Adaptive Finite Element Methods

Peter Binev, Wolfgang Dahmen, Ronald DeVore

University of South Carolina / RWTH Aachen

Banff, 2003 - p.1/30

The Problem

 $-\Delta u = f$ $u = 0 \text{ on } \partial \Omega$

- Ω is a polygonal domain in $I\!R^2$
- 1. Standard Finite Element Methods
- 2. Adaptive Finite Element Methods

IS THERE ANY ADVANTAGE TO ADAPTIVE METHODS

Banff, 2003 – p.2/30

Little Known

1998–2000: Convergence of certain AFEM

Banff, 2003 – p.3/30

Little Known

- 1998–2000: Convergence of certain AFEM
- I know of no AFEM ($d \ge 2$) which is proven to outperform Standard Finite Element Methods for problems in \mathbb{R}^d , $d \ge 2$

Goal

More ambitious

Banff, 2003 - p.4/30

Goal

- More ambitious
- Give the 'mother' of all adaptive algorithms

• **P** a triangular partition of Ω

- **P** a triangular partition of Ω
- S_P space of piecewise linear functions subordinate to P vanishing on $\partial \Omega$

- **P** a triangular partition of Ω
- S_P space of piecewise linear functions subordinate to P vanishing on $\partial \Omega$
- u_P Galerkin solution

- **P** a triangular partition of Ω
- S_P space of piecewise linear functions subordinate to P vanishing on $\partial \Omega$
- u_P Galerkin solution

- **P** a triangular partition of Ω
- S_P space of piecewise linear functions subordinate to P vanishing on $\partial \Omega$
- u_P Galerkin solution
- $\bullet \quad \|u u_P\| = \inf_{S \in \mathcal{S}_P} \|u S\|$
- energy norm (H^1 -norm)

Typical Adaptive Algorithm: $P_k \rightarrow P_{k+1}$

- 1. Compute u_{P_k}
- 2. Compute error indicators $e(\Delta)$, $\Delta \in P_k$. $e(\Delta)$ has two terms: (i) jumps in u_{P_k} accross edges of Δ , (ii)

approximation of f by constants on Δ

3. Use local error indicators to mark cells \mathcal{M}_k in P_k : bulk chasing.

Banff, 2003 – p.6/30

- 4. Refine cells in \mathcal{M}_k to obtain P'_k
- 5. Remove hanging nodes: further markings \mathcal{M}'_k
- 6. Refine cells in \mathcal{M}'_k : $P'_k \to P_{k+1}$

How to measure error?

Banff, 2003 - p.7/30

- How to measure error?
- Energy norm: $||v|| = |v|_{H_0^1(\Omega)}$

- How to measure error?
- Energy norm: $||v|| = |v|_{H_0^1(\Omega)}$
- How to measure complexity?

- How to measure error?
- Energy norm: $||v|| = |v|_{H_0^1(\Omega)}$
- How to measure complexity?
- Number of computations

Specify the methods more precisely

Banff, 2003 - p.8/30

- Specify the methods more precisely
- Admissible partitions: minimum angle condition and no hanging nodes

- Specify the methods more precisely
- Admissible partitions: minimum angle condition and no hanging nodes

Banff, 2003 – p.8/30

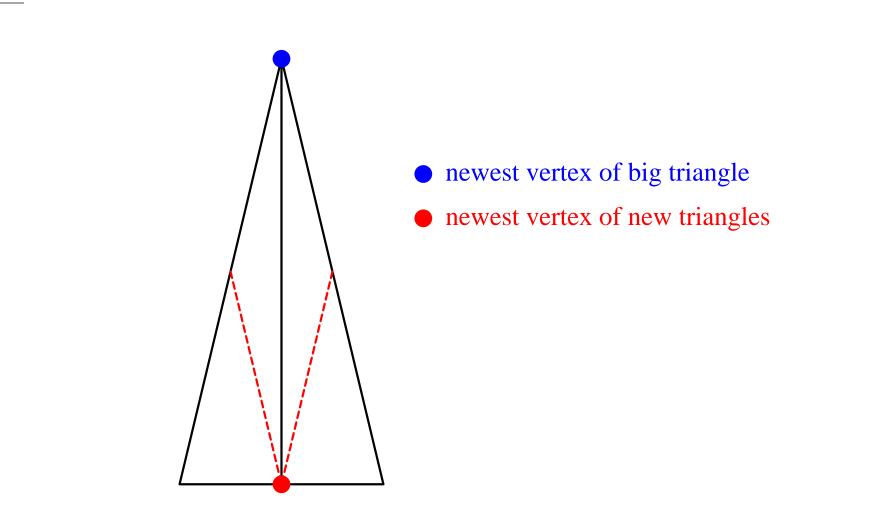
Can almost do that

- Specify the methods more precisely
- Admissible partitions: minimum angle condition and no hanging nodes

Banff, 2003 – p.8/30

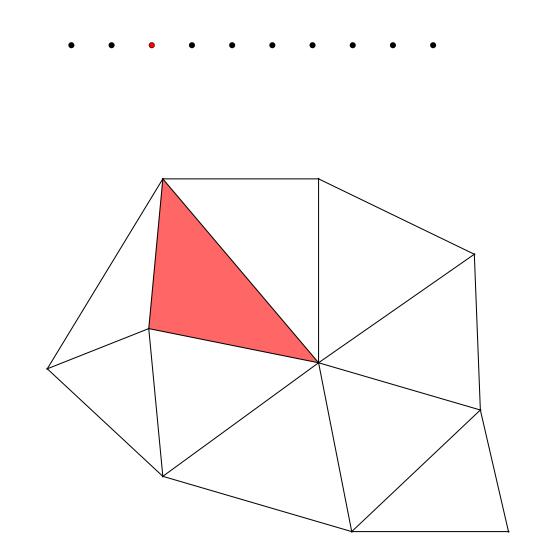
- Can almost do that
- Newest vertex bisection

Newest vertex bisection



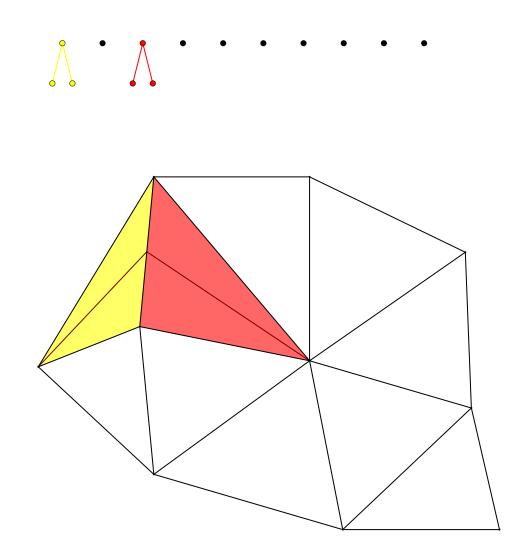
Banff, 2003 - p.9/30

Tree structure



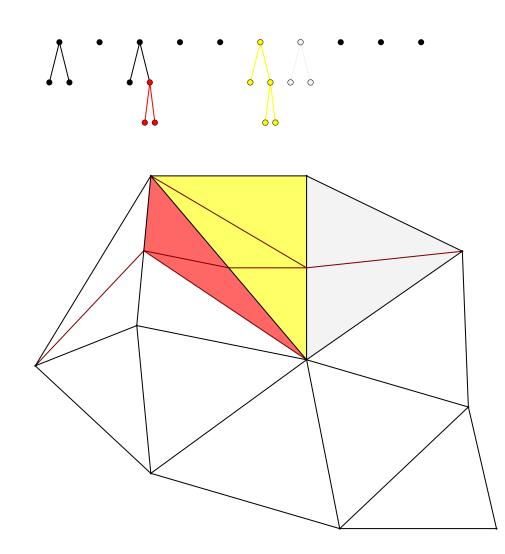
Banff, 2003 - p.10/30

Refinement grows the tree



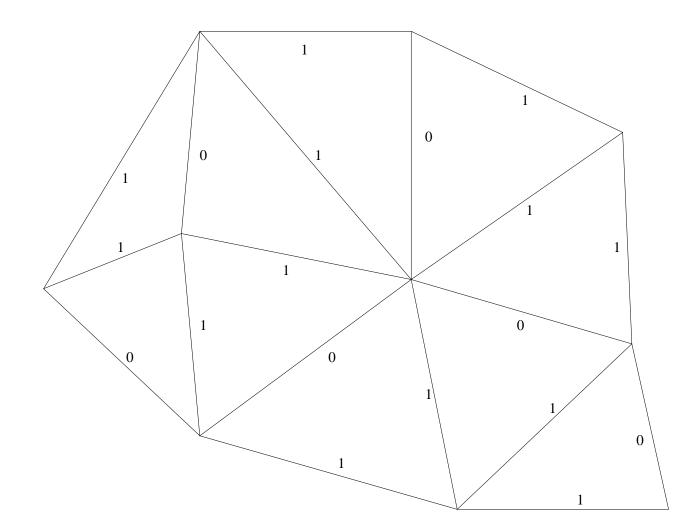
Banff, 2003 - p.11/30

Grow more



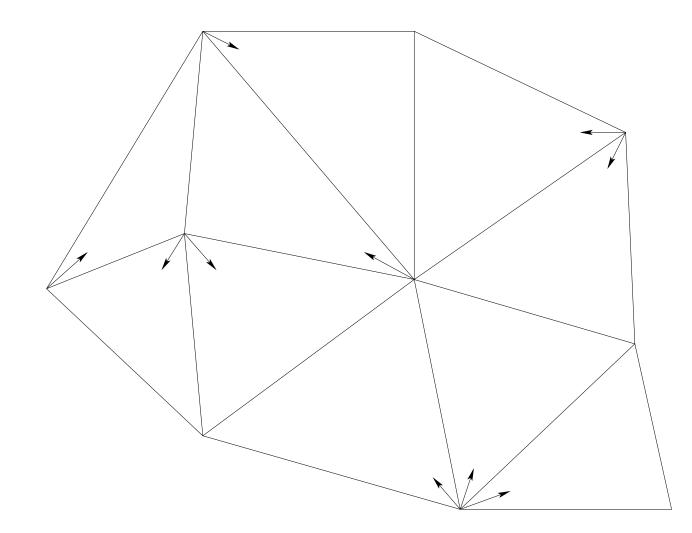
Banff, 2003 - p.12/30

Initial Labeling of edges



Banff, 2003 - p.13/30

Initial assignment of newest vertices



Banff, 2003 - p.14/30

• N(P) number of subdivisions to create P

Banff, 2003 - p.15/30

- N(P) number of subdivisions to create P
- $P_n := \{P : N(P) = n\}$

$$\sigma_n(u) := \inf_{P \in \mathcal{P}_n} \| u - u_P \|$$

Banff, 2003 - p.15/30

• N(P) number of subdivisions to create P

$$P_n := \{P : N(P) = n\}$$

$$\sigma_n(u) := \inf_{P \in \mathcal{P}_n} \left\| u - u_P \right\|$$

• Could ask Numerical Alg. perform like $\sigma_n(u)$

• N(P) number of subdivisions to create P

$$P_n := \{P : N(P) = n\}$$

$$\sigma_n(u) := \inf_{P \in \mathcal{P}_n} \left\| u - u_P \right\|$$

- Could ask Numerical Alg. perform like $\sigma_n(u)$
- For s > 0, \mathcal{A}^s is the set of all u such that

$$\sigma_n(u) \le M n^{-s}, \quad n = 1, 2, \dots$$

Banff, 2003 – p.15/30

• N(P) number of subdivisions to create P

$$P_n := \{P : N(P) = n\}$$

$$\sigma_n(u) := \inf_{P \in \mathcal{P}_n} \left\| u - u_P \right\|$$

- Could ask Numerical Alg. perform like $\sigma_n(u)$
- For s > 0, \mathcal{A}^s is the set of all u such that

$$\sigma_n(u) \le M n^{-s}, \quad n = 1, 2, \dots$$

• Equivalent to $\sigma_n(u) \le \epsilon$ with $n = C\epsilon^{-1/2}$

Banff, 2003 – p.15/30

Binev-Dahmen- DeVore Algorithm

For each $\epsilon > 0$, algorithm produces P_{ϵ} such that

- $1. \| u u_{P_{\epsilon}} \| \le \epsilon$
- 2. If $u \in \mathcal{A}^s$ then $\#(P_{\epsilon}) \leq C_0 |u|_{\mathcal{A}^s} \epsilon^{-1/s}$
- 3. Number of computations used is $\leq C_0 |u|_{\mathcal{A}^s} \epsilon^{-1/s}$

COROLLARY: The BDD AFEM beats Standard Finite Element Methods for a wide class of problems

Banff, 2003 – p.16/30

How to do Marking

Bulk Chasing: Doerfler, Morin-Nochetto-Siebert

- **1.** Uses error indicators $e(\Delta)$
- 2. Choose smallest set \mathcal{M}_k such that

$$\sum_{\Delta \in \mathcal{M}_k} e(\Delta) \ge 1/2 \sum_{\Delta \in P_k} e(\Delta)$$

3. There exists $0 < \lambda < 1$: Given target accuarcy $\epsilon > 0$ and P_k which resolves f to accuracy $\gamma \epsilon$, then either

$$|||u - u_{P_{k+1}}||| < \epsilon$$

or

$$|||u - u_{P_{k+1}}||| \le \lambda |||u - u_{P_k}||$$

Banff, 2003 - p.17/30

Binev-Dahmen-DeVore Algorithm

 $P_k \rightarrow P_{k+1}$:

1. $P_{k,0} := P_k$

2.
$$P_{k,j-1} \to P_{k,j}, j = 1, \dots, K$$
:
 $\| u - u_{P_{k,j}} \| \le \lambda \| u - u_{P_{k,j-1}} \|$

3 $P_{k,K} \rightarrow P_{k+1}$ by Coarsening

Banff, 2003 - p.18/30

Two main results

Refinements to remove hanging nodes do not inflate number of subdivisions severely

Two main results

- Refinements to remove hanging nodes do not inflate number of subdivisions severely
- How to do Coarsening

Control removal of hanging nodes

 $P_0 \to P_1 \to \cdots \to P_n$

Banff, 2003 - p.20/30

Control removal of hanging nodes

 $P_0 \to P_1 \to \cdots \to P_n$

• $\mathcal{P}_k \to \mathcal{P}_{k+1}$ uses \mathcal{M}_k and \mathcal{M}'_k

Control removal of hanging nodes

- $P_0 \to P_1 \to \cdots \to P_n$
- $\mathcal{P}_k \to \mathcal{P}_{k+1}$ uses \mathcal{M}_k and \mathcal{M}'_k
- Theorem:

 $\#(P_n) \le \#(P_0) + C(\#(\mathcal{M}_0) + \dots + \#(\mathcal{M}_{n-1}))$

Proof of Theorem

Not simple induction: we do not have

 $\#\mathcal{M}'_k \le C \#\mathcal{M}_k$

Banff, 2003 - p.21/30

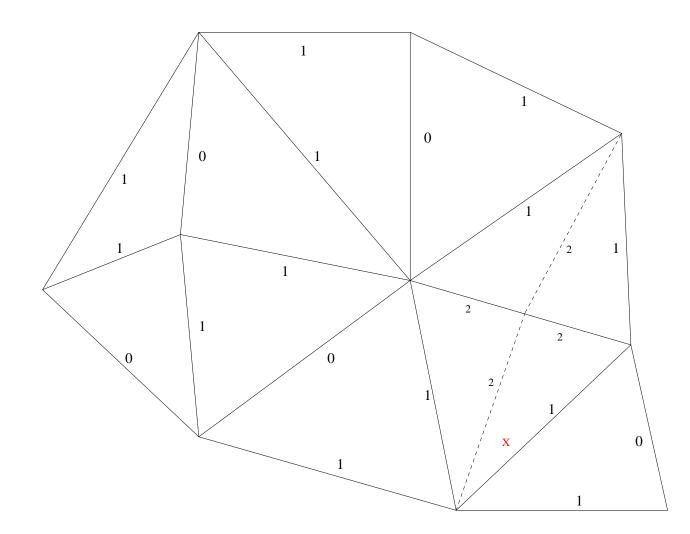
Proof of Theorem

Not simple induction: we do not have

 $\#\mathcal{M}'_k \le C \#\mathcal{M}_k$

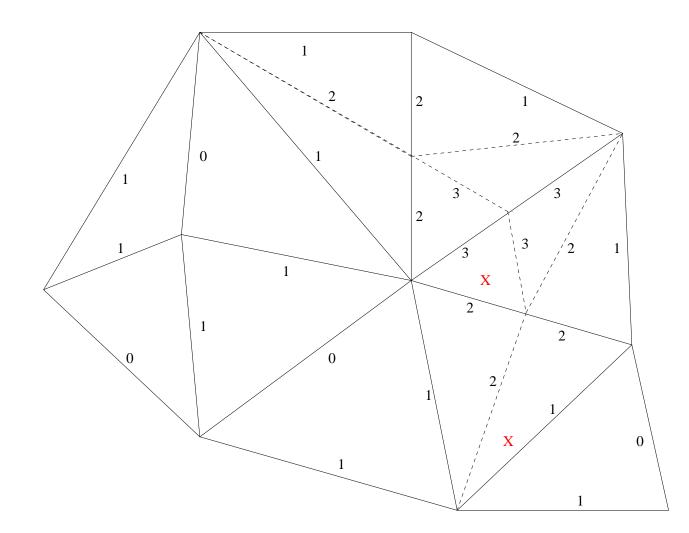
Need to look at entire history of how $\Delta \in P_n$ was created

Many refinements



Banff, 2003 - p.22/30

Many refinements



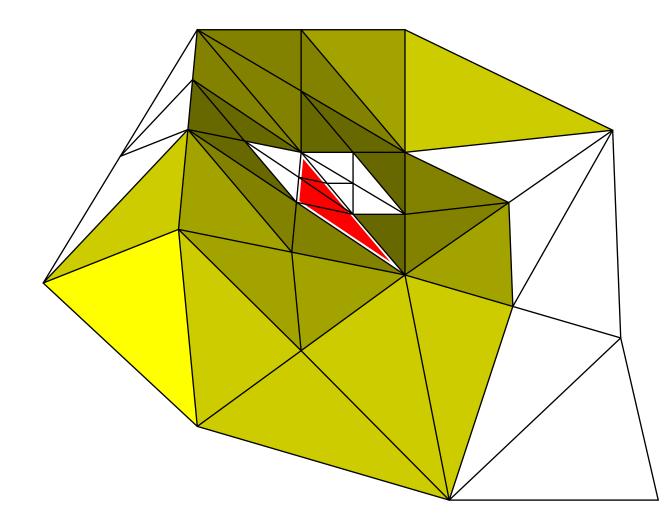
Banff, 2003 - p.23/30

Ideas:

1. Each cell in $\mathcal{M} := \bigcup_{k=0}^{n-1} \mathcal{M}_k$ is given A dollars to spend 2. $\Delta' \in P_n$ receives $\lambda(\Delta, \Delta')$ dollars from a given $\Delta \in \mathcal{M}$. Here λ depends on the generations $g(\Delta) = k$, $g(\Delta') = j$ and the distance $\operatorname{dist}(\Delta, \Delta')$

$$\lambda(\Delta, \Delta') := \begin{cases} (j - k + 2)^{-2}, & \text{dist} \le A2^{-k/2}; k \le j + 1, \\ 0, & \text{otherwise.} \end{cases}$$

Who's got the money?



Banff, 2003 - p.25/30

Ideas

3. Prove each $\Delta' \in P_n$ receives at least *B* dollars from all of the $\Delta \in \mathcal{M}$ combined.

4. The latter requires to look at how Δ' is created, i.e. the set of markings responsible for the creation of Δ' .

• $P_{k,K}$ and $u_{P_{k,K}}$ known to us

- $P_{k,K}$ and $u_{P_{k,K}}$ known to us
- $P_{k,K}$ may be too large

- $P_{k,K}$ and $u_{P_{k,K}}$ known to us
- $P_{k,K}$ may be too large
- We want a sparse approximation to $u_{P_{k,K}}$ by using a smaller set than $P_{k,K}$

- $P_{k,K}$ and $u_{P_{k,K}}$ known to us
- $P_{k,K}$ may be too large
- We want a sparse approximation to $u_{P_{k,K}}$ by using a smaller set than $P_{k,K}$

Banff, 2003 – p.27/30

Tree structure

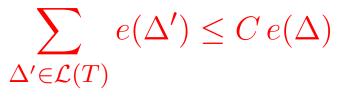
- $P_{k,K}$ and $u_{P_{k,K}}$ known to us
- $P_{k,K}$ may be too large
- We want a sparse approximation to $u_{P_{k,K}}$ by using a smaller set than $P_{k,K}$
- Tree structure
- master tree T_* : all cells Δ that can be obtained by newest vertex bisection

Tree approximation

✓ Error functional $e(\Delta) \ge 0$ defined on nodes Δ of master tree T_* -local error on cell

Tree approximation

- ✓ Error functional $e(\Delta) \ge 0$ defined on nodes Δ of master tree T_* -local error on cell
- Assumptions on e: if T is a tree with single root Δ



Banff, 2003 - p.28/30

Tree approximation

- ✓ Error functional $e(\Delta) \ge 0$ defined on nodes Δ of master tree T_* -local error on cell
- Assumptions on e: if T is a tree with single root Δ

$$\sum_{\Delta' \in \mathcal{L}(T)} e(\Delta') \le C e(\Delta)$$

• Global error for tree $T: \mathcal{L}(T)$ leaves of T

4

$$E(T) := \sum_{\Delta \in \mathcal{L}(T)} e(\Delta)$$

Banff, 2003 – p.28/30

Near best tree approximation

Best approximation

$$\sigma_n := \inf_{N(T)=n} E(T)$$

Banff, 2003 - p.29/30

Near best tree approximation

Best approximation

$$\sigma_n := \inf_{N(T)=n} E(T)$$

• Near best tree T': N(T') = n

 $E(T') \le C_1 \sigma_{c_1 n}$

Banff, 2003 - p.29/30

Near best tree approximation

Best approximation

$$\sigma_n := \inf_{N(T)=n} E(T)$$

• Near best tree T': N(T') = n

 $E(T') \le C_1 \sigma_{c_1 n}$

Theorem (Binev-DeVore): Given e, can find a near best tree with Cn computations

Banff, 2003 – p.29/30

Greedy strategy to subdivide those Δ with largest $e(\Delta)$ does not work

Banff, 2003 – p.30/30

Greedy strategy to subdivide those Δ with largest $e(\Delta)$ does not work

Banff, 2003 – p.30/30

• After each subdivision, redefine e (modified \tilde{e})

- Greedy strategy to subdivide those Δ with largest $e(\Delta)$ does not work
- After each subdivision, redefine e (modified \tilde{e})
- Modification makes $\tilde{e}(\Delta)$ smaller when previous subdivisions of the ancestor's of Δ did not decrease error much

Banff, 2003 – p.30/30

- Greedy strategy to subdivide those Δ with largest $e(\Delta)$ does not work
- After each subdivision, redefine e (modified \tilde{e})
- Modification makes $\tilde{e}(\Delta)$ smaller when previous subdivisions of the ancestor's of Δ did not decrease error much

Banff, 2003 – p.30/30

Greedy on \tilde{e}