
Multivariate Inverse Problems

• imaging Cardiac or Brain electromagnetic functioning,

• fMRI,

• time series of inverse problems,

• problem of providing a regression matrix

For cardiac problem: quasi-static assumptions

y = Xβ + η, (1)

where

• β is vector of e.g. epicardial potentials,

• y is measurement vector, e.g. BSP

• X is the transfer matrix,

• η is noise.

Same as determining a regression vector in univariate multiple linear regressi on.

y = x′β + n, (2)

where

• y is an “endogenous” variable,

• x is a column vector of “exogenous” variables,

• β is the regression vector,

• “noise” n reflects imprecision of the linear dependence assumption.

• estimate regression vector β via design matrix X;

a row of X corresponds to a component of y
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Ill-conditionedX (multicollinearity)−→maximum likelihood estimate unstable:
maximize p(y|β) - requires only knowledge of p(η).

• MAP is useful: maximize p(β |y) ∝ p(y|β)p(β) - also requiring knowledge
of prior p(β).

• If β and η are zero mean Gaussian and independent, MAP = Wiener Filter
estimate,

βmap =
[
CβX

′(XCβX ′+ Cη )−1]y, (3)

• Typically given Cβ up to a scalar magnitude, and Cη up to a scalar mag-
nitude.

Univariate RR-Axiom : β, η zero mean Gaussian, and Cβ ∝ I , Cη ∝ I .

Multivariate Generali zation

Above needs to be solved for many (image) vectors (a time series of them),
or for many regression vectors, i.e., have

Y = XB +N, (4)

where the above are matrices, e.g.,

• estimate spatiotemporal epicaridal potentials

– X has more columns than rows,

• find a regression matrix B

– X has fewer columns than rows,

Multivariate linear prediction:

y = x′B+ n (5)

y is a row vector of endogenous variables, that (roughly) linearly depend on a
row vector of exogenous variables.
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How do we solve Y = XB +N in the case of Multicollinearity (ill-conditioned tx matrix)?????

Possibilities:

• Rx as a collection of independent univariate problems

– not a justified assumption

• impose autoregressive assumptions

– not a justified assumption

• Rx as a very large univariate problem

– RR or Tikhonov is wasteful! - the problem is ill-posed in space but not
time (or, within a regression vector, not across regression vectors)

Y = XB +N is equivalent to

vec(Y ) = (I ⊗X)vec(B) + vec(N).

B and N independent and zero mean Gaussian random matrices, the MAP
estimate is

vec(B)map =
{
CB[I ⊗X]′([I ⊗ X]CB[I ⊗X]′+ CN )−1}vec(Y ), (6)

where

CB ≡ E[vec(B)vec(B)′] =
[[E [B:i(B:j )′]

]]
(7)

CN ≡ E[vec(N)vec(N)′]

Generalize Univariate-RR Axiom in a non-informative way:

prior specification of features of the autocovariance matrices must be
invariant under a time transformation

in particular, prior specified features of CB and CBQ = [[E [BQ:i(BQ:j )′] ]] must
be identical and derive only from the Univariate RR-Axiom (or equivalent), e.g.,

• the derived univariate equation

yq = x′(Bq) + nq. (8)

must satisfy the Univariate RR-Axiom for any vector q of proper dimension

• E[B:iB
′
:j ] is symmetic.
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Definition 1 A random matrix is

• column-simple if

1. the cross-covariance matrix of any two columns is symmetri c

2. there is a unit trace matrix such that the autocovariance matrix of
every linear combination of columns of the random matrix is propor-
tional to this unit trace matrix

• row-simple if its transpose is column-simple,

• simple if it is both row-simple and column-simple.

Lemma 1 If a random matrix B is column-simple then its column cross-covariance
matrices are proportional to its column autocovariance matrices.

PROOF: Given some column-simple random matrix B, let A be the unit trace
matrix to which the autocovariance matrix of any linear combinations of its
columns is proportional. Then the sum of the i-th and j -th columns of B will
have autocovariance proportional to A. Since the cross-covariance matrices are
symmetric,

E [(B:i +B:j )(B:i +B:j )′] = E[B:i(B:i)′] + E[B:j (B:j )′] + 2E[B:i(B:j)′] ∝ A.
Since the first and second matrices after the first equality above are proportional
to A, it follows that the third matrix after the first equality is also proportional
to A. QED

Theorem 1 A random matrix is simple if and only if it is either row-simple or
column-simple.

PROOF: By Lemma 1, column-simple B has column autocovariance and cross-
covariance matrices proportional to the same unit trace matrix. It is sufficient
to show that a random matrix B has proportional column autocovariance and
column cross-covariance matrices if and only if its row autocovariance and row
cross-covariance matrices are proportional to each other. Thus, suppose the row
autocovariance and row cross-covariance matrices of a random matrix B are
proportional to each other. Let C be a matrix to which the row autocovariance
and cross-covariance matrices of B are proportional. Let R be the matrix whose
(i, j) entry is the proportionality scalarrelating C to the cross-covariance matrix
of the i-th and j-th rows of B (it is understood that the (i, i) entry of R is the
proportionality constant between C and the autocovariance matrix of the i-th
row of B). Then

(E [(Bi:)′Bj:])′ = E[(Bj:)′Bi:] = (RijC)′ = RijC = RjiC,

4



since C is necessarily symmetri c (being proportional to an autocovariance ma-
trix). Thus, R is seen to be symmetric. By definition of C and R, we have

E[(Bi:)′Bj:] = RijC = E[(BiuBjv)u,v ] = (RijCuv)u,v.

Thus, E[(BiuBjv)] = RijCuv. Hence,

(E[(BiuBjv)])i,j = E[B:u(B:v)′] = (RijCuv)i,j = RCuv .

Thus, the cross-covariance matrices of any two columns of B, as well as the
column autocovariance matrices, are all proportional to R. Hence, the column
autocovariance and column cross-covariance matrices of B are proportional to
each other. A similar argument demonstrates that if B has proportional column
autocovariance and column cross-covariance matrices, then its row autocovari-
ance and row cross-covariance matrices are proportional to each other. The
theorem then follows. QED

Generalization of Univariate Axioms in a “non-informative” way leads to the
specification that B is simple.

Multivariate Transitio n Axiom (MTA): B and N are independent simple
random matrices.

MTA is sufficient to provide a complete treatment of the Univariate
to Multivariate inverse problem transition

To deal with the multivariate setting, there are two very desirabl e properties
that B and N could satisfy. The first is

Definition 2 An (m×k) random matrix M is separable if there exist (m×m)
matrix F and (k × k) matrix G such that

E[vec(M )⊗ vec(M)′] = F ⊗G.

Separability

• implies splitting of the autocovariance matrix into a portion defining the
“column prior” G and a portion defining the “row prior” F

• without loss, G can be assumed to have unit trace (the unknown scalar
amplitude can be transfered to matrix F in the decomposition) −→,

• thus, the column prior would be provided fully by the univariate axiom
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Secondly,

Definition 3 An (m × k) random matrix M is isotropic if for any symmetri c
positive-definite (k × k) matrix Z there is a scalar γz such that

E[β′1Zβ2] = γzE [β ′1β2],

where β1,β2 are any two linear combinations of columns of M .

i.e., all directions look the same in the space spanned by the columns of M

Isotropy implies that expressi ons like E [B ′B] (the row prior of CB - assuming
B is separabl e) can be derived from expressions like E[B′(X ′X)B], which can
be estimated from the data in an obvious way.

Happily, a simple random matrix is both separable and isotropic.

Theorem 2 If B is simple, then

CB = E[vec(B)⊗ vec(B)′] =
E [B ′B]⊗ E[BB ′]

E[‖B‖2]
. (9)

PROOF: Note that the vector outer product in (7) is a Kronecker product, so
that the first equation in (9) follows. Since E[BB ′] is the sum of the autoco-
variance matrices of each of the columns of simple B, there is a scalar γi,j such
that

E[B:i(B:j)′] = γi,jE[BB ′]. (10)

Taking the trace of both sides, it follows that E[(B:i)′B:j] = γi,jE[‖B‖2]. Thus,

E [B:i(B:j )′] =
E[(B:i)′B:j ]
E[‖B‖2]

E[BB′]. (11)

Now note that CB can be written in block matrix form as

CB =
[[
E [B:i(B:j )′]

]]
. (12)

Equations (11) and (12) imply (9). QED
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Theorem 3 For any nonzero (p × m) matrix X, and simple (m × k) random
matrix B, the autocovariance matrix of vec(B) is given by

CB =
E[B′B] ⊗ E[BB′]
I ¯ E[BB′]

=
E[B′(X ′X)B] ⊗ E[BB′]

(X ′X)¯ E [BB ′]
. (13)

PROOF: We have

(E[B ′(X ′X)B])ij =
∑
u,v

(X ′X)uvE[BuiBvj ] (14)

=
E[(B:i)′B:j ]
E[‖B‖2]

∑
u,v

(X ′X)uv (E[BB ′])uv (15)

=
E[(B:i)′B:j ]
I ¯ E[BB ′]

((X ′X) ¯ E[BB′]) , (16)

where (14) follows from simple matrix multiplication and rearrangement of
terms, and (15) follows from substituting into (14) the (u, v) entry of the matrix
on the left-hand-side of (11) as given by the right-hand-s ide of (11). Equations
(16) and (9) imply (13). QED

Corollary 1 A simple random matrix is separable and isotropic.

PROOF: Equation (9) implies separability, and (16) implies isotropy. QED

The above allow one to express CB in terms of the “measurement” expectations.
That is,

Corollary 2 In the context of (4),a Univariate Axiom and MTA imply that the
autocovariance matrix of vec(B) is given by

CB = E [B ′B]⊗ Rβ =

(E[Y ′Y ] − E[N ′N ]
)⊗Rβ

(X ′X) ¯Rβ , (17)

where Rβ is the unit trace symmetri c matrix given by the Univariate Axiom.

PROOF: Since E [BB ′] is the sum of the autocovariance matrices of the columns
of B, it follows that Rβ = E[BB ′]/trace(E[BB′]). The first equality in (17) then
follows from the first equality in (13) and the identity

trace(E[BB ′]) = I ¯ E[BB′].

Dividing the numerator and denominator on the right-hand-s ide of the second
equality in (13) by trace(E[BB ′]), we obtain

CB = E[B ′B] ⊗Rβ =
E[(XB)′XB] ⊗Rβ

(X ′X) ¯Rβ . (18)
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Equation (17) then follows from substituting (Y −N) forXB on the right-hand-
side of the above, and noting that E[N ′(Y − N )] and E[(Y − N)′N ] are zero
matrices since the entries of N are uncorrelated with the entries of B. QED

Since MTA specifies that N is simple, we also have

CN = E[N ′N ] ⊗Rη , (19)

where Rη is the unit trace matrix supplied by the given univariate axiom (e.g.,
proportional to the identity matrix for the Univariate RR-Axiom or Univariate
TR-Axiom).

Thus, given that B and N are simple and independent (MTA),

• the requisite ingredients for estimation of B are supplied by E[Y ′Y ],
E[N ′N ], and the univariate regularization matrices Rβ and Rη (see (17)).

• use available data to estimate E[Y ′Y ], perhaps up to some set of regulariza-
tion parameters (whose values are governed by cross-validation principles,
since use of a data-generated autocovariance matrix would imply a data
reuse method).

vec(B)map =
{
CB[I ⊗X]′([I ⊗ X]CB[I ⊗X]′+ CN )−1}vec(Y )

CB = E [B ′B] ⊗Rβ =

(E[Y ′Y ] − E[N ′N ]
)⊗Rβ

(X ′X)¯ Rβ

Complexi ty reduction

Y = XB +N is equivalent to

Y:i = XB:i +N:i, (20)

i = 1, . . . , n.

• The Standard Method: assume these equations are indep endent - low
complexity

• this implies that CB and CN are block diagonal, i.e. E[Y ′Y ] ∝ I
• In our approach, we do not impose this assumption.
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Suppose matrixQ simultaneously diagonalizes both E[(XB)′XB] and E[N ′N ]
(and hence E[Y ′Y ]). Then we have

Y Q = X(BQ) +NQ

with block diagonalCBQ and CNQ, i.e., a the sequence of independent equations

Y Q:i = X(BQ):i +NQ:i, (21)

i = 1. . . . , n.

In this case,

• (BQ:k)map is obtained from isolated treatment of the k-th equation of
sequence (21), becoming the k-th column of (BQ)map .

• The requisite Q is not orthogonal in general - which means that application
of Q−1 to provide

Breg = (BQ)mapQ
−1, (22)

can entail an unstable amplification of error.

• For example, suppose (BQ)map−BQ = ε, with E[ε] = 0 and E[‖ε‖2] = α2I .
Then

E[‖(BQ)mapQ
−1 −B‖2] = E[‖εQ−1‖2] = α2‖Q−1‖2

However,

the requisite Q is orthogonal if E[N ′N ] ∝ I (e.g., if the time series
noise is white Gaussian.

In this setting,

• we can write
E[N ′N ] = σ2I.

• If Q is the orthogonal matrix diagonalizing E[Y ′Y ], then by (17) we have
that CBQ and CNQ are block diagonal,

• thus, the equations of sequence Y Q:i = X (BQ):i +NQ:i are independent.
Hence, they can be individually regularized to find estimates of BQ:i ,
i = 1, . . . , n.

• These estimates are collected as the columns of the regularized solution
estimate (BQ)map, and the estimate of B then becomes (BQ)mapQ

′.
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Note: assuming X is noiseless, the component of any column of Y that is not in
the range of X cannot be fit by any column of any candidate for the regression
matrix B. Evidently, the latter component must represent noise. Thus we can
replace (4) by

X(X ′X)†X ′Y = XB +N. (23)

(if X is surjective then X(X ′X)†X ′Y = Y ).

The requisite Q is orthogonal even under the additional complication that
there is white Gaussian noise in the transfer matrixX, as well as white Gaussian
measurement (electronic) noise in the data matrix Y .

[[[ Thus, suppose
Y = (X +N2)B +N1. (24)

The total noiseN = N1 +N2B is not independent of the signal B. Suppose both
N1 and N2 are composed of zero mean independent and identically distributed
Gaussian random variables and B,N1, N2 are independent of each other. Then

E[N ′N ] = E[N ′1N1] + E [B ′N ′2N2B] = σ2
1I + σ2

2E [B ′B]. (25)

But
E[Y ′Y ] = E [(XB)′XB] + σ2

1I + σ2
2E[B ′B]. (26)

From isotropy, E[(XB)′XB] is proportional to E [B ′B]. Thus, (26) implies that
E[B ′B] is a linear combination of E[Y ′Y ] and I . This and (25) imply that
E[N ′N ] is also linear combination of E[Y ′Y ] and I . Thus, if Q is the orthogonal
matrix diagonalizing E[Y ′Y ], then (as in the prior paragraph) the individual
equations of (21) are independent of each other, and we again have the com-
plexity reduction. ]]]

But

• if there is transfer matrix noise it is no longer true that the component
of Y outside the range of the noisy transfer matrix is necessarily entirely
noise. In this case, it does not immediately follow that it is desirabl e to
substitute (23) in place of (4).
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A Stochastic SVD

Thus, in the case of Gaussian measurement noise, and possibly Gaussian
transfer matrix noise, Corollary 2 implies that three ingredients are used to
efficiently fashion the estimate of B from Y = XB +N :

• An orthogonal transform Q which provides the sequence of indep endent
equations {Y Q:i = X(BQ):i + NQ:i},

• a matrix Rβ (of unit trace) proportional to the autocovariance matrix of
any linear combination of columns of B - thereby constituting a regular-
ization matrix for any equation of the sequence in the context of Tikhonov
regularization,

• a set of regularization parameters for the above equation sequence.

These three ingredients constitute a kind of “stochastic” singular value decom-
position relevant to simple random matrices.

Corollary 3 For Y +Ny = (X+Nx)B, with Gaussian Ny such that E [N ′yNy ] =
σ2
yI, and Gaussian Nx such that E[N ′xNx] = σ2

xI, we have

B = PDQ′, (27)

where Q is the orthogonal matrix diagonalizing E[Y ′Y ], random matrix P is
such that E[vec(P)(vec(P))′] = I ⊗ Rβ with Rβ of unit trace, and diagonal D
has diagonal elements {di} such that

d2
i =

ψ2
i − σ2

y

X ′X ¯Rβ + σ2
x

, (28)

where {ψ2
i } is the set of eigenvalues of E[Y ′Y ].

PROOF: Let Q be the orthogonal matrix diagonalizing E[Y ′Y ]. As indi-
cated in the prior discussi on, BQ is an isotropic random matrix whose column
autocovariance matrices are proportional to unit trace Rβ, and whose column
cross-covariance matrices are zero. Thus, BQ = PD, where E[vec(P)(vec(P ))′] =
I ⊗ Rβ, and D is diagonal. From (13), and (26),

E[B ′B] =
E [Y ′Y ] − σ2

yI

X ′X ¯Rβ + σ2
x

,

so the squares of the proportionality constants (diagonal entries of D2) are given
by (28). QED
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Y Q:i = X(BQ):i +NQ:i,

i = 1, 2, . . . , n

• For the transfer matrix noise case, the individual equations (21) can be
approached by regularized total least square methodology, however, for
the case of zero-order Tikhonov regularization this adds nothing [Golub
et al, 1999].

• Since E[Y ′Y ] is not given, we take Q to be the matrix of eigenvectors of
Y ′X(X ′X)†X ′Y , unless there is transfer matrix noise (i.e., Nx = 0), in
which case we take Q to be the matrix of eigenevectors of Y ′Y .

• A sequence of “regularization parameters” derives from the diagonal en-
tries of D. Thus, for the i-th equation of sequence (21), the signal auto-
covariance matrix is d2

iRβ, and by (25) the noise autocovariance matrix
is σ2

yI + σ2
xd

2
iRβ. In the setting where E[Y ′Y ] is estimated from the data

as Y ′Y , they are the regularization parameters asso ciated with a max-
imum likelihood choice for the autocovariance matrix. However, this is
a “data re-use” method, and thereby sub ject to modifications based on
cross-validation (or other) principles.

• B = PDQ can be considered to be a stochastic generalization of the SVD
relevant to isotropic random matrices. As with other generalized SVDs
(e.g., Product and Quotient SVDs, associated with equations of the form
Y = XB), this “Stochastic SVD” is associated with its own equation,
the noise-corrupted (Y + Ny ) = (X +Nx)B, where Nx and Ny are white
Gaussian.

• If there is some a priori temporal information available, so that one
is supplied with a prior nontrivial estimate of a matrix proportional to
E[B′B], then Q should be taken as the orthogonal matrix diagonalizing
this latter matrix estimate, rather than the matrix diagonalizing the data-
derived Y ′Y or Y ′

(
X(X ′X)†X ′

)
Y . Recall that Y ′Y is only an estimate

of E [Y ′Y ]. Random matrix Y is ultimately dependent on random ma-
trix B via Y = XB + N . In particular, note that (13) and (17) imply
that E[B′B] is proportional to (E[Y ′Y ] − E[N ′N ]). Thus, a prior favored
estimate of E [B ′B] could more accurately reflect the relevant eigenvectors.
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Appendix

W ¯Z = trace[W ′Z]

CB =
E[B′B]⊗ E[BB ′]
I ¯ E[BB ′]

=
E [B ′(X ′X)B]⊗ E[BB ′]

(X ′X)¯ E [BB ′]

The matrix scalar product W ¯Z ≡ trace(W ′Z) has a useful role in making
evident the cancellation property of simple random matrices (equation (13)).
Note that W¯Z requires thatW and Z have identical dimensions. The standard
matrix product W ′Z requires only that the column dimension of W and Z be
the same, while W ⊗Z makes no demands whatever on the respective number
of either rows or columns. Thus, we have a hierarchy of matrix products.

The following properties of ¯ are easily derived (we assume the matrices
have compatible dimensions wherever required in the following expressi ons):

1. W ¯Z = vec(W)′vec(Z),

2. W ¯Z = Z ¯W , (commutivity),

3. (W + Z)¯R = W ¯ R+Z ¯R, (distributivity)

4. W ¯Z = W ′¯ Z ′,
5. W ¯W = ‖W ‖2 = I ¯ (WW ′),

6. W ¯Z = (V −1)′WU ′ ¯ V ZU−1,

7. (WZ) ¯R = Z ¯ (W ′R),

8. (W ⊗ Z)¯ (R⊗ S) = (W ¯R)(Z ¯ S),

9. if W and Z are symmetric non-negative definite, W ¯Z is the sum of the
(generalized) product singular values of the pair (W,Z).

#1 through #7 are immediate. #9 derives from the existence of a matrix
X such that W = XDwX ′, Z = (X−1)′DzX−1, where Dw, Dz are diagonal
(guaranteed from the Product SVD). Demonstration of #8 derives from the
definition of ¯ and three well-known identities concerning Kronecker products
(transpose of a Kronecker product is the Kronecker product of transposes; the
mixed product rule; the trace of a Kronecker product is the product of the
traces). Thus,

(W ⊗Z)¯ (R⊗ S) = trace
(
(W ′⊗ Z ′)(R⊗ S)

)
= trace

(
(W ′R)⊗ (Z ′ ⊗ S)

)
= trace(W ′R)trace(Z ′S)
= (W ¯R)(Z ¯ S).
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