calgary. The puzzles, games and 
problems above were mostly created when Gordon 
worked with the Galileo Educational Network (http://
www.galileo.org). The picture of Lasker is from http://
en.wikipedia.org/wiki/Emanuel_Lasker.

About the author

Twinkle Twinkle - a 
starfield

1) Find three Polyanimals of sizes 3, 4 and 5 such 
that all three can all live happily together (without dan-
ger of one being eaten). 

2) A farmer wishes to exterminate the 12 Pentomino 
pests. He considered renting an ugly brown giant slug 
(size 10) which can eat all of them (see Polyanimal Fig. 
2, below), but wondered whether there was a smaller 
Polyanimal that would do the job.

Solutions to these problems, as well as to other facinat-
ing mathematical challenges, please visit our website: 
http://www.pims.math.ca/pi.
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We were pleased to receive many entries, 31 in 
all, to our Mathematical Haiku Contest from the 

2005 issue of Pi in the Sky. Many thanks to everyone 
who submitted an entry. Thanks also to teacher Tif-
fany Godin of École Sainte-Marguerite-Bourgeoys in 
Calgary for encouraging her Math 31 students to sub-
mit a haiku to our contest. Thanks also go to Henry M. 
Knitter and his Math 20 class at John G. Diefenbaker 
High School in Calgary for their submission. 

Our distinguished panel of judges selected Lisa 
Walpole’s haiku as the contest winner. Lisa teaches 
senior high math at St. Martin de Porres High School 
in Airdrie, Alberta. Congratulations to Lisa, who won 
the $100 prize for her poem.

A möbius strip
Continuously circling
Is there no escape?
Our judges also selected two haikus to receive 

honourable mention: Don E. Kaplecki, who works at 
Discovering Choices Outreach High School in Calgary, 
receives honourable mention for his entry titled Na-
ture’s Way.

One, one, two, three, five
Eight, thirteen, then twenty-one
Creates the pattern
The Math 31 class at École Sainte-Marguerite-Bour-

geoys also receives honourable mention for their en-
try.

How do I love thee
Let me count the ways
T-I 83

Congratulations to all of our participants and winners, 
for your creativity and enthusiasm!

David Leeming,
Managing Editor, Pi in the Sky

Pi in the Sky
Mathematical Haiku 

Contest Winners

Math Jokes

Send your math jokes to us at pi@pims.math.ca!

courtesy of xkcd.com

On behalf of Pi in the Sky, we would like to thank 
Alexander Melnikov (University of Alberta) and Len 
Berggren (University of Victoria) for their support of 
Pi in the Sky. Dr. Melnikov and Dr. Berggren’s terms 
on the Editorial Board have ended.

Pi welcomes Anthony Quas (University of Victo-
ria) and Gordon Hamilton (Masters Academy and 
College) to the Editorial Board.

Ivar Ekeland,
Pi in the Sky Editor-in-Chief
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Seeking Solutions to Sudoku Squares

In this brief article we focus on the mathematical 
ideas which underpin Sudoku and similar puzzles. 

We restrict ourselves to studying squares based on 
4×4 arrays. However, everything discussed here can 
be extended to similar puzzles based on n × n arrays, 
where n is any square number. Most of us have seen, 
by now, the 9×9 squares published in the puzzle sec-
tion of newspapers.

Let us begin by carefully defining these objects. First 
we will define a well-known mathematical structure 
called a latin square and then, by placing extra condi-
tions on the latin squares, we obtain Sudoku squares.

A latin square, of order n, is an n × n array in which 
each of the symbols 1,...,n occurs once in every row 
and once in every column. So, for example, the follow-
ing 4×4 arrays are examples of latin squares of order 
4.

latin square in which each of the 9 boxes contains each 
of the symbols 1,2,...,9 precisely once. If we take a 9×9 
Sudoku square we will have 9 boxes:

by Diane Donovan, Carlo Hämäläinen and Anne Penfold Street, 
Centre for Discrete Mathematics and Computing,  University of Queensland, Australia
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A cell (r,c) in a latin square is the intersection of row 
r with column c. For example the intersection of row 3 
and column 3, which is cell (3,3), contains the symbol 
2 in L

1
 and the symbol 1 in L

2
, (both shown above). The 

cells of a latin square of order 4 can be divided up into 
four subsquares (or boxes):

For example, the box Q1 has the cells (1,1), (1,2), 
(2,1), (2,2). A Sudoku square of order 4 is a 4×4 latin 
square in which each of the four boxes contains each 
of the symbols 1,2,3,4 precisely once. In newspapers 
the usual size of a Sudoku square is 9×9, that is, a 9×9 
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Neither of the latin squares L
1
 and L

2 
above is a Su-

doku square, but if, in each case, we swap rows 2 and 
3 we obtain the following two Sudoku squares, of or-
der 4.
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Mathematically, we can show that the two latin 
squares L

1
 and L

2
, of order 4, are not equivalent. By 

this we mean that it is not possible to turn one of these 
squares into the other by any combination of one or 
more of the following operations: changing the order 
of the rows; changing the order of the columns; or re-
naming the elements (for example, changing 1, 2, 3, 
4 to 3, 2, 4, 1). However, we can also show that there 
are at most two non-equivalent latin squares of order 
4, and so there are precisely two non-equivalent latin 
squares of order 4 (see the biographical note at the 
end of the article).

This information tells us that there are essentially 
two Sudoku squares S

1
 and S

2
, of order 4. To see this, 

assume that there are three “different” Sudoku squares 
of order 4. This means that there are three “different” 

continued on page 8

7
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latin squares of order 4, which we have just seen there 
are not. Hence the result follows.

We define a Sudoku Puzzle of order 4 to be a 4×4 
Sudoku square with some cells containing the symbols 
1,2,3,4 and other cells empty. This means that we re-
quire that the empty cells can be filled in such a way as 
to obtain a Sudoku square of order 4. We call a partial 
Sudoku square a Sudoku Puzzle only if it is complet-
able, as specified by the following rule:

Rule: The symbols 1, 2, 3, 4 are to be placed in 
the empty cells of the 4×4 partial Sudoku square, 
in such a way that the completed array has each 
of the four symbols occurring once in every row, 
once in every column and once in every box Q1, 
Q2, Q3 and Q4.
A Sudoku puzzle is said to be valid if it has precisely 

one completion. Here is a valid Sudoku puzzle of order 
4×4.

Two corner cells have just one symbol each in their 
lists so we can fill in these cells in P.

Step 2 Update the square P and then construct a 
new array of alternatives for the updated square.

Methods for solving Sudoku puzzles
The puzzle P is fairly easy to solve by hand, but is 

there a general procedure, an algorithm, that we can 
use on any puzzle? The algorithm should be made up 
of simple steps that we could code on a computer. For 
Sudoku puzzles, the algorithm is based on the array of 
alternatives. For each empty cell, we list the plausible 
symbols. We can do this by using the fact that each 
symbol can occur once in every row, once in every col-
umn and once in each of the four boxes. Once we have 
these lists we try to fill in some cell of the puzzle, and 
then keep repeating the process.

The steps involved in obtaining a solution to the ex-
ample above are: 

Step 1 Construct the array of alternatives A(P) for 
the Sudoku puzzle P.
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1 2 4
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We can now see that two more 1s are forced and so 
are two more 3s.

Step 3 Update the square shown on the left above 
and construct the array of alternatives for this square.

At this point we could easily complete the square by 
hand, but for the sake of demonstrating our algorithm 
we will continue the process to the end.

Step 4 Update the square shown above on the left 
and construct the array of alternatives for this square.

{1,2}

{4}

{2}

{2}{4}

{3}

1 2 3 4

3
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4 1

1

3

Solution: Now each of the remaining empty cells has 
only one possible entry and so we obtain our solution.

{1}
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More generally, the square A(P) is known as the ar-
ray of alternatives for the puzzle P. It has the proper-
ties that for each empty cell (r,c) of P, the correspond-
ing cell (r,c) of A(P) contains the list of all symbols not 
occurring in row r or column c of P. All other cells of 
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Sudoku Squares
continued

8

Pi 10 master.indd   8 1/3/2007   10:10:32 AM



�

A(P) are empty. If there exists a cell, say (i,j) of A(P) 
which contains only one alternative, say symbol x, then 
we say that the symbol x is forced to occur in cell (i,j) 
of P.

For instance, at Step 1 the only alternative for cells 
(1,4) and (4,1) was the symbol 4. Hence the symbol 
4 was forced to occur in these cells of P. Indeed, at 
each step in the solution process we obtained forced 
entries.

The construction of Sudoku puzzles
For the moment let’s forget about solving these puz-

zles, and instead think about trying to construct them. 
What sort of properties should our partial array have? 
It’s easy to find partial squares that complete to a Su-
doku square. The hard part is trying to find a partial 
square that has just one solution. To explore this idea 
consider the partial Sudoku square Q, (below on the 
left) and its array of alternatives A(Q) (on the right).

With a little work we can see that there are at least 
two solutions (shown below). One reason for this is 
that both the symbols 1 and 4 are missing from the 
partial Sudoku square Q so that, if we find either of the 
two solutions below, we can obtain the other by swap-
ping 1 and 4. 

{1,3,4}

{1,2,4}

{1,4}

{1,2,4}

{1,4}

{1,2,4}

{1,4}

{1,4}

{1,3,4}

{1,4}

{1,4}

{1,4}

Q A(Q)

2

3

2

3

Thus we can state the following property.

Property 1 A valid Sudoku puzzle of order 4 must 
contain at least 4-1=3 distinct symbols. (Obviously, 
this can be extended to 9-1=8 symbols for a valid Su-
doku puzzle of order 9, etc.)

We can also see that we must have at least one sym-
bol in each of the pairs of rows 1 and 2, and rows 3 and 
4, and likewise for the columns. This is because rows 
1 and 2, for instance, are contained in the boxes Q

1
 

and Q
2
, and similarly for the other pair of rows and the 

pairs of columns. This leads to Property 2.
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continued on page 11

Property 2 A valid Sudoku puzzle of order 4 must 
contain at least one symbol in rows 1 and 2, and at least 
one symbol in rows 3 and 4. A valid Sudoku puzzle of 
order 4 must contain at least one symbol in columns 1 
and 2, and at least one symbol in columns 3 and 4.

Another property that is not so obvious is described 
below. Consider cells (1,1), (1,2), (3,1), (3,2) of the Su-
doku squares S

1
 and S

2
. 

Insights such as these give us some indication on 
how to construct valid Sudoku puzzles.

Harder Sudoku Puzzles
Newspaper Sudoku puzzles are usually graded as be-

ing easy, medium, or difficult to solve. What about 4×4 
Sudoku puzzles? It turns out that they are all “easy” in 
the sense that, at each stage of the solution, there is at 
least one cell in the array of alternatives which contains 
only one symbol.

We will attempt to build a “hard” 4×4 valid Sudoku 
puzzle, P. By hard we mean, that in addition to being 
a valid puzzle, its array of alternatives exhibits the fol-
lowing properties:

H1: any empty cell of P, and thus any filled cell of 
A(P), will contain at least two distinct possible alterna-
tives, making our puzzle harder to solve; 

H2: no row or column of P is completely filled and 
no symbol occurs four times in P, avoiding redundant 
information.

Any valid Sudoku puzzle, say P, which is a subset 
of S

1
 or S

2
 must contain an entry in one of the cells 

(1,1), (1,2), (3,1), (3,2), as shown in I. The reason for 
this is that, if it doesn’t, then there is nothing to stop 
us swapping these symbols around, as shown in the 
square I'.

Similarly we can show that P must contain at least 
one entry from the cells (2,1), (2,2), (4,1), (4,2), one 
from (1,3), (1,4), (3,3), (3,4) and one from (2,3), (2,4), 
(4,3), (4,4). Thus we may deduce Property 3.

Property 3 Any valid Sudoku puzzle of order 4 con-
tains at least four entries. 

Since the 16 cells we have just considered are all in 
different positions, we can deduce Property 3. Don’t 
worry if you can’t see this particular property immedi-
ately, but it is true.

1 2

2 1

2 1

1 2

1 2 3 4

3

2

4

4

1

3

2

4

1

3

1 2

1 2 3 4

3

2

4

4

1

3

1

4

2

3

2 1

S
1

S
2

I I'

Sudoku Squares
continued

9
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winning. The preceding argument would be correct if 
door No. 3 had been open to begin with, but it was not. 
What happened is that all doors were closed, so that 
there was a probability 1/3 that the car was behind 
door No, 1, and a probability 2/3 that it was behind 
one of the others. If it actually is behind door No. 2 or 
door No. 3, the host will open the other one, but that 
will certainly not affect the fact that the car is in the 
block {2,3}. So there is still a probability 2/3 that it is 
in the block {2,3}, and if it is not in 3, which the host 
showed by opening that door, then there must be a 
probability 2/3 that it is in 2. 

You are not convinced? There are more sophisticated 
arguments, which you will find in the Wikipedia article. 
You have read them and you are still not convinced? 
Welcome to a large club of confused contestants! The 
Monty Hall paradox has a long history, and many peo-
ple adamantly refuse to be convinced that one should 
switch. The last resort is to try it. On http://www.
shodor.org/interactivate/activities/SimpleMontyHall, 
you will be able to try the two strategies, of switching 
and not switching, and finding out for yourself, which 

is the right one.
The Monty Hall paradox 

is a misnomer. A paradox 
is a statement that con-
tradicts itself, but there 
is no contradiction in this 
example, only a wrong an-
swer to a reasonable ques-
tion. Now here comes a 
true paradox in probabil-
ity. I found it in “A Math-
ematician’s Miscellany,” a 
collection of thoughts and 
remarks by the Cambridge 
mathematician John Little-
wood. It goes as follows: 
Imagine a pack of cards, 

each of which has one number on one side and the 
number directly above on the other. There is one card 
with 1 on one side and 2 on the other, two cards with 2 
on one side and 3 on the other, four cards with 3 and 
4, eight cards with 4 and 5, and so on, ad infinitum, 
so that there are 2n+1 cards with n on one side and n+1 
on the other.

Let us now use that pack to play a game of chance. 

You chose door number 3. The goat is not 
behind door number 1. Do you change your 

mind and pick door number 2?

Many of us have trouble enough dealing with num-
bers. However, when it comes to probabilities, 

the situation is much worse. It is easy to devise simple 
problems that will baffle even sophisticated mathema-
ticians.

This may be because people have been counting 
and measuring for millennia, while probability is a 
mere four hundred years old. The ancient Greeks, for 
instance, knew that there were infinitely many prime 
numbers and were familiar with Pythagoras’ theorem. 
But they would not have understood what we mean 
when we say that flipping a coin gives heads with a 
probability 1/2. The idea appears for the first time in 
17th century France, and it seems that there has not 
been time enough for the next generations to get used 
to it. 

A classical example of a baffling problem is the so-
called the Monty Hall paradox. According to Wikipedia: 
Suppose you’re on a game show, and you’re given the 
choice of three doors: Behind one door is a car; behind 
the others, goats. You pick a door, say No. 1, and the 
host, who knows what 
lies behind the doors, 
opens another door, No. 
3, which has a goat. He 
then says to you, “Do 
you want to pick door 
No. 2?” Is it to your ad-
vantage to switch your 
choice?

Most people say no: 
they prefer to stick to 
their original choice. 
When they first choose, 
all three doors were 
closed, and they picked 
one at random, so the 
probability that it was 
the right one was 1/3. 
Now only two doors are closed, and they figure that 
since they still don’t know where the car is, the two 
doors must have equal probability, namely 1/2. There 
is no reason to change, and indeed, when given the 
opportunity, most people do not. 

In fact, it is a mistake: door No. 1 still has a prob-
ability 1/3 of winning, but door No. 2 now has a prob-
ability of 2/3, so switching doubles your chances of 

Monty Hall and Probability
by Ivar Ekeland, University of British Columbia
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Two people, Ann and Brian, stand facing each oth-
er, while the host draws one card from the pack 
and puts it between them, so that each can see the 
side facing him or her, but not the other side. The winner is the one who sees the lowest number. 

What is Ann’s probability of winning? If she sees a 1, the other side must be a 2, and she has won. If she sees 
a number n>1, the hidden number, on the other side of the card, is either n-1 or n+1. In the first case she loses, 
in the other case she wins. Since there are twice as many cards of the second type as there are cards of the first, 
she has a probability 2/3 of winning. 

Unfortunately, the same argument holds for Brian: he also has a probability 2/3 of winning. Since one must 
win, but not both, the two probabilities should sum to 1, so that 2/3 + 2/3 =1, a remarkable equality, which 
should never have been published in Pi in the Sky.

This is a true paradox. The argument is perfectly correct. The only problem with it is that there is no such 
pack of cards. One cannot physically construct a pack with infinitely many cards. Even if one could, what this 
argument shows is that one could not draw at random a card from it, otherwise one would end up with a con-
tradiction. In other words, even in mathematics, there is no such thing as drawing a card at random from an 
infinite pack.

We will start with an empty array P
0
 and a full ar-

ray of alternatives A(P
0
). Then iteratively we will try to 

construct P
1
, P

2
,... and simultaneously A(P

1
), A(P

2
),... so 

that eventually A(P
i
) has the desired Properties H1 and 

H2, mentioned above. 

We will look at various cases, and we may as well 
start by assuming that cell (1,1) of P

1
 contains the sym-

bol 1 (can you explain why we can do this?). To explore 
possibilities, we will also assume that symbol 2 occurs 
in cell (2,3) of P

1
. This situation is summarized as: 

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

{1,2,3,4}

P
0

A(P
0
)

However, when we apply the ideas we have just dis-
cussed to Box Q1 we see that symbol 2 is forced to be 
in cell (1,2) of P

2
, and that in Box Q2 symbol 1 is forced 

to be in cell (2,4) of P
2
, giving: 

{3,4}

{1,3,4}

{1,3,4}

{3,4}

{1,3,4}

{1,2,3,4}

{1,2,3,4}

{2,3,4}

{3,4}

{1,2,3,4}

{1,2,3,4}

{3,4}

{2,3,4}

{2,3,4}

1

2

P
1

A(P
1
)

By Property 1 we know that one of symbols 3 and 
4 must occur in P

3
, and by the constraints, Properties 

H1 and H2, that we have placed on A(P
3
) we know that 

neither of them can occur in rows 1 or 2. So we can as-
sume that cell (3,1) of P

3
 contains symbol 3. But this is 

not possible, as it leads to only one alternative for cell 
(2,1) of A(P

3
) (namely {4}). If we choose to place symbol 

4 in cell (2,1) of P
3
, we violate Properties H1 and H2.

Hence we may assume that this case is not possi-
ble and so, if cell (1,1) of P

3
 contains symbol 1, then 

we can’t place any of the symbols 2,3 or 4 in cells 
(2,3),(2,4),(3,2),(4,2) of P

3
. Note also that the case with 

symbol 1 in cell (1,1) of P
3
 and symbol 2 in cell (1,2) is 

also equivalent to this case, and hence not possible. 
Now consider the case with symbol 1 in cell (1,1) of 

P
3
 and symbol 2 in cell (1,3).

{3,4}

{1,3,4}

{1,3,4}

{3,4}

{2,3,4}

{2,3,4}

{3,4}

{1,3,4}

{1,3,4}

{3,4}

{2,3,4}

{2,3,4}

1 2

2 1

P
2

A(P
2
)

{1,3,4}

{1,3,4}

{1,3,4}

{3,4}

{1,3,4}

{1,2,3,4}

{1,2,3,4}

{3,4}

{2,3,4}

{1,2,3,4}

{1,2,3,4}

{2,3,4}

{2,3,4}

{2,3,4}

1 2

P
3

A(P
3
)

continued on page 12

Monty Hall and Probability
continued

Sudoku Squares
continued
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but there are still two completions and adding any 
entry gives an earlier case. So alternatively we take

{1,3,4}

{1,4}

{1,3,4}

{3,4}

{1,3,4}

{1,2,4}

{1,2,3,4}

{3,4}

{2,3,4}

{1,2,4}

{1,2,4}

{2,4}

{2,4}

1 2

3

P
3

A(P
3
)

Now this square still has at least two completions, 
so we must add another entry. If we add an entry to 
any cell other than (3,3) we are reduced to an earlier 
argument. Thus we may assume we are adding either 
symbol 1 or symbol 4 to cell (3,3). In the former case 
we have 

{3,4}

{3,4}

{3,4}

{1,3,4}

{2,4}

{2,3,4}

{3,4}

{2,3,4}

{2,4}

{2,4}

{2,4}

{2,4}

1 2

3 1

P
4

A(P
4
)

Once again we have two completions and the argu-
ment reduces to an earlier case.

There are still a few more cases to argue, for in-
stance symbol 1 in cell (1,1) and symbol 2 in cell (2,2), 
but the reasoning so far seems to suggest that it is 
not possible to construct a “harder” Sudoku puzzle of 
order 4. We have checked this result by generating all 
possible valid Sudoku puzzles of order 4 and the cor-
responding arrays of alternatives, and in all cases there 
is always at least one empty cell of the Sudoku puzzles 
for which there is only one possible entry. You might 
like to see if you can complete the theoretical proof by 
checking the remaining cases.

{1,3}

{1,3}

{3,4}

{1,3,4}

{1,2}

{1,2,3}

{3,4}

{2,3,4}

{1,2}

{1,2,4}

{2,4}

{2,4}

1 2

3 4

P
4

A(P
4
)

Squares of order greater than 4
If we want harder puzzles we need to look at orders 

greater than 4. We can look at Sudoku squares of or-
der 9, but they are pretty big. Alternatively we could 
define a new puzzle! Even a 6×6 array is pretty big 
so, although it would be nice to have subsquares or 
boxes sitting inside our array, we are going to choose 
a smaller case.

We define a latin square Puzzle, of order 5, to be a 
5×5 array with some cells containing the symbols 1, 2, 
3, 4, 5 and other cells empty. However, we require that 
these empty cells can be filled in such a way as to ob-
tain a latin square of order 5. That is, we take a partial 
latin square of order 5 and fill in the empty cells using 
the following rule.

RULE: The symbols 1, 2, 3, 4, 5 are to be placed in 
the empty cells of the 5×5 partial latin square, in 
such a way that the completed array has each of 
the five symbols occurring once in every row and 
once in every column.

This latin square puzzle is said to be valid if it has 
only one completion. The following example is a valid 
5×5 latin square puzzle, but in terms of the discussion 

given above, the array of alterna-
tives can’t be completed by con-
sidering only forced entries. So 
in this sense it can be termed a 
“hard” latin square puzzle.

Finally, to find out more about Sudoku puzzles you 
might like to look at the Wikipedia website, http://
en.wikipedia.org/wiki/Sudoku.

We thank Ken Gray for helpful discussions.
Bibliographic note: J Denes and A D Keedwell, Latin 

Squares and Their Applications, The English University 
Press Ltd., London 1974.

{1,3} {1,3,4}

{3,5}

{1,4}

{1,3,5}

{2,3,4}

{2,4}

{3,5}

{1,2}

{2,5}

{1,3}{3,5}{1,5}

{2,3}

{1,2}

{1,3}

3

4

1 4

5

2

5

2 4 P

A(P)

Sudoku Squares
continued

To play Sudoku online:
http://www.websudoku.com
http://www.dailysudoku.com
http://www.sudokupuzz.com

12

By Property 1 we may assume symbol 3 occurs in 
at least one cell of P

3
. It can’t occur in columns 2 or 

4. So we may assume symbol 3 occurs in cell (3,1) (all 
other possibilities are equivalent or reduce to an ear-
lier case). Thus we have: 
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the game; whereas if you play starting from a position 
in L, then if your opponent plays perfectly, he should 
be able to win.

Let us study Nim Lite some more. We will label posi-
tions by the number of matches. Clearly 1 is a losing 
position (we will write 1 d L) as you are then forced to 
take the last match. As remarked above 2, 3 and 4 are 

winning positions 2,3,4 d W). 
Starting from 5, you can take 1, 
2 or 3 matches leaving your op-
ponent in 4, 3 or 2 from which 
they can win. 

It follows that 5  d L. Con-
tinuing to argue this way, you 
can eventually classify all posi-
tions as winning or losing. 

Notice that the reason that 5 
was in L was that any move you 
made left your opponent in W. 
This gives us a way to build up L 
and W more systematically:
Step 0 (Initializing) Start off 
by putting into L all positions 
where every move causes you 
to lose in 1 turn; similarly put 
into W all positions where you 
can win in a single turn. (For 
Nim Lite, this means putting 
1 into L, whereas for Nim, 

this means putting all combinations with only one 
non-empty pile into W.)

Step 1: (Expanding W) Find all positions not already 
classified where there is a move that leaves the 
game in L, and add these positions to W.

Step 2: (Expanding L) Find all positions not already 
classified where every move leaves the game in a 
position in W; Add these positions to L.

Repeat: Repeat steps 1 and 2 until all desired 
states are classified.
For Nim, we will encode positions by recording the 

number of matches in each pile (e.g. the position (3,2,1) 
means that there are 3 piles with 3, 2 and 1 matches). 
Since empty piles are not relevant to the game, we will 
write (4,3) instead of (4,0,3). Also the position (5,3,1) 
should be counted as the same as the position (3,1,5) 
as the order of the piles doesn’t affect the state of the 
game. For clarity, we will list the piles in decreasing 
order of size.

By following the procedure described above, we no-

Nim is a family of games played with matchsticks, 
where each player takes it in turn to remove 

matches according to various rules, where the winner 
is the player who takes the last match (or in some ver-
sions the player forcing the other player to take the 
last match).

We will talk here about two ver-
sions of the game that I will call Nim 
and Nim Lite. 

In Nim Lite, there is just one pile 
of any number of matches (games of-
ten start from 15), and players take 
turns to remove 1, 2 or 3 matches. 
The player removing the last match 
is the loser.

In Nim, there are several piles 
of matches. Players take turns to 
remove any (positive) number of 
matches from any single pile. In this 
version, the player removing the last 
match is the winner. A game might 
start for instance with 5 piles of 1, 
2, 3, 4 and 5 matches. In this case a 
possible move would be to take two 
matches from the 4 pile leaving piles 
of 1, 2, 3, 2 and 5 matches. Another 
possible move would be to take all of 
the 3 pile, leaving four piles of 1, 2, 4 and 5 matches.

Of course, as mathematicians, when faced with a 
game like this, it is natural to look for a winning strat-
egy. What would this mean? It cannot mean a way of 
winning from every position, because if both players 
knew the winning strategy, then the first player would 
expect to be able to win from where he or she started, 
yet whatever the first player did, the second player 
would expect to be able to win from there as well.

Having said this, there are some obvious winning 
positions. In Nim Lite, for instance, a position where 
there are exactly 2, 3 or 4 matches remaining is a win-
ning position for whoever is about to play. The player 
should simply take all of the matches but one. The oth-
er player is then forced to take the last match.

This suggests that we should classify positions in 
the game into winning and losing positions. We will 
call them W and L. The idea will be that if you start to 
play in a position in W, then if you play perfectly, what-
ever your opponent does, you should be able to win 

Nim and Friends
by Anthony Quas, University of Victoria

continued on page 14

In Nim Lite, players take turns re-
moving 1, 2 or 3 matches from a 
single pile. The player to remove 
the last match is the loser.

photograph by Katia Grimmer-Laversanne
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involving no more than 6 matches with no more than 3 
piles in Figures A and B. The first shows that whatever 
you do from a losing position, you hand your opponent 
a winning position, whereas the second shows for each 
winning position how to hand your opponent a losing 
position. This second figure therefore constitutes our 
winning strategy: whatever position you are handed, if 
it is a winning position, hand your opponent a losing 
position (so that if you are handed 221, Figure B shows 
that you should take the single match and hand your 
opponent 22). If it is a losing position, there is nothing 
you can do to help yourself, so take a single match.

Notice that in each of the W positions, there is some 

tice that any position with just one pile (i.e. any posi-
tion encoded as (n) ) belongs to W (the player should 
just take all the matches).

If we try to expand W, there are no positions where 

2

11

21 211 311 31

22

222 32 42

321 33

5614 3

221

Figure B: From any winning position, there is a 
move to a losing position.

every move takes you into L (because L doesn’t have 
anything in yet).

Let’s try to expand L. We’re looking for positions 
where every possible move takes you into W (the posi-
tions with just a single pile). We see that we any posi-
tion like this must have 2 piles; and since we require 
that every move leaves you in W the only position to 
add to L is (1,1). (Whichever match you take, you’re 
left with the position (1), which is a winning position 
for your opponent). Anything else doesn’t have the 
right property (e.g. (2,1) doesn’t work because there 
are some moves that leave the opponent in W, i.e. leav-
ing (1) or (2) but also some moves that don’t leave the 
opponent in W, i.e. leaving (1,1).)

So far W = {(n) : n ≥ 1}; L = {(1,1)}. We try again to 
expand W. Anything where you can leave the opponent 
in L will do. We can check that (n,1) for n ≥ 2 should 
be added (as you can take off all but 1 match from the 
first pile leaving a position in L). Similarly, (n,1,1) for 
n ≥ 1 should be added to W as you can take the entire 
first pile leaving your opponent a position in L.

Expanding L is a bit more tricky now, but starting 
from (2,2), we either get to (2,1) or (2,0). Since both 
are in W, this must be a losing position. (1,1,1,1) is 
another losing position as from here you have to go to 
(1,1,1), which is a winning position. 

Working in this way, we can get a complete classifica-
tion of positions with no more than a fixed number of 
matches. This classification is shown for all positions 

move that takes it to the L on the next row up; whereas 
for each of the L positions, any move leaves the game 
in a W position on one of the higher rows.

One question that we haven’t answered so far is 
“why do all positions get classified?” To answer this, 
suppose that at some stage, all positions involving 6 
matches are classified. Then at the next stage, for any 
position involving 7 matches, either all positions that 
you can move to are W positions (in which case the 
given position should be an L); or there is at least one 
position that you can move to which is an L (in which 
case the given position should be a W). At the next 
stage, all positions involving 8 matches will be clas-
sified and so on. (Readers familiar with induction will 
recognize this as being an argument by mathematical 
induction).

In one sense, this solves the problem. Given a com-
puter, it is now possible to enumerate all winning and 
losing positions up to 20 matches (or 200 matches or 
2000 matches). As a human player though, this isn’t 
very satisfactory. It would be nice to have a way of work-

Nim and Friends
continued

2

11

21 211 311 31

22

222 32 42

321 33

5614 3

221

Figure A: Any move from a losing (red) position takes you 
to a winning (green) position.
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ing out if a position is in W or L without going through 
all of the above computation; and also: if you’re in W, 
telling you how to get into L.

This was in fact done by Charles Bouton in 1901. His 
rule was as follows: write the number of matches in 
each pile in binary and take the exclusive-or of these 
numbers. A losing position is one in which the answer 
is 0. All other positions are winning positions. For ex-
ample if the piles contain 5, 4, 3, 2 and 1 matches, we 
first write these in binary as 101, 100, 11, 10 and 1.

Taking the exclusive-or is similar to addition without 
carry. We look at the 1s column and “add” to make 1 if 
there are an odd number of 1s; 0 if there are an even 
number of 1s. Similarly in all of the other columns. 
We’ll write r for this operation. As an example, we 
calculate 101r100r11r10r1. First, we’ll make the 
numbers all have the same number of digits so we’re 
calculating 101r100r011r010r001. In the 4s col-
umn, there are two 1s so the “sum” is 0. In the 2s col-
umn, there are also two 1s so the sum is 0, whereas in 
the 1s column there are three 1s so the sum is 1. The 
“exclusive-or sum” is 001.

This operation has all the nice properties of regu-
lar addition (commutativity: arb = bra, associativity: 
(arb)rc = ar(brc)). In addition, each element is its 
own inverse so that arb=0 if and only if a=b. We will 
use these properties below.

In this notation, we have L={(a
1
,...,a

k
) : a

1
r... ra

k
=0}. 

All other positions belong to W. Since in the case where 
there are 5, 4, 3, 2 and 1 matches, 101r100r11r10 
r1≠ 0, this is a winning position. To play perfectly, the 
player then has to move to a position whose exclusive-
or sum is 0. This can be done in various ways. In fact, 
moving to any of (4,4,3,2,1), (5,4,2,2,1) or (5,4,3,2) 
will do the trick (e.g. to see that (5,4,2,2,1) d L, we 
calculate 101r100r010r010r001=000).

Whenever the exclusive-or sum is 0, any move will 
move it away from zero. To see this, we argue as fol-
lows. Suppose that the piles are a

1
,a

2
,...,a

k
 and a

1
r 

a
2
r...ra

k
=0 and that we are going to change the first 

pile. We exclusive-or both sides of the equation with 
a

1
 giving a

1
ra

1
ra

2
r...a

k
=a

1
. Now, since a

1
ra

1
=0, we 

see that a
2
r...a

k
=a

1
. If we replace a

1
 by b, the exclu-

sive-or sum is now bra
2
r...a

k
=bra

1
 (using the previ-

ous equation), which by the properties listed above is 
non-zero. Exactly the same analysis works if we change 
a different pile. We have checked that any move start-
ing from a position in L moves it to a position in W.

We also need to show that if the exclusive-or sum is 

non-zero, then there’s a move which will return it to 0. 
Suppose that a

1
r...ra

k
=b≠0. Then we have to replace 

one of the a
i
 by a

i
rb to make the exclusive-or sum 

back to 0. We also need to ensure that a
i
rb is smaller 

than a
i
 (so that it corresponds to removing matches 

from the i th pile). To see this, suppose that the leading 
digit of b is a 1 in the j th digit (corresponding to the 2j 
column). Then at least one of the as must have a 1 in 
the j th digit, a

i
 say (otherwise the exclusive or sum of 

the as would have a 0 in the j th digit). Forming a
i
rb 

gives a number which now has a 0 in the j th column 
but is equal to a

i
 in all more significant digits. This 

means that a
i
rb is smaller than a

i
. This gives a strat-

egy for returning the configuration to the losing set. 
This shows that for any position in W, there is a way to 
move to a position in L.

The only thing left to make sure that this is a com-
plete strategy is to ensure that the situation Ø in which 
there are no matches remaining is in L. This corre-
sponds to the fact that if your opponent took the last 
match, they won the game. This is the same as saying 
if you add up no numbers, you get 0. Similarly, taking 
the exclusive-or of the empty set gives 0.

This gives a complete solution to Nim. We give one 
more example to show how to use it in practice. Sup-
pose a player is faced with the combination (9,8,5,2). 
What should she do? We compute 1001r1000r101r 
10=110. This means that we need to exclusive-or one 
of the pile sizes with 110 so as to reduce the num-
ber of matches. 1001r110=1111 representing the 
number 15 which is greater than 9 is not acceptable. 
Similarly 1000r110=1110 which is greater than 8 so 
this move is not acceptable either. On the other hand 
101r110=11 representing 3. This tells us that a suit-
able move (in fact the only winning move) is to remove 
2 matches from the 5 pile leaving 3.

We leave readers with a challenge: Find a complete 
solution to Nim Lite. This should be done by building 
up the set of winning and losing positions and then 
attempting to give a complete description of the sets 
L and W. It should then be possible to prove that any 
move from a position in L leaves a position in W, where-
as any position in W should have a move leaving the 
game in state L. Since the object was not to take the 
last match, it should also be the case that 0 belongs to 
W (corresponding to the fact that if you are handed the 
0 position, your opponent just took the last match so 
that you won).

Nim and Friends
continued
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What follows is a conversation with Albrecht Beutel-
spacher, Professor at the University of Giessen in Ger-
many, and creator as well as director of the world’s 
first large-scale mathematics museum. The interview 
took place in the summer of 2004, with Professor 
Günter Törner of Universität Duisburg-Essen and Klaus 
Hoechsmann of PIMS asking the questions for Pi.

PI: Herr Beutelspacher, how did all this come about? 
How did you even get the idea? Was it a sort of flash 

or did it dawn on you slowly? Then, how did you go about 
making it a reality?

AB: It was no flash at all; rather, it was a slow and 
time-consuming development. About 10 years ago, I 
started to work with students on geometrical models. 
They were asked to build models and then give mathe-
matical explanations about what was behind them. Af-
ter some initial difficulties, this became so good, with 
such nice and beautiful models and such clear explana-
tions that I suggested we create a small exhibition out 
of it — a post-semester exhibition. That took another 
half-year to prepare because we wanted to make it as 
attractive as possible. This was the first exhibition of 
Mathematik zum Anfassen (mathematics for touching), 
as we called it then. That was in 1994.

PI: Exactly 10 years ago.
AB: Yes — this turned out to be a great success. 

Since everybody was happy 
about it, I said: why not repeat 
this seminar? So we did, once 
more with new students and 
different models — and again 
it worked. Then the first en-
quiries came to us from oth-
er institutions, universities, 
schools and so on: “Could we 
have this exhibition?” In other 
words, it became slowly, but 
then with increasing demand, 
a travelling exhibition. I think 
the turning-point came at the 

1998 World Congress Of Mathematicians in Berlin, a 
huge conference with mathematicians from all over the 
world. I was told that, for the first time in the entire 
history of this congress, the organizers had the idea of 
addressing the public as well. 

Das Mathematikum

Therefore, they rented the Urania, a famous building 
for popularization of science, and we faced the chal-
lenge, but also the opportunity, of showing our Math-
ematik zum Anfassen in its basement, while on the 
upper floors there were mathematical talks by famous 
people. It was a huge success. It was acknowledged as 
a really good thing by the Fields Medalists on the one 
hand and the Berlin school children on the other, and 
I cannot imagine a greater difference in the approach 
to mathematics than of these two groups. So I knew 
we are on the right track, and since it was such a re-
sounding success, it was natural to ask: why not make 
something permanent along these lines? This was the 
birth of the phrase “Mathematics Museum,” but sev-
eral years went by before the word became flesh. We 
had ideas, and everybody said “very good,” but nobody 
knew how to proceed. Then, around the year 2000, we 
had an unexpected breakthrough: the City of Giessen 
gave us this building and hadn’t even been asked.

PI: Why Giessen of all cities?
AB: I’m a Professor at the University of Giessen. You 

can do a project like this on such a small budget only if 
you are on location. There are several conditions, but 
this is one of the necessary ones. Also, I might say that 
Giessen has very few cultural, scientific attractions for 
people from outside town. So there was a need, there 
had always been a perceived need, to have something 
spectacular. I had many talks with the mayor, who hap-
pened to be a physicist, and therefore very sympathet-
ic. Finally, the City donated this building and, simulta-
neously, the Ministry of the Land Hessen pitched in a 
substantial amount of money for restructuring it.

PI: When we mentioned this place to others, we usually 
call it the world’s first mathematics museum. Is this cor-
rect? Recently we heard that something similar was being 
created in France. Do you know anything about that? 

AB: If you take the word “museum” in the very strict 
sense — an exhibi-
tion of valuable ob-
jects like books and 
antique models — 
then there are many 
museums of math-
ematics, many col-
lections of unique 
old things. I did not 
wake up one morn-
ing and said “I will 
create the world’s 
first mathematics 
museum”, it just 

Professor Beutelspacher 
with π

A great multitude of visitors
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gradually happened. Experts in the United States also 
told me that there was, as yet, nothing similar. Some 
of the big science centres do have sections devoted to 
mathematics, but there is no institution where math-
ematics is at the heart of everything.

PI: Since we are from Pi in the Sky, we would like to hear 
more details about the models and the kinds questions they 
prompt — to present them our readers, who would per-
haps wish to make their own. But first we would like to get 
some of the more superficial things out of the way, if you 
don’t mind. So, for example, how many visitors does the 
Mathematikum have?

AB: This is not superficial at all, but very exciting. Of 
course we had to name numbers before the opening 
the place, and I mustered all my courage to say that 
we would have 60,000 visitors a year. Nobody believed 
me. But we more than doubled that number. We had 
over 130,000 in the first year, and 
we are registering an increase of 
20% in the second. So we are head-
ing toward 160,000 a year in this 
relatively small city. By now, more 
than 200,000 visitors come here to 
do mathematics.

PI: We leave that to our readers to 
figure out how many visitors per day 
that represents. Our question to you 
is: are these mostly teachers coming 
in with whole classes of students? Or are there also some 
“free” visitors?

AB: There is a very clear partition of visitors. Monday 
to Friday mornings: classes, many classes. We try very 
hard to organize them so that not too many are in the 
museum at the same time. But in the afternoon and 
especially on weekends and holidays, we have many 
private visitors. And this is our real success: 60% of our 
visitors are private, or “free” as you called them. Adults, 
groups of adults, groups of children, everybody comes 
to visit. They have birthday parties here for kids, but 
also for adults, and so on.

PI: Are they mostly from near Giessen, or do they come 
from farther away?

AB: At least 50% come from farther away — which in 
Germany means more than 30 kilometres.

PI: Of course there is an effect on the visitors themselves 
— but would you say of the general population? Is there 
a noticeable improvement in their attitude towards math-
ematics? 

AB: There is certainly no immediate improvement of 
mathematical skills in the proper sense, and this is not 
the aim of the Mathematikum. But, yes, I would say 

there is a more positive attitude. We have not done 
any statistical research on this but think, for instance, 
if ordinary people, or important people, people who 
have nothing to do with mathematics, come here to do 
a ceremony, they feel that mathematics for them is not 
a word they are afraid of. They love it.

PI: Mathematics is an activity that is slow and concen-
trated. Right? 

AB: Fast and concentrated...
PI: I’m trying to find a way of contrasting what you do as 

a mathematician, or what we do as mathematicians, with 
the kind of goings-on in the Mathematikum. As you know, 
we usually sit quietly and scratch our heads or look at the 
ceiling.

AB: But then all of a sudden we have a flash of in-
sight — hopefully.

PI: Well that’s what we’re looking for, right. When we are 
sitting looking at the ceiling 
we are fishing for insight. 
For an idea to pop onto the 
screen.

AB: Exactly, of course, 
with much more com-
plex thoughts in scientific 
mathematics. But exactly 
the same thing happens 
here. We have these ex-
periments. People do it by 

their hands or by their feet or whatever, so there is a 
more or less difficult problem to solve. Then suddenly 
they have a flash of insight (maybe they catch a hint 
from another visitor) and so they have become richer 
by these insights, or at least mathematically richer, 
than when they came in. 

PI: Can you give us some examples of this? We shall glad-
ly give you time to think about it, to pick good examples or 
some outstanding examples where you can actually notice 
that a person has had an insight.

AB: This can be observed very well in our puzzles. 
For instance, there is one puzzle is to make a three-sid-
ed pyramid of only two identical pieces. And you would 
think: well, either I can do this by chance or systemati-
cally, but most will notice that none of their approach-
es will work. You need the right idea. And so people try 
and it’s amazing how they try and they come close to 
the solution. You see by how they stare at it, that they 
are so near and yet don’t see it. And then, all of a sud-
den, they find the final turn they have to make, and you 
see — if you look at their eyes — they are happy. They 
won’t forget this for a long time — how this pyramid is 
built of two pieces.

How will these two wedges ever make a regular tetrahedron?

continued on page 18
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PI: Yes, we remember that one, we’ll look at it again (see 
middle of page 17 for a picture). But, do you have another 
one, just to add some variety?

AB: There is another very complex experiment deal-
ing with randomness. There is a long queue of dice 
you have to make and then you have to do some kind 
of counting. If you would like I can explain it in more 

detail. And there is a 
very, very surprising 
result. You do this 
once, and then make 
a correction. And if 
you repeat this with 
other initial values, 
you always end at 
the same place. This 
is a great surprise, 
and people do this 
again and again: 
they really want to 
understand why this 
is so. This is an ex-
periment you have 
to get into because 
it’s a complex...

PI: This is the kind 
of thing we can use as an illustration for Pi in the Sky — let 
the people figure it out. 

AB: This is the experiment with the greatest, no, the 
longest time people spend on. So, they stay there for 
10 minutes, 15 minutes, even longer. Whereas other 
experiments it is only a flash and then they go.

PI: What about tying things together? Mathematics is 
not only a collection of disjoint puzzles — it is a kind of 
landscape, right? And how can you try to reflect that, or 
do you try?

AB: First of all it’s true, that’s also my idea of math-
ematics. This is not yet done through the experiments. 
But, for instance, we have pyramid problems at sev-
eral places. They also come up, for instance, when 
you stick a tetrahedron into a soap fluid, and pull it 
out, and you see this famous point in the middle. If 
you have done the solid tetrahedral experiment, this 
the point where the pyramid is cut into two pieces. So, 
there is a deep connection.

PI: That is a really good example. And then, questions... 
reactions... do you remember any particularly striking 
question?

AB: Very often in the Mathematikum but also on 
the floor. Many people come to me and simply seem 
to feel the need to say how nice, how beautiful, and 

so on, this is. That is one reaction, and the other one 
is that we notice how many people want to learn more 
about mathematics. Not everybody coming here — but 
a certain percentage and this remains a good number.

PI: What kind of percentage, roughly? An old saw has it 
that about 5% of any population has extraordinary tastes.

AB: I have no idea because we can satisfy only a 
small part of the demand. So we have lectures for eight 
to 12-year-old children, we systematically present our 
exhibits several times every week, and we have this 
regular event where we introduce a mathematician as a 
person. We shall also have other events and formats.

PI: Can you give some examples of these mathematicians 
introduced as persons?

AB: Mathematik auf dem Sofa — this talk at the 
Mathematikum. I invite a mathematician and we chat 
for one hour. I ask questions like: When did you first 
notice that mathematics could be something for you? 
Or, how are you doing it today? Are you studying be-
fore breakfast? Or, what are your dreams for the next 
10 years? And so on. Our first guest was the president 
of the German Mathematical Society, then we had a 
lady from Duisburg, who does didactics of mathemat-
ics. 

We also had a man from industry — the head of a 
company making gambling equipment. Last month we 
had a mathematician who became a journalist, and is 
now a Waldorf teacher, so a very interesting career. 
First science, then journalist, then the Waldorf teacher. 
It’s very interesting and the only complaints the audi-
torium has are: “I would like to know more about this 
person.” 

Roll a die to know where to start, then 
count your steps as marked.

Ancient technology: Loose but solid without glue or mortar.
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PI: What would you say if somebody asked you about a 
particularly memorable moment for you, in this context of 
the Mathematikum. Something where you personally feel 
that...

AB: So many moments.
PI: Well, that’s a good answer.
AB: When we opened this, I didn’t say I am proud of 

it: I said I feel very happy. Because in so many situa-
tions, we simply were lucky that it worked out. So, if 
you speak to politicians, it’s unfortunate you have to 
convince not one, but two of them — belonging to dif-
ferent parties. In our case, the representatives of the 
City and of the Land did not like each other at all. I had 
to make sure that they did not clash, and therefore 
first talked to the one and then to the other. It was 
touch-and-go on several occasions. We were also lucky 
with the architect: we had a beautiful building, and he 
did a really professional job. His num-
bers were correct, the time and the 
amount of money — and he gave us 
excellent advice.

PI: There must have been a few nega-
tive reactions.

AB: I simply didn’t notice it. If you 
do such a project, which is certainly 
the biggest project I will ever do in 
my professional career, it is clear that 
a necessary condition is that I was 
working 100% juggling ideas, time, 
connections, money and so on. Other-
wise it wouldn’t have worked. So you 
simply... your brain — my brain was 
made in such a way that, I just don’t 
know. I can imagine that somebody said, “No, this is 
not good, and mathematics is quite different. You had 
better prove a theorem and not waste your time with 
these things.” But I simply said... I even didn’t say it, I 
simply did not listen, I did not hear.

PI: Let us come back for a minute to the original proj-
ects. You started with some projects in geometry, can you 
give some examples?

AB: The project was for second-year students and I 
simply gave them a list of objects of models. So it was 
the icosahedron, Möbius strip, tesselations, to make a 
round movement into a straight movement, linkages... 
things like that. They could choose. They could also 
make their own suggestions. It was very open. The 
only requirement: they have to really build something 
themselves and they have to explain some of the math-
ematics behind it. 

PI: Really explain it? Not just...
AB: To speak frankly, in the first round it was diffi-

cult. Because, the difficulty was not building the mod-
els, everybody did this and then came to my office very 
proud. But they didn’t find the mathematics in it. So 
they learned mathematics, they learned equations, 
they learned derivation, integration and things like 
that. They knew this, but the idea that mathematics is 
related to the things I can really touch or the space I 
inhabit, or whatever — this was an idea they were not 
familiar with. This was a shock for me. Then of course 
we had discussions about it.

PI: Just one example, can you conjure up some example 
of some object that would...?

AB: Yes, look at one of the Platonic solids, what we 
in Europe call a football... what are the mathematics of 
the soccerball? It is full of beautiful mathematics. You 

can first ask: What are the tiles it is 
made of? How many of them? How 
do they fit together? Is it mathe-
matically true or is it just a rough 
approximation?

PI: In 2000, we had a poster cam-
paign in the buses in Vancouver, and 
one of the questions was about a soc-
cerball. The pentagons on it were half 
black and half red. You’re cueing me 
to repeat this in Pi in the Sky as an ex-
ample.

AB: My first question usually 
when I do the soccerball with kids 
is: How many pentagons are there? 
If it’s not working with hexagons, 

how many pentagons? You need some clever counting, 
and this clever counting means you intuitively use the 
symmetry of the whole thing and so already this is lots 
of mathematics. 

PI: If we wanted to imitate Mathematikum, you started 
gradually, this didn’t come out in one piece in one day. What 
kind of advice would you give? Supposing we wanted to do 
something like that in Vancouver.

AB: First advice is: Just do it. You need somebody 
who is willing to devote, is capable, I would say, and 
willing to devote five years of his life, and his family, 
and so on, to this project. And you need to realize — at 
least in this level of financial support we had — you 
need also luck. 

Note: On May 5, 2006, Mathematikum welcomed its 
500,000th visitor. Giessen’s mayor was on hand to offer 
congratulations to the museum.

Ancient technology: Loose but solid without glue or mortar.

How many hexagons all round?
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One of the many keen readers of Pi in the Sky, Danesh Forouhari, a software engineer from Sunnyvale, Calif., 
submitted the following problem to our Challenge Problems section.

“Let A and P denote the area and perimeter of a triangle respectively. 
Prove that .”
Danesh’s proof uses Heron’s formula for the area of a triangle. If we let a, b and c be the sides of the triangle 

and let
Heron’s formula for the area A of a triangle is

so
,

and since a > 0, b > 0 and c > 0, we have

Therefore, QED.

Danesh posed this inequality involving the relationship between the area and perimeter (squared) of an arbi-
trary triangle. The constant ¼ in the inequality follows from the method of proof, which replaces –a by a, etc. to 
achieve the result.  

The Pi in the Sky editors who read the problem immediately focused on the constant ¼.  Can we do better?  In 
other words,  can we find a smaller constant than ¼ for which the inequality is true for all triangles. Indeed, what 
is the smallest possible constant c such that the inequality A ≤ cP2 (1) holds for all possible triangles? 

Our Challenge Problems editor, Dragos Hrimiuc, came up with an elegant solution which uses Heron’s formula 
and the arithmetic-geometric mean (AGM) inequality to show that the correct constant c in inequality (1) is   
which is much smaller than ¼. He proves that    is the smallest possible value of c.  

Here is his proof. 

Footnote: Let a
1
, a

2
, ..., a

n
 be positive numbers and 

l e t    . The arithme-
tic - geometric mean (AGM) inequality states that G≤A 
with equality if and only if the n numbers are equal. A 
good reference for more details, including the proof 
of the AGM inequality, is N.D. Kazarinoff, Geometric 
Inequalities, MMA, 1961.

Asking the Right Question
by David Leeming, University of Victoria

,

Now, (only) for equilateral triangles 
(a=b=c) does equality hold in (2). You can 
show this for yourself.  That will complete 
the proof that   is the smallest possible 
constant in inequality (2).

Thanks to Danesh Forouhari we have an 
interesting problem relating the area A and 
the perimeter P of an arbitrary triangle. With 
some minor massaging by the mathemati-
cians, we are able to ask the right question 
about the relationship between A and P. 
This is what mathematicians strive to do!  
They want the best  possible inequality for 
a particular problem, or the optimal pos-
sible  result that one can achieve.

(iff=if and only if)

(2)
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If we allow the remainders to be negative, then we obtain an interesting pattern, and a simplifica-
tion of the sequence {a

n
}. If the (positive) remainder is greater than 1/2 (p-1), subtract p. For p=7, the 

sequence becomes 1, 3, 2, -1, -3, -2; for p=13, the sequence becomes -3, -4, -1, 3, 4, 1; and for p=17, 
the sequence becomes -7, -2, -3, 4, 6, 8, 5, -1, 7, 2, 3, -4, -6, -8, -5, 1 all repeating cyclically. This is 
a big gain since it not only reduces the amount of work required to produce the sequence {a

n
}, it also 

reduces the size of the number we need in order to test for divisibility. For example, to test the number 
80 339 773 for divisibility by 17, we use the modified sequence:

 8    0      3      3      9     7      7    3
-1    5     -8      6      4    -3     -2   -7

-8   +0  -24  +18  +36   -21  -14  -21

The sum of these numbers is -34, which is divisible by 17, so 80 339 773 is divisible by 17. Now, 
you test the number 3 569 236 229 for divisibility by 13 using the modified sequence.

For more on divisibility of large numbers, please see the article by Charles and Tatum in the March 
2003 issue of Pi in the Sky.

We had many, many responses to the “Divisibility by Seven” article in our December 2005 issue of 
Pi in the Sky, with some responses coming to us from as far away as Germany, Hawaii and New 

Zealand. We are unable to list all who responded but we are grateful to everyone who took the time to 
reply. Obviously, Pi in the Sky has captured the interest of readers around the world.

All respondents presented more or less the same explanation that the numbers 1, 3, 2, 6, 4, 5 are 
the remainders when you divide 100, 101, 102, 103, 104 and 105 by 7 (i.e. 10n (mod 7), 0 ≤ n ≤ 5). For 
higher powers of 10, the sequence of six numbers repeats.

A particularly nice solution was given by Bruce Shawyer, which we present here:

Divisibility by Seven
by David Leeming and Jeremy Tatum, University of Victoria

21

Jeremy Tatum’s test for divisibility by 7 in Pi in the Sky issue 9, December 2005, 
uses the sequence {a

n
}={1,3,2,6,4,5, ...}, which repeats itself cyclically. 

He asked, “Where does this come from, and are there tests for divisibility by 13, 17 
and 19?”
The answer to his 7 question, which also give the repeating sequence of 13, 17 and 
19 is (we call the number p)

a
n
 = 10n - (the largest multiple of p ≤ 10n)

For example, if p=7, we get {a
n
} = {1,3,2,6,4,5, ...}, repeating cyclically.

If p=13, we get {a
n
}={10,9,12,3,4,1, ...}, repeating cyclically.

If p=17, we get {a
n
}={10,15,14,4,6,9,5,16,7,2,3,13,11,8,12,1, ...}, repeating cycli-

cally.
And so on.
Now, for the method of proof, I will illustrate the principle with a three-digit number, 
abc, and divisibility by 7.
If 100a+10b+c=7x (integer x), we also know that 98a+7b=7y (integer y).
Subtracting gives 2a+3b+1c=7(x-y).
The definitions of a

n
 show how to extend this.

Bruce Shawyer (Memorial University of Newfoundland)
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The AGMinequality yields

m + 1^ h(n + 1) #
4

(m + n + 2) 2

,so that
(m + 1) (n + 1)

1 $
(m + n + 2) 2

4 and

xm, n =
m + n + 1

1
-

(m + 1) (n + 1)
1 #

m + n + 1
1

-
(m + n + 2) 2

4 , with

equality if andonly if m = n.

Letting k = m + n + 2. we candetermine that f (k) =
k - 1

1
-

k 2

4 is decreasing

for k $ 6 - that is, for m + n $ 4.

Noting that x1, 1 = x1, 2 = x2, 1 =
12
1

= 0.083, x3, 1 = x1, 3 = 0.0
7
5, and x2, 2 =

45
4

= 0.08,

we conclude that xm, n #
45
4 for m, n ! N

Notice: Henry Ricardo from Med-
gar Evers College (CUNY), Brook-
lyn, New York, has mentioned that 
the inequality is attributed to G. 
Grüßß. The above solution, which 
was sent to us, is essentially that 
of E. Landau and can be found 
on pages 190-191 of Analytical 
Inequalities by D.S. Mitrinović 
(Springer, 1970).
We received an excellent solution 
to this problem from Yuning Chen 
and Edward T.H. Wang from Wil-
frid Laurier University.

One caneasily prove that S (m + n) # S (m) + S (n) for any positive integers m, n.

Now

300 = S (15n) = S (10n + 5n) # S (10n) + S (n) + S (4n) = 100 + S (4n)

Thus,

S (4n) $ 200.

Onthe other hand,

S (4n) # 4S (n) = 200

Therefore

S (4n) = 200

Notice: There arepositive integersnsuch that S (n) = 50 and S (15n) = 300.

We can take n = 1, ..., 1 for50 digitsof 1.

Solutions to Math Challenges in Issue 9 of Pi in the 
Sky (December 2005)

Find the largest value of xm, n =
m + n + 1

1
-

(m + 1) (n + 1)
1 where m, n arepositive integers.

Solution 1

Problem 1

For any positive integer n, let S(n) denote the sum of its digits in decimal notation. If S(n)=50 and S(15n)=300, 
find S(4n).

Problem 2

Solution 2

Notice: There are positive integers 
n such that S(n)=50 and S(15n)=300. 
We can take n=1,...,1 with fifty digits 
of 1.

Problem 3

Solution 3

The AGMinequality yields

m + 1^ h(n + 1) #
4

(m + n + 2) 2

,so that
(m + 1) (n + 1)

1 $
(m + n + 2) 2

4 and

xm, n =
m + n + 1

1
-

(m + 1) (n + 1)
1 #

m + n + 1
1

-
(m + n + 2) 2

4 , with

equality if andonly if m = n.

Letting k = m + n + 2, we candetermine that f (k) =
k - 1

1
-

k 2

4 is decreasing

for k $ 6 - that is, for m + n $ 4.

Noting that x1, 1 = x1, 2 = x2, 1 =
12
1

= 0.083, x3, 1 = x1, 3 = 0.0
7
5, and x2, 2 =

45
4

= 0.08,

we conclude that xm, n #
45
4 for m, n ! N.

Noting that x1, 1 = x1, 2 = x2, 1 =
12
1

= 0.083, x3, 1 = x1, 3 = 0.075, and x2, 2 =
45
4

= 0.08,

we conclude that xm, n #
45
4 for m, n ! N.
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On the other hand, there is a postive integer sufficiently large,such that

Therefore

and thus

(ii) Now,letusprove that for

Indeed,since we obtain

Therefore

(iii) Take anarbitrarily positive integer and

let'sprove that It issufficient toprove

that there is a positive integer such that

For eachpositive integer there is a positive

interger such that

we can take

Now for sufficiently large, wehave the inequality
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Now let be a positive integer that satisfies
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Let be a nonempty set of positive integerssuch that if then and

here denotes the greatest integer less thanor equal to

Prove that is theset of allpositive integers.

( [ ] ) .

A a A a

a A a a

A

4!

!7 A

Pi 10 master.indd   22 1/3/2007   10:10:51 AM



23

Problem 5

Solution 5

Problem 4

Solution 4

LetNdenote theset of positive integersand f:N " Na functionsuch

that f (f (n)) + 2f (n) = 3n + 4 for every n ! N.Find f (2006) .

Let be the angle

bisectorsof If

find

, ,

. ,

.

AA BB CC

ABC B A C

BAC

90c=D

l l l

l l l
%

%

Past math challenge answers can 
be found on our website,
www.pims.math.ca/pi

A similar solution 
to this problem 
was submitted by 
Yuning Chen and 
Edward T.H. Wang 
from Wilfrid Laurier 
University. Killian 
Miller and Steven 
Lowdon from the 
University of Victo-
ria have found that 
f assuming that 

(i) L t prove that Let Then wehave

Also, the followinginequalities are true:

On the other hand, there is a postive integer sufficiently large,such that

Therefore

and thus

(ii) Now,letusprove that for

Indeed,since we obtain

Therefore

(iii) Take anarbitrarily positive integer and

let'sprove that It issufficient toprove

that there is a positive integer such that

For eachpositive integer there is a positive

interger such that

we can take

Now for sufficiently large, wehave the inequality

that combined with the above inequality produces

Now let be a positive integer that satisfies

Since wehave
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On the other hand,using (*), we get

and then

whichshows that

. .

, , ..., ... ... , ...

, , ..., ... ...

, . .

... ... .

... ... .

, , ...

,

, , ..., , ...

, , , ...

.

.

,

< ( ) .

>

(*) < < < ( )

(*)

,

[ ]

... ... .

< < ( )

... ... <

... ... .

log

A a A

a A a A a A

a a a a a a

k a

a a

a

A n

A

A A A

A n

m

m A

k m A

k

p

m p m

k

m m

m m

k

A

A

A

m m

m m

m A

1

1 1 1

1 5

1 1 5

1

2 1 2

1

2 2 2

2 2 1 2

2 2

1 1 1 1 2 4

2 2 2 1

2

2 2 2

2 2

2 2 2 1

2 2 1

2 2

etus firs

/ /
/

/
/

/

/ / /
/

/ /
/

/
/

/

/
/

/
/

/
/

/

( )

( )

( )
/

/

( )

( )

( )
/

/

( )

( )
/

/

( )

n brackets

n brackets

n

k

k brackets

k

k brackets

n

n

n n

k

p p
k

k

p p p

p

p p

p

k brackets

p p

p

k brackets

p

k brackets

1 2 1 2
1 2

1 2
1 2

1 2

1 2 1 2 1 2
1 2

1 2 2 1 2
1 2

1 2
1 2

1 2

1 2
1 2

1 2
1 2

1 2
1 2

1 2

2 4 2

2

2

2 1
2

2

2

2 1 2 2

2 1 1

2 1 1 1

1
1 2

1 2

1

2 1 1 2

1
1 2

1 2

1

1
1 2

1 2

1

k

k
k

k
k

k

k
k

k k
k

k

k k

k

k
k k

k

k

k

! !

! ! !

# # # # # #

#

# # #

!

!

! ! !

!

!

!

#

$

#

!

!

!

#

#

!

=

=

= =

=

+ +

+

=

+

+

=

-

-

-

-

+

+ +

+ +

+ + +

+

+ -

+ +

+

+ -

+

+ -

b l

6 67 679

6 67 679

679

679

7

7

7

79;

7

79;

79;

@ @ A @ A C

@ @ A @ A C

@ A C

@ A C

A

A

A

A C E

A

A C E

A C E

1 2 3444 444

1 2 3444 444

1 2 3444 444

1 2 3444 444

1 2 344444 44444

1 2 344444 44444

1 2 344444 44444

Letus find Let

Then hence

If then andalso

hence a contradiction.

If then andalso

hence Now we get

whichimplies that that is

a contradiction.

We conclude that

Letusproveby induction that for all
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f ( n ) = a n + b . 
H o w e v e r , 
their solu-
tion does 
not assume 
the unique-
ness of f.

Let Since is

the linebisector of wehave from which we obtain

and

Similiarly

By usingStewart's theorem and the law of cosines we get

In and by usingcosine law and we get

Since is a right triangle, wemusthave

which,after some computations,canbe writtenas
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Pi in the Sky Math Challenges

Problem 3
Let m, n be positive integers such that . Prove that .n 23 - m > 0 n 23 - m >

m
2

Problem 4
Find all real numbers such that          x1, ..., x2007 x1 + ... + x2007 = 2007 x1 - x2 = x2 - x3 = ... = x2007 - x1and .

Problem 6
Two altitudes of a triangle are of length 1 and 2. If h denotes the length of the third altitude, then show that 
2/3< h  <2.

Problem 5
Find all a,b,c dR such that | ax2 + bx + c | #1 for every -0.5 ≤ x ≤ 0.5 and a2+b2+c2 is maximum.

Recall: A rational number is a fraction p/q where p and q are both integers (q≠0). 

Send your solutions to the math challenges 
to pi@pims.math.ca, or mail them to us at:
   Pi in the Sky - Math Challenges
   200 - 1933 West Mall 
   University of British Columbia 
   Vancouver BC
   V6T 1Z2, Canada

Problem 2
Consider the number 3025. If we split the digits into 30 and 25, add these two numbers and square the 
result, we get 3025 back. Find another four digit number, all four digits distinct, which has the same 
property.

Pi in the Sky
call for

submissions
Pi in the Sky is seeking submissions for 
the Summer 2007 edition. We accept 
materials on any subject related to math-
ematics or its applications. Submissions 
are subject to editorial review.
Please send all submissions, art 
work, letters to the editor, and 
questions to pi@pims.math.ca.

Problem 1
Prove that there are infinitely many rational numbers r such that a n d are simultaneously 
rational numbers.

r r 1+
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