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Foreword by the PIMS Director

The Fifth Annual PIMS Industrial Problem Solving Workshop was hosted by the Department
of Mathematics at the University of Washington in Seattle, June 18-22, 2001. For a full week
more than 90 participants worked intensely on six problems posed by industrial companies from
across North America.

The six problems came from Microsoft Research, Firebird Semiconductors, Communications
Security FEstablishment, Alberta Energy Company, IBM, and Algorithmics.

PIMS looks forward to the next Industrial Problem Solving Workshop which will be held at
the University of British Columbia in Vancouver next year.

Special thanks go to Jack Macki from the University of Alberta who edited these proceed-
ings. I would also like to thank all the organizers and mentors.

Dr. Nassif Ghoussoub, Director
Pacific Institute for the Mathematical Sciences
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Preface

The Fifth Annual PIMS Industrial Problem Solving Workshop, the IPSW-5, took place on the
University of Washington campus from June 18 through 22, 2001. This was the first major PIMS
event south of the border, and reflects the recent inclusion of the University of Washington as a
member of PIMS. It was a great pleasure for our University to host this important workshop and
many of our own students took advantage of the opportunity to participate in a very stimulating
and educational program.

In all, about 100 people registered,including 58 graduate students who had taken part in the
Graduate Modeling Camp at the University of Victoria the week before. Faculty from several
universities around the world brought to the workshop a broad range of mathematical expertise.
Most of the industrial participants were able to stay all week, and were actively involved in
working with their groups. From their standpoint too it appeared to be a great success.

This was my first involvement in an IPSW or any study group of this nature, and I was
very impressed by the enthusiastic manner in which all participants attacked the problems, and
with the progress made. While I played the role of local organizer along with Tatiana Toro,
our PIMS Site Director, I mostly worried about mundane aspects such as providing sufficient
quantities of coffee and chalk (mundane but crucial). Most of the mathematical organization
was carried out by an experienced crew of IPSW veterans,ably led by Marc Paulhus as the
primary facilitator during the week.He and the rest of the Organizing Committee (Chris Bose,
Huaxiong Huang, lan Frigaard, and Keith Promislow) did a great job in lining up challenging
industrial problems and knowledgeable mentors, insuring an interesting variety of problems for
participants to choose from.

Chris Bose, who organized the Graduate Modeling Camp at UVic the week before, was also
heavily involved in the logistics. Although UW and UVic are only about 150 kilometers apart as
the crow flies, they are separated by both Puget Sound and an international border. Managing
the transportation and diplomatic needs of 100 participants with dozens of nationalities was no
small feat, but all went smoothly thanks to the efforts of Marc, Chris, and the PIMS staff.

Locally at UW, Tatiana and myself were greatly aided by Mary Sheetz and others in the
Mathematics Department office. Michael O’Connell and his staff at the Mathematical Sciences
Computing Center provided computer lab space and support for the participants. The computers
were heavily used around the clock by the end of the week as results were computed and
presentations prepared.



Finally, I would like to thank Jack Macki for taking on the substantial task of editing these
proceedings. This traditionally falls to the local organizer, but with my sabbatical about to start
Jack was kind enough to take pity on me and apply his expertise to insure that this excellent
set of proceedings would appear in a timely manner.

Randy LeVeque

Department of Applied Mathematics
University of Washington

Seattle, Washington



Acknowledgments

e The 5 report writers devoted a staggering amount of their own time to putting the results
of the workshop into a readable form. They were:

Nancy Ann Neudauer: “The Disc Layout Problem”

C. Sean Bohun: “Modelling InSb Czochralski Growth”

Brian Alspach: “Adapting Search Theory to Networks”

Randall Pyke: “An Automated Algorithm for Decline Analysis”

Alan King: “Web Hosting Service Level Agreements”
Selly Kane, Viktoria Krupp & Jack Macki: “Monte Carol Methods
in the Integrated market and Credit Risk Portfolio Model”

Jack Macki, Editor,

Department of Mathematical Sciences,
University of Alberta,

Edmonton, Alberta T6G 2G1
jmacki@gpu.srv.ualberta.ca

Fax: (780) 492-6826, Phone: 492-5725



4
Pimslips

When people are working intensely, they sometimes say things that, in retrospect,
are amusing or downright hilarious. Here are some from IPSW5:

e “Yes, take photographs please” (during a technology-challenged talk)
John DeTreville

e Tim: “They shipped my stuff to Capetown”
John: “How did they ship it?;;
Tim: “By ship”
Tim Myers & John Stockie

e “In 1D volume is not a problem”
Victoria Krupp

e Marc: “Is that micro-seconds or milli-seconds?”
Nancy: “Milliseconds.”
Marc: “Not Microseconds?”
Nancy: “Microsoft-seconds”
Marc Paulhus & Nancy Ann Neudauer

e “Probability zero means it is as unlikely as you like”
Theodore Kolkohlinkov

e “That is not constant enough”
Tan Friggard

e John: “How long is this simulation going to take? To the end of the world?”
Alex: “For us the end of the world is Thursday”
John Chadam & Alex Kreinin

e “It is /2 but it is really 2”
Nancy Ann Neudauer

e “Ta(y) is an unknown known function”
Rex Westbrook

e “So I should expect some unexpected slides”
Nancy Ann Neudauer

e ): “Who is your roommate?”
A: “I paid extra for a single room... you never know who you are going to end up sleeping
with”



e Sean: “I'm not sure if the surface is wetting itself”
J.F. “I'm doing it by hand. I'm trying to shoot manually”
Sean: “We have all done that”
Sean Bohun & J.F. Williams (winner)

e “ais really small... less than 1/e where € is really really small”
Huaxiong Huang






Chapter 1

The Disk Layout Problem

Brian Corbett!, Gregory Dresden?, Nancy Ann Neudauer®, Marc Paulhus?,
Report prepared by Nancy Ann Neudauer

We can organize data on a personal computer’s hard drive according to many different data
strategies resulting in different performances due to disk latencies, consisting of both rotational
latency and seek time. Rotational latency is a physical characteristic of the disk and motor, so
we focus on the problem of storing data in a manner that optimizes the seek time of the data.
The optimization of this problem will result in better performance for users.

1.1 Introduction

Imagine that we keep a daily log of the files that our computer reads from its hard disk. For
most computer users the logs of one day compared to the next may be very similar. For example,
opening up a commonly used program may require access to the same files in the same order
every time that event occurs. We shall call such a sequence of files a trace. Our daily log is
composed of a large number of different traces. However, there is good reason to belive that
some traces will appear largely unchanged in our log from day-to-day and perhaps multiple
times in a single daily log.

Now imagine that our disk is a random ad-hoc jumble of files in no particular order (this
should not be too hard for most of us to imagine). Our computer, performing the tasks we ask
of it, may have to work very hard to access the files in the order that they are required. If files
that are adjacent in a common trace are stored far apart on the disk then we should expect that
our disk performance will be poor. On the other hand, if we rearranged our disk in such a way
that those files were close together, we should expect improved performance.

This is the essence of the problem Microsoft posed to the PIMS 5th Industrial Problem
Solving Workshop. Given a set of traces that are expected to be representative of common use,
we must rearrange the files on the disk so that the performance is optimized.

! University of Manitoba

2Washington and Lee University

3Pacific University

4Pacific Institute for the Mathematical Sciences
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Some immediate observations are clear. One is that all the parts of a single file should be
contiguous (assuming that the computer only has uses for complete files). A second is that it
can not help our disk performance to have gaps of data on our disk; gaps can only increase the
distances between files.

Programs called disk defragmenters use these simple principles to rearrange data records on a
disk so that each file is contiguous, with no holes or few holes between data records. Some more
sophisticated disk defragmenters also try to place related files near each other, usually based
on simple static structure rather than a dynamic analysis of the accesses. We are interested in
more dynamic defragmentation procedures.

We first consider a 1D model of the disk. We then look at the results from an investigation
of the 2D disk model followed by a discussion of caching strategies. Finally we list some of the
complications that may need to be addressed in order to make the models more realistic.

1.2 1D Disk Layout Model

One way to model the disk is to imagine it as having only a single (circular) track, with blocks
on that track labeled By, By, ..., B, where block B, is followed by block By, then block By, and
so on, creating a cycle. The files, say Dy, D1,... Dy, are placed inside these blocks. The head
sits in a fixed location and the disk spins (in one direction, for our purposes counterclockwise).
The head can read the file that is directly beneath it. See Figure 1.1.

head
I
DEI DS D1 DZ
BEI E1 BZ BS Bd Bﬁ BE B? BB BS

Figure 1.1: A one-dimensional array of fixed-sized blocks.

Our task is to rearrange the files that are assigned to each block to minimize the cost on a
given trace. The cost is simply a count of the number of blocks which must pass under the head
while it is reading the given trace.

Suppose that the trace in question is { Dy D1 Dy D3}. Then from the starting position shown
in Figure 1.1, the cost is 21. Is there a better layout that would reduce the cost?

In this case, of course, the solution is obvious. Since there is only one trace and each file
appears exactly once, the optimal data layout is the trace itself, as shown in Figure 1.2. The
cost of executing the trace is now just 3.

When there is more than one trace or when the same file appears multiple times in the
same trace then the situation gets more complicated. As a model for this scenario, consider a
complete directed graph where the nodes are the files and each directed edge (Fy, Fy) is assigned
a cost function based on the number of times that file F} is followed by file F5 in the given trace.
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Figure 1.2: An optimal data layout for {Dy Dy Dy D3} trace

A good layout to consider is the maximal tour on this graph. Thus we can see that the problem
is closely related to the famous NP-hard traveling salesman problem (see, for example, Cormen,
Leiserson and Rivest, Introduction to Algorithms, MIT Press (1995), pp. 969).

This 1D disk model is not a particularly accurate representation as most disks consist of a
number of concentric tracks, sometimes on both sides of the disk, and sometimes with a platter
of disks stacked one atop the other. However, it is an unfortunate reality that most disks in use
today do not reveal their precise geometry to the operating system. Instead, they reveal a 1D
geometry not unlike our simple linear model. In this common case the 1D model is the only
option available.

We now describe some heuristic methods we use to investigate the problem.

The following assumptions are made:
1. All files are the same size and will fit exactly in one block.

2. The disk is completely packed. That is, there are no empty blocks (this is relaxed slightly
by necessity in Section 1.3).

3. The disk spins at a constant rate.

4. There is a cache of size one. That is, if file F7 has just been read and the trace asks to
read F}] again, then there is no cost for this. More on caching will be discussed in Section
1.4.

5. Every file appears on the disk exactly once. It may seem tempting to duplicate commonly
used files to improve disk performance. However, if overused this technique will quickly
fill a disk. Also, the time required to update or change a file will increase.

1.2.1 1D Disk Layout Results

Consider a set of fixed traces, each consisting of a certain number of files. We seek a new
arrangement, of these blocks such that the cost function, applied to each trace, is reasonably
low.

If we had world enough and time (to quote Andrew Marvell) we could look at every possible
permutation of blocks, calculate the cost of each trace on each permutation, and thus find the
best arrangement. This is obviously impractical, so we need to come up with a faster way to
calculate the cost, and a better way to find a good arrangement of blocks.
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Let us first define and discuss the adjacency matrix, which gives us a quick way of judging
the worthiness of a particular configuration of the blocks. We define A to be an n X n matrix,
initially all entries 0, and indexed by the blocks in the trace. For each consecutive pair of blocks
i,7 in the traces, we increment the corresponding matrix entry A;; by 1. So, given the trace
T = {d,c,b,a,d,b,c,a,a,d,c,a,d,d,d,b,a,c,b,a}, and with rows and columns labelled in the
order a, b, ¢, d, the matrix A is

a b c d
a 1 3
b|3 . 1
c|2 2 .
d 2 2
We replace the diagonal entries with “.” both for ease of reading and to illustrate that there is

no cost associated with accessing the same block twice in a row.

Clearly, the initial block configuration of a,b,c,d for the trace T" (with a cost of 41) is far
from optimal here: we see from our matrix that a is never followed by b, nor is ¢ followed by
d (as A.p = Ac.a = 0). However, the pair b,a occurs three times, as A,, = 3. We seek a
block configuration that gives an adjacency matrix with large numbers on the upper diagonal
and small numbers on the lower diagonal, thus indicating that commonly-occuring (respectively
rarely-occuring) pairs of blocks in the trace T will actually be adjacent (respectively, far apart)
in the new block configuration. In this case, a better configuration might be d,c, b, a with
adjacency matrix:

o,

DO DN O

oo T
DO DO

The cost is easily calculated to be 23, a nice improvement.
We notice that one advantage of the adjacency matrix is that it allows us to quickly calculate
the cost of a particular configuration of blocks. The explicit formula is

n—1 n

cost = E E i+ Aj1t(i+i—1 modn)

i=0 j=1

Now that we can measure the effectiveness of a particular permutation of blocks, let us
discuss how to find a configuration that reduces the cost. First, we employ a greedy algorithm
that searches for the pair of blocks that occur together most often (say, = and y) and places
them together in locations 1 and 2. Then, we find which block follows y most often, and we
place it in block 3, and so on. This is an extremely fast and efficient method, and in practice
this can reduce cost by as much as 25%, depending on the initial conditions. Second, we use
the method of simulated annealing, in which we randomly permute pairs of blocks, re-calculate
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the cost, and decide whether or not to keep the new configuration. If the cost is lower, then we
keep the new layout; if the cost is higher, we evaluate e~%*, with d = the difference in cost and
t = the current temperature, a value which initially is quite large but decreases at each step.
If the e~%* is greater than a random number between 0 and 1, we admit the new, higher-cost
configuration, but if not, we retain the original layout. Early in the algorithm, the temperature
t is set to be quite hot, and so a fair amount of randomness is tolerated; as the temperature is
lowered and the algorithm cools down, the layout settles on a nice configuration of low cost. This
process is repeated the temperature is again raised, then cooled down, and a configuration of
low cost is found.

Together, these methods are an efficient way to find a cost-effective ordering of disk blocks
that, we hope, will speed up access time for the user. As an illustration, we ran a simulation
with n = 100 blocks, and five traces of length 500 each. The traces were mostly random, except
that in an attempt to simulate a typical log of disk access activity there was a one-in-three
chance that a particular number, &k, would be followed by 2k + 1 mod n. Thus, the simulation
represented about 2500 different visits to the (10000 total) pairs of blocks on the disk, meaning
that almost every pair i, j occurs no more than three times (and most pairs happen once or not
at all). The cost for the initial disk layout was 121505. Application of the greedy algorithm
brought the cost down to 109027, and simulated annealing brought it down further to 90929,
for a total savings of about 25%.

Realizing that the above might not be the best model for disk access, we constructed another
simulation. Again, we considered n = 100 blocks, but this time we randomly selected 200 pairs
of blocks, and had each pair appear in our trace (of disk activity) a random number of times, up
to 50. Thus, in this simulation we were modelling about 5000 different visits, twice as many as
above, but not nearly as broadly dispersed. In this case, our starting cost was 245684, which was
brought down to 190414 by the greedy algorithm and then to 103253 by simulated annealing, a
savings of almost 60%.

We see that the effectiveness of our procedure depends heavily on the type of data; if the disk
activity consists of visiting a large number of disparate blocks, without much repetition, then
the procedure outlined above is not particularly good at finding a good configuration. (Indeed,
in such a scenario it is hard to imagine how any procedure could do very well.) Fortunately,
most disk activity involves repeated visits to the same sequence of blocks, and in this case our
algorithm can offer significant savings.

1.3 2D Disk Layout

In reality a collection of stacked disks comprise a hard drive, not a 1D array of blocks. Each disk
consists of a series of blocks laid-out on concentric tracks on a circular disk similar to Figure
1.3. As a disk spins, the read-head moves back and forth along a fixed radial line. Note that
the number of blocks along the outside of the disk is greater than the number of blocks along
the inside of the disk.

For computational simplicity we assume that the number of blocks in a given row (or track)
is independent of the distance from the center of the disk. Also, rather than having the disk
spin, we take the equivalent view that the head is moving on the disk in a single direction. From
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Figure 1.3: A 2D-Layout of blocks on a disk

any given cell the head can move to any adjacent cell in the next column (as in Figure 1.4).

Real disks have about twice as many rows as columns (unlike our diagrams). Finally, we
restrict ourselves to considering a single disk rather than a stack of disks.

An immediate observation one can make is that the performance of even a random layout
should be greatly improved in the 2D model over the 1D model. Simply put there are more files
close together in the 2D model. For example, from a given file in the 2D model there are three
files which can be accessed with a cost of 1, whereas in the 1D model there is only one!

A good 1D layout can be transformed into a 2D model simply by “wrapping” the files around
the disk, starting in the outside and ending in the inside. See Figure 1.5.

However, given a random 2D layout we can improve on the performance of the disk by
applying simulated annealing directly to the 2D geometry. Table 1.1 summarizes our results.
The trace we used was extracted from some actual disk logs kindly provided by John DeTreville
of Microsoft Research.

We see that our heuristic optimization techniques appear to perform better when applied
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Figure 1.4: Our 2D disk model

directly to the 2D geometry than when applied them to the 1D geometry and then transformed
to 2D. This suggests that when performance is critical it is better to optimize the 2D geometry
directly. The main problem is, however, that modern hardware only provides access to the 1D
geometry of the disk. Our results suggest that disk performance can be improved if 2D (or
possibly even 3D) information were available.

1.4 Caching Strategies

If the same data records are frequently read from disk, it can be advantageous to keep copies of
these records in RAM. This is called the cache. One strategy for deciding which records should
be in the cache is to retain the k& most recently used data records, avoiding the need to reread
them. There may be disk layouts that interact particularly well with such a dynamic caching
policy.

Our model for the RAM cache is simple. We assume that the cache consists of k block-sized
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Figure 1.5: The 1D layout {A, B,C,...AM, AN, AO} is transformed into a 2D layout by “wrap-
ping” the files around the disk.

memory chunks in a queue. The difference between cache memory and disk memory is that
cache memory is free in the sense that it takes no access time to read the files in the cache.
Every time a file is requested in our trace, we check to see if it is in the cache queue. If it is,
then we consider the file as read and we move on to the next file in the trace. Files read from
the disk will be placed in the queue. Of course, since the queue is finite, we have to decide which
file to remove from the cache when we add one. There are a number of different strategies for
managing the cache. We investigated four:

e A random strategy: a random file in the cache is removed to make room for the new file.

e A FIFO (first-in-first-out) strategy: the file which has been in the queue the longest is
deleted to make room for the new file.

e A LRU (least-recently-used) strategy: the file in the queue which was accessed least re-
cently is deleted to make room for the new file (note that this differs from the FIFO
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Optimization Cost

Random Layout 18314

Best 1D Layout transformed 16851
Simulated Annealing on 2D model | 10900

Table 1.1: The average performance of a given thread under various optimization strategies.

strategy because a file that is accessed in the queue will be moved to the front). This
strategy is the industry standard.

e A conditional strategy: the file in the queue which is least likely to be accessed next is
removed to make room for the new file. Note that this strategy involves maintaining a
probability-transition-matrix to keep track of which files are most likely to be accessed
next. This adds significant overhead to the cache management strategy.

Strategy | Average Cost

Random 165000
FIFO 148500
LRU 144000

Conditional 143000

Table 1.2: Results of different Caching Strategies.

The results of applying these four strategies can be seen in Table 1.2. We applied the strate-
gies to 200 random layouts of the 1D disk models. From the table we can see that the conditional
strategy was the best; however it was only marginally better than the industry-standard LRU
strategy. Given the additional overhead required to apply the conditional strategy, we conclude
the LRU strategy is the best of those we considered.

No attempt was made to optimize the disk layout for given caching strategies. Indeed, in
the results reported for 1D and 2D disk models we assume that there is a simple cache of size
one, the cached file is always discarded when a new file is read.

1.5 Added layers of complexity to the model

1.5.1 Multiple outstanding requests

In our model so far we have assumed that disk accesses must be performed according to some
total ordering. We might relax this to a partial ordering. For example, we might say that at
any moment there can be multiple disk accesses outstanding which may be executed in any
convenient order. If multiple independent programs on the computer wish to access the disk,
the order in which these accesses are executed might not be important, and some orders might
perform better than others. Similarly, if we wish to read a file in its entirety, the order in
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which its data records are read might not matter. A known good dynamic heuristic, for a given
disk layout, is to reorder outstanding access requests so that the disk head seldom changes its
direction of travel. It might be possible to choose a disk layout that interacts especially well
with this heuristic.

It can be useful to guess what future disk reads may occur and to perform the reads before
they are requested. For example, if we read the first data record of a file, we might expect that
the second record will soon be read. Reading it now can obviously make sense if the disk is
otherwise idle, or if the incremental cost of doing so is very small. Again, it may be possible
to choose a disk layout that interacts especially well with dynamic read-ahead. Moreover, the
same predictive information that is used to establish the disk layout might be used to direct
read-ahead.

1.5.2 Exact 2D Geometries

Our 2D model assumed that each disk track had the same number of blocks. This is not true
and the actual geometry of the disk adds a non-trivial complication to the model. Moreover,
since the industry standard is not to report the details of the disk geometry to the operating
system, only limited optimization may be possible.

1.5.3 Disk and Head Speed

In our model the disk was spinning at a constant rate. Indeed, this is not quite true. Disks
stop, speed up, and slow down. The head accelerates and decelerates when it has to scan the
surface of the disk. These factors could be substantial.

1.5.4 Similarity of Use

The assumption that traces that appear in one disk log are likely to appear again in future, or
even the less strict assumption that current disk use is a good indicator of future disk use, is very
strong. Before a great deal of effort is invested into disk layout optimization, some investigation
of the validity of these assumptions should be made.
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2.1 Introduction

The dominant technique for producing large defect free crystals is known as the Czochralski
method. Developed in 1916 by Jan Czochralski as a method of producing crystals of rare
metals, this method is now used to produce most of the semiconductor wafers in the electronics
industry.

The method begins with a crucible loaded with starting material (polycrystalline indium
antimonide) and a seed crystal on which the growth of a single crystalline ingot is initiated.
Once the starting material is melted to the correct consistency, a seed crystal is lowered on
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Initial charge Formation of meniscus Final ingot
pull rod
seed
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Figure 2.1: The Czochralski crystal pulling technique.

a pull rod until the tip of the seed crystal just penetrates the molten surface. At this point,
the seed crystal and the crucible containing the molten starting material are counter-rotated
and the temperature is adjusted until a meniscus is supported. As the pull rod is rotated,
the seed crystal is slowly withdrawn from the melt developing a single crystal. By carefully
controlling the temperatures and rotation rates of the crucible and the rod, a precise diameter
of the resulting crystal can be maintained. This process is illustrated in Figure 2.1.

A common problem of using the Czochralski technique is that defects begin to appear in the
crystal once the diameter of the crystal exceeds some critical value. The main objective of this
study is to attempt to understand this phenomena by modelling the process mathematically.
Hopefully, the model can also be used to design growth procedures that produce crystals without
defects even when the diameters are greater than the critical values observed under current
pull conditions. As indium antimonide (InSb) is used as an infrared detector, being able to
manufacture large diameter crystals would have an immediate impact in industry.

The whole growing assembly is maintained in an envelope that permits the control of the
ambient gas and enables the crystal to be observed visually. In the case of InSh, the ambient
gas is hydrogen to ensure the reduction of any InOx compounds that may be produced. This
addition of hydrogen necessitates additional complications to the growth procedure. Namely, i)
the high heat losses due to the fluidity of the hydrogen and ii) the avoidance of any oxygen to
avoid explosions!

Many aspects of this problem have been investigated to gain a greater insight of the phys-
ical processes involved. We begin with the heat problem first as a one dimensional model in
Section 2.4 and then extending to a second dimension in Section 2.5. This analysis indicates
that the temperature of the gas surrounding the crystal has a major impact on both the ther-
mal stress experienced by the crystal and the shape of the crystal/melt interface. In contrast,
variations in the heat flux from the melt have much less of an effect. For completeness the
temperature profile of the crucible is also determined in Section 2.7 by neglecting the convection
of the liquid InSh.

Having investigated the temperature profiles, the analysis focuses on the behaviour of the
fluid in Section 2.8. Scaling arguments are used to estimate the thickness of the various boundary
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layers and explain the main flow patterns that are experimentally observed.

In Section 2.9 the shape of the meniscus is determined for various rotation rates. The height
of the meniscus above the surface of the fluid is about 0.3 mm irrespective of the rotation rate.
However, at a rotation rate of 10 rpm, the height of the triple point drops about 0.15 mm from
its stationary value. This analysis shows that the shape of the meniscus is relatively invariant
at least at low rotation rates yet the actual vertical position of the meniscus changes readily
with the rate of rotation.

After analyzing the fluid flow patterns, a model is developed in Section 2.10 for the height
of the melt as a function of time. This indicates that for a crystal of constant radius the
proportion of the effective pull rate due to the falling fluid level remains essentially constant
over the complete growing time of the crystal. This no longer remains true if the radius of the
crystal is allowed to increase at a constant rate.

2.2 Mathematical Model: Heat Flow

We begin by describing in some detail the mathematical model of the heat flow in the crystal,
melt and gas assuming axial symmetry. This model will later be simplified but for now we sup-
pose that the material, in both the solid and liquid states, cools by radiation. In the Czochralski
process, the liquid is drawn up, cools to the solidification temperature, and solidifies. As a result
the governing equation is o7 .
E + V . (U T) = E
where T" denotes temperature, v velocity, p density, ¢ specific heat, and k£ thermal conductivity.
This model assumes that the fluid shear does not dissipate enough energy to heat up the liquid
significantly. By fixing the oordinate system to the surface of the liquid, the velocity in the solid
phase, v,, is the sum of the crystal pull rate and the rate at which the fluid level drops in the
crucible. In the melt, the fluid is assumed to be incompressible and as such the fluid velocity,
vy, satisfies V - 75 = 0.
Let the melt/gas and crystal/gas interfaces be denoted by the surfaces z = fi(r,t) and
z = fs(r,t) respectively. The normal component of the heat flux must be continuous at these
surfaces. Therefore, assuming that the heat is lost through convection and radiation, this gives
the boundary condition

V- (kVT) (2.1)

or
—hoe = (T —T,) +eo(T* = T}). (2.2)
For this expression n denotes the outward normal of the interface, h the heat transfer coefficient,
€ the emittance, o the Stefan-Boltzmann constant, T} is the gas temperature, and 7}, the ambient
temperature.

The crystal/melt interface, z = S(r, t), is a free boundary. At this interface
T="Tr on z=S(rt) (2.3)
where TF is the freezing temperature and

a8 oT 7" oT, 0T, S oT, 0T, 0S
psl (a —’“p) = {—ka—n] = ko ( 5 or a) — ki <a_ B 55) - @

S
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Figure 2.2: Summary of the equations, geometry and boundary conditions. The z direction is
greatly exaggerated for clarity in that the interface z = S(r, t) is shown in Section 2.9 to lie very
close to the line z = 0. See Section 2.7 for an analysis of the heat in the crucible region.

This latter condition equates the heat lost in the phase transition from liquid to solid (L per
unit mass) to the net heat flux accumulating at the interface. Since InSb expands on freezing
there is either a net flow of InSh away from z = S or the surface of the crystal must rise. Other
boundary conditions include a regularity condition at r = 0, an applied heat flux of @Q,,, in the
crucible and a heat flux @, lost out the top of the crystal. Figure 2.2 illustrates the geometry
and summarizes the equations and boundary conditions in the crystal, melt and crucible. These
problems are specifically dealt with in Sections 2.4, 2.5 and 2.7.
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2.3 Nondimensionalization: Heat Flow

To identify the dimensionless parameters in the heat problem and to determine the relative
importance of the various terms we set

r*=r/l,, S*=S/l,, 2* = z/l,, t" =t/

T-T,
T —T,

* *
vy = Up /o, T

where [,., [, are the characteristic lengths, 7 and v, are the time and velocity scales, and Tr — T,
is the representative temperature scale. In terms of these variables equation (2.1) in the crystal

becomes
pscsl? (OT* n voT LOT™ T 121 0 LoT™
v = 2 r
kT ot* I, POz dzx% 127 0r* or*
while the Stefan equation yields

psLl.1, 95" wer [\ _ (0T LLOT;OS*\ Kk (017 1,01y 0S”
k(Trp —T,)T )T\ 9 l, Or* Or* ks \ 0z 1, Or* Or* )~

R

Denoting 6 = 1./, T =, /v,, Pe = v,l,pscs/ks, the Péclét number based on the length in the z
direction, and dropping the asterisks results in the expression

Pe 8T+U8T _82T+118 T@T (2.5)
ot Yoz ) 022 82ror \ or '
and the Stefan condition becomes

58_5' o ks(Tr —=1,) [(01s RO\ 1 (01,05 k91108
o ? ps Lvl, ’

0z k, 0z

0

or or kg Or Or
Ignoring the effects of radiation, the boundary conditions at » = 0 and r = 1 are given by

Toa=0 Taz=Hr-1,0) 2.7
where v = hl,/k, from expression (2.2), T;(1) is the nondimensional gas temperature near the
crystal surface, and for simplicity we have neglected the heat loss due to radiation.

As typical growth parameters for InSb we take p,L = 1.3 x 10° J m™3, Tr = 798.4 K,
T, ~ 300 K, k; = 923 J m s 'K, ky, = 457 J m s 'Kt pg = 1.7 x 10° J m 3K 1,
psCs = 1.5x 106 Jm™3K™!, oy = 6.47x 10> kg m™3, p, = 5.64 x 10> kg m™3, [, = 0.03 m, h = 10
J m~2s7'K~!. With this choice of parameters

vol, = 1.75 x 107¢, Pe = 98508v,,, v =6.56 x 1072

where the first parameter is determined by setting the coefficient in the Stefan equation to one.
This condition connects the aspect ratio and the pull rate through § = 1.71 x 10%,. Typical
pull rates range from 0.1-100 mm hr=! or about 1078-10=> m s~!. Consequently Pe < 0.02 and
the left hand side of (2.5) may be neglected.
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For the numerical simulations, the temperature of the gas, T,(z), was given an exponential
behaviour. In non dimensionalized form

Ty(2) = Toin + (Tomax — Tin)e 7, A= 0.15, Tinin = 0.5, Tipax = 0.9. (2.8)

A crude estimate for the fluid heat flux k,07;/0z ~ kAT, / Az where Az is the width of the fluid
boundary layer and AT = T ucibie — Tmeit- Details on how Az is determined can be found in
Section 2.8.2. In the case of InSb this gives k01;/0z ~ —50k; ~ —450 W m~2.

Converting from the non dimensionalized values back into their dimensional versions is
straightforward. Taking the non dimensionalized uniform pull rate, v; =1 yields

ks(Tp —T,) oS o % B ﬁ@T*
Up = Yo 0z* kg Or*

and, T =T, + (Tr — T,)T*. The fixed uniform pull rate is an artifact of choosing the coefficient
in expression (2.6) to be unity and could be changed with the addition of another parameter.
Finally, since the system is encapsulated, the ambient temperature is probably much higher
than 7, = 300 K. Increasing 7;, will result in a corresponding drop in the value of v,.

Yo = psLl, ot

2.4 First Steps: A 1D Temperature Model

For any fixed height z the average of the temperature across the crystal radius is given by

T(z) = 2/01 T(r,2)rdr

where we have used the non dimensionalized coordinates. Applying this averaging technique
to equations (2.3), (2.5) and (2.7) we obtain the second order linear nonhomgeneous boundary
value problem

&*T 2y = — dr 0

= —AT-T,)  TO)=1 T = -1T0) - T,0) (2.9

where T(z) is given by (2.8) and § = [, /I, = 1/3. The growth of the crystal/melt interface is
governed by the Stefan condition (2.6) and by assuming that the slope of the interface is small,

|0S/0r| < 1, one obtains

oS OT, kT,

With this averaging method, T, = T'(0) while the value for k,d7;/0z ~ —450 W m~2.
Expression (2.9) was solved using a shooting method starting at z = 1 and shooting towards
z = 0. The Robin condition, dT/dz(1) = —(v/8)[T(1) — T,(1)] precluded starting at z = 0.
In detail, the temperature T(1) was assumed and dT'/dz(1) is given by the Robin condition.
The next choice for T(1) depends on the value of T/(0), the method converging once T'(0) = 1.
Solving (2.9) for T'(z) gives the decreasing temperature profile shown on the left of Figure 2.3.
The right side of the illustration is the temperature dependence of the gas, T,(z). In this case
Tp — T,(0) = 80 K in dimensionalized units and the interface velocity from uniform, v, = 70
mm hr™!, is 95/0t—v, = —29.6 mm hr!. Figure 2.4 illustrates the relative velocity as Tr—T,(0)
varies from 80 K to 400 K. As expected, increasing T —1T,(0) increases the speed of the interface.



2.5. 2D TEMPERATURE DISTRIBUTION OF THE CRYSTAL 23

T(@2). T(0)=09T, T,@
0.09 | 0.09
|
|
0.08} | E 0.08 g
|
|
0.07} ‘l - 0.07} g
|
0.06 'l - 0.06 g
|
|
0.05r \ ] 0.05F g
E ‘ E
N \ N
0.04} \ - 0.04} i
\
\
0.03} ‘\» . 0.03} .
\
\
0.02} \ - 0.02} E
\
\
\
0.01} N - 0.01} g
AN
AN
AN
O Il Il Il O Il Il Il
400 500 600 700 800 550 600 650 700 750

T(K) T(K)

Figure 2.3: The left graph shows the average temperature T(z) over the length of the crystal with
the temperature of the gas T,(z) overlaid for comparison. On the right is just the temperature
of the gas. The uniform interface velocity is v, = 70 mm hr™! and the deviation from uniform,

d9S/0t — v, = —29.6 mm hr~'.

2.5 2D Temperature Distribution of the Crystal

For the two dimensional problem we return to expression (2.5) and make the standard ansatz
T(T,Z) :T0+5T1 +52T2+ e
This implies that Tq satisfies

10 8T0 8T0 3T0
ror \' or ) e —| =TT,
ror (r 87”) - or lr=0 or lr=1 1o —14(2)]
giving Ty = T,(z). Continuing in this fashion we find to O(6?) that
2 T/l
T(r,z) = Ty(2) + 6" <1 —r* + —) 94(2). (2.11)
g

A difficulty arises as z — 0 where in the non dimensionalized variables we have the condition
T = 1. It is unlikely that 7'(r,0) = 1 = T,(0) so that a boundary layer correction is required. For
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Figure 2.4: The deviation from uniform interface velocity, 0S/0t—v,, as a function of Tp—T,(0).

the boundary layer solution, Ty, we rescale the z in expression (2.5) by § and denote Z = z/0.
When the equations are scaled in this way T, satisfies

Ty 10 0T
S (P22 = 2.12
32 +r87" <T 87“) 0 (2.12)
with the boundary conditions
o™i . 0T; . . -
8—:1(07 Z) = 07 8—:1(17 Z) = _’Y(T - T9)7 Tbl(ra 0) =1- Tg(0)7 211_)1£1(3Tb1(7', Z) =0.
(2.13)

At Z = 0 the condition 1 — T,(0) corrects for the T,(0) from expression (2.11). Solving (2.12)-
(2.13) gives to leading order in &

1(:2) = T4(2) + Tulr2) = 1)+ 1 = 0] Y 2By

where Jy is the zeroth order Bessel function of the first kind and the (,, are the zeros of
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Figure 2.5: Temperature profile T'(r, z) in the crystal with § = 1/3.

As with the one dimensional case, the growth of the crystal/melt interface is governed by
the Stefan condition (2.10) where 0Ts/0z now varies with r according to expression (2.14).

For the numerical simulations, 7,(z) was specified by equation (2.8) and k;01;/0z was varied
linearly over the radial coordinate by 15% with an average value of -450 W m~2 as in the one
dimensional case so that k0T;/0z ~ -480 W m~=2 at r = 0 and k0T;/0z ~ -420 W m~2 at
r = 1. Choosing § = 1/3 gives a uniform pull rate of v, = 70 mm hr~'. The corresponding
two dimensional temperature profile is illustrated in Figure 2.5 and should be compared with
Figure 2.3, the profile for the one dimensional case. Since the isotherms in the two dimensional
situation are quite flat one would expect considerable agreement with the temperature in the one
dimensional case. However, the temperature decreases with z much faster in the two dimensional
case. As a result, the speed of the interface, illustrated in Figure 2.6, is about three times that
predicted with the one dimensional model. The model accurately predicts that the growth
rate is larger near the periphery of the crystal so that the interface is concave down. This
asymuetry in the growth rate across the interface increases as Tx — 7,(0) increases. At the
other extreme, T,(0) > T the gas melts the crystal and the shape of the crystal/melt interface
becomes concave up. Clearly, controlling the temperature of the surrounding gas is critical in
reducing the thermal stress within the crystal.
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Figure 2.6: Radial dependence of the relative speed of the interface 0S/0z — v, with 6 = 1/3.

The dashed curve is the speed at z = 0 while the solid curve is the speed just inside the interface

at z = Az/2. egative values indicate that the interface is growing downwards. Finally, the
= 100 indicates that the Bessel series solution was truncated at 100 terms.

2. The Thermal Stress roblem

The temperature distribution induces a thermal stress field in the crystal due to the inhomo-

geneities in the thermal contraction. Some analytical insight as to the source of the stress can

be gained by supposing that we have a thin body, [./l, < 1, and looking at the outer region

where the scaling 7/l and z/l, is appropriate. The radial and axial displacements and are

scaled in a similar fashion /I, and /[,. The thermal stresses are scaled by Tr where is

the thermal expansion coefficient, Tr is the melting temperature and  the oung s modulus.
nder this scaling the strains are O(1).
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In terms of scaled variables and using the result 7" = T, (2) from Section 2.5 yields

Sy sl (i ;?;3

with  the Poisson ratio. The scaled equilibrium equations are

0 1 0
a0 -\ r— 0— rz — 0
or + 7"( )+ 0z
0 1 0
o Tz — rz 0— z — 0.
or + r + 0z
As for boundary conditions, because of the axisymmetry we have =0andd /Or=0atr =0
while the boundary at » = 1 is unstressed so that , = ,,=0atr=1.
aking the standard ansatz = °+¢§ '4+..., = 94§ '4... and using the expression

for . one has
10 % ot o0 9
2(1+ )Tz_gar + o +5az + O(69).

Since ,.isO(1), °= (z) and therefore
implies that

9 = 0. In addition, the second equilibrium equation

0 1 0
E(r rz) - _ra z
and by applying the boundary condition at 7 = 1 we have ! =0and 9 /02 = 0.

TZ
The relationship for © comes from the first equilibrium equation which reduces to

000 10" 1, _,
or? r Or r2

with solution ° = (z)r. Thus we obtain

o @+ =z Tz
T+ ) (1-2) (1-2)

sing the boundary condition at r = 1 once again gives ? = 0 and hence (z) = — '(2) +
(14 )T,(2). In a similar fashion we obtain " =0and ?= '(z)—T,(2) = , a constant. If
we consider the exact solution for the whole cylinder when the base of the crystal is stress free

and simple equilibrium considerations give

1
/ rdr =0
0



28 CHAPTER 2. MODELLING INSB CZOCHRALSKI GROWTH

Figure 2.7:  orm of the gradient of the temperature as 7(0) varies. The figure on the left has
T,(0) = 720 K and the figure on the right has 7,(0) = 560 K.

g

at any value of z, thus we may conclude that 2=0and '(z) = T,(2).

Thermal stress will be restricted to a region within a distance [, from the growing surface.
Since these stresses, in the nondimensional case, will depend on the scaled temperature di erence
1 — T,(0) we expect them to be of magnitude [Tr — T,(0)] and they will be determined
by a solution of the full axisymmetric equations a problem which appears to be analytically
intractable. However it is clear that the magnitude of the stresses can be controlled by making
Tr —T,(0) as small as possible. As numerical evidence of these observations Figure 2.7 displays
contours for the norm of the temperature gradient as an indicator of the total stress. Figure 2.8
shows the von ises stress produced by the temperature distribution obtained in Section 2.5.
The von ises stress is defined as

where 1, 5 and 3 are the principle stresses at a given point within the crystal.
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Figure 2.8: von ises stress of an InSb crystal together with the corresponding temperature
distribution.

2. Distribution of eat in the Cru ible

For completeness we now determine the temperature profile in the crucible and the holder
assuming no motion of the fluid. The isotherms will be modified by any convective flow in the
crucible but as we will see in Section 2.8 this flow is practically inviscid so that the temperature
will for the most part remain stratified. Figure 2.9 illustrates the domain and summarizes the
boundary conditions. For the interior region we have liquid InSb with a thermal conductivity
of k; = 9.23 W m~tK~!. Outside of this is a thin layer of quartz, 3 mm, with a conductivity of
approximately & = 1.5 W m™*K~! and finally surrounded by a layer of graphite with &, = 120
W m K1 It should be noted that for simplicity we have taken the thermal conductivity of
each of these materials to be constant however they are actually functions of the temperature.
For example, k, varies from 150 W m™'K™" to 100 W m™' K™ as the temperature increases
from 300 K to 900 K. This problem is complicated by the involved boundary conditions. There
is a regularity condition at » = 0 and a heat inflow at » = 0.1 m with an applied heat flux of
about = 1200 W. At z = —0.16 m there is heat lost due to convection with a heat transfer
coefficient h = 10 W m™?K™! to the surrounding hydrogen gas at a temperature T,; = 600
K. At the top of the melt, z = 0, there are two conditions. At the crystal/melt interface the
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Figure 2.9: Shown here is the geometry and boundary conditions for solving the steady state heat
equation in the crucible and the holder. Summarizing the parameters: & = 9.23 W m~!K~1,
k=15 Wm K™ k, =120 W

temperature of the melt is the solidification temperature of the crystal. Therefore, T = Tr =
798.4 K for z = 0 and 0 < r < [, with [, = 0.03 m. The remainder of this boundary su ers
heat loss due to convection again with a heat transfer coefficient of A = 10 W m2K™! but in
this case the surrounding gas is taken to have a temperature of about 7y, = 700 K. Two final
conditions are that the temperature flux must be continuous at the graphite/quartz and the
quartz/InSb boundaries. Figure 2.10 shows the isotherms and the interesting artifact of a cold
spot at the bottom of the holder at r = 0.

2. Mathemati al Model: Fluid Flo

We now turn our attention to the behaviour of the fluid. The fundamental equations of the fluid
motion are governed by the incompressible avier-Stokes equations within a rotating crucible.
We assume that the flow is independent of the azimuthal angle and that the variations in the
fluid density can be ignored except insofar as their e ect on the gravitation forces. This latter
assumption is known as the Boussinesq approximation.

Consider for a moment the force on the fluid due to gravity

where =z is the gravitational potential and p; is the density of the fluid. By expressing the
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Figure 2.10: Illustrated is the temperature profile of the crucible and the holder. ote the cold
spot at the base of the holder at r = 0. This pattern is expected to persist in the presence of
the convective flow of the melt since in Section 2.8 it is shown that the fluid flow is essentially
inviscid.

density as a constant p, and a small variation p we have p; = p, +p with p, =0 and

g=— (po ) tp
Redefining the pressure as "=+ p, gives the expression
- 4+ == '+p . (2.15)

Since the change in density, p ., is for the most part a result of heating the fluid, we linearize
this change in density so that p ~ (T — Tr) where is the thermal coefficient of expansion.

The fact that the crucible is rotating introduces a coriolis force and a reaction force due to
the centripetal acceleration of the fluid particles. This second force can be written as a potential
and combined with the nonrotating gravitational potential to give

1
= =3 r? (2.16)
where — is the measured gravitational force in the accelerated frame and we have taken the

rotation rate = — 1 .
Combining (2.15), (2.16) and the azimuthal symmetry of the flow yields the following pseudo-
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Data Symbol  alue

rowing Properties
Crystal Radius L, 0.03 m
Crucible Radius 0.08 m

iquid Properties

elting Temperature Tr 798.4 K

Density ol 6.47 x 10* kg m=3
Thermal Conductivity k; 9.23 W m—tK~!
Heat Capacity 1€ 1.7 x 10 J m—3K~!
Thermal Di usivity 5.4 x 1075 m?s~!
Dynamic iscosity 3.3x 10" m?s!
Coefficient of Expansion 1x 1074 Kt

Table 2.1: A summary of the physical parameters of liquid InSb.

steady incompressible avier-Stokes equations for the fluid velocity v, =

0 ., o, 1o’

. + 5 T oo 2. + A, (2.17)
0 0

rﬁ‘l_ S M 2:,.+ A (2.18)
0 . 9. 1o’/

quL S P + A ,— (T—-Tp). (2.19)

Although it does not appear in these expressions, the angular velocity of the crystal is taken
to be o which is in the opposite direction to that of the crucible. In addition to these three
equations, the fluid is incompressible and the temperature satisfies expression (2.1). Thus in
component form we have

10 0
oT oT k;
TE + Z& = oG AT. (221)

Even without specifying any boundary conditions, the complexity of these five expressions
precluded any detailed simulation of the flow. However, it is known by observing the melt that
there exist three distinct regions of flow as depicted in Figure 2.11. Cell I is a buoyancy driven
cell from expression (2.19). Cell II results from Ekman pumping and is a consequence of (2.17)
and (2.18). Cell III is a complex spiral that is expected to exist at higher rotation rates.

Over the next couple of subsections each of these regions is analysed using the material

parameters of the liquid InSb and in preparation for this, these parameters are collected in
Table 2.1.
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Figure 2.11: Experimentally observed flow pattern of the liquid InSh. The three major features
are I: a buoyancy drive cell II: a cell driven by Ekman pumping III: a transient spiral.
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This cell is a buoyancy driven cell resulting from the upwelling of heated InSb at the outside
wall of the crucible and the subsequent radial inflow as the fluid cools. By comparing the
relative strengths of the inertial, buoyancy and viscosity forces on a packet of fluid the width
and flow rate of this viscous boundary layer can be estimated. et the viscous boundary layer
have thickness 0 and an upward velocity of at the crucible wall. The subscript refers to
the cell under consideration. For the length scale, we choose the height of the crucible which is
approximately . Balancing the three forces yields the expression

2

— (T—TF)’:?

and a little rearranging gives
Re = — = /2 § = r /4

where Re is the Reynolds number and r = (T'—TF) 3/ % is the rashof number. As
with liquid metals, the Prandtl number Pr = / =~ 0.061 < 1 which implies that there is a
very thin viscous boundary as compared to the thermal boundary layer so that the heat flow is
driven by the thermal di usivity.

To determine whether or not there is a convective flow we compute the Rayleigh number,
Ra = rPr. If Ra exceeds a critical value (about 1100 for a free surface) then a convective flow
is expected. In our case T'— Tk ~ 30 K so that Ra ~ 2.8 x 10* and indeed we predict that
there will be a buoyancy cell. This buoyancy cell is practically unavoidable in that one requires
T —Tr 107 to prevent it. Having established that there is a convective flow, the speed of
the upwelling InSb is given by the relationship v, 6 ~ orwv, =~ rl/4 /. The flow rate

around the cell is =2 Jdv, =2 . Finally, in the core region the speed of the falling

fluid satisfies v =2 which implies that v =2 /2. Setting T'— TF ~ 30 K gives

r =14x10% Re =12x104 6 =07mm, v, =74 mms ', v =097 mm s ! and
=2.7mls %

The steady velocity of the rotating crystal at z = 0 produces a thin boundary layer at the
surface. By assuming a horizontal flow at the surface, expressions (2.18) and (2.19) reduce to

0?
—2 =0
* 0z
82
2 =0
+ 0z?
where =] ;— 5| by taking into account the combined rotation of the crystal and the crucible.

etting v/(z = 0) = 0,v,,0 and choosing lim,_,_,, v;(z) = 0 in the geometry of Figure 2.2 we
have the solution

u(2) = v,e*’°  sin(z/8 ), cos(z/8 ),0 .
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The thickness of the boundary layer § = ( /| 1 — 2|)*/? and is chosen to be the depth at
which the velocity is opposite to that at the surface. This 6 width is used to estimate the fluid
heat flux back in Section 2.3. Because the fluid does not rotate as a rigid body with respect to
the crystal, we approximate the radial velocity of the fluid to be a fixed proportion of its rigid
value so that v ~ yr| | — 3| with v ~ 0.05. To obtain the velocity entering the Ekman layer
we take v to be the radial speed of the fluid at a radius of twice the depth of the Ekman layer
so that 7 ~ 26 . This gives v, ~2 v( | 1 — 2|)"/? By the structure of the Ekman layer,

the core velocity, v at z = —9 is the same as v, except in the opposite direction. As for
the flux, this is simply = PPv, ~2 2y%2( | 1 — 4|)"2. For the typical rotation rates,
1-10 rpm, one finds that v =wv, ~0.2mm s ! and = (0.65 ml s 1.

This leaves the transient spiral structure. It is expected that this is a result of the fluid
entering the Ekman layer with a velocity that far exceeds the speed at the core region of the
buoyancy driven cell. Comparing these two velocities gives the expression

2 14
T
22 <[ - 2|_2
which indicates that this structure should appear at large rates of rotation. For the values
indicated in Table 2.1 one would require | ; — 5| 28 Hz.

2. Shape of the Menis us

The shape of the melt/gas interface, ;(r,t), is determined by the aplace- oung equation
which describes the equilibrium configuration of a curved liquid surface under the e ect of a
gravitational field. For cylindrical growth of a crystal the radius of the crystal, [, changes
according to the expression

dl, dh,
= = (vp - > tan( — ,) (2.22)

where , is the equilibrium contact angle of the surface with the vertical tangent at the triple
point, is the current contact angle, v, is the pull rate and dh,/dt is rate of change of the
crystal height at the outer edge of the crystal. Since the crucible is rotating, the shape of the
meniscus and therefore the height of the triple point above the surface z = 0 will be a ected by
this rotation.

Suppose that the fluid velocity is zero so that there are no coriolis e ects and the steady

state pressure satisfies
1 1
_- _ b = 2.2
p ( 2 )

where p ~ p; is di erence in density between the liquid and gas phases and where we have taken
a rotation rate of = . In addition, the pressure drop across the melt surface, z = . is
determined by the surface tension, ; by

S '[<1+| lmw]

where is the curvature of the free surface.
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Figure 2.12:  eniscus profile for the melt/gas interface, ;(r,t) for no rotation and at 10 rpm.

Setting ; = h(r), combining these two expressions, and denoting derivatives with respect to
r with dots one obtains
1 d |1d h
p pdr |rdr \ (1+ |h|?)1/2
etting r = 7*, h = h* with 2 = ;/p and then dropping the stars gives the nonlinear
second order ODE
h 2
h+—(1+h2)—[h—4—(2r2— 2)}:0, L] <r< /
r

where h(l./ ) = —cot( ,) and h(l,/ ) is chosen so that
2

lim {h(r) — 4—(27~2 — 2)] =0
and at large radii h(r) approaches the parabolic surface due to the rotation of the crucible.

For InSb, ; =0.434 J m™2, p; = 6.47 x 10* kg m™3 and , = 69°. Figure 2.12 illustrates the
meniscus profile for two cases: no rotation and for a rotation rate of 10 rpm. In both of these
cases the crystal radius, [, =3 cm and = 8 em. Increasing the rotation rate drops the height
of the triple point.
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Figure 2.13: Position of the triple point as a function of the rotation rate.

2.1 A Model for the Melt ei ht

p to this point we have taken the coordinate system to be fixed at the crystal/melt interface
so that the pulling speed v, is the sum of the crystal pull rate and the rate at which the fluid
level drops in the crucible. In this section we will determine the proportion of e ective pulling
rate that is due to the dropping level of the fluid.

At any time t the mass of the fluid that leaves the crucible must equal the mass that is
incorporated into the crystal. That is,

0 oS
Prgy = 2 ps/o (E — vp) rdr (2.23)

where (t) is the radius of the crystal at time ¢ and S is the location of the crystal/melt interface.
For ; we assume that the crucible is a hemisphere of radius so that

2 3 2 1 3
_ Z _ - 2.24
1 (3 + S 35) ( )

where — < S(t) < 0. By assuming that the interface is essentially flat 9S/0r ~ 0, expressions
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(2.23) and (2.24) combine to give

= = (2.25)

with S(0) = 0 if one starts with an initially full crucible. Expression (2.25) provides an exact
solution for the height of the melt surface and can be used to accurately determine the appro-
priate rate at which to move the crucible. Based on the geometry ¢t <t where ¢ is the time at
which the crystal comes in contact with the crucible, S*(t )+ 2(¢ ) = 2. Consequently, the
slope in expression (2.25), 9S/ot  v,/(1 — pi/ps)-

When the crystal radius is constant, (2.25) can be integrated to give a cubic equation for
S but in general we take (t) = [, + vyttan where 2 ~ 4° is the growth angle. Figure 2.14
illustrates the height of the surface and the proportion of the e ective pull rate due to the falling
liquid state for = 0 (constant radius) and = 8°. For the constant radius case the rate at
which the fluid falls is essentially constant until the height of the fluid reaches about —0.75
Over this region about 20% of the e ective pull rate is due to the falling fluid. As the level drops
further, the rate of the falling fluid becomes the dominant e ect. When = 2° the growing
time is reduced since the crystal reaches the sides of the crucible much earlier. However the
same behaviour is observed except that the fluid accounts for about 30% of the e ective pull
rate and this linear behaviour extends for a shorter time period.

2.11 Con lusion

The main purpose of this work was to understand the growing process of InSb with the ultimate
hope of growing large radius crystals. Analysing the temperature distribution within the crystal
allowed us to estimate the growing rate by solving the Stefan problem. However, this relied on a
very crude estimate for the heat flux from the melt. Despite this drawback, it was noticed that
the growth rate of the crystal/melt interface is larger at the periphery of the crystal and that
the temperature gradients are largest near the triple point. The temperature distribution was
used to calculate the von ises stress. Calculation of the stress is essentially a post processing
analysis but could in principle be incorporated into a feedback control system used to produce
the crystal. One question that has not been addressed is whether or not there exist temperature
distributions that produce less von ises stress.  oreover, if such temperature profiles exist,
what changes in the geometry of the growing environment are required

Another interesting problem is that of the fluid flows. Some heuristic analysis was performed
but this appears to be a finely balanced system between the Ekman pumping and the buoyancy
flows. Further understanding of this system would be very worthwhile yet complicated by the
rotation of the crucible.

The rate which the radius of the crystal grows depends on the e ective pull rate and the
angle the fluid makes with the extracted crystal. Computing the shape of the meniscus at
various rotation rates illustrates that increasing the rotation rate to 10 rpm drops the location
of the triple point about one half the height of the nonrotating meniscus. Since the shape of the
meniscus determines the location of the triple point and it is near this triple point that much of
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Figure 2.14: The height of the fluid and the proportion of the e ective pull rate due to the
falling fluid as a function of the non dimensionalized time. The solid line corresponds to = 2°
while the dashed line is the case of a constant radius, = 0.

the thermal stress is generated, inclusion of this e ect may be quite important in determining
the overall shape of the crystal/melt interface.

any aspects of the problem of growing InSb crystals were investigated in the hopes of
understanding the growing process.  rowing larger crystals seems to depend for the most
part on controlling the temperature of the surrounding hydrogen gas. Other elements of the
growing method were investigated and it is hoped that further work, perhaps on a model that
incorporates most of these factors, will yield advances in this method.
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Chapter 3

Adapting Search Theory to Networks
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N | ntrodu tion

The problem under study here was brought by Dr. Allan Douglas of the Communication Security

Establishment. The Communication Security Establishment (hereafter referred to as the CSE)

includes a team composed of Defence Scientists assigned from the Operational Research Division
ational Defence Headquarters Department of ational Defence Ottawa.

The CSE is interested in the general problem of locating objects in networks. Their interest
in this type of problem arises because of the emerging concern regarding security issues for
information operations.

The concept of transmitting code from one computer to another has been around for more
than forty years. As a programming practice it has evolved from an occasional concern of
systems programmers working at the deepest levels of operating systems to a common and
widespread practice. It is now utterly unremarkable for a web browser to bring in a web page
containing a JA A applet which then executes.

The next stage in which objects move under conditions of their own determination already
is upon us. Development environments are being created to facilitate this. One of these for
example is for the creation and use of Aglets which are examples of mobile network agents.

obile network agents are programs that can be dispatched from one computer and transported
to a remote computer for execution. At the remote computer they present their credentials in




44 CHAPTER . SEARCHING NETWORKS

order to gain access to local services and data. It is apparent that mobile network agents are
going to undergo considerable development and become extensively used. The networked world
is going to see many of these objects.

Prudence dictates the expectation that some of the mobile objects will not be benign. Defen-
sive information operations will have to deal with mobile attackers. The problems of determining
whether or not attackers are present or likely to be present and determining their present loca-
tions become of considerable interest.

The CSE people were familiar with the literature involving search theory where the searches
are carried out over two- and three-dimensional regions. The techniques for these kinds of
searches typically involve partitioning the region into cells and considering the problem of getting
the searcher (or one of several searchers) and the target in the same cell.

They also were familiar with an old paper by . Polya [ 4] in which he considered random
searches on the -dimensional grid with a single searcher and a single target. They were not
aware of any other work done on searching in graphs.

Because of their exposure to search theory the problem they brought to the workshop was
phrased in terms of adapting search theory to networks. Thus the first step was the introduction
of an already existing healthy literature on searching graphs.

T. D. Parsons who was then at Pennsylvania State niversity was approached in 1977 by
some local spelunkers who asked his aid in optimizing a search for someone lost in a cave in
Pennsylvania. Parsons quickly formulated the problem as a search problem in a graph. After his
paper [ 1] appeared many subsequent papers appeared. Subsequent papers led to two divergent
problems. One problem dealt with searching under assumptions of fairly extensive information
while the other problem dealt with searching under assumptions of essentially zero information.
These two topics are developed in the next two sections.

.2 Complete nformation

There is a variety of models we may use for attempting to find an evader or evaders in a graph.
The notion of a graph involves the evaders and searchers being located at vertices.
Evaders and searchers may stay at their current locations or move along an edge of the graph
to a neighboring vertex. The simplest clock is one which ticks at regular intervals and all moves
take place when the clock ticks. In one version any subset of searchers and evaders may move
at each tick. In a second version subsets of searchers move on odd numbered ticks and subsets
of evaders move on even numbered ticks  the point being that evaders and searchers alternate
moves. In the most general version the clock is continuous and participants may move at any
time. In all of these models capture takes place whenever an evader and a searcher occupy the
same vertex at the same time.

Another decision which must be made for searching is whether or not capture takes place if
an evader and a searcher pass each other along the same edge. For example if at a tick of the
clock an evader moves along an edge from vertex to v and a searcher moves along the same
edge from vertex v to vertex  does capture take place

The notion of a graph involves evaders and searchers being able to be located at
vertices or along an edge. In this case we view the graph as being embedded in euclidean space.
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The movement of an evader or searcher corresponds to a continuous function from the interval
[, ) to the embedded graph. If there are searchers let 1, o,..., denote the functions
describing the searchers movements in the graph. If there are evaders let ey, es,...,e denote
the functions describing the evaders movements in the graph. Capture takes place whenever
there exist t, , such that (¢) = e (¢). In other words a searcher and an evader occupy the
same place at the same time.

Parsons first paper on this topic [ 1] considered sweeping a graph. He made the following
definition.

et be a finite graph. The of  denoted SW( ) is the
smallest integer such that searchers can sweep and capture a single evader.

He observed that SW( ) always exists because | ()| + 1 searchers can always capture an
evader. This is done by placing a searcher at each vertex and then using an additional searcher
to move along every edge of the graph. If the graph is not connected the additional searcher
may sweep each component separately.

He proved the following theorem as well.

T 1 SW(T)  +1 T v
Ty, Ty, Ty SW(T') ~1,2,

Y

He was able to use the theorem to recursively characterize all trees with a given sweep num-
ber. At the end of [ 1] Parsons suggested many other variations of the problem for investigation.

A. aPaugh [22] first proved that a graph may be optimally swept without going over any
edge twice. D. Bienstock and P. Seymour gave a new proof in [5].

Other people took up the problem obtaining many results. There also was a shift towards
considering searching rather than sweeping and considering a single evader. The usual model
was alternating moves and complete information that is everybody knows everybody s location.

et be a finite graph. The of  denoted SE( ) is the
smallest integer such that searchers can search  and capture a single evader using alternate
moves and with complete information.

One direction taken by various researchers was to consider classes of graphs. The class of
Cayley graphs is an interesting class because of their use as models for network architectures.
P. Frankl [17] was the first person to consider Cayley graphs. He proved the following result.

= (5 SE( )
(IS]+1)/2
Since the -dimensional cube is a Cayley graph on a finite abelian group the preceding result
immediately yields the following corollary.

; SE( ) ( +1)/2
. Aigner and . Fromme [1] characterized the class  of graphs for which SE( ) =1
whenever . In particular they showed that contains all finite trees.

aamoun and H. eyniel [26] generalized the Aigner-Fromme result about trees in the
following way.
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SE( )= ( +1)/2

Aigner and Fromme [1] also proved the following interesting result for another important
family of graphs.

SE( )

T. Andreae | | generalized the preceding result in the direction of classes of graphs not
containing a fixed graph as a minor. A. uilliot | 5] extended the result in the following
direction.

SE( ) +2

The preceding results determine either upper bounds or exact values for the search number
of graphs. P. Frankl [18] determined a lower bound in terms of girth and minimum degree.

8t — d
SE( ) >d

A negative result about lower bounds was established by T. Andreae [2|. He proved that
for any positive integers  and d there exists a regular graph of degree d for which the search
number is bigger than

In [4] it is shown that for each fixed there is a polynomial time algorithm determin-
ing whether or not a fixed graph  satisfies SE( ) . Complexity also was studied by
A. oldstein and E. Reingold in [19].

R. owakowski and P. Winkler [ | established a structural result by characterizing the

graphs for which one searcher can always capture one intruder under the complete information
model.

. ero nformation

ero information means that nobody knows anything about the location of anyone else. In
fact the searchers do not know if there even is an intruder in the graph they are searching.
The problem is to devise a search mechanism whereby  searchers are guaranteed of finding an
intruder or establishing that the graph is free of any intruders.

Almost all the work which has been done on this version is the study of collision properties
of two random walks in graphs. The random search assumptions are that if someone is located
at a vertex of valency d then at the next tick of the clock he moves to a neighboring vertex
with probability 1/d for each of the d neighbors. nder this assumption the following theorem
holds.

v dist( ,v)
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Prob(T'( ,v) )=

> ()> Prob(T( ,v) > ()] ( )I) 1-

Increasing the number of searchers does materially a ect the preceding result. For a good
discussion of this material see [2 |.

4 or shop

On the afternoon of the first day the group had its first meeting. Several participants were
aware of some of the existing literature on searching and sweeping graphs. Our first course of
action was to launch an extensive literature search visit the excellent mathematics library on
campus and make copies of those papers which seemed most relevant.

By the end of the afternoon most of the references given in the bibliography had been
discovered and copies of approximately ten of the papers were distributed to the group. The
object was to be able to begin to discuss their contents Tuesday morning.

Tuesday morning was spent discussing the contents of the papers and exploring the potential
usefulness with regard to the problem Dr. Douglas had in mind. Dr. Douglas himself found
some of the results of considerable interest but was mostly impressed by the fact these kinds of
problems had been examined by a variety of researchers.

It became clear that di erent subgroups were becoming interested in pursuing di erent as-
pects of the problem. The rest of Tuesday was spent trying to work out clear objectives for
di erent subgroups. Simultaneously we were being presented with a nice description of random
walks in graphs by Dr. osygin. By the time Tuesday evening rolled around it was clear we
still were not well organized.

Wednesday morning was spent completing the development of objectives for several sub-
groups. The subgroups then went their separate ways agreeing to meet late in the afternoon to
sum up what they had accomplished during the day.

One subgroup was working on various problems dealing with trees. Their first foray into
this was an attempt to independently work out proofs of several of the results on trees that we
found in the literature. After coming to grips with the proofs they then began to think about
possible algorithms for computing search numbers for trees.

One approach is based on reducing a tree by removing all the leaves in a single stage. After
this stage the smaller tree then has its leaves removed. This is a layered approach and is
recursive. It is shown that one less searcher is needed at each stage.

A divide and conquer approach for trees is based on deleting a central vertex leaving a
searcher at the deleted vertex to prevent the target from moving from one subtree into another
subtree and then searching each subtree separately. It is clear that the minimum number of
searchers needed to search the entire tree is one more than the maximum number needed to
search any of the subtrees created by the deletion of the vertex.

The last activity undertaken was an attempt to modify some of the known results on trees
to other search models. They made a presentation to the group on Thursday.
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A second subgroup wanted to look at the behavior of random searches. They decided to
concentrate on the -dimensional cube with some consideration of complete graphs.
et s look at what was done for the 1 -dimensional cube first. The following table contains
information on how long it took six searchers using random search to capture one target in the
1 -dimensional cube and the following table one searcher.
The column headed gives the number of random searches using a number of steps
in the range shown in the column headed

Frequency Time
1 1 71
71 72 142
o7 14 21
8 214 285
29 286 56
18 o7 427
16 428 499
9 ) o7
7 571 641
2 642 71
714 784
785
Frequency Time
1 11 66
72 67 722
) 72 1 8
8 1 8 145
24 146 1792
24 179 2148
18 2149 255
5 256 2861
8 2 862 217
5 218 o74
275 9
1 91 4287
4288 464
5 4 644

The next table provides some data correlating the number of searchers and the average
number of steps required to capture a single target using random search in the 1 -dimensional
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cube. The data indicates a definite trend but many more trials are necessary to increase the

accuracy. The column headed is the average number of steps required using the number
of searchers under the column headed

umber | Time
1 16
2 567
412
4 22
5 2
6 195
7 17
8 14
9 1
1 12
11 95
12 1
1 82
14 94
15 72
16 7
17 62
18 6
19 55
2 51

For one searcher and one target the next table relates steps to capture and the dimension
of the cube.

Dimension | Time
1
1
4 5
5 4
6 85
7 1
8
5
1 11
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We ran random searches using one searcher and one target on complete graphs whose
orders were multiples of 1 . We started with 1 vertices and went through vertices. The
number of trials again needs to be increased considerably in order to introduce more accuracy.
Still the average time behaved reasonably except for 1 and 14 vertices. From 1 through
18 vertices the average number of steps required was approximately equal to the number of
vertices. For 1 and there were steep increases. There is a lot of room for studying this
question more.

The subgroup working on generating random searches also made a presentation to the group
on Thursday.

The rest of Thursday was used for amalgamating our e orts into a report to be presented
Friday.

.5  Summary

The following summarizes what we discovered during the week.
Search results are greatly a ected by the paradigm used.
Searches on well defined families of graphs already present challenging problems.

Simulations on random graphs and the -dimensional cube agreed with computed expec-
tations.

Random searches usually perform as well as structured searches.

The surface of the problem has been only scratched.
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Chapter 4

An Automated Algorithm for Decline
Analysis
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4.1 ntrodu tion

Oil and gas wells are regularly monitored for their production rates. Typically daily produc-
tion rate data is available expressed in millions of standard cubic feet per day ( scf/d) for
natural gas wells or barrels per day (Bbl/d) for liquids i.e. oil or water. This data reflects
changing physical conditions within the oil or gas reservoir changes in equipment (eg. failure or
maintenance) activity of surrounding wells variability in outshipping methods and changing
production rates due to economic factors. As a result typical production rate data is noisy and
highly discontinuous.

Decline analysis is a process that extrapolates trends in the production rate data from oil
and gas wells to forecast future production and ultimate cumulative reserve recovery. Current
software often attempts a best fit approach through all the data but the result is erroneous in
the majority of cases. A human operator with an understanding of the factors that a ect the
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behavior of oil and gas wells can do a much better job of forecasting appropriately however it
is a time-consuming process.

The goal is to find an algorithm that can be easily interfaced with standard industrial
software and that incorporates some of the criteria used in the human analysis so as to perform
acceptable forecasts in the majority of cases.

4.2 roposed Solution

The proposed solution consists of three main steps: (1) Segmentation of Data ( ) Curve fitting
and () a Decision Process. Segmentation of Data attempts to identify intervals in the data
where a single trend is dominant. A curve from an appropriate family of functions is then fitted
to this interval of data. The Decision Process gauges the quality of the trends identified and
either formulates a final answer or if the program cannot come to a reliable answer flags the
well to be looked at by an operator.

The input data is assumed to consist of a time series () _; where () represents the data
point (rate of oil/gas flow from the well) at time . We assume the list is contiguous i.e. there
is a data point for each time step (the length of a time step is input by the operator). In this
stage of the analysis the data set is divided into segments. Each segment will be analyzed in
subsequent stages.

The end points of the segments are determined by (1) discontinuities in the data and ()
discontinuities in the slope of the mean data (changes in trend). Two methods were developed
for detecting these types of discontinuities one method for detecting type (1) discontinuities
and one method for detecting type () discontinuities.

Because the data is typically very noisy the data is smoothed a number of times. This
smoothing reduces the amplitude of the oscillations of the noise relative to the amplitudes of
the discontinuities in the data making the discontinuities easier to identify.

Each smoothing operation is obtained by moving averages with a window of width three. et

< '() _;, I 1 denote the data after being smoothed [ — 1 times. Then the next smoothed
version of the data () _; is obtained by the formula

O (S0 SO+ D)

The number of times the data is smoothed depends on the length of the data set. We
found from experience that an appropriate value for the number of times the data should be
smoothed is logo( ) . (From now on smoothed data will mean () _;.)

After the data is smoothed a data set of di erences — 4( ) _; is produced where

at) 1 O = 50l

That is the di erences are the (absolute value of) oscillations of the data around the smoothed
data. The method for detecting type (1) discontinuities analyzes these di erences.
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The type (1) discontinuities in the data show up as larger peaks in the di erences. However
because the data is typically very noisy and to facilitate the identification of the locations of
peaks (as described below) the di erences are also smoothed a number of times precisely /
times (where is as above) and in the same manner as the data was smoothed i.e. by moving
averages with a window of width three. This has the e ect of suppressing oscillations in the
di erences () _; that are due to noise in the data and thereby enhancing the peaks in the
di erences that are due to discontinuities in the data.

The discontinuities in the data are identified as the largest peaks in the (smoothed) di er-
ences. This is accomplished by locating peaks in the di erences that are above some threshold.
The threshold is set at 15% of the mean of the (original) data. That is a peak in ~ 4() _, is
identified as a point of discontinuity in the data if the amplitude of the peak is greater or equal
to 15% of the mean value of the data.

The locations of the peaks are found by identifying local maxima in the di erences that
are above the threshold. Here we look for points where the (finite-di erence) derivative of the
di erences change from positive to negative. That is if () aC +1) = 4() then if

()> and ( +1) we record as a point of discontinuity in the data (provided that
4( ) is above the threshold).

ow we look for discontinuities in the slope of the (mean) data (i.e. the type ( ) disconti-
nuities). For each interval obtained above (from looking for type (1) discontinuities) a value for
the derivative of the mean data at that point is obtained by computing the derivative of the
best-fit parabola at that point. The parabola is fitted only to the data within 15 points on either
side of the point under consideration. This gives a time series of mean derivative values of the
data in the interval. This time series is fed into the program that finds type (1) discontinuities.
The output is a list of points where the slope of the mean data has a discontinuity.

The locations of the two types of discontinuities are combined into one list - the list of end
points of intervals for the data. This list is passed on to the next stage in the analysis.

Another approach to determining the segmentation of the data uses wavelets (see for example
[1]). Wavelets are functions that cut up the data into di erent temporal and frequency compo-
nents and then study each component with a resolution matched to its scale. They are highly
useful in analyzing physical situations where the signal is discontinuous. In this work given the
noisy data wavelets are used to de-noise the data and to divide time series into segments.

The technique works in the following way. When you decompose a data set using wavelets
you use filters that act as averaging filters and others that produce details. Some of the re-
sulting wavelet coefficients correspond to details in the data set. If the details are small they
might be omitted without substantially a ecting the main features of the data set. The idea
of thresholding then is to set to zero all coefficients that are less than a particular threshold.
We then use an inverse wavelet transformation to reconstruct the data set. The de-noising is
carried out without smoothing out the sharp structures. The result is a cleaned-up signal that
still shows important details. In our case we used a Haar Wavelet base function to de-noise the
noisy decline data and also to determine the changes in the production dynamics.
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The previous stage in the analysis produced a list 1, | of end points of intervals
1 (L, 1), 2 (1, 2), 1 ( , ) for the data () _;. The second stage in
the analysis performs a least squares curve fitting to each of the intervals. That is curve fitting
is applied to the time series
() (), : () _, - The actual intervals of data used in the curve fitting
are slightly smaller than these (to remove transient e ects).
The class of curves used in the fitting belong to the family

() S+ )y (4.1)

where ,, and  are parameters. It has long been accepted within the petroleum industry
that this function accurately models the uninterrupted flow rate of a well and it can be also
derived from basic physical principles.

Once we have found the best fit for the kth interval we compute a number of summary
statistics

. least squares estimates of ,, and and
S? normalized variance of the data over the interval > | () — ()[*/l where [

is the length of  and  (#) is the curve fit for the kth interval.

The most important of these statistics is E R the Estimated Itimate Recovery based on
the best fit curve of the kth interval. It is determined by solving for the time at which the best
fit curve passes below a minimum threshold rate call this time 7" and then computing the sum

a —1

ER S O+ X 0O (1. )

1 =a

where the first sum simply represents the volume of oil or gas that has already been produced
and the second is the amount we expect to produce based on the curve fit  (¢) for the kth
interval. These statistics are then passed as parameters to a weight function which decides their
relevance and usefulness and based on this we can calculate a final E R value.

iven the parameters (, , L,ER,S%I), 1, , + 1 for the fits over the
intervals 1, 1 we choose a weight function () that indicates how reliable the
E R is. The following conditions may be considered as rules for a reliable E R
is a long data set
the variance S? over  is small
< < 5 (a physically plausible hyperbola) and

is a recent interval.
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The weight reflects the importance of the hyperbolic curve fit over interval k in determining
the final E R. The precise formula incorporating the factors above was chosen to be

= (4. )

Here as above [ is the length of interval + 1 is the total number of intervals obtained from
the segmentation stage of the analysis r is an integer such that intervals of length less than or
equal to r will not be used and (I —r) denotes the positive part of [ —r (i.e. (I —7) [ —r
ifl —r and (I —7) ifil —r ).  is the estimate of the model parameter for
interval  (c¢f. Equation (1.1)) and h( ) is a function which gives the parameter  from the
hyperbolic fits a separate weighting for example

h( ) 1if [, 5]
(1— )if ( 5,1]
if >1

(Engineering knowledge indicates that low values of the model parameter indicate a well which
is past its period of transient activity.) A similar function could instead be applied. S? is the
normalized sum of squared residuals between the curve  and the data in the interval  (see
above).

Once the weights have been determined the E R is calculated with the formula

1
ER Y xER (4.4)

=1
where E R is the E R which would be predicted using the curve fitted from interval — (cf.
Equation (1. )). The following provisions must also be implemented:

If is less than the amount of oil which has already been recovered is set to zero.

It is calculated to be infinite is set to zero.

Finally we would like to be able to predict the amount of production between the end of the
observed data and any future time ¢ using a single overall hyperbolic curve of the form given

in Equation (1.1). Engineering practice allows us to use for the estimate of the parameter of
this overall curve the convex combination of the namely

1

>

=1
This along with the following two equations will give us the parameters of a single hyperbolic
curve.
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For the final time point

o(1+ )~ Hm : (4.5)

(cf. Equation (1.1)) the observed rate at time . Alternatively we could use the observed rate
at the last acceptable time point used for curve fitting or an average of the last few acceptable
observed rates for the right hand side of the equation.

For the ﬁ
1 ——\ “a
0 (1 + ( ) ) 1 (4.6)

0

This is simply stating that at the time of E R we will be pumping at a rate of 1 barrel per day.
Some other acceptable cut-o value could be used instead. ote that this equation is obtained by
writing the rate function in terms of the cumulative production at time ¢. This transformation is
easily obtained by integrating the original rate function considered oL+  t)7Y" (with
respect to t) to come up with a cumulative function solving for time and substituting back into
the original rate function again.

Equations (1.5) and (1.6) can be reduced to a single variable problem by solving Equation
(1.5) for ( and then substituting into Equation (1.6). Then only  would need to be solved
for numerically.

When all three parameters in the final hyperbolic curve are estimated we can make forward
predictions for rate and cumulative production at future time points.

4. Dis ussion

A more thorough testing of the algorithm presented here would include

ore sophisticated techniques such as wavelets or neural networks (see below) could be used
in the segmentation stage if the present method (of moving averages) turns out to be unreliable.

An examination of the uncertainties in the curve fits and the final predictions made.
Fine tuning the weighting functions
erification that the parameters for the final ( overall ) hyperbolic curve are realistic.

A more robust approach to the estimates obtained in stage initial tests show that Equations
(1.5) and (1.6) may be unstable.

One may consider using a neural network in the analysis (see for example | |).  iven suf-
ficiently many data sets it may be sensible to avoid the choice of a heuristic weighting scheme
such as given by Equation (1. ) in favour of a neural net approach where we would allow the
algorithm to find good weighting schemes through training. Furthermore it may be possible
to invoke some training components in the segmentation algorithm as well.  ore specifically
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the choice of the important thresholding parameters in the smoothing algorithm seems to be a
likely candidate for a neural net approach.
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5.1 ntrodu tion

This paper proposes a model for a relatively simple Web hosting provider. The model assumes
the existence of a load-dispatcher and a finite number of Web-servers.

We quantify the quality of service towards the clients of this facility based on a service level
agreement between the two parts: the web hosting provider and the client. We assume that the
client has the knowledge and resources to quantify its needs. Based on these quantifications
which in our model become parameters the provider can establish a service o er. In our model
this o er covers the quality of service and the price options for it.

The paper is organized as follows: in Section there is a description of the parameters
requested from the client and the provider s o ers. In Section we present the mathematical
formulation of the model and its dynamics. In Section 4 we introduce an algorithm for the
provider s resource allocation of Web servers in order to optimally serve potential clients within
the quality of service stated. The algorithm consistent with the provider s o er assures sub-
stantial profits serving clients requesting a bigger volume of data transfer. Section 5 is an outline
of proposed future developments of this model.
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5.2 Ser i e e el A reement

In this section we describe a possible agreement between the provider and the clients. We assume
that the provider as well as the customer are classifying the requests in classes depending on
the file size. Each class will therefore have a di erent service time.

The customers are requested to quantify specific values for the following three parameters
for the requests they experience:

estimates on average of the arrival rate of file sizes
probability distribution of file sizes

probability distribution of service times
With these quantifications/parameters the provider s o er includes

1. Base Service evel L represents the base service the maximum number of servers L to be
allocated to a specific class of requests based on the parameters o ered by the client.

. Per- nit Bid  represents the variable rate the client agrees to pay for adding servers
beyond Base Service evel. This might happen if its number of requests increases beyond
the estimated level covered in (1). Service up to the Base Service evel L is guaranteed.
Requests that exceed L are satisfied if possible when the per-unit bid equals or exceeds
the spot market price. Per- nit Bid can equal or the host s minimum variable charge

(i.e. cost 4+ economic profit). In other cases the bid is an explicit customer-supplied
and changeable bid . Whether the bid is or it reflects the nature of
the customer:

the customer wants no service beyond its base level its implicit bid is
the customer wants service beyond its base level its implicit bid is

the customer wants requests beyond its base level to be completed its explicit bid is
B.

uality of Service (level z probability ) is denoted by ( 0S) and is defined in terms
of response time 7T by modelling the probability that requests are completed within a

specified service time z
[RT > z|

The number is a probability level.

5. Dynami s

Due to the complexity of the problem we apply queuing approximations from [4]. et

1, , index the distinct service classes and 1, ,J index the customers. Fach class
will have a Service evel Agreement i. e. the parameters identified in the first section will all be
indexed by . The system is composed of an incoming stream of requests with a known Poisson
distribution with parameter A . There are 1, , servers and service time is exponential

with parameter 1/ . See figure below.
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