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The Problem

−∆u = f

u = 0 on ∂Ω

Ω is a polygonal domain in IR2

1. Standard Finite Element Methods
2. Adaptive Finite Element Methods

IS THERE ANY ADVANTAGE TO ADAPTIVE METHODS
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Little Known

1998–2000: Convergence of certain AFEM

I know of no AFEM (d ≥ 2) which is proven to
outperform Standard Finite Element Methods for
problems in IRd, d ≥ 2
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Goal

More ambitious

Give the ‘mother’of all adaptive algorithms
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Galerkin Solutions

P a triangular partition of Ω

SP space of piecewise linear functions subordinate to
P vanishing on ∂Ω

uP Galerkin solution

|||u− uP ||| = infS∈SP
|||u− S|||

||| · ||| energy norm (H1-norm)
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Typical Adaptive Algorithm: Pk → Pk+1

1. Compute uPk

2. Compute error indicators e(∆), ∆ ∈ Pk. e(∆) has two
terms: (i) jumps in uPk

accross edges of ∆, (ii)
approximation of f by constants on ∆
3. Use local error indicators to mark cells Mk in Pk: bulk
chasing.
4. Refine cells in Mk to obtain P ′

k

5. Remove hanging nodes: further markings M′
k

6. Refine cells in M′
k: P ′

k → Pk+1
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Rules of the game

How to measure error?

Energy norm: |||v||| = |v|H1
0 (Ω)

How to measure complexity?

Number of computations
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Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30



Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30



Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30



Can we find "best" adaptive partitions

Specify the methods more precisely

Admissible partitions: minimum angle condition and no
hanging nodes

Can almost do that

Newest vertex bisection

Banff, 2003 – p.8/30



Newest vertex bisection

newest vertex of big triangle

newest vertex of new triangles
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Tree structure
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Refinement grows the tree
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Grow more
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Initial Labeling of edges
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Initial assignment of newest vertices
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Evaluate performance of an AFEM

N(P ) number of subdivisions to create P

Pn := {P : N(P ) = n}

σn(u) := inf
P∈Pn

|||u− uP |||

Could ask Numerical Alg. perform like σn(u)

For s > 0, As is the set of all u such that

σn(u) ≤ Mn−s, n = 1, 2, . . .

Equivalent to σn(u) ≤ ε with n = Cε−1/2
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Binev-Dahmen- DeVore Algorithm

For each ε > 0, algorithm produces Pε such that

1. |||u− uPε
||| ≤ ε

2. If u ∈ As then #(Pε) ≤ C0|u|Asε−1/s

3. Number of computations used is ≤ C0|u|Asε−1/s

COROLLARY: The BDD AFEM beats Standard Finite Ele-

ment Methods for a wide class of problems

Banff, 2003 – p.16/30



How to do Marking

Bulk Chasing: Doerfler, Morin-Nochetto-Siebert

1. Uses error indicators e(∆)
2. Choose smallest set Mk such that

∑

∆∈Mk

e(∆) ≥ 1/2
∑

∆∈Pk

e(∆)

3. There exists 0 < λ < 1: Given target accuarcy ε > 0 and
Pk which resolves f to accuracy γε,. then either

|||u− uPk+1
||| < ε

or
|||u− uPk+1

||| ≤ λ|||u− uPk
|||
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Binev-Dahmen-DeVore Algorithm

Pk → Pk+1:

1. Pk,0 := Pk

2. Pk,j−1 → Pk,j, j = 1, . . . ,K:

|||u− uPk,j
||| ≤ λ|||u− uPk,j−1

|||

3 Pk,K → Pk+1 by Coarsening
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Two main results

Refinements to remove hanging nodes do not inflate
number of subdivisions severely

How to do Coarsening
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Control removal of hanging nodes

P0 → P1 → · · · → Pn

Pk → Pk+1 uses Mk and M′
k

Theorem:

#(Pn) ≤ #(P0) + C(#(M0) + · · · + #(Mn−1))
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Proof of Theorem

Not simple induction: we do not have

#M′
k ≤ C#Mk

Need to look at entire history of how ∆ ∈ Pn was
created
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Many refinements

1

1

1

0

1

1
1

1

0

1

1

0

1

1

0 1

1

0

2

2

2

2

X

Banff, 2003 – p.22/30



Many refinements

1

1

1

1

0

1

1

0

1

1

0 1

1

0

1

12 2

2

X

X

2

2

2

2

3

3
3

3

2

Banff, 2003 – p.23/30



Ideas:

1. Each cell in M := ∪n−1
k=0Mk is given A dollars to spend

2. ∆′ ∈ Pn receives λ(∆,∆′) dollars from a given ∆ ∈M.
Here λ depends on the generations g(∆) = k, g(∆′) = j and
the distance dist(∆,∆′)

λ(∆,∆′) :=

{

(j − k + 2)−2, dist ≤ A2−k/2; k ≤ j + 1,

0, otherwise.
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Who’s got the money?
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Ideas

3. Prove each ∆′ ∈ Pn receives at least B dollars from all of
the ∆ ∈M combined.

4. The latter requires to look at how ∆′ is created, i.e. the
set of markings responsible for the creation of ∆′.
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Coarsening Algorithm

Pk,K and uPk,K
known to us

Pk,K may be too large

We want a sparse approximation to uPk,K
by using a

smaller set than Pk,K

Tree structure

master tree T∗: all cells ∆ that can be obtained by
newest vertex bisection
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Tree approximation

Error functional e(∆) ≥ 0 defined on nodes ∆ of master
tree T∗ -local error on cell

Assumptions on e: if T is a tree with single root ∆

∑

∆′∈L(T )

e(∆′) ≤ C e(∆)

Global error for tree T : L(T ) leaves of T

E(T ) :=
∑

∆∈L(T )

e(∆)
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Near best tree approximation

Best approximation

σn := inf
N(T )=n

E(T )

Near best tree T ′: N(T ′) = n

E(T ′) ≤ C1σc1n

Theorem (Binev-DeVore): Given e, can find a near best
tree with Cn computations
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Ideas in proof

Greedy strategy to subdivide those ∆ with largest e(∆)
does not work

After each subdivision, redefine e (modified ẽ)

Modification makes ẽ(∆) smaller when previous
subdivisions of the ancestor’s of ∆ did not decrease
error much

Greedy on ẽ
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