
Adaptive Finite Element Methods
Peter Binev, Wolfgang Dahmen, Ronald DeVore

University of South Carolina / RWTH Aachen

Banff, 2003 – p.1/30

The Problem

−∆u = f

u = 0 on ∂Ω

Ω is a polygonal domain in IR2

1. Standard Finite Element Methods
2. Adaptive Finite Element Methods

IS THERE ANY ADVANTAGE TO ADAPTIVE METHODS

Banff, 2003 – p.2/30

Little Known

1998–2000: Convergence of certain AFEM

I know of no AFEM (d ≥ 2) which is proven to
outperform Standard Finite Element Methods for
problems in IRd, d ≥ 2

Banff, 2003 – p.3/30

Little Known

1998–2000: Convergence of certain AFEM

I know of no AFEM (d ≥ 2) which is proven to
outperform Standard Finite Element Methods for
problems in IRd, d ≥ 2

Banff, 2003 – p.3/30

Goal

More ambitious

Give the ‘mother’of all adaptive algorithms

Banff, 2003 – p.4/30

Goal

More ambitious

Give the ‘mother’of all adaptive algorithms

Banff, 2003 – p.4/30

Galerkin Solutions

P a triangular partition of Ω

SP space of piecewise linear functions subordinate to
P vanishing on ∂Ω

uP Galerkin solution

|||u− uP ||| = infS∈SP
|||u− S|||

||| · ||| energy norm (H1-norm)

Banff, 2003 – p.5/30

Galerkin Solutions

P a triangular partition of Ω

SP space of piecewise linear functions subordinate to
P vanishing on ∂Ω

uP Galerkin solution

|||u− uP ||| = infS∈SP
|||u− S|||

||| · ||| energy norm (H1-norm)

Banff, 2003 – p.5/30

Galerkin Solutions

P a triangular partition of Ω

SP space of piecewise linear functions subordinate to
P vanishing on ∂Ω

uP Galerkin solution

|||u− uP ||| = infS∈SP
|||u− S|||

||| · ||| energy norm (H1-norm)

Banff, 2003 – p.5/30

Galerkin Solutions

P a triangular partition of Ω

SP space of piecewise linear functions subordinate to
P vanishing on ∂Ω

uP Galerkin solution

|||u− uP ||| = infS∈SP
|||u− S|||

||| · ||| energy norm (H1-norm)

Banff, 2003 – p.5/30

Galerkin Solutions

P a triangular partition of Ω

SP space of piecewise linear functions subordinate to
P vanishing on ∂Ω

uP Galerkin solution

|||u− uP ||| = infS∈SP
|||u− S|||

||| · ||| energy norm (H1-norm)

Banff, 2003 – p.5/30

Typical Adaptive Algorithm: Pk → Pk+1

1. Compute uPk

2. Compute error indicators e(∆), ∆ ∈ Pk. e(∆) has two
terms: (i) jumps in uPk

accross edges of ∆, (ii)
approximation of f by constants on ∆
3. Use local error indicators to mark cells Mk in Pk: bulk
chasing.
4. Refine cells in Mk to obtain P ′

k

5. Remove hanging nodes: further markings M′
k

6. Refine cells in M′
k: P ′

k → Pk+1

Banff, 2003 – p.6/30

Rules of the game

How to measure error?

Energy norm: |||v||| = |v|H1
0 (Ω)

How to measure complexity?

Number of computations

Banff, 2003 – p.7/30

Rules of the game

How to measure error?

Energy norm: |||v||| = |v|H1
0 (Ω)

How to measure complexity?

Number of computations

Banff, 2003 – p.7/30

Rules of the game

How to measure error?

Energy norm: |||v||| = |v|H1
0 (Ω)

How to measure complexity?

Number of computations

Banff, 2003 – p.7/30

Rules of the game

How to measure error?

Energy norm: |||v||| = |v|H1
0 (Ω)

How to measure complexity?

Number of computations

Banff, 2003 – p.7/30

Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30

Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30

Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30

Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30

Newest vertex bisection

newest vertex of big triangle

newest vertex of new triangles

Banff, 2003 – p.9/30

Tree structure

Banff, 2003 – p.10/30

Refinement grows the tree

Banff, 2003 – p.11/30

Grow more

Banff, 2003 – p.12/30

Initial Labeling of edges

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

0 1

1

0

Banff, 2003 – p.13/30

Initial assignment of newest vertices

Banff, 2003 – p.14/30

Evaluate performance of an AFEM

N(P) number of subdivisions to create P

Pn := {P : N(P) = n}

σn(u) := inf
P∈Pn

|||u− uP |||

Could ask Numerical Alg. perform like σn(u)

For s > 0, As is the set of all u such that

σn(u) ≤ Mn−s, n = 1, 2, . . .

Equivalent to σn(u) ≤ ε with n = Cε−1/2

Banff, 2003 – p.15/30

Evaluate performance of an AFEM

N(P) number of subdivisions to create P

Pn := {P : N(P) = n}

σn(u) := inf
P∈Pn

|||u− uP |||

Could ask Numerical Alg. perform like σn(u)

For s > 0, As is the set of all u such that

σn(u) ≤ Mn−s, n = 1, 2, . . .

Equivalent to σn(u) ≤ ε with n = Cε−1/2

Banff, 2003 – p.15/30

Evaluate performance of an AFEM

N(P) number of subdivisions to create P

Pn := {P : N(P) = n}

σn(u) := inf
P∈Pn

|||u− uP |||

Could ask Numerical Alg. perform like σn(u)

For s > 0, As is the set of all u such that

σn(u) ≤ Mn−s, n = 1, 2, . . .

Equivalent to σn(u) ≤ ε with n = Cε−1/2

Banff, 2003 – p.15/30

Evaluate performance of an AFEM

N(P) number of subdivisions to create P

Pn := {P : N(P) = n}

σn(u) := inf
P∈Pn

|||u− uP |||

Could ask Numerical Alg. perform like σn(u)

For s > 0, As is the set of all u such that

σn(u) ≤ Mn−s, n = 1, 2, . . .

Equivalent to σn(u) ≤ ε with n = Cε−1/2

Banff, 2003 – p.15/30

Evaluate performance of an AFEM

N(P) number of subdivisions to create P

Pn := {P : N(P) = n}

σn(u) := inf
P∈Pn

|||u− uP |||

Could ask Numerical Alg. perform like σn(u)

For s > 0, As is the set of all u such that

σn(u) ≤ Mn−s, n = 1, 2, . . .

Equivalent to σn(u) ≤ ε with n = Cε−1/2

Banff, 2003 – p.15/30

Binev-Dahmen- DeVore Algorithm

For each ε > 0, algorithm produces Pε such that

1. |||u− uPε
||| ≤ ε

2. If u ∈ As then #(Pε) ≤ C0|u|Asε−1/s

3. Number of computations used is ≤ C0|u|Asε−1/s

COROLLARY: The BDD AFEM beats Standard Finite Ele-

ment Methods for a wide class of problems

Banff, 2003 – p.16/30

How to do Marking

Bulk Chasing: Doerfler, Morin-Nochetto-Siebert

1. Uses error indicators e(∆)
2. Choose smallest set Mk such that

∑

∆∈Mk

e(∆) ≥ 1/2
∑

∆∈Pk

e(∆)

3. There exists 0 < λ < 1: Given target accuarcy ε > 0 and
Pk which resolves f to accuracy γε,. then either

|||u− uPk+1
||| < ε

or
|||u− uPk+1

||| ≤ λ|||u− uPk
|||

Banff, 2003 – p.17/30

Binev-Dahmen-DeVore Algorithm

Pk → Pk+1:

1. Pk,0 := Pk

2. Pk,j−1 → Pk,j, j = 1, . . . ,K:

|||u− uPk,j
||| ≤ λ|||u− uPk,j−1

|||

3 Pk,K → Pk+1 by Coarsening

Banff, 2003 – p.18/30

Two main results

Refinements to remove hanging nodes do not inflate
number of subdivisions severely

How to do Coarsening

Banff, 2003 – p.19/30

Two main results

Refinements to remove hanging nodes do not inflate
number of subdivisions severely

How to do Coarsening

Banff, 2003 – p.19/30

Control removal of hanging nodes

P0 → P1 → · · · → Pn

Pk → Pk+1 uses Mk and M′
k

Theorem:

#(Pn) ≤ #(P0) + C(#(M0) + · · · + #(Mn−1))

Banff, 2003 – p.20/30

Control removal of hanging nodes

P0 → P1 → · · · → Pn

Pk → Pk+1 uses Mk and M′
k

Theorem:

#(Pn) ≤ #(P0) + C(#(M0) + · · · + #(Mn−1))

Banff, 2003 – p.20/30

Control removal of hanging nodes

P0 → P1 → · · · → Pn

Pk → Pk+1 uses Mk and M′
k

Theorem:

#(Pn) ≤ #(P0) + C(#(M0) + · · · + #(Mn−1))

Banff, 2003 – p.20/30

Proof of Theorem

Not simple induction: we do not have

#M′
k ≤ C#Mk

Need to look at entire history of how ∆ ∈ Pn was
created

Banff, 2003 – p.21/30

Proof of Theorem

Not simple induction: we do not have

#M′
k ≤ C#Mk

Need to look at entire history of how ∆ ∈ Pn was
created

Banff, 2003 – p.21/30

Many refinements

1

1

1

0

1

1
1

1

0

1

1

0

1

1

0 1

1

0

2

2

2

2

X

Banff, 2003 – p.22/30

Many refinements

1

1

1

1

0

1

1

0

1

1

0 1

1

0

1

12 2

2

X

X

2

2

2

2

3

3
3

3

2

Banff, 2003 – p.23/30

Ideas:

1. Each cell in M := ∪n−1
k=0Mk is given A dollars to spend

2. ∆′ ∈ Pn receives λ(∆,∆′) dollars from a given ∆ ∈M.
Here λ depends on the generations g(∆) = k, g(∆′) = j and
the distance dist(∆,∆′)

λ(∆,∆′) :=

{

(j − k + 2)−2, dist ≤ A2−k/2; k ≤ j + 1,

0, otherwise.

Banff, 2003 – p.24/30

Who’s got the money?

Banff, 2003 – p.25/30

Ideas

3. Prove each ∆′ ∈ Pn receives at least B dollars from all of
the ∆ ∈M combined.

4. The latter requires to look at how ∆′ is created, i.e. the
set of markings responsible for the creation of ∆′.

Banff, 2003 – p.26/30

Coarsening Algorithm

Pk,K and uPk,K
known to us

Pk,K may be too large

We want a sparse approximation to uPk,K
by using a

smaller set than Pk,K

Tree structure

master tree T∗: all cells ∆ that can be obtained by
newest vertex bisection

Banff, 2003 – p.27/30

Coarsening Algorithm

Pk,K and uPk,K
known to us

Pk,K may be too large

We want a sparse approximation to uPk,K
by using a

smaller set than Pk,K

Tree structure

master tree T∗: all cells ∆ that can be obtained by
newest vertex bisection

Banff, 2003 – p.27/30

Coarsening Algorithm

Pk,K and uPk,K
known to us

Pk,K may be too large

We want a sparse approximation to uPk,K
by using a

smaller set than Pk,K

Tree structure

master tree T∗: all cells ∆ that can be obtained by
newest vertex bisection

Banff, 2003 – p.27/30

Coarsening Algorithm

Pk,K and uPk,K
known to us

Pk,K may be too large

We want a sparse approximation to uPk,K
by using a

smaller set than Pk,K

Tree structure

master tree T∗: all cells ∆ that can be obtained by
newest vertex bisection

Banff, 2003 – p.27/30

Coarsening Algorithm

Pk,K and uPk,K
known to us

Pk,K may be too large

We want a sparse approximation to uPk,K
by using a

smaller set than Pk,K

Tree structure

master tree T∗: all cells ∆ that can be obtained by
newest vertex bisection

Banff, 2003 – p.27/30

Tree approximation

Error functional e(∆) ≥ 0 defined on nodes ∆ of master
tree T∗ -local error on cell

Assumptions on e: if T is a tree with single root ∆

∑

∆′∈L(T)

e(∆′) ≤ C e(∆)

Global error for tree T : L(T) leaves of T

E(T) :=
∑

∆∈L(T)

e(∆)

Banff, 2003 – p.28/30

Tree approximation

Error functional e(∆) ≥ 0 defined on nodes ∆ of master
tree T∗ -local error on cell

Assumptions on e: if T is a tree with single root ∆

∑

∆′∈L(T)

e(∆′) ≤ C e(∆)

Global error for tree T : L(T) leaves of T

E(T) :=
∑

∆∈L(T)

e(∆)

Banff, 2003 – p.28/30

Tree approximation

Error functional e(∆) ≥ 0 defined on nodes ∆ of master
tree T∗ -local error on cell

Assumptions on e: if T is a tree with single root ∆

∑

∆′∈L(T)

e(∆′) ≤ C e(∆)

Global error for tree T : L(T) leaves of T

E(T) :=
∑

∆∈L(T)

e(∆)

Banff, 2003 – p.28/30

Near best tree approximation

Best approximation

σn := inf
N(T)=n

E(T)

Near best tree T ′: N(T ′) = n

E(T ′) ≤ C1σc1n

Theorem (Binev-DeVore): Given e, can find a near best
tree with Cn computations

Banff, 2003 – p.29/30

Near best tree approximation

Best approximation

σn := inf
N(T)=n

E(T)

Near best tree T ′: N(T ′) = n

E(T ′) ≤ C1σc1n

Theorem (Binev-DeVore): Given e, can find a near best
tree with Cn computations

Banff, 2003 – p.29/30

Near best tree approximation

Best approximation

σn := inf
N(T)=n

E(T)

Near best tree T ′: N(T ′) = n

E(T ′) ≤ C1σc1n

Theorem (Binev-DeVore): Given e, can find a near best
tree with Cn computations

Banff, 2003 – p.29/30

Ideas in proof

Greedy strategy to subdivide those ∆ with largest e(∆)
does not work

After each subdivision, redefine e (modified ẽ)

Modification makes ẽ(∆) smaller when previous
subdivisions of the ancestor’s of ∆ did not decrease
error much

Greedy on ẽ

Banff, 2003 – p.30/30

Ideas in proof

Greedy strategy to subdivide those ∆ with largest e(∆)
does not work

After each subdivision, redefine e (modified ẽ)

Modification makes ẽ(∆) smaller when previous
subdivisions of the ancestor’s of ∆ did not decrease
error much

Greedy on ẽ

Banff, 2003 – p.30/30

Ideas in proof

Greedy strategy to subdivide those ∆ with largest e(∆)
does not work

After each subdivision, redefine e (modified ẽ)

Modification makes ẽ(∆) smaller when previous
subdivisions of the ancestor’s of ∆ did not decrease
error much

Greedy on ẽ

Banff, 2003 – p.30/30

Ideas in proof

Greedy strategy to subdivide those ∆ with largest e(∆)
does not work

After each subdivision, redefine e (modified ẽ)

Modification makes ẽ(∆) smaller when previous
subdivisions of the ancestor’s of ∆ did not decrease
error much

Greedy on ẽ

Banff, 2003 – p.30/30

	The Problem\
	Little Known
	Goal
	Galerkin Solutions
	Typical Adaptive Algorithm: {green $P_k	o P_{k+1}$}\
	Rules of the game
	Can we find "best" adaptive partitions
	Newest vertex bisection
	Tree structure
	Refinement grows the tree
	Grow more
	Initial Labeling of edges
	Initial assignment of newest vertices
	Evaluate performance of an AFEM
	Binev-Dahmen- DeVore Algorithm
	How to do Marking
	 Binev-Dahmen-DeVore Algorithm
	Two main results
	Control removal of hanging nodes
	Proof of Theorem
	Many refinements\
	Many refinements\
	Ideas:
	Who's got the money?
	Ideas
	Coarsening Algorithm
	Tree approximation
	Near best tree approximation
	Ideas in proof

