





Spacetimes

A spacetime is a pair (M", g.,) Where M" is
a smooth n-manifold where g,, 1s a symmet-
ric, non-degenerate tensor with signature — + M"
Definition: A topological space M" is a C* n- Yo Up
manifold if it satisfies the following conditions:

1. Every point has a neighborhood U, whi
1s homeomorphic to an open subset of R"
mapping ¢y : Uy, — R" .

2. Given any two of the U’s
intersection, then the mappi

(I)[S(b;l : (I)OL (Ua a

is a C* mapping

msk




Why do we worry about smooth
manifolds!?

* In order to do field theory, global st
important.

* Local knowledge of the me
the global structure of

just topology.



Extra topological conditions

* One example of a physical requirement is that o
needs to define integration on a manifold.

If the space is compact, our definition is en
general, one needs the space to be para

Theorem: Any differenti
admits a Lorentzian

* The Hausdorff co




Theorem: The following statements are
equivalent for a differentiable manifold:

* It is Hausdorff and paracompact.
* Its topology can be induced by a metric.
* |t admits a Riemannian metric.

* It is Hausdorff and admits a Lo

All manifolds will be
paracompact, un




Example

First, define an open cover of
S'={x e R |xi+ - +x_ =1}

by
Uyj_1={xe8"|x;<0}and Uy;={x €

where j =1,...,n+ 1. Next, defi
omorphisms of the chart by t



Example of another chart on the n-spher




Equivalence of Differentiable structures

Definition: A (continuous) map f: M — N"
1s smooth if for each point in M™ there 1s chart
(¢,U) containing it and a chart (y,V) in N”"
with f(U) C V such that:

Yo~ o(U) — (V)

1s a smooth map from R to R".

Definition: A smooth home
called a diffeomorphism.
equivalent if there is
said to be diffeo




Example on the line

Let M = R with M the only open set in the at-
las and the homeomorphism ¢: M — R, ¢(x) =
X3, Therefore, this defines a smooth structure
on M. By definition a function f: M — R i
smooth if and only if

fo': M—R

1s smooth in the usual sense.

An example of a smoo
f(x) = x5 because fd~
the usual sense!



Homework Problem |

* Prove or disprove the following: Give
n-manifold M and a point p in

not diffeomorphic to M.

- Example showin




Exotic Differentiable Structures

* In 3 or fewer dimensions, the differentiable str
is unique and all manifolds admit a differenti
structure

* |In 4 or more dimensions, the diff
are not unique. Furthermore
topological manifolds whi
structure.

* In 8 or more di
manifolds whi




Physically, differentiable structures are
Important

- Recently solutions have been found which solve the
Einstein equations for different differentiable
structures. (K. Schleich and D.Witt Class. Q
Gravity 1999, and preprint 2003)

- The piecewise linear case is interesti

versions of gravity. (K. Schleich
Phys. B 1993)

* Sum over topologies is i
dimensions unless




Geometry on a spacetime

Define the covariant derivative V, in t
metric tensor.

Define the curvature tensor

Geodesics are given by
which satisfy




3 types of geodesics in Lorentzian
Geometry

* Null geodesics uu’ =0
* Timelike geodesics  uqut” <

* Spacelike geodesics




Diffeomorphisms, Isometries, and
Conformal Isometries

Definition of Physical Equivalence:

The spacetime (M", g.) is e
iff there 1s diffeomorphis

that f*g_ab = 2ab

Definition of Isome




Definition of Conformal Isometry:

A diffeomorphism of (M", g) to i
iff f*g., = Aga» where A > 0.




Killing and Conformal Killing Vectors

* These are infinitesimal versions of isome
conformal isometries.

* A conformal Killing vector is a

V& +Vp

- A Killing vector i




How to find Conformal Killing and Killing

vectors

* Any two conformally equivalent metrics have the
same conformal Killing vectors.Try simplifying metri
via conformal isometries.

» Find Killing vectors by finding all conformal
vectors first, then finding linear combin
that are divergence free.

* In any space obtained from id
vectors can be found usin
namely,

If M" = 371"/

(see D.




Weyl Curvature, C

 The Riemann curvature can be wri

2
Rac :Cac e acR za
bed bd+n_2(8[ d)b

where Ry =
the Ricci s




Homework 2

Find the Killing vectors of the
Rindler

Milne

deSitter




Einstein’s Equations

1
Rap — ERgab I Agab = 8],

 The right side usually obeys ener
as ANEC, weak, strong, or domi

 Notice that no sources i
curvature vanishes;

 Solutions do no
equations.



Evolution Equations and Constraints

A Cauchy slice or surface is a spacelike hypersurface
such that each causal curve, i.e. non-spacelike curve
intersects it once and only once.

- A globally hyperbolic spacetime is a spaceti
Cauchy slice.

A partial Cauchy slice is a spaceli
such that each causal curve i
once.

The future domai
of all points in
directed p




* The domain of d

* Theorem:

Domain of Dependence

* The past domain of depence, D (S), i
points in the spacetime such th

directed future-inextendibl
S.

M=D(S



Examples

 Minkowski space ds* = —di e
is globally hyperbolic with C

* Minkowski space




Example (Milne Universe)




Constraints

The contraint equations on the Cauchy

and

Given any




Examples of some useful results on the
structure of the Cauchy surfaces.

* Theorem: Every smooth (n-1)-manifold is the

Cauchy slice of a physically reasonable spacetime
Witt PRL 1986)

- Theorem: A generic class of smo
are the Cauchy slices for local
A class of these is not con

deSitter. These give co

cosmological princi




Causal Structure

 The chronological future of point i
I (p) ={q € M|there is a future
A such that \(1) =

* The chronologica




Causal structure

 The chronological past is define

* The causal future J*(A) an
a similar way using caus
ones.

* Theorem:



Cauchy Horizons

Definition: The future Ca




Example (Milne Universe) Cauchy




The metric of Minkowski spacetime in spherical coordinates i

ds* = —dt* +dr* + r*(d0* + sin*0d¢*)
r,t have infinite ranges - no way to draw where 1
This is not a problem with studying cau
problem with the choice of coordina

l./_|_r/ t./_r/

2t = tan( ) + tan(

the Minkowski metri



Minkowski spacetime in spherical coordir

future timelike infinity




Two spacetimes related by a conformal transformati
same causal structure. Thus Q? can be suppress
illustration of the causal structure.

The metric




Penrose diagram of Minkowski spacetim

timelike geodesics







The infinite future and past are now clearly de
finities of null geodesics and timelike geodesi

Observe that not all timelike curves
ing to accelerated timelike obser

Radially directed photon
any timelike or null
tangent lying bet
geodesics.



The Schwarzschild metric 1s

oM
ds® = — (1 === EEn
r

r =2M 1s a coordinate si
The maximal extensi



The metric becomes

ds* = F*(v,w)dvdw + r*(d0* + sin* 0d

where

vw = —(r—2M)exp(r/2M)

The metric is not singul
range of coordinates ¢

One can const
dinates



Schwarzschild spacetime

future singularity

horizons cadini

it




An outer trapped surface

directed norm




Expansion: O

Let B,, = V,k, where k, is tangent to
geodesics. Decompose B in the followir




RP3 geon

future singulari

A

iV

24
7
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RP3 Schwarzschild spacetime

future singularity

horizon




Raychaudhuri’s Equatit




A few important results:

* Singularity Theorems (1965 R. Pen
Hawking)

* Area theorem for Black

* Topological Censorhi
(1993 ). Friedm



r .
ds®* = —0?cosh? = dt* + dr?* + o2 sink
o

Constant curvature spacetime v




Anti - de Sitter Spacetime







Note: there are other coordinatizations of (parts of) all of thes
spacetimes
Example: de Sitter spacetime

2t
ds* = —dt* + o’ exp = (dr* +r*(d6?
- flat r = constant surfaces

t
ds* = —dt* + a?sinh? —



Static de Sitter coordinates

particle horizon




RP3 de Sitter Spacetime

particle horizon

f+




Minkowski spacetime

ds* = —dt* +t*(dr* 4 sinh® r (d©*

- hyperbolic t = constant slices;
0. This coordinate s1ngular1ty 1
points on the hyperboloid ar




Penrose Compactification

A spacetime, M, is AF if it

M'"'=MU |. Furtherm
M and Q=0 and




Blackholes

- A blackhole is given by




Field Theory

Given a field ¢ it is quantized by treati
ing the the equal time commutation




The equal time commutation relations for ¢
lent to the following relations

[aka 7% ]




Field Theory in Curved Spacetime

future singularity

horizons radial n

it




Curved Spacetime modes

Defining the operators in Minkowski space
pansion

¢(r,x) = ;[aku(t,X) +

The modes are not unique i
not be a surprise because thi
Pick a new set of m




Bogolubov Transformations

A new vacuum is given by




Expressions for operators

The operators can be written 1
formations




Particle Creation

If B;; # 0 means that




Timelike Killing vector implies unique
vacuum

+ If there is a timelike Killing § and u; is
frequency modes satisfying L
positive frequency.

Given another set of

positive frequen




More Homework

« Homework 3: Study the causal st
Rindler spacetime and work o
scalar field.

* Homework 4: Does
uniform gravitati







Rindler spacetime




Definitions

Scalar product

(¢17¢2) = —

where d2* i1s the vo
normal n#.

Complete s¢




Two dimensional Rindler Spacetime

The metric is

ds® = —x*dt*




However a complete set on Minkowski spacetime
the usual) is given by use of complete sets on
wedges:

where ¢’ is a field on t




The massless scalar field

—V2(E,1) = exp —2E(9; — 92)0(E, 1)

Conformally invariant in 2-d.

Complete set of states:

Ruk :



Also can expand in the usual complete set:

exp(ikx — iwt) +a;

Can express one se
nality and




Rindler observer travelling & = constant lir
number operator




Example

where 0 <t < . Chang
new metric 1s




Example (cont’ d)

Just extend spacetimr




Rindler in different approac

ds> = —x*dt* +a

where — <r< and0<x
in the above spacetime




Rindler (cont’ d)

where u =t — Inx and
— <u<

To extend to x
this by using




Global Coordinates

d
E = —gapk®® = x*

1S a constant of motion.

A=—
2




Rindler spacetime




Schwarzschild spacetime

future singularity

horizons cadini

it




The Schwarzschild metric is

dr? +r?

2M
2 2
__1__
ds” = ( " )dt (1 Zﬁv")

Eddington- Finkelstein coordinate

Note r — 2M corr




Blackhole Area Theorem

* The area of a blackhole always in
constant to the future.

* What does this me




Theorem: Let (M", g,,) be a spacetime
perbolic” and has a well defined notio
2, be two Cauchy slices with 2,
then the areaof B, = HN2X2,1s g
B =HNZX.




An outer trapped surface

directed norm




Schwarzschild spacetime

future singularity

horizons cadini

it




Expansion: O

Let B,, = V,k, where k, is tangent to
geodesics. Decompose B in the followir




Raychaudhuri’s Equation

@_ —1
d. n-—2

6’ — 0,0 —I—(Dab(D bkakb

Now, for our surfaces one can take W can be
standard energy condition is obeyed, the
negative.

So to prove area always incre
show that O is non-negati
first surface to our se
derivative are ne
contradiction.




Causal Patch

 The DOC or domain of outer ¢
is defined to be

DO







Euclidean Field Theory

The Feynman propagator, A(x,y) i




Euclidean Green Function

In the case of a scalar field one finds that

A(X,y) = _ZGE
where Gg(x,y) is the Euclidea

One advantage of the Eucli
operator is ellpitic whi
done so far is for




Density Matrix

For any ordinary quantum system
tonian, H. The state of a ther
ture 7 where p = (kT) ™! |




Thermal Feynman Propagator

The Thermal Feynman Propagator at te
by

iAr(x,y) = tr [pT (¢(x




The thermal Feynman Propagator is
periodic is imaginary time.

Now, continue the time coordinate t = —it so that the abov
to have the same spatial coordinates but the time differs by

iAr(d.y) =2 \ir[e PIT(G()D0))] =2 or

A

iAr (X, y) = Z ltr [e_ﬁH(

iN (X, y) =Z ttr

|

Finally,




Example of Schwarzschild

The Schwarzschild metric is




The Riemannian completion of
Schwarzschild

2M |
2 2
ds“g = (1— ; )dt —|—(1_2M)

Change coordinates using

R =

to obtain

dSZE




Temperature of Schwarzschild Blacl

Using the thermal Feynman p
temperature

This 1s the Ha
linear fields!




De Sitter Spacetime

5
ds* = —dt* + o cosh® . (dr

invariant under O(4, 1




The symmetric two point function in a ve

If 1t is to be invariant und




(=V2 —4EA —m®)G W (d(x,y)

General solution: linear combination

1
G(l) :a2F1(0,3—c,2, P

¢ root of

a and b re




Example de Sitter

The global de Sitter metric is

[
ds* = —dt* + o* cosh? - (dr* + sin” r/(

One can start by taking ¢ to it, thi

}
ds’r = dt* + o’ cosh?

however, coshi




De Sitter Topology

The global topology of the Lorentzia
S3 x R. The Riemannian metric is defir
However, two points are added to ¢
manifold is S*.







RP3 de Sitter Spacetime

particle horizon

f+




The global topology of the Lorentzian de Sitter
S° x R where the spheres are increasing in radiu
nian metric is defined on the same manifold.
are added to complete the metric. The fi

RP? de Sitter

t
ds* = —dt* + o’ cosh?

The metric admi
spacetime is RP
manifold.
points



