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Or, really important things about the local and global 
structure of spacetime that you may not have seen in 
your general relativity class because of all the time 
you spent on learning about coordinate 
transformations, covariant derivatives and Riemann 
curvature
 

I:  A Quick Tour of 
Classical Relativity

Note in my lectures c = G = 1 and the Lorentz
metric signature is −++ · · ·+



A spacetime is a pair (Mn,gab) where Mn is
a smooth n-manifold where gab is a symmet-
ric, non-degenerate tensor with signature −+
+ · · ·+.
Definition: A topological space Mn is a Ck n-
manifold if it satisfies the following conditions:

1. Every point has a neighborhood Ua which
is homeomorphic to an open subset of Rn via a
mapping fa : Ua→ Rn .

2. Given any two of the U’s with nonempty
intersection, then the mapping

fbf−1
a : fa

(
Ua∩Ub

)→ fb
(
Ua∩Ub

)
is a Ck mapping between Rn and itself.

Uα Uβ

Rn

M n

Spacetimes



• In order to do field theory, global structure is 
important.

• Local knowledge of the metric does not determine 
the global structure of the spacetime.

• Global structure includes differentiable structure not 
just topology.

Why do we worry about smooth 
manifolds?



• One example of a physical requirement is that one 
needs to define integration on a manifold.

If the space is compact, our definition is enough.  But in 
general, one needs the space to be paracompact.

Theorem:  Any differentiable n-manifold which 
admits a Lorentzian metric is paracompact.

• The Hausdorff condition is an additional condition. 

Extra topological conditions

M n



• It is Hausdorff and paracompact.

• Its topology can be induced by a metric.

• It admits a Riemannian metric.

• It is Hausdorff and admits a Lorentzian metric.

Theorem: The following statements are 
equivalent for a differentiable manifold:

All manifolds will be taken to Hausdorff and 
paracompact, unless mentioned otherwise.



Example
First, define an open cover of

Sn = {x ∈ Rn+1|x2
1 + · · ·+ x2

n+1 = 1}
by
U2 j−1 = {x∈ Sn|x j < 0} and U2 j = {x∈ Sn|x j > 0} ,

where j = 1, . . . ,n + 1. Next, define the home-
omorphisms of the chart by the maps

fi : Ui→ Rn

where
fi(x)= (x1, . . . , x̂ j, . . . ,xn+1) f or i = 2 j−1 or i = 2 j,
the hat over the x j means delete the jth coördinate.
The map fi maps Ui onto the open ball B in Rn,
i.e. the set of points with norm less than one.
The inverse is given by
f−1

i (y)= (y1, . . . ,y j−1,(±1)i
√

1− |y|2,y j, . . . ,yn)

where y is a point in B = {y ∈ Rn| |y| < 1}.



Example of another chart on the n-sphere



Equivalence of Differentiable structures

Definition: A (continuous) map f : Mm→Nn

is smooth if for each point in Mm there is chart
(f,U) containing it and a chart (y,V ) in Nn

with f (U)⊂V such that:
y f f−1 : f(U)→ y(V )

is a smooth map from Rm to Rn.

Definition:  A smooth homeomorphism with a smooth inverse is 
called a diffeomorphism. Furthermore, two smooth manifolds are 
equivalent if there is a diffeomorphism between them; they are 
said to be diffeomorphic.



Example on the line

Let M = R with M the only open set in the at-
las and the homeomorphism f : M→ R, f(x) =
x1

3. Therefore, this defines a smooth structure
on M. By definition a function f : M → R is
smooth if and only if

f f−1 : M→ R
is smooth in the usual sense.

An example of a smooth function on M is
f (x) = x2

3 because f f−1(x) = x2 is smooth in
the usual sense! Now, M is diffeomorphic to
R because f is a diffeomorphism. Observe that
one can easily find many differential structures
like the above on R and other manifolds.



• Prove or disprove the following: Given a connected 

n-manifold M and a point p in M, then M minus p is 

not diffeomorphic to M.

• Example showing that the above is true in one case: 

An n-sphere minus a point is Rn. Clearly,  Rn is not 

diffeomorphic to Sn.

Homework Problem 1



• In 3 or fewer dimensions, the differentiable structure 
is unique and all manifolds admit a differentiable 
structure

• In 4 or more dimensions, the differentiable structures 
are not unique. Furthermore, there are examples of 
topological manifolds which do not admit a smooth 
structure.

• In 8 or more dimensions, there are piecewise linear 
manifolds which are not smooth. 

Exotic Differentiable Structures



• Recently solutions have been found which solve the 
Einstein equations for different differentiable 
structures. (K. Schleich and D. Witt Class. Quant. 
Gravity 1999, and preprint 2003)

• The piecewise linear case is interesting for discrete 
versions of gravity. (K. Schleich and D. Witt, Nucl. 
Phys. B 1993)

• Sum over topologies is incomplete in 4 or more 
dimensions unless a sum over differentiable 
structures is also included.

Physically, differentiable structures are 
important



• Define the covariant derivative     in terms of the 
metric tensor.

• Define the curvature tensor  

• Geodesics are given by curves 
which satisfy

All of the above concepts hold for metrics of any signature.

• Useful tip: Use Cartan Calculus for curvature 
calculations!

Geometry on a spacetime

—a

—[a—b]xc =
1
2Rabcdxd

ub—bua = 0



• Null geodesics 

• Timelike geodesics

• Spacelike geodesics

Note: Riemannian geometry only has one type. 

3 types of geodesics in Lorentzian 
Geometry

uaua = 0

uaua > 0

uaua < 0



Diffeomorphisms, Isometries, and 
Conformal Isometries

The spacetime (Mn,gab) is equivalent to (Nn, ḡab)
iff there is diffeomorphism f : Mn → Nn such
that f ∗ḡab = gab

Definition of Physical Equivalence:

Definition of Isometry:

A diffeomorphism of (Mn,gab) to itself is an
isometry iff f ∗gab = gab.



Definition of Conformal Isometry:

A diffeomorphism of (Mn,gab) to itself is a
conformal isometry iff f ∗gab = gab.

A diffeomorphism of (Mn,gab) to itself is a conformal isometry
iff f ∗gab = lgab where l > 0.



• These are infinitesimal versions of isometries and 
conformal isometries.

• A conformal Killing vector is a vector which satisfies 

• A Killing vector is a vector which satisfies

• Set of all linearly independent Killing vectors forms a 
Lie algebra

Killing and Conformal Killing Vectors

—axb +—bxa =
2
n

—cxcgab

—axb +—bxa = 0



• Any two conformally equivalent metrics have the 
same conformal Killing vectors. Try simplifying metric 
via conformal isometries.

• Find Killing vectors by finding all conformal Killing 
vectors first, then finding linear combination of these 
that are divergence free.

• In any space obtained from identifications, the Killing 
vectors can be found using basic group theory, 
namely, 

(see D. Witt J. Math Phys. 1986)

How to find Conformal Killing and Killing 
vectors

If Mn = M̄n/G, then Geo(Mn) = NGeo(M̄n)(G)/G.



• The Riemann curvature can be written as

where                        is the Ricci curvature and              
the Ricci scalar.

• C is conformally invariant and C = 0 iff the metric is 
locally conformally flat.

Weyl Curvature, C

Rabcd = Cabcd +
2

n−2(ga[cRd]b−gb[cRd]a)− 2
(n−1)(n−2)

R(ga[cgd]b)

Rab = R c
acb R = Ra

a



• Find the Killing vectors of the following metrics:

• Rindler

• Milne

• deSitter

Homework 2



• The right side usually obeys energy conditions such 
as ANEC, weak, strong, or dominant.

• Notice that no sources imply only that the Ricci 
curvature vanishes;  Weyl can be nonvanishing.

• Solutions do not need to obey any sort of evolution 
equations.

Einstein’s Equations

Rab− 1
2Rgab +Lgab = 8pTab



• A Cauchy slice or surface is a spacelike hypersurface 
such that each causal curve, i.e. non-spacelike curve, 
intersects it once and only once.

• A globally hyperbolic spacetime is a spacetime with a 
Cauchy slice. 

• A partial Cauchy slice is a spacelike hypersurface 
such that each causal curve intersects it at most 
once.

• The future domain of dependence, D+(S), is the set 
of all points in the spacetime such that every past 
directed past-inextendible casual curve intersects S. 

Evolution Equations and Constraints



• The past domain of depence, D-(S), is the set of all 
points in the spacetime such that every future 
directed future-inextendible casual curve intersects 
S.

• The domain of dependence, D(S) = D+(S)U D-(S).

• Theorem:  A spacetime is globally hyperbolic iff 
M=D(S).

Domain of Dependence



• Minkowski space                                                         
is globally hyperbolic with Cauchy slice t=0 surface.

• Minkowski space with t periodically indentified is not 
globally hyperbolic.

• Example: Milne Universe - Take a mass hyperboloid in 
Minkowski space

Examples

ds2 =−dt2 +dx2 +dy2 +dz2



Example (Milne Universe) 

t

x

ds2 =−dt2 +a2t2(dH2
n−1)



Constraints

The contraint equations on the Cauchy slice are

R̄− pabpab + p2 = 16pr ,

and
Db(pab− phab) = 8pJa .

Given any (n-1)-manifold with riemannian metric h 
and tensor p satisfying the constraints, one can  
evolve to obtain a spacetime satisfying Einstein’s 
equations.



• Theorem:  Every smooth (n-1)-manifold is the 
Cauchy slice of a physically reasonable spacetime. (D. 
Witt PRL 1986)

• Theorem:  A generic class of smooth (n-1)-manifolds 
are the Cauchy slices for locally deSitter spacetimes. 
A class of these is not constructible from identifying 
deSitter. These give counter examples to the 
cosmological principle. (J. Morrow-Jones & D. Witt) 

Examples of some useful results on the 
structure of the Cauchy surfaces.



• The chronological future of point is 

• The chronological future is an open set.

• The chronological future of a set A is

Causal Structure

I+(p) = {q ∈M|there is a f uture directed timelike curve
l such that l(1) = q and l(0) = p}

I+(A) =
[

A∈M
I+(p)



• The chronological past is defined in a similar way.

• The causal future          and past          are defined in 
a similar way using causal curves in place of timelike 
ones.

• Theorem:  

Causal structure

J+(A) J−(A)

If q ∈ J+(p)− I+(p), then any causal curve connecting p to q
must be a null geodesic.



Cauchy Horizons

Definition: The future Cauchy Horizon of a achronal set is S is

H+(S) = D+(S)− I−[D+(S)]
.

The definition for H−(S) is similar and H(S)= H+(S)
S

H−(S).



Example (Milne Universe) Cauchy Horizon

t

x

ds2 =−dt2 +a2t2(dH2
n−1)



The metric of Minkowski spacetime in spherical coordinates is

ds2 =−dt2 +dr2 + r2(dq2 + sin2qdf2)
r, t have infinite ranges - no way to draw where infinity is.

This is not a problem with studying causal structure; rather it is a
problem with the choice of coordinates. Define t ′ and r′

2t = tan(
t ′+ r′

2 )+ tan(
t ′ − r′

2 ) 2r = tan(
t ′+ r′

2 )− tan(
t ′ − r′

2 )

the Minkowski metric becomes

ds2 = W2(t ′,r′)
(
−dt ′2 +dr′2 + r′2(dq+ sin2 qdf2)

)
W(t ′,r′) =

1
2 sec(t ′+ r′

2 )sec(t ′ − r′

2 )

r′, t ′ have finite ranges, r′ ≥ 0, −p < t ′+ r′ < p, −p < t ′ − r′ < p.



Minkowski spacetime in spherical coordinates

r

t

future 
null infinity

past 
null infinity

spatial 
infinity

past timelike infinity

future timelike infinity



Two spacetimes related by a conformal transformation have the
same causal structure. Thus W2 can be suppressed in a concrete
illustration of the causal structure.

The metric

ds̄2 =
(
−dt ′2 +dr′2 + r′2(dq+ sin2 qdf2)

)
with the given coordinate ranges is simply a region of flat space-
time (or the Einstein static universe).

The line segments t ′+ r′ = p, t ′ − r′ =−p are not part of the orig-
inal spacetime, but one can add these as a boundary, J( .



Penrose diagram of Minkowski spacetime

+

-

i 0

i -

i +

nongeodesic 
timelike curves

radial null geodesics

timelike geodesics



Some the ideas mentioned in the first lecture are now 
applied to example and the basics of field theory in 
curved spacetimes are considered.
 

II:  A Causal Structure 
and Field Theory

Note in my lectures c = G = 1 and the Lorentz
metric signature is −++ · · ·+



The infinite future and past are now clearly described; future in-
finities of null geodesics and timelike geodesics are distinct.

Observe that not all timelike curves end at i+; curves correspond-
ing to accelerated timelike observers can reach J( +.

Radially directed photons travel along paths at 45 degree angles;
any timelike or null curve leaving a point in this spacetime has
tangent lying between the inward and outward directed radial null
geodesics.



The Schwarzschild metric is

ds2 =−(1− 2M
r

)dt2 +
1

(1− 2M
r )

dr2 + r2(dq2 + sin2 qdf2)

r = 2M is a coordinate singularity; r = 0 is a curvature singularity.
The maximal extension (Kruskal (1960)):

v =
√

r−2M exp (t + r)
4M

w =−√r−2M exp−(t− r)
4M



The metric becomes

ds2 = F2(v,w)dvdw+ r2(dq2 + sin2 qdf2)
where

vw =−(r−2M)exp(r/2M) F2 =
16M2

r
exp(−r/2M)

The metric is not singular at w = 0 or v = 0 (r = 2M) and the
range of coordinates can be extended to v,w such that vw < 2M.

One can construct the Penrose diagram by transforming to coor-
dinates

v′ = arctan v√
2M

w′ = arctan w√
2M

with ranges−p < v′+w′ < p,−p/2 < v′ < p/2,−p/2 < w′ < p/2



Schwarzschild spacetime

nongeodesic 
timelike curves

radial null geodesics

future singularity

+

-

i 0

i -

i +i +

+

-

i -

i 0

past singularity t = constant curves

horizons



An outer trapped surface

T

T '

asymptotically flat region of observer

photon sphere
radially outward 
directed normals



Expansion:  θ
Let Bab = —akb where ka is tangent to a congruence of null

geodesics. Decompose B in the following form

B̂ab =
1

n−2qĥab + ŝab + ŵab

where the ˆ denote the restriction onto the (n− 2) subspace
given by tensors orthogonal to ka.

q = ĥabB̂ab

ŝab = B̂(ab)− 1
n−2qĥab

ŵab = B̂[ab]



RP3 geon

nongeodesic 
timelike curves

radial null geodesics

future singularity

+

-

i 0

i -

i +i +

+

-

i -

i 0

past singularity t = constant curves

horizons



RP3 Schwarzschild spacetime

radial null geodesics

future singularity

+

-

i 0

i -

i +

past singularity t = constant curves

horizon

RP 2



Raychaudhuri’s Equation

dq
dl

=
−1

n−2q2−sabsab +wabwab−Rabkakb



A few important results:

• Singularity Theorems (1965 R. Penrose and S. 
Hawking)

• Area theorem for Blackholes (1971 S. Hawking)

• Topological Censorhip Conjecture and Theorem 
(1993 J. Friedman, K. Schleich, and D.  Witt)



The metric for anti - de Sitter spacetime can be written

ds2 =−a2 cosh2 r
a

dt2 +dr2 +a2 sinh2 r
a

(dq2 + sin2 qdf2)

Constant curvature spacetime with R < 0. Note a2 =−3/L where
Rab = Lgab.

The metric for de Sitter spacetime can be written

ds2 =−dt2 +a2 cosh2 t
a

(dr2 + sin2 r(dq2 + sin2 qdf2))

Constant curvature spacetime with R > 0. Note a2 = 3/L where
Rab = Lgab.



i 0

i -

i +

radial null geodesics

timelike geodesics

r=0

Anti - de Sitter Spacetime



de Sitter Spacetime

+

-r=0 r=p



Note: there are other coordinatizations of (parts of) all of these
spacetimes
Example: de Sitter spacetime

ds2 =−dt2 +a2 exp 2t
a

(dr2 + r2(dq2 + sin2 qdf2))

- flat t = constant surfaces

ds2 =−dt2 +a2 sinh2 t
a

(dr2 + sinh2 r(dq2 + sin2 qdf2))

- hyperbolic t = constant surfaces

ds2 =−dt2 +a2 sinh2 t
a

dr2 + cosh2 t
a

(dq2 + sin2 qdf2)

- S2×R t = constant surfaces

ds2 =−(1−Lr2)dt2 +
1

(1−Lr2)
dr2 + r2(dq2 + sin2 qdf2)

- static coordinates
Why? All these coordinate systems only cover part of the de

Sitter spacetime



Static de Sitter coordinates

+

-r=0 r=p

timelike geodesics

particle horizon

partial 
Cauchy 
slice



RP3 de Sitter Spacetime

+

-r=0 r=p/2

timelike geodesics

particle horizon

partial 
Cauchy 
slice RP2



Minkowski spacetime

ds2 =−dt2 + t2(dr2 + sinh2 r(dq2 + sin2 qdf2))
- hyperbolic t = constant slices; coordinate singularity at t =

0. This coordinate singularity implies geodesic incompleteness if
points on the hyperboloid are identified under a discrete isometry.

ds2 =−x2dt2 +dx2 +dy2 +dz2

- also known as Rindler spacetime. coordinate singularity at
x = 0.



Penrose Compactification

A spacetime, M, is AF if it can be conformally included in 
M’=M∪ I. Furthermore, there is a  Ω > 0 such that g’=Ω2  g on 
M and  Ω= 0 and dΩ is pointwise non-vanishing on I.



• A blackhole is given by

• The event horizon is the boundary of B

• Whiteholes are similarly defined.

Blackholes

B = M− J−(I+)



Field Theory

Given a field f it is quantized by treating it as an operator obey-
ing the the equal time commutation relations

[f(t,x),f(t,x′)] = 0

[p(t,x),p(t,x′)] = 0
[f(t,x),p(t,x′)] = idn−1(x− x′)

The fields are quantized by expanding the fields

f(t,x) = Â
k

[aku(t,x)+a†
ku∗(t,x)]



The equal time commutation relations for f and p are equiva-
lent to the following relations

[ak,ak′] = 0
[a†

k,a
†
k′] = 0

[ak,a†
k′] = dkk′

ak|0〉 = 0 ∀k
The state |0〉 = 0 is the vacuum. The operator a†

k acting on the
vacuum gives the particle state |1k〉 = a†

k|0〉



Field Theory in Curved Spacetime

nongeodesic 
timelike curves

radial null geodesics

future singularity

+

-

i 0

i -

i +i +

+

-

i -

i 0

past singularity t = constant curves

horizons



Curved Spacetime modes

Defining the operators in Minkowski space used the mode ex-
pansion

f(t,x) = Â
k

[aku(t,x)+a†
ku∗(t,x)] .

The modes are not unique in curved spacetime. This should
not be a surprise because this true even in quantum mechanics!

Pick a new set of modes

f(t,x) = Â
k

[ākū(t,x)+ ā†
kū∗(t,x)] .



Bogolubov Transformations

A new vacuum is given by

āk|0̄〉= 0 ∀k .

The new modes can be written in terms of the old and the old
in terms of the new

ū j = Â
i
[a jiui +b jiu∗i ] ,

and
ui = Â

j
[a∗

jiūi−b jiū∗i ] .



Expressions for operators

The operators can be written in terms of the Bogolubov trans-
formations

ā j = Â
i
[a∗

jiai−b∗ jia
†
i ] ,

and
ai = Â

j
[a jiāi +b∗ jiā

†
i ] .



Particle Creation

If bi j != 0 means that

ai|0̄〉 = Â
j

b∗
ji|1̄ j〉 != 0 .

Furthermore,

〈0̄|Ni|0̄〉 = Â
j

|b ji|2

where Ni = a†
iai.



• If there is a timelike Killing ξ and ui is set of positive 

frequency modes satisfying Lξ  uj = -i ω uj with 

positive frequency.

• Given another set of modes wi which is the sum 

positive frequency  ui modes.

• Then both modes have a common vacuum! 

Timelike Killing vector implies unique 
vacuum



• Homework 3:  Study the causal structure of the 
Rindler spacetime and work out the quantization of a 
scalar field.

• Homework 4:  Does a point charge radiate in a 
uniform gravitational field?

More Homework



Examples mention in lecture 2 are worked out.
 

III:  Examples of Field 
Theory in Curved 
Spacetimes

Note in my lectures c = G = 1 and the Lorentz
metric signature is −++ · · ·+



Rindler spacetime

+

-

i 0

i -

i +

+

-

i 0

Rindler horizons



Definitions

Scalar product

(f1,f2) =−i
∫

S
(f1∂µf∗2−∂µf1f∗2)dSµ

where dSµ is the volume element of the Cauchy surface with
normal nµ.

Complete set of states: uk(x) satisfying

(−—2 +m2 +xR(x))uk(x) = 0
such that

(uk,ul) = dkl (u∗k,u∗l ) =−dkl (uk,u∗l ) = 0



Two dimensional Rindler Spacetime

The metric is

ds2 =−x2dt2 +dx2 = exp2x(−dt2 +dx2)

where

x =
∫ dx

x
= lnx

Note: the range in (t,x) coordinates is infinite, −• < t < •,
−• < x < •



However a complete set on Minkowski spacetime (different from
the usual) is given by use of complete sets on both left and right
wedges:

f′ =
•

Â
k=−•

RbR
k uk +R b†

k
Ru∗k +L bL

k uk +L b†
k

Lu∗k

where f′ is a field on the full Minkowski spacetime

Luk =
1√
4pw

exp(ikx+ iwt)

and modes are extended to the whole Cauchy slice by taking them
to vanish on the partner wedge.



The massless scalar field

−—2f(x, t) = exp−2x(∂2
t −∂2

x)f(x, t) = 0.

Conformally invariant in 2-d.

Complete set of states:

Ruk =
1√
4pw

exp(ikx− iwt)

positive frequency with respect to timelike K.V. ta = ∂t .

f =
•

Â
k=−•

RbR
k uk +R b†

k
Ru∗k

Rbk|0R >= 0
vacuum state in the right Rindler wedge.

Complete set of states only on right wedge - incomplete on full
Minkowski spacetime.



Also can expand in the usual complete set:

f′ =
•

Â
k=−•

ak
ak√
4pw

exp(ikx− iwt)+a†
k

a†
k√

4pw
exp(−ikx+ iwt)

ak|0M >= 0

Can express one set of operators in terms of the other by orthogo-
nality and

Rbk = (f′,R uk) = Â
k′

(akk′ak′ +bkk′a†
k′)

akk′ = (
1√
4pw

exp(ik′x− iw′t),R uk)

bkk′ = (
1√
4pw

exp(−ik′x+ iw′t),R uk)



Rindler observer travelling x = constant line in right wedge has
number operator

Nk =R b†
k

Rbk

If travelling in the Minkowski vacuum,

< 0M|Nk|0M >= Â
k′

|bkk′|2 =
1

(exp2pw−1)

Planck distribution for radiation at T = 1/2p

Units - taking acceleration a, T = a/2B



Example

ds2 =− 1
t4dt2 +dx2

where 0 < t < •. Change coordinates to t → t ′ = 1
t and our

new metric is

ds2 =−dt ′2 +dx2

In the new coordinates, t ′ = • is the part in the original coordi-
nates which seemed singular. The new coordinates still leave the
spacetime singular!



Example (cont’ d)

Just extend spacetime to negative time.



Rindler in different approach

ds2 =−x2dt2 +dx2

where −• < t < • and 0 < x < •. Now, take a null geodesic
in the above spacetime

0 = gabkakb =−x2ṫ2 + ẋ2

which implies (dt
dx

)2 =
1
x2 .

Finally, integrate to obtain t = ± lnx +C and use new coordi-
nates given by

u = t− lnx
and

v = t + lnx



Rindler (cont’ d)

ds2 =−ev−ududv
where u = t− lnx and v = t + lnx. The coordinate ranges are

−• < u < • and −• < v < •. This still the region for x > 0.
To extend to x < 0, we define new coordinates U and V . Do

this by using the Killing vector ta,

E =−gabkata = x2 dt
dl

is a constant of motion.



Global Coordinates

E =−gabkata = x2 dt
dl

is a constant of motion.

l =
1

2E

Z
ev−udv = C +

e−u

2E
ev

Now,
loutgoing = ev

and
lingoing =−e−u .

So our space is singular again because the range of l.
Finally, let

U =−e−u

and
V = ev

Thus,
ds2 =−dUdV



Rindler spacetime

+

-

i 0

i -

i +

+

-

i 0

Rindler horizons



Schwarzschild spacetime

nongeodesic 
timelike curves

radial null geodesics

future singularity

+

-

i 0

i -

i +i +

+

-

i -

i 0

past singularity t = constant curves

horizons



The Schwarzschild metric is

ds2 =−(1− 2M
r

)dt2 +
1

(1− 2M
r )

dr2 + r2(dq2 + sin2 qdf2)

Eddington- Finkelstein coordinates: introduce

r∗ =
∫ dr

1− 2M
r

= r +2M ln(r−2M)

Note r→ 2M corresponds to r∗ → −•.

Define

v = t + r∗ u = t− r∗

Then

ds2 =−(1− 2M
r

)dv2 +2dvdr + r2(dq2 + sin2 qdf2)

- no longer singular at r = 2M



Blackhole Area Theorem

• The area of a blackhole always increase or remanins 
constant to the future.

• What does this mean in terms of causal structure?

• How is this related to field theory?



Theorem: Let (Mn,gab) be a spacetime which is ”globally hy-
perbolic” and has a well defined notion of Blackhole. Let S1 and
S2 be two Cauchy slices with S2 ⊂ I+(S1). If H is the horizon,
then the area of B2 = H∩S2 is greater than or equal to the area of
B1 = H ∩S1.



An outer trapped surface

T

T '

asymptotically flat region of observer

photon sphere
radially outward 
directed normals



Schwarzschild spacetime

nongeodesic 
timelike curves

radial null geodesics

future singularity

+

-

i 0

i -

i +i +

+

-

i -

i 0

past singularity t = constant curves

horizons



Expansion:  θ
Let Bab = —akb where ka is tangent to a congruence of null

geodesics. Decompose B in the following form

B̂ab =
1

n−2qĥab + ŝab + ŵab

where the ˆ denote the restriction onto the (n− 2) subspace
given by tensors orthogonal to ka.

q = ĥabB̂ab

ŝab = B̂(ab)− 1
n−2qĥab

ŵab = B̂[ab]



Raychaudhuri’s Equation

dq
dl

=
−1

n−2q2−sabsab +wabwab−Rabkakb

Now, for our surfaces one can take ω can be taken to be zero. If a 
standard energy condition is obeyed, then the rate of change of θ is 
negative. 

So to prove area always increases or remains the same we need to 
show that θ is non-negative for geodesic run to the future from our 
first surface to our second.  Assume this is not true then θ and its 
derivative are negative so the geodesics have a conjugate point. This a 
contradiction.  



• The DOC or domain of outer communication which 
is defined to be 

• Theorem: The topology of the DOC is determined 
by I.

Causal Patch

DOC = I+(I)∩ I−(I)



Examples are worked out for Euclidean field theory.
 

IV:  Euclidean field 
theory and examples

Note in my lectures c = G = 1 and the Lorentz
metric signature is −++ · · ·+



Euclidean Field Theory

This is the Green function for the wave 
operator.

The Feynman propagator, D(x,y) is defined by

iD(x,y) =
〈0out|T (f̂(x)f̂(y))|0in〉

〈0out|0in〉
where
T (f̂(x)f̂(y)) = f̂(x)f̂(y) if y /∈ J+(x) and f̂(y)f̂(x) if x /∈ J+(y).



Euclidean Green Function

In the case of a scalar field one finds that

D(x,y) =−iGE(x,y)
where GE(x,y) is the Euclidean Green function.

One advantage of the Euclidean approach is the wave 
operator is ellpitic which means unique inverse. Everything 
done so far is for pure states, namely, the vacuum. 



Density Matrix

For any ordinary quantum system with a time independent Hamil-
tonian, H. The state of a thermal equilibrium system at tempera-
ture T where b = (kT )−1 is defined via the density matrix

r =
e−bH

Z
where

Z = tr
(
e−bH)



Thermal Feynman Propagator

The Thermal Feynman Propagator at temperature kT is given
by

iDT(x,y) = tr
[
rT (f̂(x)f̂(y))

]
= Z−1tr

[
e−bHT (f̂(x)f̂(y))

]



The thermal Feynman Propagator is 
periodic is imaginary time.

Now, continue the time coordinate t =−it so that the above equations still hold. Take x and x′
to have the same spatial coordinates but the time differs by t′+bh̄

iDT (x′,y) = Z−1tr
[
e−bHT (f̂(x′)f̂(y))

]
= Z−1tr

[
e−bH(f̂(x′)f̂(y))

]
= Z−1tr

[
e−bH(f̂(x′)f̂(y))

]
iDT (x′,y) = Z−1tr

[
e−bH(f̂(x′)f̂(y))

]
= Z−1tr

[
e−bH(ebH f̂(x)e−bH f̂(y))

]
iDT (x′,y) = Z−1tr

[
f̂(x)e−bH f̂(y))

]
= Z−1tr

[
e−bH(f̂(y)f̂(x))

]
Z−1tr

[
e−bHT (f̂(y)f̂(x))

]
Finally,

iDT (x′,y) = iDT (x,y)



Example of Schwarzschild

The Schwarzschild metric is

ds2 =−(1− 2M
r

)dt2 +
1

(1− 2M
r )

dr2 + r2(dq2 + sin2 qdf2)

Now, take t to it, this yields the metric

ds2
E = (1− 2M

r
)dt2 +

1
(1− 2M

r )
dr2 + r2(dq2 + sin2 qdf2)

Change coordinates using

R = 4M(1− 2M
r

)
1
2

to obtain

ds2
E = R2d

( t
4M

)2
+

( r
2M

)4
dR2 + r2(dq2 + sin2 qdf2)



The Riemannian completion of 
Schwarzschild

ds2
E = (1− 2M

r
)dt2 +

1
(1− 2M

r )
dr2 + r2(dq2 + sin2 qdf2)

Change coordinates using

R = 4M(1− 2M
r

)
1
2

to obtain

ds2
E = R2d

( t
4M

)2
+

( r
2M

)4
dR2 + r2(dq2 + sin2 qdf2)

The Riemannian metric is singular at R = 0. One can extend the
manifold by making the t coordinate periodic with period 8pM.
So a single point is added on the manifold to obtain S2×R2.



Temperature of Schwarzschild Blackhole

Using the thermal Feynman propagator iDT(x,y) to obtain the
temperature

kT = b−1 =
h̄

Period
=

h̄
8pM

This is the Hartle-Hawking Vacuum. This also works for non-
linear fields!



De Sitter Spacetime

ds2 =−dt2 +a2 cosh2 t
a

(dr2 + sin2 r(dq2 + sin2 qdf2))

invariant under O(4,1)
Note - 4 disconnected components of the group

G =O(4,1)id
T - time reversal, t →−t
S - spatial reflection, r→ r +p/2

GT = {gT, g ∈ O(4,1)id}, GS, GST yield the other three compo-
nents



The symmetric two point function in a vacuum state |l > is

G(1)(x,y) =< l|f(x)f(y)+f(y)f(x)|l >

If it is to be invariant under the full (disconnected) de Sitter group,

G(1)(x,y) = G(1)(d(x,y))
where d(x,y) is the geodesic distance between points x and y.



Now

(−—2−4xL−m2)G(1)(d(x,y)) = 0

General solution: linear combination of hypergeometric functions

G(1) = a 2F1(c,3−c,2,
1
2(1+cos(ad))+b 2F1(c,3−c,2,

1
2(1−cos(ad))

c root of
c(c−3)+a2m2 +12x = 0

a and b real constants

Note: if x and y are null separated, d(x,y) = 0 and cos(ad) =±1.
Then either first or second factor has a simple pole.



Example de Sitter

The global de Sitter metric is

ds2 =−dt2 +a2 cosh2 t
a

(dr2 + sin2 r(dq2 + sin2 qdf2))

One can start by taking t to it, this yields

ds2
E = dt2 +a2 cosh2 it

a
(dr2 + sin2 r(dq2 + sin2 qdf2)) ,

however, cosh it = cost. So the Riemannian metric becomes

ds2
E = dt2 +a2 cos2 it

a
(dr2 + sin2 r(dq2 + sin2 qdf2)) .

Now, this metric is not complete unless we add two points and
t is periodic with

2pa

where a = 1
H .



De Sitter Topology

The global topology of the Lorentzian de Sitter spacetime is
S3×R. The Riemannian metric is defined on the same manifold.
However, two points are added to complete the metric. The final
manifold is S4.



de Sitter Spacetime

+

-r=0 r=p



RP3 de Sitter Spacetime

+

-r=0 r=p/2

timelike geodesics

particle horizon

partial 
Cauchy 
slice RP2



The global topology of the Lorentzian de Sitter spacetime is
S3×R where the spheres are increasing in radius. The Rieman-
nian metric is defined on the same manifold. however, two points
are added to complete the metric. The final manifold is S4.

RP3 de Sitter

ds2 =−dt2 +a2 cosh2 t
a

(dr2 + sin2 r(dq2 + sin2 qdf2))

The metric admits an isometry given by x→−x. This global
spacetime is RP3×R. However, the Riemannian version is not a
manifold. The reason is the spatial topology is RP3×R with two
points added.


