

Learning Drupal 6 Module
Development

A practical tutorial for creating your first Drupal 6
modules with PHP

Matt Butcher

 BIRMINGHAM - MUMBAI

Learning Drupal 6 Module Development

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2008

Production Reference: 1020508

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847194-44-2

www.packtpub.com

Cover Image by Cadym Guryevich (dgurevich@holbi.co.uk)

Credits

Author

Matt Butcher

Reviewers

Jason Flatt

John Forsythe

Edward Peters

David Norman

Sherif

Senior Acquisition Editor

Douglas Paterson

Development Editor

Swapna V. Verlekar

Technical Editor

Akshara Aware

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Monica Ajmera

Proofreader

Chris Smith

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Matt Butcher is the principal consultant for Aleph-Null, Inc.
(http://aleph-null.tv), where he specializes in content management systems,
Linux system integration, and Open Source technologies. He has been an active
participant in open-source technologies for over a decade. Along with Learning
Drupal 6, Matt has also written Mastering OpenLDAP, Managing and Customizing
OpenCms 6, and Building Websites with OpenCms, all of which are published by
Packt. When not pushing bits, Matt likes to explore Colorado with his wife and
three daughters.

The Drupal community has not only been a boundless source of
information, but also a positive environment. This community is to
be commended for creating a successful habitat for growing a
top-quality application. Writing this book has involved a veritable
army of editors, technical reviewers, and proofreaders. This book
has benefited tremendously from their hard work. I would like
to thank Douglas Patterson not only for being my editor, but for
getting me involved with Drupal in the first place. Thanks to Patricia
Weir and Swapna V.Verlekar, who have worked tirelessly on the
book. I owe a huge debt of gratitude to John Forsythe and Jason
Flatt, whose meticulous reading and copious suggestions have had
a profound influence on the final state of this book. I'd also like to
thank: Edward Peters, David Norman, and Sherif for their invaluable
suggestions. Thanks also to the many individuals at Drupalcon 2008
who provided input and who took the time to chat with me about
Drupal. Finally, thanks to Angie, Katherine, Claire, and Annabelle
for putting up with a few late nights and some occasional whining.

 About the Reviewers

Jason Flatt has been involved with the Drupal community since 2005. He has been
involved in the computer industry professionally since 1992 and at the hobby level
since 1978. He was heavily involved in the open-source Linux distribution Source
Mage GNU/Linux from 2001 through 2005, where he got his introduction to Drupal
in looking for a replacement CMS for its website.

Since 1995, Jason has been an owner or part owner in four different computer
consulting companies. He currently owns his own computer consulting company
and is in the process of developing a Drupal consulting and web application
development company.

He has developed and maintains contributed modules on drupal.org. Jason's Drupal
user account (oadaeh) can be found at http://drupal.org/user/4649.

I would like to thank my wife, Corrine, for giving me the time,
freedom, and encouragement to pursue Drupal-related tasks,
including reviewing this book.

John Forsythe is a programmer and web developer who's been building websites
since 1997. In 2006, he left a full time job in tech support to concentrate on Drupal
development. He currently runs a number of popular Drupal sites, including
DrupalModules.com, a community-powered module rating and review service, and
Blamcast.net, a web development blog.

John's Drupal account can be found at http://drupal.org/user/101901.

I would like to thank my parents for their continued support
and encouragement.

Edward Peters has worked all his adult life with Initiatives of Change (IofC), an
international trust-building network (www.iofc.org). Since 2002 he has managed
IofC's global Internet operation, servicing the needs of activists in many countries
and languages. He is currently overseeing the move of the organization's proprietary
CMS into Drupal. He also does freelance web development work for a number of
small clients (www.edwardpeters.co.uk).

Table of Contents
Preface 1
Chapter 1: Introduction to Drupal Modules 7

Drupal's Architecture 7
Module Architecture 9

Core Modules 9
Hooks 11

Themes 12
Crucial Drupal Concepts 13

Nodes 13
Comments Are Not Nodes 14

Users 16
Access and Security 16

Blocks and Page Rendering 16
Menus 17
Forms 18
Database and Schema APIs 18

Developers' Tools 19
Developer Module 19
Coder Module 19

A Word on Our Demonstration Site 20
Summary 21

Chapter 2: Creating Our First Module 23
Starting Out 23

A Place for the Module 24
Creating a .info File 24

A Basic .module File 26
Our Goal: A Block Hook 26
Starting the .module 27
The hook_block() Implementation 29

Table of Contents

[ii]

The t() Function 32
A view Operation 33

Installing a Module 34
Step 1: Copying the Module 34
Step 2: Enabling the Module 36
Step 3: Displaying the Module's Content 37

Using Goodreads Data 39
Modifying the Block Hook 39
Retrieving XML Content over HTTP 40

The watchdog() Function 43
Processing the HTTP Results 45
Formatting the Block's Contents 46

Finishing Touches: hook_help() 54
Summary 55

Chapter 3: The Theme System 57
The Theme System's Architecture 57

Theme Templates 59
Theme Engines 62
Theme Hooks 63

Creating a Custom Theme 64
Organization of Themes 64

Sub-themes (Derivative Themes) 65
How Each Theme Functions 66

Creating a Theme 67
Creating the Theme Directory 67
A .info File 68
A CSS Stylesheet 69

A PHPTemplate Theme 75
Template Structure 75
A Page Template for Descartes 77
Using PHP to Override Theme Behavior 82
template.php Gotchas 88
Creating a Screenshot 89

From Here to a Full Theme 89
Summary 90

Chapter 4: Theming Modules 91
Our Target Module: What We Want 91
Creating a Custom Content Type 92

Using the Administration Interface to Create a Content Type 93
Content and Nodes 97

The Foundations of the Module 97
A Simple Database Lookup 100

Getting the Node ID 100

Table of Contents

[iii]

Getting the Node's Content 102
Theming Inside a Module 103

Registering a Theme 105
Creating a Theme Hook Function 108
Adding a Stylesheet 109

Overriding the Default Theme from a Theme 111
A Quick Clarification 111
Overriding the Default Theme's CSS 112
Overriding Layout with Templates 113

Summary 114
Chapter 5: Using JavaScript and AJAX/JSON in Modules 115

Picking up Where We Left Off 115
Introducing jQuery 117

Modifying HTML with jQuery 118
Checking for JavaScript Support with Drupal 121

Namespaces in JavaScript 121
Drupal's Namespace 121
A Drupal Function: Drupal.jsEnabled() 122

Delaying JavaScript Execution with jQuery 123
Including JavaScript from the Module's Theme 124

Writing a Drupal AJAX/JSON Service 127
The JSON Format 127
Our Module Roadmap 129
Server Side: Defining a New Page 129

Creating a JSON Message 129
Mapping a Function to a URL 131
Passing PHP Settings to JavaScript 135

Client Side: AJAX Handlers 137
A JavaScript Function to Get JSON Content 137
Adding an Event Handler 140

Summary 141
Chapter 6: An Administration Module 143

The emailusers Module 143
The Beginning of the Module 144

Mail Configuration 145
Registering an Administration Page 146

A Detailed Look at the Path 147
Marking the Path as an Administration Page 147

Path Registration Parameters 148
Defining the Callback Function 151

Handling Forms with the Forms API (FAPI) 153
Loading a Form with drupal_get_form() 154

Table of Contents

[iv]

A Form Constructor 154
Handling Form Results 161
The Form Submissions Callback 162

Sending Mail with the Mail API 165
Formatting Mail with hook_mail() 167
Altering Messages with hook_mail_alter() 172

Altering Hooks 172
Adding a Mail Footer 173

Incorporating the Module into Administration 175
Modifying the User Profile with hook_user() 176

Constructing the Content 178
Summary 180

Chapter 7: Building a Content Type 181
The biography Module 181
The Content Creation Kit 182
The Starting Point 183
The Module Installation Script 184

The Schema API: Defining Database Structures 186
A First Look at the Table Definition 187
Defining Fields (Columns) 188
Defining Keys and Indexes 190

Correlating the New Table with Nodes 192
The Content Creation Form 196

Overriding hook_form() Defaults 198
Adding New hook_form() Form Elements 199

Access Controls 202
Database Hooks 205

Database Inserts with hook_insert() 205
Updating and Deleting Database Records 209

Hooks for Getting Data 211
Loading a Node with hook_load() 212
Preparing the Node for Display with hook_view() 214

Theming Biography Content 217
Registering a Theme 217
The biography_info.tpl.php Template 219
The Results 220

Summary 221
Chapter 8: Filters, Actions, and Hooks 223

The sitenews Module 224
Getting Started 225

Citing Dependencies in the .info File 225
The Beginning of the .module File 227

Table of Contents

[v]

A Simple Content Type, Defined in Code 228
Creating Filters and an Input Format 230

The Second Filter: Remove All Tags 239
Adding an Input Format 241

The Beginning of an Action 247
Implementing hook_action_info() 247
The Action Callback 250

Defining a Hook 253
Invoking a Custom Hook 254

So What Is a Hook? 255
Creating a hook_sitenews() Function 255
Implementing hook_sitenews() in Other Modules 257

In the philquotes Module 257
In the biography Module 258

Completing the Action: Theming and Mailing 261
Theme Functions 265
The hook_mail() Implementation 267

Adding a Trigger 269
Summary 272

Chapter 9: An Installation Profile 273
Introducing Installation Profiles 273

Why Use Installation Profiles? 274
Setting up a Distribution 276

Creating a Profile Directory 277
Programming Profiles 278
The .profile Script 279

The Details Function 279
The Modules List 281

The Installation Task System 282
The Profile Task 283

A Basic Profile Task 283
A Complex Profile Task 285
Moving to the Next Task 290

Registering a New Task 291
The Theme Selection Form 292
Returning to the philosopherbios_pick_theme Task 294

The Submission Handler 295
Finishing the Installation Profile 300

Packaging the Distribution 302
Summary 302

Index 303

Preface
Drupal is a highly successful open-source Content Management System (CMS). It is
well‑respected for its robustness, its flexible and immaculate code, and its seemingly
infinite capacity for extension and customization.

Drupal 6, released early in 2008, represents a significant evolution in this already
mature CMS. In this book, we build extensions for Drupal 6, focusing on the
important APIs and libraries. We also highlight the new features introduced in
version 6, making this book appropriate not only for those new to Drupal, but also
those who are transitioning from version 5.

This book provides a practical, hands-on approach to developing Drupal modules.
We also take a developer‑centered look at themes and installation profiles—two
other facets of Drupal that the developer should be familiar with. Each chapter
focuses on the creation of a custom extension. Using this approach we develop
a handful of modules, a theme, and an installation profile. However, more
importantly, we get a practical perspective on how to make the most of Drupal.

By the end of the book, you will have a solid understanding of how to build modules
for Drupal. With the knowledge of foundational APIs and libraries, you will be able
to develop production-quality code that fully exploits the power and potential of
Drupal 6.

What This Book Covers
This book focuses on developing modules for Drupal 6. Each chapter introduces new
concepts, libraries and APIs, while building on material from previous chapters.

Chapter 1 is a developer's introduction to Drupal. We take a look at Drupal's
architecture, focusing on modules and themes. After covering some of the important
concepts and taking a high‑level look at foundational APIs and libraries, we finish
up with a look at some useful development tools.

Preface

[2]

Chapter 2 gets us working on our first module. In this chapter, we develop a Drupal
module that takes data from an XML feed and displays it as a block on our Drupal
site. In this chapter, you will learn about the basics of module development,
including what files need to be created and where they go. Hooks, a major
component of Drupal development, are also introduced here.

Chapter 3 switches gears from modules to themes. Learning the theming system is
integral to being able to produce high-quality modules. In this chapter, we create
a theme using CSS, HTML, and PHPTemplates. We also take a look at the theme
system architecture, along with some of the APIs.

Chapter 4 builds on the introduction to theming. In this chapter, we develop a
new module that deals with a custom content type, a quote. This module uses the
theming subsystem to prepare quotes for display. Our focus here is using the theme
system to enrich modules. The theme API covered in this chapter is used throughout
the rest of the book.

Chapter 5 focuses on Drupal's JavaScript libraries. Starting with the module we built
in Chapter 4, we use the jQuery library and a couple of Drupal hooks to implement
an AJAX (Asynchronous JavaScript and XML) service. This chapter also introduces
the Database API and the menu system.

Chapter 6 is focused on building an administration module. This module provides an
interface for administrators to send email messages to users. However, the Mail API
is not the only thing we will look at. The tremendously important Forms API is also
introduced here. We also get our first look at Drupal's access control features.

Chapter 7 takes a closer look at Drupal nodes. In this chapter, we use the Schema
API, the Database API, and the node system to build a content type that represents
a biography. Module installation files are introduced, and the Forms API and access
control mechanisms are revisited.

Chapter 8 discusses filters, actions, and hooks—three of the more advanced features
of Drupal. We create a module for emailing a newsletter to our users. We implement
filters to prepare content for the email message. Actions and triggers are used to
automatically send our newsletter when it is ready. Also, to allow other modules
to interact with this one, we define our own custom hook that other modules
can implement.

Chapter 9 changes tracks, focusing on installation profiles. In this chapter, we build
an installation profile that can install a custom version of Drupal preloaded with the
modules and themes of our choice. Working with the installer, we get a glimpse into
Drupal's inner workings. Along with learning how to write code in this minimalistic
pre-installation environment, we also look at registering themes and defining
triggers automatically.

Preface

[3]

Who Is This Book For?
This book is written for PHP developers who want to add custom features to
Drupal. You will need to know the basics of PHP and MySQL programming, but no
experience of programming Drupal is required, although you will be expected to be
familiar with the basic operation of Drupal.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "One thing that should stand out is the use
of a require_once directive at the very beginning of the file."

A block of code will be set as follows:

function _philquotes_get_quote() {

 $sql = "SELECT nid FROM {node} ".
 "WHERE status=1 AND type='quote' ORDER BY RAND() LIMIT 1";
 $res = db_query($sql);
 $item = db_fetch_object($res);
 // Do something with the $item.
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

function philquotes_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Philosophical Quotes');
 return $blocks;
 case 'view':
 $item = _philquotes_get_quote();
 if(!empty($item)) {

New terms and important words are introduced in a bold-type font. Words that
you see on the screen, in menus or dialog boxes for example, appear in our text like
this: "Clicking the Add content type tab will load the form used to create our new
content type."

Preface

[4]

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/4442_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction to Drupal
Modules

Drupal (pronounced Droo-puhl) is a web-based Content Management System
(CMS). Like many other CMS frameworks, Drupal provides a modular interface, so
that developers can customize and extend the CMS system. However, one thing that
distinguishes Drupal from other web CMS platforms is the power and flexibility of
its modular system.

This module system is the main focus of the book. In this chapter, we will take
an introductory look at Drupal modules, and how they fit within the Drupal
framework. Specifically, we will look at the following:

The Drupal structure
An introduction to modules and themes
A developer's overview of important Drupal concepts and APIs such as
nodes, menus, and forms
Using tools for module development

Drupal's Architecture
In one sentence, Drupal is a web-based content management system written in PHP
that uses a relational database (usually MySQL) for storage.

PHP, which stands for PHP Hypertext Processor, is a high-level language designed
for developing web applications. PHP offers a flexibility that supports both
procedural and object-oriented (OO) approaches to software development.

•

•

•

•

Introduction to Drupal Modules

[8]

The Drupal core is meticulously written in procedural-style PHP. Code follows
strict conventions and every file and function is documented in the source code.
APIs are often minimalistic, kept brief and functional. These factors make Drupal's
source code easier to read in many regards than run-of-the-mill PHP code. However,
the minimalism of the code can be deceptive too; the simple tools and modules
are combined to produce the surprisingly complex features of this robust content
management system.

Why isn't Drupal object-oriented?
This question is asked often. The answer has several facets, one of which
is simply that when the project began, PHP still wasn't up to snuff on
the OO side. However, looking beyond the absence of constructors and
classes, it turns out that Drupal employs many of the OO principles:
encapsulation, inheritance, polymorphism, etc. The OO programmer will
quickly feel at home with Drupal's architecture.

A simplified stack diagram of Drupal looks something like the following:

Themes

Theme Engines

Drupal Core

Modules

Hook

JavaScript/AJAX DB

At the center of Drupal is a core set of files consisting of bootstrapping code and
important oft-used libraries. The Drupal Core Libraries act as the glue layer to
bind Drupal's modules. They provide services such as database connectivity and
management (illustrated by the dashed line to the database above), as well as
the highly customizable hook framework about which we will talk throughout
this book. Other standard features such as mail and image library abstractions,
internationalization, and Unicode support are also included as Drupal Core Libraries.

Many of the required system modules are referred to as Drupal Core
Modules. In the above diagram, I would include these along with the rest
of the modules, as they are modules in all proper respects.

Chapter 1

[9]

But as important as these files are, there is a reason why the Drupal Core Libraries
section in the above diagram is comparatively small. While these libraries provide a
potent feature set, the real power in Drupal comes from its modular architecture.

Module Architecture
What exactly is a module and what is its purpose?

The second question is easier to answer: Drupal's module mechanism is designed
to provide a uniform method of extending Drupal's capabilities. The purpose of
a module is to extend Drupal's capabilities. This answer brings us much closer to
answering the first question. A module is a bundle of PHP code and supporting files
that use Drupal's APIs and architecture to integrate new functional components into
the Drupal framework.

The purpose of this book, then, is to explain how to write these bundles of code. The
above definition means we will need to get familiar with the Drupal framework and
its APIs. That is precisely what we will be doing as we progress through the book.
Let's start here by taking a glance at the module architecture.

The files that make up modules are grouped into specific locations under Drupal's
directory structure. That is, in the Drupal installation on a server's file system,
Drupal modules must reside in a few specific locations (we will look at these in the
next chapter).

When Drupal needs information about its modules, it will look in these
predetermined locations. Each module is contained in its own directory, and has at
least two files—one describing the module's content and one or more files containing
code and other supporting material. (We will create both these files when we build
our first module in the next chapter.)

Before a module can be used, it must be enabled by a Drupal administrator.
However, once a module is enabled, then it is loaded as required, and Drupal passes
requests to the module as necessary.

Core Modules
Some modules are so important that removing them would disable features essential
for Drupal's operation. Likewise, there are some modules that provide features
needed by a wide variety of systems. These two batches of modules, both of which are
maintained by the Drupal development team, are collectively referred to as the Drupal
Core Modules. These modules are included by default in the Drupal distribution, and
enjoy active maintenance and development by the Drupal community.

Introduction to Drupal Modules

[10]

Besides their prominent role in Drupal's operation, there is little to architecturally
distinguish the Drupal Core Modules from any other module. They follow the
same guidelines and use the same APIs. There is nothing particularly arcane about
these modules.

From Drupal's administration section, you can look at the list of core
modules in Administer| Site building | Modules. The most important
modules are the five that are required: Block, Filter, Node, System,
and User. These cannot be uninstalled or disabled. Others, such as Menu,
Locale, and Taxonomy provide basic services that are needed even in
basic installations.

One of the diamonds in Drupal's architectural crown is the ease with which various
modules can interact. Using the hook architecture, the services that modules provide
can be woven together to create robust features without copious amounts of code.

In the course of this book, we will often make use of APIs and facilities provided
by Drupal Core Modules. However, don't expect any chapters to walk through
existing Drupal code. We make use of these modules, but we won't dwell closely on
the implementation details of specific core modules. In this book, we will focus on
writing our own modules.

That said, the core modules do provide an excellent reference for how Drupal code
should be written. You may find it beneficial to read through some of that code in
conjunction with this book.

Chapter 1

[11]

Hooks
How does Drupal know when to invoke a module to handle a particular request?

This is done through Drupal's hook mechanism, which we will examine carefully in
this book. To start out, here is a brief explanation of how hooks work.

When Drupal handles a request from a user, it proceeds through a series of steps. For
example, the Drupal core first bootstraps the application, defining critical variables
and oft-used functions. Next, it loads critical libraries, themes, and modules. Next, it
continues processing the request, mapping the requested URI to the correct handling
code, and so on. Later, it applies a theme to the data, formatting information for
output. Finally, it returns this output to the user's browser.

At predefined moments in this step‑by‑step process, Drupal executes hooks. What
does this mean? In short, it means that Drupal examines some or all of the currently
enabled modules, looking for functions that follow specific, predefined patterns.
Some have linked this process to the "callback" method often used in event handling
models. It is similar to this, but more dynamic.

For example, while it is creating the content for a page view, Drupal might scan
modules for functions named <modulename>_block() and <modulename>_view()
(where <modulename> is replaced by the name of each module that it checks).
Modules that contain such functions are said to implement the hook_block() and
hook_view() hooks.

When Drupal finds such functions, it executes them, and uses the data these functions
return to build a response to send to the user. Drupal then continues its step-by-step
processing of the request, perhaps executing many other hooks as it goes.

Once all the steps have been completed and a response sent to the user, Drupal
cleans itself up and exits.

Hooks for Object-Oriented Programmers
Those familiar with object‑oriented (OO) programming may find it
helpful to think of a hook as a mechanism similar to interface methods
(or abstract methods) in OO languages. Hooks are functions that Drupal
will look for, and in certain cases, expect in your module. Like interface
methods, a hook's function signature must match Drupal's expected
signature. Unlike interfaces, however, the module developer can choose
(to a certain degree) which hooks to implement, and which to ignore.
Drupal does not require that every defined hook be implemented.

Introduction to Drupal Modules

[12]

Modules can define their own hooks, which other modules can then use. In this way,
the hook mechanism can be extended to provide complex customized behavior.

When a module provides a function that matches a hook's signature, we say that that
module implements that hook. For example, imagine that Drupal has a hook called
hook_example(). If we were to define a module called mymodule that contained a
function called mymodule_example(), we would be implementing hook_example().

We will write our first hook implementation in the next chapter.

Themes
Processing power isn't everything, especially for a web‑based CMS system. A
commercial-grade CMS must make it possible for site designers to give the site the
look and feel they desire. Drupal provides a robust theme system for just this purpose.

The Drupal theme system is surprisingly complex. Just as with modules, the system
is designed to allow extension and improvement and the hook mechanism is
employed to allow this sort of extension.

While the code under the hood boasts a large (and complex) API, the top layer is
surprisingly uncomplicated, and revolves around the idea of a theme.

A theme is a bundle of resources, including PHP templates, CSS, JavaScript,
and images, that provides layout and style information for some or all of the
Drupal content.

At its simplest, a theme may be composed of only a handful of files—a stylesheet, an
information file, and a couple of images. In fact, using existing Drupal styles, one can
create a custom theme in no time.

But themes can grow to meet the needs of the implementer. Custom templates,
usually written in the PHP template language, can specify the details of the HTML
structure. Special PHP files can be written to override theme engine behaviors.
Complex configurations of JavaScript and CSS files are supported as well. Even
modules can be used to interact with the theming system.

In short, a theme can be as simple or complex as the implementer desires.

Chapter 3 is devoted to themes, and in that chapter we will first create a simple
theme, and then build up to a moderately complex theme.

Themes and modules are critical components in the Drupal architecture, and
obviously the main focus of this book. However, before moving on, let's look at
Drupal from another angle. Let's briefly examine how Drupal handles content.

Chapter 1

[13]

Crucial Drupal Concepts
This book is geared toward developers, and to keep the book manageable,
some introductory material must be glossed or skipped.
For a thorough introduction to Drupal 6, I recommend David Mercer's
book Building Powerful and Robust Websites with Drupal 6, also published
by Packt Publishing.
Throughout the book, it is assumed that the reader has a moderate
amount of Drupal experience, and is comfortable administering a
Drupal site.

However, there are some particular facets of Drupal that deserve an introduction. We
will look at some of the aspects in this book. Others are common Drupal terms that
take on additional shades of meaning when examined from a developer's perspective.

In this section, we will focus on Drupal concepts that will be crucial in this book. We
will start out with one of the biggest topics: nodes.

Nodes
Drupal is a content management framework. When we think of content in this
context, we typically think about text objects like news articles or blog entries.

This concept of a generic text-based piece of content is captured in Drupal with
the term Node. A node, in Drupal parlance, is a generic object for representing
textual content.

While nodes are designed to be text-based, some of the contributed
multimedia modules extend the node system to handle content that is not
text‑centric, such as images or audio files.

Nodes are stored in the database and retrieved as needed. Among other things, all
nodes have:

A unique Node ID (nid)
At least one Version ID (vid) used to track revisions
Creation and modification dates, as well as identifying information for the
user who worked on the node
Metadata such as publishing state (status), language of the node (and
translations), and so on

•

•

•

•

Introduction to Drupal Modules

[14]

In addition to these, most nodes also have a title and a body (contents).
(Administrators and developers may choose to turn off a title or body, though the
database always has a place for these.)

Nodes are used to back many different kinds of text content in Drupal. To
understand this, let's look briefly at the process of creating new content.

By default, creating new content in Drupal is done by clicking on the Create content
link in the main navigation. On this page, the user is prompted to select the content
type for their new page:

The above screenshot shows three different available content types.

The Story and Page content types are included by default. The Quotes content type
is one we will create in this book.

In Chapter 4, we will create the Quotes content type. In Chapter 7, we
will extend the node object to create an even more elaborate content type
representing a biography.

In fact, all the three content types are text-based and each of them is implemented
using nodes. For practical purposes, the node is the heart of Drupal's content
management system.

In this book we will deal with nodes many times, and we will take a close look at the
node API.

Comments Are Not Nodes
While most article-like content is based on the node, one major text component
stands out as an exception—the comment. A comment is usually implemented as a
user-level feedback mechanism attached to stories, pages, blog entries, and similar
articles. When you create a new page, for example, you have the opportunity to
allow or disallow user comments. If comments are enabled in read/write mode,
users will be able to comment on articles.

Chapter 1

[15]

Following is an example comment-posting screen:

Comments serve a different role than nodes. For example, a comment is always
linked to a node.

While comments will not play a big role in this book, they illustrate a point: Drupal
is a very flexible architecture, and can accommodate extensions (like comments) that
do not fit "the pattern" of typical text content and do not make use of the node API.

Since comments are, in many ways, very node-like, there is discussion
among Drupal developers of transitioning comments into the node
framework in Drupal 7.

While it is possible to implement a new form of content by creating a library that
does not make use of nodes, it is often more efficient to build on the existing (well‑
tested, robust) node API.

Introduction to Drupal Modules

[16]

Users
Another important type of object in Drupal is the user. User records are maintained
using this object type. Just as with comments and nodes, user data is stored in the
database, and drawn out during processing.

Information about a user is used for purposes such as authentication, determining
preferences and permissions, and logging.

In the course of this book, we will make use of the user APIs to perform permissions
checks, get contact information, and discover user preferences.

Access and Security
Permissions are closely linked to the user object. Drupal provides a role-based
mechanism for granting permissions to collections of users. In a nutshell, a user
belongs to a role, and permissions are granted to (or revoked from) a role.

Thus, when checking access to a resource, Drupal loads a user object, finds the user's
roles, and then finds the roles' permissions.

Does this sound like a lot of work? Well, it's not work the module developer must
do. Drupal provides functions for performing permissions checks. Most of the time,
module code does not need to directly discover a user's role before determining
permissions. The users API does that work for us.

Blocks and Page Rendering
The term block is equally important. While a node is used to store and present
articles and "larger" pieces of content, a block is used to present smaller bits of
content. For example, navigational menus, daily quotes, polls, and search boxes
are often presented using blocks.

A block is not a type of content. Actually, it is a unit of abstraction (a placeholder)
used primarily to display other content. Administrators can use the Blocks editor to
determine where blocks are displayed on a themed page:

Chapter 1

[17]

The highlighted sections in the above screenshot show where blocks can be displayed.

From the developer's perspective, blocks are an important part of module creation.
In fact, our very first module (which we will create in the next chapter) will display
a block.

Defining a block in a module is a matter of selecting content to display, and then
passing it on to the correct formatting tools.

In Chapters 3 and 4, we will look into themes, where we will format block content.

Menus
Closely related to blocks are menus. Drupal has a sophisticated menu system whose
main purpose is the construction of navigation. For example, the above screenshot
shows the main menu, with such items as Code review, My account, Create content,
and so on. This menu is dynamically generated by the Drupal menu system.

But the Drupal menu system is a more sophisticated device than this simple
description. It also functions as the primary tool for mapping URLs to specific
handling routines. Using the menu API, developers can correlate paths with
specially defined functions.

Introduction to Drupal Modules

[18]

In chapter 5, we will use the menu system to create a JSON (JavaScript Over the
Network) service, and in chapter 6 we will examine the more traditional way of
mapping a path to a module.

Forms
The primary method of submitting content over the Web is through HTML forms.
While the ubiquity of forms makes life easy for the web user, the dearth of good forms
processing tools usually makes form development a joyless chore for programmers.

However, forms processing is one area in which Drupal excels. The Forms
API (FAPI) provides a programming interface that takes the pain out of form
development (or at least significantly reduces the pain).

Using the FAPI, developers can provide a single form definition and let Drupal build
and display the form, collect the results, and even validate and escape form data.
Drupal even provides forms caching and advanced AHAH (Asynchronous HTML
And HTTP) features.

As Drupal development has progressed, the Forms API has got better and better, and
the Drupal 6 version exhibits many improvements.

Chapter 6 is the first to explicitly cover the forms API, and it is used again
in Chapter 7.

Database and Schema APIs
Beneath many of these higher-level frameworks and APIs is the layer responsible for
managing and manipulating the database. Drupal provides a low-level database API
to simplify the process of writing SQL queries.

This API provides some degree of security for database queries, and also makes it
easier to write SQL that is portable across different databases.

Also the new Schema API, introduced in Drupal 6, makes it possible to define how
a database should be structured without writing the actual SQL. Since different
databases use different constructs for defining tables, this API simplifies the project
of writing portable modules.

These APIs are discussed primarily in Chapter 7.

There are other aspects of Drupal that we will touch upon in this book, including
taxonomies (sometimes called categories), filters, and actions. But there is no
in-depth discussion of these here. To learn more, consult the Drupal handbooks:
http://drupal.org/handbooks.

Chapter 1

[19]

Chapters 8 and 9 will make use of filters and actions inside modules.

Developers' Tools
So far, we've looked at some of the preliminary concepts involved in Drupal
development. To finish off this chapter, we will switch focus to development tools.

There are a few Drupal‑specific tools that you might find helpful when creating your
own modules. These tools are themselves provided by two modules, which can both
can be obtained from the Drupal site.

Developer Module
The Devel Module provides several tools that are extremely useful for Drupal
development, including cache management, SQL debugging tools, investigation
tools, a module reinstaller, an API reference tool, and many more.

You can find out more about this module at the official website:
http://drupal.org/project/devel.

The main part of this module (the Devel module) provides these tools as items in
a block. So after installing the module, you will need to go to Administer | Site
building | Modules and enable the module, and then go to Administer | Site
building | Blocks to tell Drupal where to display the new content.

This module also includes tools for building themes, a macro generator to simulate
form data entry, and a tool to generate testing data. As the module continues to
improve, new features will be added as well.

Any serious module developer will want to install the Devel module. In the writing
of this book, it has proven an invaluable tool for reinstalling modules, clearing
caches, and debugging difficult code.

Coder Module
As we shall see in this book, Drupal developers adhere to strict conventions in their
code. The Coder Module is a tool designed to help you, the developer, locate and fix
code that does not adhere to these conventions.

Introduction to Drupal Modules

[20]

In addition to making sure code follows conventions, it also does some basic security
auditing regarding how text is handled. This can be useful for spotting mistakes
before they become security risks.

The Coder Module is also hosted on the official Drupal site:
http://drupal.org/project/coder.

While it does not improve productivity in the same way that the Devel module does,
Coder can help you generate clean and "Drupalish" code. Its strict syntax checking
also occasionally turns up bugs.

"Drupalish"
Drupal developers are fond of using the word Drupalish to refer to
practices, styles, and approaches that mesh well with the Drupal
philosophy. For example, Drupalish code adheres to coding guidelines
and makes use of data structures common in Drupal (like nested
associative arrays).

In addition to these modules, there is a wealth of information on the Drupal
website about how to configure your favorite development environment
(including Emacs, VI, FireBug, and Eclipse PDT) for Drupal development:
http://drupal.org/node/147789.

A Word on Our Demonstration Site
Since this book focuses on development, we won't walk through the standard
process of downloading, installing, and configuring Drupal. If you need to review
any of this information, the Drupal website at http://drupal.org has a complete
installation handbook. We will begin assuming that Drupal is already installed
and configured.

In this book, we will develop modules for a fictional website called Philosopher
Bios. This website provides news and biographical sketches of famous philosophers.
Most of the modules we develop in this book will be reflective of the kind of
functionality such a site would need.

While this is the theme of the website, the modules we create will be broadly
applicable to other sites, and are reflective (I hope) of the sorts of real‑world
applications that we commonly develop for Drupal.

Chapter 1

[21]

I've tried to come up with unique modules (not re‑inventing the wheel). However,
with such a popular and mature platform, it seems inevitable that I have repeated
something someone has already done. The primary goal of the modules presented in
this book, though, is to provide instructive and practical examples of Drupal modules.

Summary
This chapter is an introduction to Drupal's architecture. Taking a developer's
perspective, we examined the basic structure of Drupal. After that, we looked at
some of the concepts and systems that will be important in this book.

Now that this preliminary chapter is done, we are going to shift focus. No more
theory-laden chapters and high-level explanations. From here on, our focus will
be practical.

In the next chapter, we will build our first module—and no, it's not going to be a
garden-variety "Hello, World" module. We will use a remote XML-based API to fetch
content and display it as a Drupal block. So strap yourself in, and let's get coding.

Creating Our First Module
In the last chapter, we looked at the basics of Drupal module development. Now
we will dive in and create our first module. Our first module will make use of an
existing web service to pull in some XML data, format it, and display it as a block in
the site's layout.

We will cover the following topics in this chapter:

Creating the .info and .module files
Creating a new module
Using basic hooks
Installing and configuring the module
Using important Drupal functions

Starting Out
Our first module is going to fetch XML data from Goodreads
(http://www.goodreads.com), a free social networking site for avid readers. There,
users track the books they are reading and have read, rate books and write reviews,
and share their reading lists with friends.

Reading lists at Goodreads are stored in bookshelves. These bookshelves are
accessible over a web-based XML/RSS API. We will use that API to display a
reading list on the Philosopher Bios website we introduced in Chapter 1.

To integrate the Goodreads information in Drupal, we will create a small module.
Since this is our first module, we will get into greater details, since they will be
commonplace in the later chapters.

•

•

•

•

•

Creating Our First Module

[24]

A Place for the Module
In Drupal, every module is contained in its own directory. This simplifies
organization; all of the module's files are located in one place.

To keep naming consistent throughout the module (a standard in Drupal), we
will name our directory with the module name. Later, we will install this module
in Drupal, but for development, the module directory can be wherever it is
most convenient.

Once we have created a directory named goodreads, we can start creating files for
our module. The first file we need to create is the .info (dot‑info) file.

Creating a .info File
Before we start coding our new module, we need to create a simple text file that will
hold some basic information about our module. Various Drupal components use the
information in this file for module management.

The .info file is written as a PHP INI file, which is a simple configuration
file format.

If you are interested in the details of INI file processing, you can visit
http://php.net/manual/en/function.parse-ini-file.php for
a description of this format and how it can be parsed in PHP.

Our .info file will only be five lines long, which is probably about average.

The .info file must follow the standard naming conventions for modules. It must
be named <modulename>.info, where <modulename> is the same as the directory
name. Our file, then, will be called goodreads.info.

Following are the contents of goodreads.info:

;Id
name = "Goodreads Bookshelf"
description = "Displays items from a Goodreads Bookshelf"
core = 6.x
php = 5.1

This file isn't particularly daunting. The first line of the file is, at first glance, the
most cryptic. However, its function is mundane: it is a placeholder for Drupal's
CVS server.

Chapter 2

[25]

Drupal, along with its modules, is maintained on a central CVS (Concurrent Version
System) server. CVS is a version control system. It tracks revisions to code over time.
One of its features is its ability to dynamically insert version information into a file.
However, it needs to know where to insert the information. The placeholder for this
is the special string Id. But since this string isn't actually a directive in the .info
file, it is commented out with the PHP INI comment character, ; (semi-colon).

You can insert comments anywhere in your .info file by beginning a
line with the ; character.

The next four directives each provide module information to Drupal.

The name directive provides a human-readable display name for the module. In the
last chapter, we briefly discussed the Drupal module installation and configuration
interface. The names of the modules we saw there were extracted from the name
directive in their corresponding .info files. Here's an example:

In this above screenshot, the names Aggregator and Blog are taken from the values
of the name directives in these modules' .info files.

While making the module's proper name short and concise is good (as we did
when naming the module directory goodreads above), the display name should be
helpful to the user. That usually means that it should be a little longer, and a little
more descriptive.

However, there is no need to jam all of the module information into the name
directive. The description directive is a good place for providing a sentence or two
describing the module's function and capabilities.

The third directive is the core directive.

The core and php directives are new in Drupal 6.

Creating Our First Module

[26]

This directive specifies what version of Drupal is required for this module to
function properly. Our value, 6.x, indicates that this module will run on Drupal
6 (including its minor revisions). In many cases, the Drupal packager will be able
to automatically set this (correctly). But Drupal developers are suggesting that this
directive be set manually for those who work from CVS.

Finally, the php directive makes it possible to specify a minimum version number
requirement for PHP. PHP 5, for example, has many features that are missing in
PHP 4 (and the modules in this book make use of such features). For that reason, we
explicitly note that our modules require at least PHP version 5.1.

That's all there is to our first module .info file. In later chapters, we will see
some other possible directives. But what we have here is sufficient for our
Goodreads module.

Now, we are ready to write some PHP code.

A Basic .module File
As mentioned in the first chapter, there are two files that every module must have
(though many modules have more). The first, the .info file, we examined above.
The second file is the .module (dot‑module) file, which is a PHP script file. This
file typically implements a handful of hook functions that Drupal will call at pre‑
determined times during a request.

For an introduction to hooks and hook implementations, see the
previous chapter.

Here, we will create a .module file that will display a small formatted section
of information. Later in this chapter, we will configure Drupal to display this
information to site visitors.

Our Goal: A Block Hook
For our very first module, we will implement the hook_block() function. In Drupal
parlance, a block is a chunk of auxiliary information that is displayed on a page
alongside the main page content. Sounds confusing? An example might help.

Think of your favorite news website. On a typical article page, the text of the article
is displayed in the middle of the page. But on the left and right sides of the page
and perhaps at the top and bottom as well, there are other bits of information: a site
menu, a list of links to related articles, links to comments or forums about this article,
etc. In Drupal, these extra pieces are treated as blocks.

Chapter 2

[27]

The hook_block() function isn't just for displaying block contents, though. In
fact, this function is responsible for displaying the block and providing all the
administration and auxiliary functions related to this block. Don't worry... we'll start
out simply and build up from there.

Starting the .module
As was mentioned in the last chapter, Drupal follows rigorous coding and
documentation standards (http://drupal.org/coding-standards). In this book,
we will do our best to follow these standards. So as we start out our module, the first
thing we are going to do is provide some API documentation.

Just as with the .info file, the .module file should be named after the module.
Following is the beginning of our goodreads.module file:

<?php
// Id

/**
 * @file
 * Module for fetching data from Goodreads.com.
 * This module provides block content retrieved from a
 * Goodreads.com bookshelf.
 * @see http://www.goodreads.com
 */

The .module file is just a standard PHP file. So the first line is the opening of the PHP
processing instruction: <?php. Throughout this book you may notice something.
While all of our PHP libraries begin with the <?php opening, none of them end with
the closing ?> characters.

This is intentional, in fact, it is not just intentional, but conventional for Drupal. As
much as it might offend your well-formed markup language sensibilities, it is good
coding practice to omit the closing characters for a library.

Why? Because it avoids printing whitespace characters in the script's output, and
that can be very important in some cases. For example, if whitespace characters are
output before HTTP headers are sent, the client will see ugly error messages at the
top of the page.

After the PHP tag is the keyword for the version control system:

// Id

When the module is checked into the Drupal CVS, information about the current
revision is placed here.

Creating Our First Module

[28]

The third part of this example is the API documentation. API documentation
is contained in a special comment block, which begins /** and ends with a */.
Everything between these is treated as documentation. Special extraction
programs like Doxygen can pull out this information and create user-friendly
programming information.

The Drupal API reference is generated from the API comments located in
Drupal's source code. The program, Doxygen, (http://www.stack.
nl/~dimitri/doxygen/) is used to generate the API documents from
the comments in the code.

The majority of the content in these documentation blocks (docblocks, for short) is
simply text. But there are a few additions to the text.

First, there are special identifiers that provide the documentation generating
program with additional information. These are typically prefixed with an @ sign.

/**
 * @file

 * Module for fetching data from Goodreads.com.
 * This module provides block content retrieved from a
 * Goodreads.com bookshelf.
 * @see http://www.goodreads.com

 */

In the above example, there are two such identifiers. The @file identifier tells the
documentation processor that this comment describes the entire file, not a particular
function or variable inside the file. The first comment in every Drupal PHP file
should, by convention, be a file‑level comment.

The other identifier in the above example is the @see keyword. This instructs
the documentation processor to attempt to link this file to some other piece of
information. In this case, that piece of information is a URL. Functions, constants,
and variables can also be referents of a @see identifier. In these cases, the
documentation processor will link this docblock to the API information for that
function, constant, or variable.

As we work through the modules in this book, we will add such documentation
blocks to our code, and in the process we will encounter other features of docblocks.

With these formalities out of the way, we're ready to start coding our module.

Chapter 2

[29]

The hook_block() Implementation
Our module will display information inside a Drupal block. To do this, we need to
implement the hook_block() function.

Remember, what we are doing here is providing a function that Drupal will call.
When Drupal calls a hook_block() function, Drupal passes it as many as three
parameters:

$op

$delta

$edit

The $op parameter will contain information about the type of operation Drupal
expects the module to perform. This single hook implementation is expected to
be able to perform a variety of different operations. Is the module to output basic
information about itself? Or display the block? Or provide some administration
information? The value of $op will determine this.

$op can have the following four possible values:

list: This is passed when the module should provide information about
itself. For example, when the list of modules is displayed in the module
administration screen, the $op parameter is set to list.
view: This value is passed in $op when Drupal expects the block hook to
provide content for displaying to the user.
configure: This value is passed when Drupal expects an administration
form used to configure the block. We will look at this later.
save: This value is passed when configuration information from the form
data generated by configure needs to be saved.

The $delta parameter is set during a particular operation. When $op is set to the
string view, which is the operation for displaying the block, then the $delta will also
be set. $delta contains extra information about what content should be displayed.
We will not use it in our first example, but we will use it later in the book. Take a
look at Chapter 4 for another example of a hook_block() implementation.

•

•

•

•

•

•

•

Creating Our First Module

[30]

Using deltas, you can define a single hook_block() function that
can display several different blocks. For example, we might define
two deltas—one that displays our Goodreads bookshelf, and the other
that displays information about our Goodreads account. Which one
is displayed will depend on which $delta value is passed into the
goodreads_block() function. Other modules in this book will make
use of deltas.

Finally, the $edit parameter is used during configuration (when the save operation
is called). Since we are not implementing that operation in our first module, we will
not use this parameter.

Drupal is meticulously documented, and the API documents are available
online at http://api.drupal.org. More information about hook_
block() parameters is available at this URL: http://api.drupal.
org/api/function/hook_block/6.

All hook methods should follow the module naming convention: <module name>_
<hook name>. So our goodreads block hook will be named goodreads_block().

/**
 * Implementation of hook_block()
 */
function goodreads_block($op='list', $delta=0, $edit=array()) {

 switch ($op) {

 case 'list':
 $blocks[0]['info'] = t('Goodreads Bookshelf');
 return $blocks;

 case 'view':
 $blocks['subject'] = t('On the Bookshelf');
 $blocks['content'] = t('Temporary content');
 return $blocks;
 }
}

Following Drupal conventions, we precede the function with a documentation block.
For hooks, it is customary for the documentation therein to indicate which hook it
is implementing.

Next is our function signature: function goodreads_block($op='list',
$delta=0, $edit=array()). The $op, $delta, and $edit parameters are all
explained above. Each parameter is initialized to a default value. Here, we follow
the customary defaults, but you can define them otherwise if you prefer.

Chapter 2

[31]

As I mentioned earlier the $op parameter might be set to one of several
different values.

What we do in this function is largely determined by which of those four values
is set in the $op flag. For that reason, the first thing we do in this function is use a
switch statement to find out which operation to execute.

Each case in the switch statement handles one of the different operations. For now,
we don't have any administration configuration to perform, so there are no cases to
handle either configure or save operations. We just need to handle the list and
view operations. Let's look at each.

case 'list':
 $blocks[0]['info'] = t('Goodreads Bookshelf');
 return $blocks;

When Drupal calls this hook with $op set to 'list', then this module will return a
two-dimensional array that looks as follows:

array(
 [0]=> (
 'info' => 'Goodreads Bookshelf'
))

Each element in this array is a block descriptor, which provides information about
what this block implementation does. There should be one entry here for every
$delta value that this function recognizes. Our block will only return one value (we
don't make use of deltas), so there is only one entry in the block descriptor array.

A block descriptor can contain several different fields in the associative array. One
is required: the 'info' field that we have set above. But we could also provide
information on caching, default weighting and placement, and so on.

For detailed information on this and other aspects of the hook_block()
hook, see the API documentation: http://api.drupal.org/api/
function/hook_block/6

Drupal uses the 'info' field to display an item in the module management list,
which we will see in the Installing a Module section of this chapter.

Creating Our First Module

[32]

The t() Function
In this example, there is one more thing worthy of mention. We use the function t().
This is the translation function. It is used to provide multi-language support and
also provide a standard method of string substitution. When t() is called, Drupal
will check to see if the user's preferred language is other than the default
(US English). If the user prefers another language, and that language
is supported, then Drupal will attempt to translate the string into the user's
preferred language.

For multi-language support, you will need to enable the Content
translation module.

Whenever we present hard-coded text to a user, we will use the t() function to make
sure that multi-language support is maintained.

In simple cases, the t() function takes just a string containing a message. In this case,
the entire string will be translated. But sometimes, extra data needs to be passed into
the string function. For example, we may want to add a URL into a string dynamically:

'Trying to access !url.'

In this case, we want t() to translate the string, but to substitute a URL in place of
the !url placeholder. To do this, we would call t() with the following parameters:

t('Trying to access !url.', array('!url'=>'http://example.com'));

In this example, t() has two arguments: the string to translate, and an associative
array where the key is the placeholder name and the value is the value to be
substituted. Running the above when the locale is set to English will result in a
string as follows:

Trying to access http://example.com.

There are three different kinds of placeholder. We have seen one above.

!: Placeholders that begin with the exclamation point (!) are substituted into
the string exactly as is.

Sometimes it is desirable to do some escaping of the variables before substituting
them into the string. The other two placeholder markers indicate that extra escaping
is necessary.

@: Placeholders that begin with an @ sign will be escaped using the
check_plain() function. This will, for example, convert HTML tags to
escaped entities. t('Italics tag: @tag', array('@tag', '<i>')) will
produce the string 'Italics tag: <i>'.

•

•

Chapter 2

[33]

%: Placeholders that begin with the percent sign (%) are not only escaped, like
those that start with the @, but are also themed. (We will look at theming in
the next chapter.) Usually, the result of this theming is that the output value
is placed in italics. So t('Replacing %value.', array('%value=>'test')
will result in something like 'Replacing test'. The
tags are added by the translation function.

Don't trust user-entered data
It is always better to err on the side of caution. Do not trust data from
external sources (like users or remote sites). When it comes to the t()
function, this means you should generally not use placeholders beginning
with ! if the source of the string to be substituted is outside of your
control. (For example, it is inadvisable to do this: t('Hello !user',
array('!user' => $_GET['username']). Using @user or %user
is safer.

We will use the t() function throughout this book. For now, though, let's continue
looking at the hook_block() function we have created.

A view Operation
Now let's turn to the view case. This second case in our switch statement looks
as follows:

case 'view':
 $blocks['subject'] = t('On the Bookshelf');
 $blocks['content'] = t('Temporary content');
 return $blocks;

The view operation should return one block of content for displaying to the end
user. This block of content must have two parts stored as name/value pairs in an
associative array: a subject and a content item.

The subject is the title of the block, and the content is main content of the block.
The value of the subject entry will be used as a title for the block, while
the content will be placed into the block's content.

Again, we used the translation function, t(), to translate the title and content of
this block.

While it is not terribly exciting yet, our module is ready to test. The next thing to do
is install it.

•

Creating Our First Module

[34]

Installing a Module
We have a working module. Now we need to install it. This is typically done in
three steps:

1. Copying the module to the correct location
2. Enabling the module
3. Configuring Drupal to display the module's content

Some of the contributed modules for Drupal require additional setup
steps. Such steps are documented by the module's authors. In Chapter 4,
we will create a module that requires a few additional steps before the
module is useful.

We will walk through each of these three steps.

Step 1: Copying the Module
Modules in Drupal are stored in one of the three places under Drupal's root directory:

modules/: This is the directory for core modules. Only modules supplied as
part of the Drupal distribution should be stored here. None of our modules
will ever be located here.
sites/all/modules/: This is the directory for modules that should be
available to all of the sites hosted on this Drupal installation. Usually, this is
where you want to put your module.
sites/<site name>/modules: Drupal can host multiple sites. Each site has a
directory inside the sites/ folder. For example, the default site is located in
sites/default/. If you want to install site‑specific modules on an instance
of Drupal that runs multiple sites, the modules should go into the sites/
<site name>/modules/ directory, where <site name> should be replaced by
the correct site name.

In this book, we will be storing our modules under the sites/all/
modules/ directory.

However, this directory is not created by default, so we will need to create it
by hand.

•

•

•

Chapter 2

[35]

On my Linux server, Drupal is installed in /var/www/drupal/. (Yours may be
somewhere else.) All of the file system paths will be relative to this directory. We will
add the appropriate subdirectory inside the sites/all/ directory:

In this example, we change into the appropriate directory, create the new
modules/ directory.

By default, the permissions on the directory should be set to allow the
web-server user (such as www-data) access to the files in the module.
However, on some systems you may have to set these yourselves.

On Windows, the same can be done through Windows explorer, and the same goes
for Mac and Finder. Simply locate your Drupal installation directory, navigate down
to sites\all, and create a new folder named modules.

Next, we need to copy our module into this directory.

UNIX and Linux users: Don't move it; link it!
If you are actively developing a module, sometimes it is more convenient
to create a symbolic link to the module directory instead of moving or
copying the directory:
ln -s /home/mbutcher/modules/goodreads
/var/www/drupal/sites/all/modules/goodreads

Creating Our First Module

[36]

Now we have our module in a location where Drupal expects to find modules.

Copying the module to the correct location is all we need to do for Drupal to
recognize the module, but new modules are disabled by default. We will need to log
in to the web interface and enable the module.

Step 2: Enabling the Module
A module is enabled through the Drupal Administration interface. Once
logged into Drupal, navigate to Administer | Site Building | Modules in the
left-hand navigation.

This page lists all the modules, beginning with the core modules (those installed
by default). At the very bottom of this page is the list of third-party modules. Our
module will appear in that list.

Chapter 2

[37]

To activate the module, simply check the box under the Enabled heading, and then
click the Save configuration button.

Where did Drupal get the information about our module? For most of this
part, this information came from our goodreads.info file.

Next, we need to configure the module to display on our site.

Step 3: Displaying the Module's Content
The module we have created is a block module. Typically, blocks are displayed in
specifically defined locations on the screen. What we want to do now is tell Drupal
where to display our block content.

Just as with enabling the module, this is done through the administration interface.
Go to Administer | Site Building | Blocks to configure block placement.

Creating Our First Module

[38]

This tools allows us to configure the details of how blocks appear on the site. In fact,
the site uses the templates that a site visitor would see. You can see how the site
looks as you configure it.

At the bottom of this page is the block configuration tool—lists of modules along
with page placement parameters. We will configure our goodreads module to
appear in the right sidebar.

If all goes well, then our goodreads module should display in the right sidebar.
Make sure to press the Save Blocks button at the bottom. Otherwise the block's new
location will not be saved.

To generate the preceding screen, the block placement screen calls the
hook_block() functions for each of the block modules, setting $op
to list.

When the block's new location is saved, it will be displayed in the right‑hand column
on all of our pages.

What is the content in this module? What we see in the above screenshot are the
fields returned when Drupal's module manager calls the hook_block() function of
our module with something equivalent to this:

goodreads_block('view');

This will return the $blocks array, whose contents look like this:
array(
 'subject' => 'On the Bookshelf',
 'content' => 'Temporary content'
)

The subject value is used as the block's title, and the content item is used as the
block's content.

Chapter 2

[39]

Our module is installed. But it is doing very little. Next, we will add some
sophistication to our module.

Using Goodreads Data
So far, we have created a basic module that uses hook_block() to add block content
and installed this basic module. As it stands, however, this module does no more
than simply displaying a few lines of static text.

In this section, we are going to extend the module's functionality. We will add a few
new functions that retrieve and format data from Goodreads.

Goodreads makes data available in an XML format based on RSS 2.0. The XML
content is retrieved over HTTP (HyperText Transport Protocol), the protocol that
web browsers use to retrieve web pages. To enable this module to get Goodreads
content, we will have to write some code to retrieve data over HTTP and then parse
the retrieved XML.

Our first change will be to make a few modifications to goodreads_block().

Modifying the Block Hook
We could cram all of our new code into the existing goodreads_block() hook;
however, this would make the function cumbersome to read and difficult to
maintain. Rather than adding significant code here, we will just call another function
that will perform another part of the work.

/**
 * Implementation of hook_block
 */
function goodreads_block($op='list' , $delta=0, $edit=array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Goodreads Bookshelf');
 return $blocks;
 case 'view':
 $url = 'http://www.goodreads.com/review/list_rss/'
 .'398385'
 .'?shelf='
 .'history-of-philosophy';
 $blocks['subject'] = t('On the Bookshelf');
 $blocks['content'] = _goodreads_fetch_bookshelf($url);
 return $blocks;
 }
}

Creating Our First Module

[40]

The preceding code should look familiar. This is our hook implementation as seen
earlier in the chapter. However, we have made a few modifications, indicated by the
highlighted lines.

First, we have added a variable, $url, whose value is the URL of the Goodreads
XML feed we will be using (http://www.goodreads.com/review/list_rss/
398385?shelf=history-of-philosophy). In a completely finished module,
we would want this to be a configurable parameter, but for now we will leave it
hard-coded.

The second change has to do with where the module is getting its content.
Previously, the function was setting the content to t('Temporary content').
Now it is calling another function: _goodreads_fetch_bookshelf($url).

The leading underscore here indicates that this function is a private function of our
module—it is a function not intended to be called by any piece of code outside of the
module. Demarcating a function as private by using the initial underscore is another
Drupal convention that you should employ in your own code.

Let's take a look at the _goodreads_fetch_bookshelf() function.

Retrieving XML Content over HTTP
The job of the _goodreads_fetch_bookshelf() function is to retrieve the XML
content using an HTTP connection to the Goodreads site. Once it has done that, it
will hand over the job of formatting to another function.

Here's a first look at the function in its entirety:

/**
 * Retrieve information from the Goodreads bookshelp XML API.
 *
 * This makes an HTTP connection to the given URL, and
 * retrieves XML data, which it then attempts to format
 * for display.
 *
 * @param $url
 * URL to the goodreads bookshelf.
 * @param $num_items
 * Number of items to include in results.
 * @return
 * String containing the bookshelf.
 */
function _goodreads_fetch_bookshelf($url, $num_items=3) {
 $http_result = drupal_http_request($url);

Chapter 2

[41]

 if ($http_result->code == 200) {
 $doc = simplexml_load_string($http_result->data);
 if ($doc === false) {
 $msg = "Error parsing bookshelf XML for %url: %msg.";
 $vars = array('%url'=>$url, '%msg'=>$e->getMessage());
 watchdog('goodreads', $msg, $vars, WATCHDOG_WARNING);
 return t("Getting the bookshelf resulted in an error.");
 }

 return _goodreads_block_content($doc, $num_items);

 // Otherwise we don't have any data
 }
 else {
 $msg = 'No content from %url.';
 $vars = array('%url' => $url);
 watchdog('goodreads', $msg, $vars, WATCHDOG_WARNING);
 return t("The bookshelf is not accessible.");
 }
}

Let's take a closer look.

Following the Drupal coding conventions, the first thing in the above code is an
API description:

/**
 * Retrieve information from the Goodreads bookshelp XML API.
 *
 * This makes an HTTP connection to the given URL, and retrieves
 * XML data, which it then attempts to format for display.
 *
 * @param $url
 * URL to the goodreads bookshelf.
 * @param $num_items
 * Number of items to include in results.
 * @return
 * String containing the bookshelf.
 */

This represents the typical function documentation block. It begins with a one-
sentence overview of the function. This first sentence is usually followed by a few
more sentences clarifying what the function does.

Creating Our First Module

[42]

Near the end of the docblock, special keywords (preceded by the @ sign) are used to
document the parameters and possible return values for this function.

@param: The @param keyword is used to document a parameter and it
follows the following format: @param <variable name> <description>. The
description should indicate what data type is expected in this parameter.
@return: This keyword documents what type of return value one can expect
from this function. It follows the format: @return <description>.

This sort of documentation should be used for any module function that is not an
implementation of a hook.

Now we will look at the method itself, starting with the first few lines.

function _goodreads_fetch_bookshelf($url, $num_items=3) {
 $http_result = drupal_http_request($url);

This function expects as many as two parameters. The required $url parameter
should contain the URL of the remote site, and the optional $num_items parameter
should indicate the maximum number of items to be returned from the feed.

While we don't make use of the $num_items parameter when we call
_goodreads_fetch_bookshelf() this would also be a good thing to
add to the module's configurable parameters.

The first thing the function does is use the Drupal built‑in drupal_http_request()
function found in the includes/common.php library. This function makes an HTTP
connection to a remote site using the supplied URL and then performs an HTTP
GET request.

The drupal_http_request() function returns an object that contains the response
code (from the server or the socket library), the HTTP headers, and the data returned
by the remote server.

Drupal is occasionally criticized for not using the object-oriented features
of PHP. In fact, it does—but less overtly than many other projects.
Constructors are rarely used, but objects are employed throughout
the framework. Here, for example, an object is returned by a core
Drupal function.

When the drupal_http_request() function has executed, the $http_result object
will contain the returned information. The first thing we need to find out is whether
the HTTP request was successful—whether it connected and retrieved the data we
expect it to get.

•

•

Chapter 2

[43]

We can get this information from the response code, which will be set to a negative
number if there was a networking error, and set to one of the HTTP response codes if
the connection was successful.

We know that if the server responds with the 200 (OK) code, it means that we have
received some data.

In a more robust application, we might also check for redirect messages
(301, 302, 303, and 307) and other similar conditions. With a little more
code, we could configure the module to follow redirects.

Our simple module will simply treat any other response code as indicating an error:
 if ($http_result->code == 200) {
 // ...Process response code goes here...

 // Otherwise we don't have any data
 } else {
 $msg = 'No content from %url.';
 $vars = array('%url' => $url);
 watchdog('goodreads', $msg, $vars, WATCHDOG_WARNING);
 return t("The bookshelf is not accessible.");
 }

First let's look at what happens if the response code is something other than 200:
} else {
 $msg = 'No content from %url.';
 $vars = array('%url' => $url);
 watchdog('goodreads', $msg, $vars, WATCHDOG_WARNING);
 return t("The bookshelf is not accessible.");
}

We want to do two things when a request fails: we want to log an error, and then
notify the user (in a friendly way) that we could not get the content. Let's take a glance
at Drupal's logging mechanism.

The watchdog() Function
Another important core Drupal function is the watchdog() function. It provides a
logging mechanism for Drupal.

Customize your logging
Drupal provides a hook (hook_watchdog()) that can be implemented
to customize what logging actions are taken when a message is logged
using watchdog(). By default, Drupal logs to a designated database
table. You can view this log in the administration section by going to
Administer | Logs.

Creating Our First Module

[44]

The watchdog() function gathers all the necessary logging information and fires off
the appropriate logging event.

The first parameter of the watchdog() function is the logging category. Typically,
modules should use the module name (goodreads in this case) as the logging
category. In this way, finding module‑specific errors will be easier.

The second and third watchdog parameters are the text of the message ($msg above)
and an associative array of data ($vars) that should be substituted into the $msg.
These substitutions are done following the same translation rules used by the t()
function. Just like with the t() function's substitution array, placeholders should
begin with !, @, or %, depending on the level of escaping you need.

So in the preceding example, the contents of the $url variable will be substituted
into $msg in place of the %url marker.

Finally, the last parameter in the watchdog() function is a constant that indicates the
log message's priority, that is, how important it is.

There are eight different constants that can be passed to this function:

WATCHDOG_EMERG: The system is now in an unusable state.
WATCHDOG_ALERT: Something must be done immediately.
WATCHDOG_CRITICAL: The application is in a critical state.
WATCHDOG_ERROR: An error occurred.
WATCHDOG_WARNING: Something unexpected (and negative) happened, but
didn't cause any serious problems.
WATCHDOG_NOTICE: Something significant (but not bad) happened.
WATCHDOG_INFO: Information can be logged.
WATCHDOG_DEBUG: Debugging information can be logged.

Depending on the logging configuration, not all these messages will show up in
the log.

The WATCHDOG_ERROR and WATCHDOG_WARNING levels are usually the most useful for
module developers to record errors. Most modules do not contain code significant
enough to cause general problems with Drupal, and the upper three log levels (alert,
critical, and emergency) should probably not be used unless Drupal itself is in a
bad state.

There is an optional fifth parameter to watchdog(), usually called $link,
which allows you to pass in an associated URL. Logging back ends may
use that to generate links embedded within logging messages.

•

•

•

•

•

•

•

•

Chapter 2

[45]

The last thing we want to do in the case of an error is return an error message
that can be displayed on the site. This is simply done by returning a (possibly
translated) string:

return t("The bookshelf is not accessible.");

We've handled the case where retrieving the data failed. Now let's turn our attention
to the case where the HTTP request was successful.

Processing the HTTP Results
When the result code of our request is 200, we know the web transaction was
successful. The content may or may not be what we expect, but we have good reason
to believe that no error occurred while retrieving the XML document.

So, in this case, we continue processing the information:

if ($http_result->code == 200) {

 // ... Processing response here...
 $doc = simplexml_load_string($http_result->data);
 if ($doc === false) {
 $msg = "Error parsing bookshelf XML for %url: %msg.";
 $vars = array('%url'=>$url, '%msg'=>$e->getMessage());
 watchdog('goodreads', $msg, $vars, WATCHDOG_WARNING);
 return t("Getting the bookshelf resulted in an error.");
 }

 return _goodreads_block_content($doc, $num_items);

 // Otherwise we don't have any data
 } else { // ... Error handling that we just looked at.

In the above example, we use the PHP 5 SimpleXML library. SimpleXML provides a
set of convenient and easy-to-use tools for handling XML content. This library is not
present in the now-deprecated PHP 4 language version.

For compatibility with outdated versions of PHP, Drupal code often uses the
Expat parser, a venerable old event-based XML parser supported since PHP 4 was
introduced. Drupal even includes a wrapper function for creating an Expat parser
instance. However, writing the event handlers is time consuming and repetitive.
SimpleXML gives us an easier interface and requires much less coding.

For an example of using the Expat event-based method for handling XML
documents, see the built-in Aggregator module. For detailed documentation
on using Expat, see the official PHP documentation: http://php.net/manual
/en/ref.xml.php.

Creating Our First Module

[46]

We will parse the XML using simplexml_load_string(). If parsing is successful,
the function returns a SimpleXML object. However, if parsing fails, it will
return false.

In our code, we check for a false. If one is found, we log an error and return a
friendly error message. But if the Goodreads XML document was parsed properly,
this function will call another function in our module, _goodreads_block_
content(). This function will build some content from the XML data.

Formatting the Block's Contents
Now we are going to look at one more function—a function that extracts data from
the SimpleXML object we have created and formats it for display.

The function we will look at here is basic and doesn't take advantage of the Drupal
theming engine. Usually, formatting data for display is handled using the theming
engine. Themes are the topic of our next chapter.

Here is our _goodreads_block_content() function:

/**
 * Generate the contents of a block from a SimpleXML object.
 * Given a SimpleXML object and the maximum number of
 * entries to be displayed, generate some content.
 *
 * @param $doc
 * SimpleXML object containing Goodreads XML.
 * @param $num_items
 * Number of items to format for display.
 * @return
 * Formatted string.
 */
function _goodreads_block_content($doc, $num_items=3) {

 $items = $doc->channel->item;
 $count_items = count($items);
 $len = ($count_items < $num_items) ? $count_items : $num_items;

 $template = '<div class="goodreads-item">'
 .'
%s
by %s</div>';
 // Default image: 'no cover'
 $default_img = 'http://www.goodreads.com/images/nocover-60x80.jpg';
 $default_link = 'http://www.goodreads.com';

 $out = '';
 foreach ($items as $item) {

Chapter 2

[47]

 $author = check_plain($item->author_name);
 $title = strip_tags($item->title);
 $link = check_url(trim($item->link));
 $img = check_url(trim($item->book_image_url));

 if (empty($author)) $author = '';
 if (empty($title)) $title = '';
 if (empty($link)) !== 0) $link = $default_link;
 if (empty($img)) $img = $default_img;

 $book_link = l($title, $link);
 $out .= sprintf($template, $img, $book_link, $author);
 }
 $out .= '
<div class="goodreads-more">'
 . l('Goodreads.com', 'http://www.goodreads.com')
 .'</div>';
 return $out;
}

As with the last function, this one does not implement a Drupal hook. In fact, as the
leading underscore (_) character should indicate, this is a private function, intended
to be called only by other functions within this module.

Again the function begins with a documentation block explaining its purpose,
parameters, and return value. From there, we begin the function:

function _goodreads_block_content($doc, $num_items=3) {
 $items = $doc->channel->item;

The first thing the function does is get a list of <item/> elements from the XML data.
To understand what is going on here, let's look at the XML (abbreviated for our
example) returned from Goodreads:

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Matthew's bookshelf: history-of-philosophy</title>
 <copyright>
 <![CDATA[
 Copyright (C) 2006 Goodreads Inc. All rights reserved.]]>
 </copyright>
 <link>http://www.goodreads.com/review/list_rss/398385</link>
 <item>
 <title>
 <![CDATA[Thought's Ego in Augustine and Descartes]]>
 </title>
 <link>http://www.goodreads.com/review/show/6895959?
 utm_source=rss&utm_medium=api</link>
 <book_image_url>
 <![CDATA[

Creating Our First Module

[48]

 http://www.goodreads.com/images/books/96/285/964285-s-
 1179856470.jpg
]]>
 </book_image_url>
 <author_name><![CDATA[Gareth B. Matthews]]></author_name>
 </item>
 <item>
 <title>
 <![CDATA[Augustine: On the Trinity Books 8-15 (Cambridge Texts
 in the History of Philosophy)]]>
 </title>
 <link>http://www.goodreads.com/review/show/6895931?
 utm_source=rss&utm_medium=api</link>
 <book_image_url>
 <![CDATA[
 http://www.goodreads.com/images/books/35/855/352855-s-
 1174007852.jpg
]]>
 </book_image_url>
 <author_name><![CDATA[Gareth B. Matthews]]></author_name>
 </item>
 <item>
 <title>
 <![CDATA[A Treatise Concerning the Principles of Human
 Knowledge (Oxford Philosophical Texts)]]>
 </title>
 <link>http://www.goodreads.com/review/show/6894329?
 utm_source=rss&utm_medium=api</link>
 <book_image_url>
 <![CDATA[
 http://www.goodreads.com/images/books/10/138/1029138-s-
 1180349380.jpg
]]>
 </book_image_url>
 <author_name><![CDATA[George Berkeley]]></author_name>
 </item>
 </channel>
</rss>

The above XML follows the familiar structure of an RSS document. The <channel/>
contains, first, a list of fields that describes the bookshelf we have retrieved, and then
a handful of <item/> elements, each of which describes a book from the bookshelf.

Chapter 2

[49]

We are interested in the contents of <item/> elements, so we start off by grabbing
the list of items:

$items = $doc->channel->item;

The SimpleXML $doc object contains attributes that point to each of its child
elements. The <rss/> element (which is represented as $doc) has only one
child: <channel/>. In turn, <channel/> has several child elements: <title/>,
<copyright/>, <link/>, and several <item/> elements. These are represented as
$doc->title, $doc->copyright, and so on.

What happens when there are several elements with the same name like <item/>?

They are stored as an array. So in our code above, the variable $items will point to
an array of <item/> elements.

Next, we determine how many items will be displayed, specify a basic template we
will later use to create the HTML for our block, and set a few default values:

$count_items = count($items);
$len = ($count_items < $num_items) ? $count_items : $num_items;

$template = '<div class="goodreads-item">'
 .'
%s
by %s</div>';
// Default image: 'no cover'
$default_img = 'http://www.goodreads.com/images/nocover-60x80.jpg';
$default_link = 'http://www.goodreads.com';

In the first line, we make sure that we don't use any more than $num_items. Next,
we assign the $template variable an sprintf() style template. We will use this to
format our entries in just a moment.

Finally, we set default values for a logo image ($default_img) and a link back to
Goodreads ($default_link).

Once this is done, we are ready to loop through the array of $items and generate
some HTML:

$out = '';
foreach ($items as $item) {
 $author = check_plain($item->author_name);
 $title = strip_tags($item->title);
 $link = check_url(trim($item->link));
 $img = check_url(trim($item->book_image_url));

 if (empty($author)) $author = 'Unknown';
 if (empty($title)) $title = 'Untitled';
 if (empty($link)) $link = $default_link;
 if (empty($img)) $img = $default_img;

 $book_link = l($title, $link);
 $out .= sprintf($template, $img, $book_link, $author);
}

Creating Our First Module

[50]

Using a foreach loop, we go through each $item in the $items list. Each of these
items should look something like the following:

<item>
 <title>
 <![CDATA[Book Title]]>
 </title>
 <link>http://www.goodreads.com/something/</link>
 <book_image_url>
 <![CDATA[
 http://www.goodreads.com/images/something.jpg
]]>
 </book_image_url>
 <author_name><![CDATA[Author Name]]></author_name>
</item>

We want to extract the title, link, author name, and an image of the book. We get
these from the $item object:

$author = check_plain($item->author_name);
$title = strip_tags($item->title);
$link = check_url(trim($item->link));
$img = check_url(trim($item->book_image_url));

While we trust Goodreads, we do want to sanitize the data it sends us as an added
layer of security. Above, we check the values of $author and $title with the
functions check_plain() and strip_tags().

The strip_tags() function is built into PHP. It simply reads a string and strips out
anything that looks like an HTML or XML tag. This provides a basic layer of security,
since it would remove the tags that might inject a script, applet, or ActiveX object
into our page. But this check does still allow HTML entities like & or »te;.

Drupal contains several string encoding functions that provide different services
than strip_tags(). Above, we use check_plain() to perform some escaping on
$item->author_name. Unlike strip_tags(), check_plain() does not remove
anything. Instead, it encodes HTML tags into entities (like the @ modifier in t()
function substitutions). So check_plain('Example') would return the
string Example.

The check_plain() function plays a very important role in Drupal
security. It provides one way of avoiding cross-site scripting attacks
(XSS), as well as insertion of malicious HTML.

Chapter 2

[51]

There is a disadvantage to using check_plain(), though. If check_plain()
encounters an HTML entity, like <, it will encode it again. Thus, < would
become &lt;. The initial ampersand (&) is encoded into &.

With the $item->link and $item->book_image_url objects, though, we have to
do two things. First, we must trim() the results to remove leading or trailing white
spaces. This is important because Drupal's l() function, which we will see in just a
moment, will not process URLs correctly if they start with white spaces.

We also use Drupal's check_url() function to verify that the URL is legitimate.
check_url() does a series of checks intended to catch malicious URLs. For example,
it will prevent the javascript: protocol from being used in a URL. This we do as a
safety precaution.

Next, we check each of the newly assigned variables. We want to make sure that if a
variable is null or empty, it gets a default value.

 if (empty($author)) $author = 'Unknown';
 if (empty($title)) $title = 'Untitled';
 if (empty($link)) $link = $default_link;
 if (empty($img)) $img = $default_img;

The last thing we do in this foreach loop is format the entry as HTML for display:

$book_link = l($title, $link);
$out .= sprintf($template, $img, $book_link, $author);

First, we create a link to the book review page at Goodreads. This is done with
Drupal's l() function (that's a single lowercase L). l() is another important Drupal
function. This function creates a hyperlink. In the above code, it takes the book title
($title), and a URL ($link), and creates an HTML tag that looks like this:

<a
href="http://www.goodreads.com/review/show/6894329?utm_
source=rss&amp;utm_medium=api">
 A Treatise Concerning the Principles of Human Knowledge (Oxford
 Philosophical Texts)

That string is stored in $book_link. We then do the HTML formatting using a call to
the PHP sprintf() function:

$out .= sprintf($template, $img, $book_link, $author);

The sprintf() function takes a template ($template) as its first argument. We
defined $template outside of the foreach loop. It is a string that looks as follows:

<div class="goodreads-item">
%s
by %s</div>

Creating Our First Module

[52]

sprintf() will read through this string. Each time it encounters a placeholder, like
%s, it will substitute in the value of an argument.

There are three string placeholders (%s) in the string. sprintf() will sequentially
replace them with the string values of the three other parameters passed into
sprintf(): $img, $book_link, and $author.

So sprintf() would return a string that looked something like the following:

<div class="goodreads-item">

Thought's Ego in Augustine and Descartes

by Gareth B. Matthews</div>

That string is then added to $output. By the time the foreach loop completes,
$output should contain a fragment of HTML for each of the entries in $items.

The PHP sprintf() and printf() functions are very powerful, and
can make PHP code easier to write, maintain, and read. View the PHP
documentation for more information: http://php.net/manual/en/
function.sprintf.php.

Once we are done with the foreach loop, we only have a little left to do. We need to
add a link back to Goodreads to our $out HTML, and then we can return the output:

 $out .= '
<div class="goodreads-more">'
 . l('Goodreads.com', 'http://www.goodreads.com')
 .'</div>';
 return $out;
}

The block hook (goodreads_block()) will take the formatted HTML returned
by _goodreads_block_content() and store it in the contents of the block.
Drupal will display the results in the right‑hand column, as we configured in the
previous section:

Chapter 2

[53]

The first three items in our Goodreads history of philosophy bookshelf are now
displayed as blocks in Drupal.

There is much that could be done to improve this module. We could add caching
support, so that each request did not result in a new retrieval of the Goodreads XML.
We could create additional security measures to check the XML content. We could
add an administration interface that would allow us to set the bookshelf URL instead
of hard coding the value in. We could also use the theming system to create the
HTML and style it instead of hard coding HTML tags into our code.

In fact, in the next chapter, we will take a closer look at the theming system and see
how this particular improvement could be made.

However, to complete our module, we need a finishing touch. We need to add some
help text.

Creating Our First Module

[54]

Finishing Touches: hook_help()
We now have a functioning module. However, there is one last thing that a good
Drupal module should have. Modules should implement the hook_help() function
to provide help text for module users.

Our module is not very complex. Our help hook won't be, either:

/**
 * Implementation of hook_help()
 */
function goodreads_help($path, $arg) {

 if ($path == 'admin/help#goodreads') {
 $txt = 'The Goodreads module uses the !goodreads_url XML '
 .'API to retrieve a list of books and display it as block '
 .'content.';
 $link = l('Goodreads.com', 'http://www.goodreads.com');
 $replace = array(
 '!goodreads_url' => $link
);
 return '<p>'. t($txt, $replace) .'</p>';
 }
}

The hook_help() function gets two parameters: $path, which contains a URI
fragment indicating what help page was called, and $arg, which might contain
extra information.

In a complex instance of hook_help(), you might use a switch statement on the
$path, returning different help text for each possible path. For our module, only
one path is likely to be passed in: the path to general help in the administration
section. This path follows the convention admin/help#<module name>, where
<module name> should be replaced with the name of the module (e.g. goodreads).

The function is straightforward: The help text is stored in the $txt variable. If our
module required any additional setup or was linked to additional help, we would
want to indicate this here. But in our case, all we really need is a basic description of
what the module does.

We also want to insert a link back to Goodreads.com. To do this, we create the
placeholder (!goodreads_url) in the $txt content, and then create the link ($link)
by calling the l() function.

Chapter 2

[55]

Since we are going to pass the $txt string and the link into the translation function,
and let that function replace the placeholder with the link, we need to put $link
inside an array—the $replace array.

Finally the help text is returned after being passed through the t()
translation function.

This help text will now be accessible on the Administer | Help page:

That is all there is to creating help text.

It is good coding practice to include help text with your module. And the more
complex a module is, the better the help text should be. In future chapters, we will
start every module by implementing hook_help(). Often, though, we will keep text
in the help function brief for the sake of keeping the book concise and readable.

In your own modules you may want to create more verbose help text. This is helpful
to users who don't have access to the code (or to a book explaining how the module
works in detail).

Summary
In this chapter we created our first module. We created our first .info and .module
files. We implemented our first two hooks, hook_block() and hook_help(). We
installed our module, and then went on to extend the module to access an outside
XML source for content.

We also looked at several important Drupal functions, with t(), l(), watchdog(),
and check_plain() being the most important functions of the bunch.

In the coming chapters, we will build on the concepts covered in this chapter. Next,
we will turn to the theming system to learn how to cleanly separate layout and
styling information from the rest of the code.

The Theme System
In this chapter, we will look at the Drupal theme system. Strictly speaking, the theme
system is not a module. However, modules interact with the theme system, which
is made up of tools, templates, and libraries for configuring the look and feel of just
about all aspects of Drupal.

By the end of this chapter, you should be able to create a theme based on the
PHPTemplate engine. In later chapters, we will draw upon topics covered in this
chapter to make our modules more theme-aware.

In this chapter, we will cover the following:

Understanding the basic architecture of the theme system
Using theme inheritance to create derivative themes
Customizing the site's appearance with CSS (Cascading Style Sheets)
Creating custom PHPTemplate files
Overriding theme hooks to create custom theming

The Theme System's Architecture
The theme system was briefly introduced in the first chapter. In this chapter, we will
start out with a more detailed overview of the theme system's architecture.

With each major release of Drupal, the theme system has enjoyed significant revision,
and version 6 of Drupal is no exception. The new release of Drupal has introduced
theme hook registration, theme .info files, and other features. We will make use of
these new features in this chapter.

•

•

•

•

•

The Theme System

[58]

The goal of most theming systems—and Drupal's is no exception—is to separate the
design elements from the processing logic. Doing so achieves two important (and
related) goals:

A new look and feel can be created without the need to re-write any of the
processing code. This makes the theme creator's life easier—one need not
possess detailed knowledge of Drupal's internals to change the way the
site looks.
Program logic is easier to maintain. When code isn't cluttered with layout
elements (like HTML tags and CSS properties), the code can be cleaner and
more readable. This, in turn, makes it easier to make changes to the code base.

To achieve this separation of the user-interface layer from the underlying processing
logic, Drupal employs a complex theme system, which makes use of the module
architecture we discussed in the previous chapters.

There are three main elements of the theming system that we will cover here: themes,
theme engines, and hooks. These work in cooperation with the Drupal core system,
and also with individual modules (which make use of hooks to interact with the
template system).

The basic architecture, as we look at the theme system, is illustrated in the
following figure.

Themes provide the look and feel for the user interface. Typically, they require
an underlying theme engine as an interface between the Drupal core and the
theme templates. Hooks, considered in the context of the theme system, provide a
convenient method for modules and the theme system to interact.

Not all themes use a theme engine. For example, the Chameleon theme,
included in Drupal 6 by default, bypasses the theme engine layer. Instead,
it implements the appropriate theme hooks in a PHP file (drupal/
themes/chameleon/chameleon.theme). These hooks simply return
chunks of HTML. Additional styling is done with CSS.

•

•

Chapter 3

[59]

Theme Templates
Of the three main elements of the theming system, the themes are the easiest
to understand.

Themes are usually composed of a collection of templates, plus a handful of
supporting files like images, CSS files, and occasionally JavaScript files as well. Here,
we will focus on templates using the PHPTemplate engine. We will use CSS when
we create a theme later in the chapter.

A template provides layout information for particular pieces of data—elements
like blocks or nodes. So when a typical Drupal page is rendered, several templates
are involved (one for the overall page layout, one for node content, one for block
content, and so on). Often, templates format data as HTML, though there is no
specific requirement that HTML be the target output language.

Most Drupal templates are written in the PHPTemplate "template language", which
is actually just a specially formatted PHP file with access to a limited number of
Drupal variables.

Themes based on the PHPTemplate engine are the focus of this chapter.
There are other routes for creating Drupal themes, but the PHPTemplate
engine, which is a built‑in component of Drupal, is flexible and powerful.
That is why most themes use this engine.

Following is an example template from Drupal's Garland theme, one of the
templates included by default in Drupal 6. This template is stored in themes/
garland/block.tpl.php:

<?php
// $Id: block.tpl.php,v 1.3 2007/08/07 08:39:36 goba Exp $
?>
<div id="block-<?php print $block->module .'-'. $block->delta; ?>"
 class="clear-block block block-<?php print $block->module ?>">

<?php if (!empty($block->subject)): ?>
 <h2><?php print $block->subject ?></h2>
<?php endif;?>

 <div class="content"><?php print $block->content ?></div>
</div>

The above code is the block template in its entirety. What exactly does this template
do? It themes blocks. This template is used every time block content is rendered
using the Garland theme.

The Theme System

[60]

Usually, blocks are embedded inside a complete page. Thus, the HTML returned
from this block would be inserted into a larger HTML document. But when is this
template used?

In the last chapter, we created a module that returned block content. We implemented
hook_block() to create a block that displayed a bookshelf from Goodreads. When
Drupal renders that block (that is, when it calls goodreads_block('view')), it passes
the object returned from the block into the theme system as the variable $block.

The theme system, based on user configuration, determines which template engine
and template files or functions should be used to render the content.

In this case, the theme system hands the block data ($block) over to the template
that we have just seen, named block.tpl.php.

As you saw in this snippet, the attributes of the $block object are used to populate
the template. This information is not only used for displaying textual content,
but also for creating identifiers, such as HTML id and class attributes used by
JavaScript and CSS to manipulate the block on the client side. (We will look at CSS
later in this chapter and JavaScript in Chapter 5.)

The structure of the template should be familiar to any PHP developer. It is
composed of HTML elements with PHP code fragments inserted where needed.

For the moment, let's take a quick look at the portion of the template that displays
the subject and content of a block.

<?php if (!empty($block->subject)): ?>
 <h2><?php print $block->subject ?></h2>
<?php endif;?>

 <div class="content"><?php print $block->content ?></div>

In the above snippet, lines 1 to 3 determine whether a subject exists. If it does exist, it
is displayed. The last line displays the content.

This is a good example of a typical template work. There is very little programming
logic. The little logic that is there is usually limited to checking for the existence of
content, or perhaps looping through some content. All other data manipulation is
done before the template is called.

To get a good idea of how this template works in action, let's consider a simple
module named goodadvice with a block hook that looks as follows:

/**
 * Implementation of hook_block
 */
function goodadvice_block($op='list' , $delta=0, $edit=array()) {

Chapter 3

[61]

 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('A Little Advice...');
 return $blocks;
 case 'view':

 $advice = "I'd rather have a bottle in front of me ".

 "than a frontal lobotomy.";

 $blocks['subject'] = t('A Little Advice...');

 $blocks['content'] = t($advice);

 return $blocks;

 }
}

The highlighted portion in the above snippet shows the case that would be executed
when a block is requested for viewing.

If the above block hook is executed with $op set to 'view', it will return an array
that looks as follows:

array(
 'subject' => 'A little Advice...'
 'content' => 'I'd rather have a bottle in front of me than a frontal
labotomy.'
);

When the results are rendered through the block template we saw earlier, the result
will look as follows:

<div id="block-goodadvice-0"
 class="clear-block block block-goodadvice">

 <h2>A Little Advice...</h2>
 <div class="content">I'd rather have a bottle in front of me than
 a frontal lobotomy.</div>
</div>

Accessed from a browser, where all of the Garland theme's stylesheets are applied, it
looks like this:

The Theme System

[62]

As you can see, some of the block data was used to generate an ID
(block-goodadvice-0) and a class name (block-goodadvice). Then, the
$block->subject and $block->content information was used to render the
title and text of the block.

Templates like the one we just examined make up the core of most themes. But
themes are also composed of stylesheets, images, and other auxiliary files. We will
look at creating a custom theme, complete with templates, in the second part of this
chapter, Creating a Custom Theme. But before we go there, we need to look at the
engine that drives template rendering.

Theme Engines
In the above section, we looked at a template written as a PHPTemplate. This is one
particular template "language." There are other template languages as well, such as
the well-known PHP Smarty template language (http://smarty.php.net/) and the
Xtemplate language used by default in older Drupal 4 versions. Is it possible to use
one of these template languages instead of the default PHPTemplate?

The short answer is yes. New template languages can be supported by creating a
custom chunk of code that implements the appropriate hooks and handles passing
information from Drupal modules into the appropriate template or templates. This
chunk of code is not, as we might expect, implemented as a module. Instead, it is
implemented as a theme engine.

A theme engine is a special set of files (resembling, in some ways, a module) that
handles rendering of data, usually with templates. Themes are written for particular
theme engines. For example, one theme may use the PHPTemplate engine, while
another uses the Smarty template engine. But due to the nature of the theme code
and template files, it is difficult (and not good practice) to use multiple theme
engines for one theme.

Custom theme engines can be built and packaged, though installing them is a
manual procedure that must be done at the command line. We won't cover building
a custom theme engine in this book. If you are interested in developing an engine,
the Smarty theme engine (http://drupal.org/project/smarty) is a good starting
point for learning to create one.

Other template engines
A list of alternative template engines is maintained on the Drupal website.
At the time of this writing, there are only three: Xtemplate, Smarty, and
Plain PHP: http://drupal.org/node/176129.

Chapter 3

[63]

In this book, we will use only of the PHPTemplate engine for the following reasons:

It is the default theme engine, and the only one packaged with Drupal 6.
Since templates are written in plain old PHP, there is no learning curve to
pick up the template language.
It is deeply integrated with Drupal, and we can accomplish more with
less effort than it would take to implement similar features with other
template engines.

Along with these, the PHPTemplate engine has no external dependencies and no
configuration external to Drupal.

Theme Hooks
The last major piece of Drupal's theme system is the theme‑specific hook support. In
the last two chapters we've already discussed hooks at some length. Hooks are used
as a sort of callback mechanism used to facilitate inter-module interaction with a
high degree of flexibility.

The theme system, too, makes use of hooks for this purpose. It does so in some
interesting ways:

Themes and theme engines implement hooks for various purposes such as
registering, handling a particular request for display, and so on.
Template files do, to a certain extent, behave like hooks. Just as Drupal
searches for hook functions, it may, depending on the configuration, search
for template files that follow certain naming conventions, and load those
instead of executing a hook.
Modules may implement theming hooks either to make certain data available
for formatting by the theme system, or to perform some amount of theming
themselves. For example, the syslog module included with Drupal 6 makes
use of some theming hooks in order to format log file output.

We will make use of some theme hooks later in this chapter. Also, as we work on our
templates in the next section, we will see several theme hooks in action.

Most other chapters in this book make use of theme hooks, too. In coming
chapters, you will see such hooks used to add default theming to new
content and even to theme non-HTML content like email messages
(Chapter 8).

•

•

•

•

•

•

The Theme System

[64]

At this point, we've covered the basic architecture of the theme system. We spent a
little more time on themes themselves—especially templates. This introduction will
serve as the bedrock for our coming work.

Next, we will create our first theme.

Creating a Custom Theme
In this section, we will investigate a few strategies for creating custom themes. We
will create a custom theme, initially changing only CSS stylesheets, and then move
on to a more sophisticated theme, making use of custom templates. Finally, we will
create some PHP code that works more closely with the theme system itself. We
will even implement a theme hook to provide a higher degree of customization for
our theme.

Organization of Themes
In Drupal 6, themes are organized similarly to modules. Inside the main Drupal
directory is a themes/ folder, which in turn has a number of subfolders, each named
after the theme it provides:

These are the main "top level" themes that come with Drupal 6: Bluemarine,
Chameleon, Garland, and Pushbutton. Later in the book, we will talk about
sub-themes, (or derivative themes,) which are not visible here at the top level. By
convention, they exist in subfolders within the "top level" theme that they rely upon.

Theme engines are stored in the drupal/themes/engines directory.
By default, the only folder inside of drupal/themes/engines is
phptemplate/.

Chapter 3

[65]

Inside each theme directory are the files necessary for the theme to function. Each
theme must have a theme .info file. Those that use the PHPTemplate engine have
template files whose names end with the .tpl.php extension.

Stylesheets (particularly style.css), images, and other files will also be stored
inside the theme directory. If there are a lot of these supporting files, the theme
developers may have chosen to further organize the theme folder into subfolders.

Finally, some themes make use of a template.php file, which the PHPTemplate
engine automatically loads if present. This file can be used to provide additional
theming in the form of PHP functions.

Sub-themes (Derivative Themes)
Drupal 6 offers a new feature that developers call theme inheritance, a concept
borrowed from Object-Oriented Programming. Roughly speaking, the idea is that a
new theme can be created that draws upon the resources of another (parent) theme.
This new derivative theme can make use of files, images, stylesheets, and other
resources of the parent. But it can also strategically "override" or augment the
parent theme.

Overriding occurs when a derivative theme supplies a new behavior or
configuration that is designed to replace a behavior or configuration in the parent.
For example, if a parent stylesheet specifies that the borders on all block elements are
blue, a child might override this, declaring that all block elements be surrounded by
a green border instead. Overriding need not be restricted to CSS statements, though;
PHPTemplates, entire stylesheets, JavaScript files, and images can all be overridden.

But sub-themes can do more than override existing elements. They can add new
resources—new images, styles, or scripts—without overtly changing the parent.

Theme inheritance is one of many instances of the Drupal developers
taking the principles behind object-oriented programming and
successfully adapting them to Drupal's architecture.

In the theme examples seen here, we only deal with one layer of derivative themes.
However, multiple levels of inheritance are supported. A parent theme can have a
sub-theme, which in turn may have another sub-theme. Nesting themes this way,
though, may lead to maintenance headaches, and should be done only when it is
clearly the best choice.

The Theme System

[66]

Creating sub‑themes themes has some obvious benefits. It is faster than creating
a new theme from scratch. Less code is duplicated. Sets of similar (but different)
themes can be created quickly and easily. In short, derivative themes ease the burden
of the theme developer.

But there is a significant gotcha to be wary of. A sub‑theme depends on its parent.
But what happens when a parent theme is changed? A changed stylesheet, template,
or JavaScript file in a parent module might lead to unpredictable behavior in
derivative themes. One should particularly be aware of this possibility when basing
a sub-theme on a parent theme that is maintained by someone else.

Now that we have a bit of theory under our belts, let's take a look at the themes
provided with the Drupal core.

How Each Theme Functions
You can log into Drupal and check out the Administer | Site building | Themes
page and check out the screenshots to find out how each theme looks. But we are
more interested in how they function. Here's a brief overview of the architecture of
each module. Derivative Marvin and Minelli themes are listed here as second-level
bullets beneath the top-level themes they use.

Bluemarine: The Bluemarine theme is a very simple example of a
PHPTemplate-based theme. It uses HTML tables and CSS for layout, and it
makes very little use of images.
Chameleon: The Chameleon theme was mentioned earlier because it does
not make use of any theme engine. Instead, the chameleon.theme file (found
in drupal/themes/chameleon) contains PHP code that implements half a
dozen different theming hooks.

The derivative Marvin theme makes use of chameleon.
Marvin is located in drupal/themes/chameleon/marvin.

Garland: Garland is the default Drupal 6 theme. It is powerful, but also
complex. It makes use of the PHPTemplate engine. Along with the usual
features, it includes support for configuring custom color schemes (see
Administer | Site building | Themes and click the configure link next
to the Garland theme). Along with the normal PHP templates, Garland
has some specialized theming functions in the drupal/themes/garland/
template.php file.

Minelli: The Minelli theme is a derivative theme based on
Garland. Since it borrows all of the PHP-coded functionality
from its parent, it has the same features as Garland (such as
the color chooser).

•

•

°

•

°

Chapter 3

[67]

Pushbutton: Like Bluemarine and Garland, Pushbutton uses the
PHPTemplate engine. While it makes heavy usage of images, it is not much
more complex than the Bluemarine theme.

This brief overview should provide food for thought. Here are six very different
themes. One does not use templates at all. Two are sub-themes. One, Garland, makes
use of a sophisticated directory structure, theme‑specific PHP functions, and other
advanced features. Another, Bluemarine, is a minimal PHPTemplate module with
only one image, a couple of stylesheets, and a handful of template files. Together,
these modules illustrate the flexibility of the Drupal theme system.

We will base our themes on the Bluemarine theme. Its simplicity makes it the
optimal starting point for exploration. Leveraging theme inheritance, we will create a
custom derivative theme.

Creating a Theme
Rather than creating a full‑fledged theme, we will make a sub‑theme based on
Bluemarine. This makes it easy for us to strategically modify a few files without the
need to create a full set of templates.

As mentioned above, a derivative theme draws on the functionality of an existing
theme. We can be very selective about which files we create. For example, we could
just make a few stylesheet modifications, or just change around a few images. In fact,
we could do all of this without touching a single PHP file.

In this first part, we will create a new sub‑theme and manipulate the style.css
stylesheet. We will also add a new background image.

Creating the Theme Directory
The first step in creating a theme is to create the directory to house the new theme.
Where do we put this directory?

Earlier, we saw the convention of placing the derivative theme inside the parent
theme's directory.

However, in the previous chapter, we discussed the conventions for modules:
custom modules belong in drupal/sites/all/modules. This would indicate that
we should store themes in drupal/sites/all/themes.

•

The Theme System

[68]

So which is the case?

Most of the time, themes should follow an organizational convention similar to
that used for modules. There are two reasons why it is best to keep themes under
the drupal/sites/all/themes directory (or, for site‑specific configuration, under
drupal/sites/<sitename>/themes):

This method maintains a degree of separation between the official Drupal
code and the custom code, making it easier to maintain.
While Drupal upgrades might change the core themes (including, perhaps,
recreating or removing directories), if custom themes are outside the core
themes directory, they will not be touched during upgrades.

There is one notable exception, though. In the case where the same theme author or
authors make use of theme inheritance to create multiple themes, it may be best to
maintain them in the sort of directory structure employed by Drupal core themes.

In our case, we are extending a theme that we did not create. Clearly, we would do
best to put our module in the drupal/sites/all area.

When Drupal is first installed, there will be no themes/ directory there. The directory
may need to be created, and in rare cases, the permissions on the directory may need
to be set so that they are readable by the user the web server runs as (by default, this
should be the case already).

We are going to create a new theme called Descartes (descartes), named after
the famous early modern philosopher. We will put it in the drupal/sites/all/
themes folder.

All our theme files go in this new directory.

A .info File
The next thing our new Descartes theme needs is a .info file. This file provides
Drupal with information about the theme. Some of that information is simply used
for display, while other directives provide Drupal with information necessary for
serving and executing the theme code.

•

•

Chapter 3

[69]

Just as with a module's .info file, this file should be named with the
machine‑readable name of the theme. Thus, our file is named descartes.info.

Also like the module's .info file, this file is in the PHP configuration format, and it
has many of the same directives.

Here is our theme configuration file:

; Id
name = Descartes
description = Table-based multi-column theme with a Cartesian flavor.
version = 1.0
core = 6.x
base theme = bluemarine

There is very little to note in this simple file. The first four fields function in the same
capacity for themes as they do for modules.

The name field should contain the user‑friendly title of the theme, and the
description should provide a one-line description of the theme. Likewise, version
should give the version number of the theme.

The most interesting directive, though, is the base theme directive. This tells Drupal
that this theme makes use of resources from another theme—the bluemarine theme.
It is this directive that effectively makes this a sub-theme of Bluemarine. The name
passed to the base theme directive must be the machine-readable name.

That's all there is to our first theme .info file. There are, of course, many other
directives that can be used in a theme's .info file. We will look at a few more of
these later in the chapter. A complete list is available at: http://drupal.org/
node/137062.

Now we are ready to create a custom stylesheet.

A CSS Stylesheet
The first step in creating a new stylesheet is answering a question—How divergent is
this theme's style going to be from the parent style?

We are basing our Descartes theme on the Bluemarine theme. But how similar
will style elements be? Will we keep the same fonts? The same colors? The same
paddings, borders, and margins? The degree to which the styles differ will determine
how we create our stylesheet.

The Theme System

[70]

Let's take a quick glance at our site with the Bluemarine style:

How much will our new style differ from this one?

If our new style is to be radically divergent from the Bluemarine style, then we might
want to create a new style.css file (or copy over the style.css from Bluemarine
and begin a major overhaul).

However, the stylistic changes we will make here are minor. We will change the look
and feel of the left-hand column, turn the right-hand column on again (it is off by
default), and change some of the colors.

Since these changes can be accomplished with just a dozen or so lines of CSS, we
will take a different course of action. Instead of copying the entire style.css
file from Bluemarine, we will create a new stylesheet that overrides some of
Bluemarine's settings.

As of now, there is no convention for naming these auxiliary stylesheets, so we will
go with the uninspiring name new.css. Following are the contents of this CSS file:

/*
 ** Styles to override the styles.css in
 ** bluemarine.css
 ** Id
 */

Chapter 3

[71]

/*
 * Plain white right nav.
 */
#sidebar-right {
 border-left: 1px solid #ea940c;
 background-color: white;
}

/*
 * Add background image.
 */
#sidebar-left {
 background: url(leMonde_sidebar.png) no-repeat top left;
 border-right: 1px solid #ea940c;
}

/*
 * Set the background for the mission.
 */
#mission {
 background-color: #ea940c;
 padding: 5px 15px 5px 15px;
 text-align: center;
}

Here we are adding styles to three specific IDs in the HTML: sidebar-right, which
identifies the right‑hand sidebar; sidebar-left, identifying the left-hand sidebar;
and mission, which identifies the box containing the site's mission ("All philosophy
is a footnote to Plato").

The right-hand sidebar in the Bluemarine theme is battleship gray by default. We
want it to be white with an orange (#ea940c) border on the left side.

On the left-hand side, we want something more ornate: a background image
(leMonde_sidebar.png). Before this image can be successfully used, it must be
copied into our module directory.

Make sure you copy any necessary images into the theme directory. Even
if you are using images from the parent theme, it is best to copy those
images into the derivative theme.

As in our left-hand sidebar, we want an orange border to set this off from the main
page content.

The Theme System

[72]

CSS and URLs
Theme URLs are resolved relative to the theme directory. For example, the
CSS statement url(leMonde_sidebar.png) will attempt to find the file
drupal/sites/all/themes/descartes/leMonde.png.

Finally, we want to fix up the display of the mission statement by reducing the
padding, changing the background color, and aligning the text to the center of the
box instead of the left-hand side.

With new.css created, we have only one more thing to do. We need to direct Drupal
to use our new CSS in addition to the style.css of the parent. This is done by
adding the following lines to our descartes.info file:

stylesheets[all][] = style.css
stylesheets[all][] = new.css

These two lines provide explicit instructions to load the style.css and new.css
stylesheets.

What's the idea with all the square brackets? Square bracket notation was introduced
in Drupal 6 as a method for specifying multiple values for a directive in a .info file.
They function analogously to arrays in PHP.

The stylesheet directives above have two sets of square brackets apiece:
stylesheet[all][]. The first set, [all], indicates which media type of pages the
given stylesheet should be used in.

Those familiar with CSS will recognize the term 'media type'. It refers to the output
medium that the stylesheet is used for. Common media types are screen (for a
device with a screen) and print (for printed pages). The media type all applies to
any media type the browser requests.

Using the media type, then, we could set special stylesheets for printer-friendly pages:

stylesheets[print][] = printed.css

The Garland theme, for example, has printer‑specific CSS files.

Chapter 3

[73]

The second pair of square brackets, [], function like the array assignment syntax for
PHP. Just as $my_array[] = 'foo' places the string foo at the last place in the array,
so the directive stylesheets[all][] = 'new.css' puts new.css at the end of the
stylesheets list.

Clearing the template cache
When developing new templates, you may need to clear the template
cache before the latest theme changes show up. To do this, use the Empty
cache item in the Devel module's module development block. See
Chapter 1 for more information on the Devel module.

With these modifications made to the theme's .info file, we are ready to take a look
at the fruits of our labor.

Since our theme is located in the drupal/sites/all/themes directory and
has a .info file, Drupal should automatically find it. All we need to do is go to
Administer | Site building | Themes and enable the theme, setting it to default
for testing.

You may notice that the screenshot of our Descartes theme shows the Bluemarine
theme instead. That's because we haven't yet created our own screenshot image
(screenshot.png in the theme directory). Drupal is "inheriting" the parent
theme's screenshot.

Once the theme is enabled, we can navigate to the home page to see how it looks.

Do not set the administration theme to a theme in the development or
testing phase. Doing so can result in an unfortunate predicament. Errors
in the theme files can prevent you from accessing the administration
screens. Only stable themes should be used on the administration side
of Drupal.

The Theme System

[74]

Our new site should look something like the following screenshot:

While many of the elements of this design look the same as they did in the
Bluemarine theme, our changes should be immediately evident—different left and
right sidebars, a background image in the left-hand sidebar, and a lot more orange.

We have just successfully created a working derivative theme. All of this was done
with just a handful of files—and no PHP coding. A final glance at the Descartes
theme directory shows only four files:

Chapter 3

[75]

The logo.png file was simply copied over from the Bluemarine theme. We created
only three new files for this theme.

However, sometimes a little CSS isn't enough to attain the desired look and feel.
Sometimes we need to customize the templates themselves. How do we do that?

A PHPTemplate Theme
We could start a new theme from scratch, creating each new theme file as we go, but
it is often easier to begin by copying a similar theme and modifying it.

The Bluemarine theme is table-based, following the older practice of laying out an
HTML page with tables. We will start with that. But we will change it, making the
right‑hand navigation "float" so that text can wrap around it.

Template Structure
There are five templates in the Bluemarine theme. These five templates make an
appearance in almost all PHPTemplate-based themes, as they represent the pieces
that Drupal composes into a page. The templates are:

page.tpl.php: The main template for a page. This template should contain
the main elements of an HTML page, including the <html/>, <head/> and
<body/> elements. The theme system provides this template access to over
30 variables.
node.tpl.php: This template is responsible for displaying the contents of
a node. It is passed several variables, most of which relate directly to the
node being processed. For example, $title, $content, and $terms contain
(respectively) the node's title, text content, and associated taxonomy tags.
block.tpl.php: As we saw earlier in the chapter, this template is responsible
for rendering a single block. The $block object passed into this template
contains most of the information necessary for generating a block, though
there are a few other variables passed in as well.
box.tpl.php: This template paints a simple box. It is used less frequently. It
has access to only three variables: $title, $content, and $region.
comment.tpl.php: This template is used to display comments. It is given
access to about a dozen variables, which pertain to the comment, the
comment poster, and the context of the posting.

•

•

•

•

•

The Theme System

[76]

When a template is omitted from a theme (and from its parent, if it has
one), Drupal uses the default theme function to render the contents. For
example, when box.tpl.php is missing and a box is drawn, Drupal will
use the theme_box() method to theme the box data. Such default theme
functions are defined in include/theme.inc.

The main page.tpl.php template is responsible for providing the framework into
which Drupal content will be rendered. Most Drupal content items, including blocks,
are grouped into regions.

The main page template, then, isn't responsible for displaying individual nodes,
blocks, comments, and so on. Instead, it is responsible for displaying regions.

A region is a partition of the page where content can be displayed. By default, there
are five pre‑defined regions:

header: This region describes the header area of the template. In our theme,
for example, this area is located in the blue box along the top.
content: This describes the main area of the page. For our theme, this is the
section in the center of the page.
left: This describes one sidebar. Typically, as the name indicates, this
sidebar is located on the left side of the page (though that is, of course,
contingent on the theme creator's whims.)
right: This describes the second sidebar, usually located on the right side.
footer: The footer section contains information that should usually appear
after the rest of the content. In our theme, footer content would appear in the
gray box running along the bottom of the page.

Regions can be tailored to your needs. Existing regions can be omitted,
and new regions can be defined. As of version 6 of Drupal, this is
all done in the theme's .info file using the region[] directive.
Region configuration is explained further at: http://drupal.org/
node/137062.

As Drupal processes a request, the content of blocks, nodes, comments, and so on is
appended to the appropriate region or regions. These regions are made accessible
to the main page template in the form of eponymously named variables: $content,
$header, $left, $right, and $footer.

•

•

•

•

•

Chapter 3

[77]

For example, the main content of a page is stored in the $content variable made
accessible to page.tpl.php. Likewise, the title is stored in $title. Hence, the page
template could display the main page content with something like this:

<h1><?php print $title; ?></h1>
<?php print $content; ?>

What about blocks? The precise region that a particular block is assigned to is easily
configurable. In the last chapter, we used the Administer | Site building | Blocks
page to tell Drupal where we wanted our Goodreads module to be displayed. What
Drupal did, under the hood, was assign the module to a region (the right region).

The page template is supplied with many other variables, as well. Some contain site
information, such as the $site_name, $logo, and $site_slogan variables. Others
contain references to CSS ($styles) or JavaScript ($scripts, $closure). Many of
them provide template designers access to dynamically-generated pieces of content.
For example, the $breadcrumb variable provides access to the breadcrumb navigation:

All of these variables, and there are over 30, are documented in the page.tpl.php
template in Bluemarine (and the other core themes).

Armed with this information, we can now edit the template.

A Page Template for Descartes
We have already created a theme, Descartes, and added some custom CSS. Now, we
are going to modify just one of the templates provided by the Bluemarine theme. We
will change the page template to allow the right sidebar (the right region) to float.

The first thing to do is to copy the Bluemarine page template into our descartes/
theme directory.

$ cp drupal/themes/bluemarine/page.tpl.php \
 drupal/sites/all/themes/descartes

Now we have a copy of the template that we can tailor to our needs. According to
the rules of theme inheritance, this new template now overrides the Bluemarine
page.tpl.php file. The theme system will use the Descartes page.tpl.php, now,
and will ignore the parent Bluemarine template.

The Theme System

[78]

Taking a glance at the template, we can see many of the variables that we have
discussed in action. Don't feel obligated to labor over the details of this template. We
will be focusing on the highlighted section.

<?php
// $Id: page.tpl.php,v 1.25 2007/09/05 08:42:02 dries Exp $
?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="<?php print
 $language->language ?>" xml:lang="<?php print $language->language
 ?>">

<head>
 <title><?php print $head_title ?></title>
 <?php print $head ?>
 <?php print $styles ?>
 <?php print $scripts ?>
 <script type="text/javascript"><?php /* Needed to avoid Flash of
 Unstyle Content in IE */ ?> </script>
</head>

<body>

<table border="0" cellpadding="0" cellspacing="0" id="header">
 <tr>
 <td id="logo">
 <?php if ($logo) { ?><a href="<?php print $base_path ?>"
 title="<?php print t('Home') ?>"><img src="<?php print $logo
 ?>" alt="<?php print t('Home') ?>" /><?php } ?>
 <?php if ($site_name) { ?><h1 class='site-name'><a href="<?php
 print $base_path ?>" title="<?php print t('Home') ?>"><?php
 print $site_name ?></h1><?php } ?>
 <?php if ($site_slogan) { ?><div class='site-slogan'><?php
 print $site_slogan ?></div><?php } ?>
 </td>
 <td id="menu">
 <?php if (isset($secondary_links)) { ?><?php print
 theme('links', $secondary_links, array('class' => 'links',
 'id' => 'subnavlist')) ?><?php } ?>
 <?php if (isset($primary_links)) { ?><?php print theme('links',
 $primary_links, array('class' => 'links', 'id' =>
 'navlist')) ?><?php } ?>
 <?php print $search_box ?>
 </td>
 </tr>
 <tr>
 <td colspan="2"><div><?php print $header ?></div></td>
 </tr>
</table>

Chapter 3

[79]

<table border="0" cellpadding="0" cellspacing="0" id="content">
 <tr>
 <?php if ($left) { ?><td id="sidebar-left">
 <?php print $left ?>
 </td><?php } ?>
 <td valign="top">
 <?php if ($mission) { ?><div id="mission"><?php print $mission
?></div><?php } ?>
 <div id="main">
 <?php print $breadcrumb ?>
 <h1 class="title"><?php print $title ?></h1>
 <div class="tabs"><?php print $tabs ?></div>
 <?php print $help ?>
 <?php if ($show_messages) { print $messages; } ?>
 <?php print $content; ?>
 <?php print $feed_icons; ?>
 </div>
 </td>
 <?php if ($right) { ?><td id="sidebar-right">
 <?php print $right ?>
 </td><?php } ?>
 </tr>
</table>

<div id="footer">
 <?php print $footer_message ?>
 <?php print $footer ?>
</div>
<?php print $closure ?>
</body>
</html>

The highlighted table in the above code provides the basic layout for the page. It is
composed of three cells, all arranged in one row. Each sell corresponds to a region:
left, content, and right.

CSS and the left and right regions
Notice that while the left and right regions are stored in the $left and
$right variables, the IDs for the corresponding containers are named
sidebar-right and sidebar-left. We styled these while developing
our CSS-only theme earlier.

Instead of this three-column table layout, we want only two columns: one for the
right region, and the other for the content region.

The Theme System

[80]

The left region will reside inside a <div/> element inside of the content section, and
we will modify our new.css stylesheet to move that region over to the right.

To do this, we will remove the third <td/> element that looks as follows:

<?php if ($right) { ?><td id="sidebar-right">
 <?php print $right ?>
</td><?php } ?>

Note that this third column is only displayed if the $right variable is defined. We
will preserve this characteristic as we move the right region into the second column
of the table.

<td valign="top">
 <?php if ($mission) { ?><div id="mission"><?php print $mission
 ?></div><?php } ?>
 <div id="main">
 <?php if ($right) { ?>

 <div id="sidebar-right">

 <?php print $right ?>

 </div>

 <?php } ?>

 <?php print $breadcrumb ?>
 <h1 class="title"><?php print $title ?></h1>
 <div class="tabs"><?php print $tabs ?></div>
 <?php print $help ?>
 <?php if ($show_messages) { print $messages; } ?>
 <?php print $content; ?>
 <?php print $feed_icons; ?>
 </div>
</td>

We've added only five lines to implement our change. Now, if the $right variable
is defined, the template will encapsulate the region's content inside a <div/>
element with the same ID (sidebar-right) that the <td/> element uses in the
Bluemarine style.

Chapter 3

[81]

If we look at the site, we can see the result of this small change:

What are the effects of this change? First, the orange mission section on the top now
spans two-thirds of the screen, crossing over the right sidebar.

Glancing back at the above code, we can see why: The <div id="mission"/>
element is above the <div id="sidebar-right"/> element.

The second difference is the wrapping of text. In the old template, the right-hand
sidebar extended the length of the table. Now it only extends as far as it requires to
display all of its content. Material in the center section (which displays the $content)
can now extend to the right beneath the right-hand region.

Remember, Drupal caches theme information. To see your changes, you
may need to clear the cache using the Devel module.

Should we want to change the HTML code for blocks, boxes, comments, or nodes,
we could use a similar strategy. Copy the template or templates from the parent
theme, and modify them at will.

The Theme System

[82]

Using PHP to Override Theme Behavior
Sometimes there are cases where we want to perform some additional manipulation
on data before passing it on to the templates.

Some such manipulation could be done inside the PHPTemplate files. After all, they
are really just PHP files. However, that violates the principle of separation we have
adopted; templates should simply display content, not do any processing.

Additionally, some data comes into the theme in a somewhat unpredictable way.
The content of the $right variable in the page.tpl.php template, for example, is
an arbitrary string. Operating on each node or block represented in that variable is
difficult, as it would require sophisticated (and error‑prone) parsing.

Fortunately, there is a better way. We can interoperate with the theming system at a
lower level. We can use a template.php file to override theme functions.

The template.php file is a construct supported by the PHPTemplate
engine. Not all engines support template.php files. Some themes, like
Chameleon, use a similar technique to that of the template.php file, but
without using any theme engine at all. Chameleon strategically uses and
overrides theme functions to create HTML.

Theme functions, the core of which are defined in drupal/includes/theme.
inc, define how themes process information passed into the theme system. These
functions are part of the Drupal core (and, in some cases, part of modules), and are
executed before control is handed over to the theme engine.

Theme functions are similar to hooks. Just like hooks, they can be overridden. The
template.php file provides PHPTemplate‑based themes with the ability to override
default theme behavior.

Custom Breadcrumbs
Let's look at a simple example. While creating our page.tpl.php template, we
looked briefly at the $breadcrumb variable as it is passed into the page template.
$breadcrumb, as passed in here, contains a string that looks something like the
following code snippet:

<div class="breadcrumb">
Home »
Create content
</div>

Chapter 3

[83]

This code is generated from the theme_breadcrumb() function in drupal/
includes/theme.inc. The function in its entirety looks as follows:

/**
 * Return a themed breadcrumb trail.
 *
 * @param $breadcrumb
 * An array containing the breadcrumb links.
 * @return a string containing the breadcrumb output.
 */
function theme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return '<div class="breadcrumb">'. implode(' » ', $breadcrumb)
 .'</div>';
 }
}

The theme_breadcrumb() function gets an array of strings, each one a breadcrumb
item wrapped in a link. The function then combines all the items in this array,
separated by the double right angle quote (»). The whole thing is then wrapped in a
<div/> and returned.

This markup is hard-coded into Drupal, and cannot be easily changed from
a template.

But what if we don't like separating breadcrumbs with a double right angle quote?

The answer: We can override this theme function with a PHPTemplate function
defined in a template.php file inside our Descartes theme.

For example, let's look at a method for using an image as a separator.

Here is our drupal/sites/all/themes/descartes/template.php file:

<?
// Id

/**
 * @page
 * Override theme_() functions for the Descartes theme.
 */

// Overrides theme_breadcrumb()
function phptemplate_breadcrumb($breadcrumb) {
 if (empty($breadcrumb)) return;

 $sep = '<div class="breadcrumb-separator"> </div>';

 $breadcrumb_string = '<div class="breadcrumb">'
 . implode($sep, $breadcrumb) .'</div>';

 return $breadcrumb_string;
}

The Theme System

[84]

This file follows the same coding conventions as Drupal modules. We have one
function here—phptemplate_breadcrumb(). This function, which acts as part of
the PHPTemplate engine, overrides the theme_breadcrumb() function we
examined earlier.

Whereas the theme_breadcrumb() function separated elements with the double
right angle quote, this function separates them with this string (the value
of $sep):

<div class="breadcrumb-separator"> </div>

A <div/> with a new breadcrumb-separator class wraps a couple of non-breaking
spaces. This function will print output that looks something like the following code:

<div class="breadcrumb">
 Home
 <div class="breadcrumb-separator"> </div>

 Create content
</div>

Now with an extra class declaration in new.css, we can add a small background
image, which will appear "behind" the two blank spaces. It will give the appearance
of a separator:

div.breadcrumb-separator {
 display: inline;
 background: url(orange_dot.gif) no-repeat bottom left;
}

Viewed through the browser, we now have a breadcrumb trail that looks as follows:

Our phptemplate_breadcrumb() theme function is now performing some custom
pre-processing on the breadcrumb trail.

But the HTML (and CSS) produced by this method is admittedly a little clunky. Let's
look at a more elegant solution, which involves interacting with another
theme function.

Chapter 3

[85]

Interacting with Other Theme Functions
A quick perusal of the contents of drupal/includes/theme.inc will give you some
indication of what theming functions can do. Here are just a few to give some idea:

theme_image(): Format an image for display.
theme_links(): Format a list of links.
theme_progress_bar(): Display a progress bar.
theme_username(): Format a username for display.
theme_table(): Format data and display it as a table.

These functions can be called by modules as well as by themes.
The preferred method of calling them in the module context is
theme('<hookname>', $arg1, $arg2,...), where <hookname>
should be replaced by the string after the first underscore in the
theme function.

Rather than calling these theme functions directly, it is better to call them through
a mediating function, theme(). The theme() function takes the theme hook suffix
as the first argument, and the theme hook's arguments as additional arguments. In
other words, a call to theme should look something like this: theme('<hookname>',
$arg1, $arg2,...). Here, <hookname> should be replaced by the string after the first
underscore in the theme function. For example, invoking theme('image', 'images/
socrates.png', 'Bust of Socrates') would result in some version of theme_
image() being executed with the arguments 'images/socrates.png' and 'Bust
of Socrates'.

What do we mean by "some version of theme_image()"? The answer to this
question explains why it is better to use theme() than to call a theme_<hookname>()
function itself.

As we have seen in the previous example, it is possible to override a theme function.
Invoking theme('images', $a, $b) causes the theme system to check for a function
or template that overrides theme_image(). If one is found, that function or template
is used instead.

In short, theme() makes use of the full theme system, while calling
theme_<hookname>() function directly may cause your application to ignore
the current theme configuration and use only the default.

•

•

•

•

•

The Theme System

[86]

Templates can override theme hooks
A theme_<hookname>() function can also be overridden with a
PHPTemplate template file. For example, to override theme_image(),
we could create a template named image.tpl.php. The variables
normally available as arguments will be accessible here as variables
according to the method signature for theme_image().

With that explanation, we are ready to move on to our revised
breadcrumb implementation.

One way to represent our breadcrumb trail is as a list. Lists are easier to style, and
we have a nice built-in theme function for taking an array and generating a list:
theme_item_list().

The theme_item_list() function takes up to four arguments, though only the first
is required:

1. Array of list items
2. Title of list (optional, default: null)
3. List type, ul for unordered, ol for ordered
4. An associative array of attributes to add to the list element (the or

 elements)

Of course, we don't want to call theme_item_list() directly. Instead, we will access
the hook via the theme() function.

Re-working our earlier example, we can create a phptemplate_breadcrumb()
function that looks as follows:

// Overrides theme_breadcrumb()
function phptemplate_breadcrumb($breadcrumb) {
 if (empty($breadcrumb)) return;
 $attr = array(
 'class' => 'breadcrumb-items'
);
 $crumbs = theme('item_list', $breadcrumb, null, 'ul', $attr);
 return '<div class="breadcrumb">' . $crumbs . '</div>';
}

This function now makes use of item_list to create an unordered list of
breadcrumb items with the style class name set to breadcrumb-items.

Since we still want existing style information to apply where appropriate, we wrap
the new list in a <div> with the breadcrumb class.

Chapter 3

[87]

We can now make use of our newly‑defined breadcrumb-items class in
our stylesheet:

ul.breadcrumb-items li {
 list-style-image: url(orange_dot.gif);
 float: left;
 margin-right: 1em;
 margin-left: 1em;
}

ul.breadcrumb-items li.first {
 margin-left: 0px;
 list-style: none;
}

These first definition instructs the browser to display the list as a single row of links,
using the orange_dot.gif image (the same one we used before) instead of a bullet.

But we don't want the first item to display a bullet. Nor do we want a blank space on
the left. So we create a second definition that applies only to the first item in the list.

The HTML output is now a little more elegant than the previous version:

<div class="breadcrumb">
 <div class="item-list">
 <ul class="breadcrumb-items">
 <li class="first">Home
 <li class="last">Create
 content

 </div>
</div>

Notice that the theme_item_list() function wrapped the returned list in a <div/>
with the item-list class. This makes it easier to apply global styles to all lists
rendered through the theme.

What does this look like when rendered by the browser? It should look something
like this:

The Theme System

[88]

Since the HTML is now based on lists, we can now do any fine tuning of the
appearance in pure CSS.

The template.php file provides a convenient way to override the default theme
behavior. It also provides access to data before the data is handed on to the template.
Accessing such data before it is themed is called preprocessing. For example,
you can make additional variables accessible to the page.tpl.php template by
overriding the theme_preprocess_page() hook. See the API documentation for
details: http://api.drupal.org/api/function/template_preprocess_page/6.

template.php Gotchas
When using a template.php file in PHPTemplate themes, there are a couple of
things you might want to watch out for.

First, you can only override a theme function once. While this seems simple, there is
one circumstance in which this may be surprising.

While you can declare a template.php file in a sub‑theme even if there is a
template.php in the parent, you cannot override functions declared in the parent.
If the parent's template.php declares phptemplate_breadcrumb(), then the
sub‑theme's template.php cannot declare phptemplate_breadcrumb(). Doing so
will result in a PHP errors for redeclaring a function.

Second, we have seen that theme hooks (theme_<hookname>()) can be overridden
by PHPTemplate templates and also by functions in the template.php file. But what
happens if you declare both?

The phptemplate_<hookname>() function overrides the theme function that would
otherwise load the template. Therefore, if phptemplate_block() is defined in
template.php and there is a template named block.tpl.php, the phptemplate_
block() function will be called to render all blocks, and the block.tpl.php file will
never be used.

If you need to manipulate some content before it is passed to a template, don't do
this by defining phptemplate_<hookname>(). Instead, use one of the preprocessor
functions, such as phptemplate_preprocess_block(), phptemplate_preprocess_
node(), or phptemplate_preprocess_page().

At this point, we've created a new theme. We've added custom CSS, images,
PHPTemplate files, and even some custom theme hooks... what else does it take to
complete a theme?

One more thing.

Chapter 3

[89]

Creating a Screenshot
A complete theme ought to have a screenshot that can be displayed in the theme
manager in Administer | Site building | Themes.

Once the theme is completed, we can generate a screenshot, scale it to the requisite
150x90 pixel dimensions, and then save it as a PNG image named screenshot.png.

All we need to do now is copy screenshot.png into our theme directory and Drupal
will automatically display it as necessary.

If for some reason you want to name the screenshot something else, you can set the
screenshot directive in the theme's .info file: screenshot = image.png.

That's it. We're done creating our new theme.

Of course, this theme is a derivative theme. What does it take to go on and build a
top level theme—one with no parent?

From Here to a Full Theme
We have been looking at sub‑themes. But technically speaking, it is not that difficult
to move from here to a top-level theme. Since theming is not the focus of the book,
we will just glance at what it takes to create a full theme.

If the theme is based on PHPTemplates, the process of creating a top-level theme
doesn't differ much from what we have done already. You will need to make sure to
do a few things. Here is a short checklist:

Create a theme .info file that doesn't set the base theme to some other
theme. Instead of using the base theme directive, you should use the engine
directive: engine = phptemplate.
Create all the major templates: page.tpl.php, node.tpl.php, block.tpl.
php, and comment.tpl.php. Of course, you can create others, as well.
Add a logo.png image. Of course, you can use one of the standard
Druplicon images as a starting point (http://drupal.org/node/9068).
Create a style.css file, as well as any other CSS files the theme needs.
The style-rtl.css ("right to left") and print.css stylesheets are good
to include.
Add a screenshots.png image with a 150x90 screenshot of your theme.

The included Pushbutton and Bluemarine themes are good guides for getting
started. In short, though, it is a small step from creating derivative themes to creating
top-level themes.

•

•

•

•

•

The Theme System

[90]

More advanced PHPTemplate themes may also make use of the template.php
preprocessing page, additional JavaScript files, and other rich features. Garland is an
example of a complex theme.

For more information on developing themes, including links to the relevant APIs
and auxiliary documents, the official Drupal theme tutorial is the best place to go:
http://drupal.org/node/165706.

Summary
In this chapter, we created a sub-theme derived from the Bluemarine template
included with Drupal 6. After an overview of the theme architecture, we created
the Descartes theme. Initially, we made changes using only CSS. Then we added
a custom PHPTemplate. To add a little additional functionality, we implemented
the theme_breadcrumb() function in ourfunction in our template.php file. And we wrapped upfile. And we wrapped up
our theme by adding a screenshot. Finally, we took a look at the steps necessary for
moving from a sub-theme on to an independent theme.

But this chapter isn't the last time we will hear about themes. As we continue
creating new modules, we will make use of our newly-gained theme knowledge to
provide default theming for new content and to interact with the theme system from
within a module.

Theming Modules
In the last chapter, we took a look at the Drupal theme system, and created our own
theme. This chapter will begin where we left off, but with a twist—this time we will
create a module with a default theme. To do this, we will develop a new module.

The Philosophy Quotes module that we will create in this chapter will use Drupal's
theme system and a simple database query to theme the content of a custom
content type.

Here are some of the items we will cover while working on this module:

Creating a custom content type
Performing simple database operations
Registering a module's theme functions with the hook_theme() function
Adding theme hooks to a module
Adding CSS stylesheets to a module's default theme
Using theme CSS and template files to override default module
theme functions

In the next chapter, we will continue with this module. There, we will augment our
Philosophy Quotes module with some JavaScript.

Our Target Module: What We Want
Before we begin developing a module, here's a brief overview of what we want
to accomplish.

The module we will write in this chapter is the Philosophy Quotes module
(philquotes will be our machine-readable name). The goal of this module will be to
create a block that displays pithy philosophical quotes.

•

•

•

•

•

•

Theming Modules

[92]

We will implement the following features:

Quotes should be stored along with other basic content, making it possible to
add, modify, and delete this content in exactly the same way that we create
other articles.
Since our existing themes aren't aware of this quotes module, it must provide
some default styling.

We will progress through the creation of this module by first generating a new
"quote" content type, and then building a theme-aware module.

Creating a Custom Content Type
As Drupal evolved, it incorporated an increasingly sophisticated method for defining
content. Central to this system is the idea of the content type. A content type is a
definition, stored in Drupal's database, of how a particular class of content should be
displayed and what functionality it ought to support.

Out of the box, Drupal has two defined content types: Page and Story. Pages are
intended to contain content that is static, like an "About Us" or "Contact Us" page.
Stories, on the other hand, are intended to contain more transient content—news
items, blog postings, and so on.

Creating new pages or stories is as simple as clicking on the Create Content link in
the default menu.

•

•

Chapter 4

[93]

Obviously, not all content will be classified as either a page or a story, and many sites
will need specialized content types to adequately represent a specific class of content.
Descriptions of events, products, component descriptions, and so on might all be
better accomplished with specialized content types.

Our module is going to display brief quotes. These quotes shouldn't be treated like
either articles or pages. For example, we wouldn't want a new quote to be displayed
along with site news in the center column of our front page.

Thus, our quotes module needs a custom content type. This content type will be very
simple. It will have two parts: the text of the quote and the origin of the quote.

For example, here's a famous quote:

The life of man [is] solitary, poor, nasty, brutish, and short.—Thomas Hobbes.

The text of this quote is "The life of man [is] solitary, poor, nasty, brutish, and short",
and the origin in this example is Thomas Hobbes. We could have been more specific
and included the title of the work (Leviathan) or even the exact page reference,
edition, and so on. But all this information, in our simple example, would be treated
as the quote's origin.

Given the simplicity of our content type, we can simply use the built-in Drupal
content type tool to create the new type.

To generate even more sophisticated content types, we could install the CCK
(Content Creation Kit) module, and perhaps some of the CCK extension modules.
CCK provides a robust set of tools for defining custom fields, data types, and
features. (And in the next chapter, we will code our own Drupal content type.)

But here our needs are simple, so we won't need any additional modules or even any
custom code to create this new content type.

Using the Administration Interface to Create a
Content Type
The process of creating our custom content type is as simple as logging into Drupal
and filling out a form.

Theming Modules

[94]

The content type tool is in Administer | Content management | Content types.
There are a couple of tabs at the top of the page:

Clicking the Add content type tab will load the form used to create our new
content type.

Chapter 4

[95]

On this form, we need to complete the Name and Type fields—the first with a
human-friendly name, and the second with a computer-readable name. Description
is often helpful.

In addition to these fields, there are a few other form fields under the Submission
form settings and Workflow settings that we need to change.

Theming Modules

[96]

In the Submission form settings section, we will change the labels to match the
terminology we have been using. Instead of Title and Body, our sections will be
Origin and Text.

Changing labels is a superficial change. While it changes the text that
is displayed to users, the underlying data model will still refer to these
fields as title and body. We will see this later in the chapter.

In the Workflow settings section, we need to make sure that only Published is
checked. By default, Promoted to front page is selected. That should be disabled
unless you want new quotes to show up as content in the main section of the
front page.

Once the form is complete, pressing the Save content type button will create the new
content type.

That's all there is to it. The Create content menu should now have the option of
creating a new quote:

As we continue, we will create a module that displays content of type quote in
a block.

Before moving on, we want a few pieces of content. Otherwise, our module would
have no data to display.

Chapter 4

[97]

Here's the list of quotes (as displayed on Administer | Content management |
Content) that will constitute our pool of quotations for our module.

Content and Nodes
How does Drupal treat content for this custom content type and where is the content
that we create stored?

Drupal treats such content—even for custom content types—as nodes. A node is
a generic data type that represents a piece of content. Drupal assigns each node a
Node ID (NID), which is unique within the Drupal installation. Along with the
basic information that the node comprises (like title and body), Drupal also tracks
information on the status of the node, modifications of the node, related comments,
and so on.

Nodes are stored inside the Drupal database. In fact, there are several database tables
devoted to maintaining nodes. Later on, we will interact with the database to retrieve
our quotes. However, the module we create in this chapter will only make scant
direct use of the database layer.

Now that we have a custom content type and a few new content items, we are ready
to proceed to module development.

The Foundations of the Module
In the second chapter, we developed a module with the .info and .module files.
These files are common to all modules, and we will begin this module by creating
.info and .module files.

Our module will be named philquotes, and (as would be expected) will be located
in drupal/sites/all/modules/philquotes.

Theming Modules

[98]

Inside that directory, we will first create a standard module .info file:
philquotes.info.

; Id
name = "Philosophy Quotes"
description = "Dynamic display of philosophy quotes."
core = 6.x
php = 5.1

There should be nothing unfamiliar about the above code. It follows the same format
as the module we created in Chapter 2.

Next, we will start our new philquotes.module file:

<?php
// Id
/**
 * @file
 * Module for dynamic display of pithy philosophy quotes.
 */

/**
 * Implementation of hook_help()
 */
function philquotes_help($path, $arg) {

 if ($path == 'admin/help#philquotes') {
 $txt = 'This module displays philosophical quotes in blocks. '.
 'It assumes the existence of a content type named "quote".';

 return '<p>'. t($txt) .'</p>';
 }
}

The above code implements hook_help() to provide some information about the
module. This is also similar to the code we wrote in Chapter 2.

Just as with the module in Chapter 2, our philquotes module is mainly intended to
provide block content.

Next, we will implement hook_block()—the hook that controls what content is
displayed in a block. (A description of this hook was also given in Chapter 2.)

Here's our block hook:

/**
 * Implementation of hook_block().
 */
function philquotes_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {

Chapter 4

[99]

 case 'list':
 $blocks[0]['info'] = t('Philosophical Quotes');
 return $blocks;
 case 'view':
 $item = _philquotes_get_quote();
 if(!empty($item)) {
 $content = theme('philquotes_quote',
 check_plain($item->body),
 check_plain($item->title));

 $blocks['subject'] = t('Pithy Quote');
 $blocks['content'] = $content;
 return $blocks;
 }
 }
}

For the most part, this code should also look familiar. In the case where the operation
($op) passed into the hook is list, this should simply return information about the
blocks this hook makes available. In our case, there is just one block.

The more important case for us, though, is the highlighted section above. In the
case where view is passed in as the operation, the module should be returning some
content destined for display to the user. This content is wrapped in the $blocks
variable.

As far as this hook_block() implementation is concerned, we will focus on the
highlighted portion above.

When a block is generated for viewing, every block item contains two pieces: a
subject and some content. The subject of our block will always be Pithy Quote, but
the content is generated by a two-step process:

Getting a quote from the database
Adding any necessary theming information to that quote

In the above code, this is done by the following two statements:

$item = _philquotes_get_quote();

if(!empty($item) {
 $content = theme('philquotes_quote',

 check_plain($item->body),

 check_plain($item->title));

 // ...
}

•

•

Theming Modules

[100]

We use !empty($item) to make sure that the returned item is not NULL,
which would indicate that there were no quotes available. When $item
is NULL, we simply avoid sending a return value, and the block does not
show up at all.

The first statement performs the database lookup, and the second handles theming.
Let's take a detailed look at each.

A Simple Database Lookup
The philquotes_block() hook calls the _philquotes_get_quote()function to get
content for display. The _philquotes_get_quote() function is considered a private
(module only) function, since it begins with the underscore character.

The task of this private function will be to return a single quote content item from the
database. Quotes are stored as nodes. To add some spice to our module, we'll get a
random quote node rather than progressing sequentially through the quotes.

The process of retrieving our content item can be broken down into two steps:

1. We need to get the node ID of the random quote we are going to display.
2. We need to retrieve the node's data, specifically the title (which contains the

quote's origin) and the body (which holds the text of the quote).

To accomplish these tasks, we will use the Drupal API on two levels. To get a
random node ID, we will have to write some simple (but low-level) SQL. Once we
have that, though, we can use a higher‑level function to get the node's content.

Getting the Node ID
The first step is to get the Node ID for a quote. To get this, we will interact with the
database using Drupal's database API.

The database API provides low-level access to the database using SQL statements.
Drupal will handle the details of connection management. It also provides some level
of type checking, string escaping, and other protective features.

We will look at more features of the database API in later chapters (especially
Chapters 6 and 7). Here, though, we need to construct only a basic query.

Drupal developers have provided a useful overview of the database API.
It is available as part of the standard API docs: http://api.drupal.
org/api/group/database/6.

Chapter 4

[101]

The Drupal database has six tables devoted to node maintenance. Right now, we
only need to use one directly: the node table. As the generic name implies, this is a
high-level table that contains basic information about each node in Drupal.

The node ID is the only field we need returned from the node table. But we don't
want just any node from the table to be returned. What constraints must be placed on
the returned node?

We want the node to be published. By default, our quotes are published on
creation, but it is possible that one was unpublished, and we don't want to
display such a node. The status field in the node table indicates whether a
node is published (1) or unpublished (0).
We want the node to have the content type quote. The type field in the node
table contains the name of the node's content type.

Those are the only constraints we need to place. Of course, constraints can be a
lot more complicated—we could limit it to only quotes newer than last week, or
quotes that are owned by a particular user, and so on. Such restraints would be
implemented in SQL.

Now we have all the information we need to construct our SQL. If we were to run
the query from a MySQL monitor, it would look as follows:

SELECT nid FROM node
WHERE status=1 AND type='quote'
ORDER BY RAND() LIMIT 1

This will return one random node ID for a node that is published (status=1) and is
of the right content type (type='quote').

To execute a similar query using Drupal's database API, we need to make a
minor change.

Wrapping the SQL in PHP code, we create a function that looks as follows:

function _philquotes_get_quote() {

 $sql = "SELECT nid FROM {node} ".
 "WHERE status=1 AND type='quote' ORDER BY RAND() LIMIT 1";
 $res = db_query($sql);
 $item = db_fetch_object($res);
 // Do something with the $item.
}

The $sql variable contains our quote, but in a slightly altered form. Instead of
referring directly to the table name, we have substituted a table placeholder denoted
by curly braces. Before executing the query, Drupal will substitute the correct name
of the table where the {node} placeholder appears.

•

•

Theming Modules

[102]

Table name placeholders provide administrators the ability to change
table names to better fit existing conventions. For example, some ISPs
require that all tables have certain pre‑determined prefixes. By using table
name placeholders, we can avoid the need to make changes to code when
table names are changed in the database.

The Drupal db_query() function handles the execution of the query. It returns a
resource handle ($res) that can be used to manipulate the results of the query.

The db_fetch_object() function provides access to the rows returned from
the database.

Our query was limited to only one result. So rather than looping through the result
set, we can simply fetch the first returned item: $item = db_fetch_object($res);.

Now we have an object, $item, that contains the $nid attribute. We can use this
attribute to access the contents of the node.

Getting the Node's Content
Armed with the Node ID, we can retrieve a specific piece of content from
the database.

To do this, we could write another (more complex) SQL statement to get the node
contents. Since node content is spread across multiple tables, we would have to make
use of a couple of joins to get the desired content. Fortunately, there is a simpler way.

The Drupal node API provides a convenient function that does the heavy lifting
for us: node_load(). If we pass this function the NID, it will return an object that
contains the node's contents.

Nodes are implemented using a Drupal module. The main node API
(found in drupal/modules/node/node.module) provides dozens of
methods for working with nodes.

Using node_load(), we can finish off our function as follows:

function _philquotes_get_quote() {

 $sql = "SELECT nid FROM {node} ".
 "WHERE status=1 AND type='quote' ORDER BY RAND() LIMIT 1";
 $res = db_query($sql);
 $item = db_fetch_object($res);

 $quote = node_load($item->nid);

 return $quote;
}

Chapter 4

[103]

Only the highlighted lines are new. All we are doing here is fetching the complete
node object with node_load(), and then returning this object. (If node_load() is
given a NULL value, it simply returns FALSE. We are relying on the
philquotes_block() function to deal with empty results.)

What does this do in the context of our module? Let's look back at the lines of
philquotes_block() that we worked on earlier:

$item = _philquotes_get_quote();
if(!empty($item)) {
 $content = theme('philquotes_quote',
 check_plain($item->body),
 check_plain($item->title));

The $item variable in philquotes_block() now contains the node object we just
retrieved with _philquotes_get_quote() (the value of $quote). We have the data
we need. Now we need to format it for display.

Next, we will look at the theme() function (and some related code), and how it
handles turning our object into a themed string.

Theming Inside a Module
Once the philquotes_block() function has obtained the content of a quote,
it must add some formatting and styling to the data. This is handled with functions
that make use of the theme system. And the first stage is handled with the
theme() function.

We took a look at the theme() function in the last chapter. But there we were
primarily interested in creating themes. Here, we are working on a module. In the
module, we want to provide some default theming, but in a way that makes use of
the theme system. This provides more flexibility: theme developers can change the
layout of our module without having to change any of our code.

Default Themes
Often, a module adds content that existing themes do not already
provide layout information for. In such cases, the module developer
should provide a default theme. A default theme should provide layout
information for the new content that the module makes available.

The theme() function is called in philquotes_block() with three parameters:

$content = theme('philquotes_quote',
 check_plain($item->body),
 check_plain($item->title));

Theming Modules

[104]

The first, philquotes_quote, tells the theme() function which theme hook
should be executed. The theme() function will query the theme system to find an
implementation of a function called theme_philquotes_quote() or a template
called philquotes_quote.

Neither a matching function nor a matching theme exists in the default installation
of Drupal. But in a moment, we will solve this problem by creating a default theme
function that will be part of our module.

The next two parameters are the body and title of the quote we want to display.
(Recall that $item is the object that contains the content of our random quote node.)

The theme() function itself does not do anything special with parameters after
the first. Instead, they are passed on to the special theme hook (in this case,
theme_philquotes_quote()).

Check the Content
In the last chapter, we looked at check_plain() and other content
checking functions. Why do we use check_plain() here? The
content of a quote may contain HTML content, and some of the HTML
may not be safe. So before passing this data on to the theme system, it
ought to be escaped. In this case, we want HTML-escaped text, so we
use check_plain(). Failure to properly escape content can lead to
security vulnerabilities.

Where will the theme() function, which now must find theme_philquotes_
quote(), look for themes? One place it will look is inside the currently enabled
theme. In our case, this is the Descartes theme we created in the last chapter. But
there is no philquotes_quote function or template in that theme.

Drupal's theme system will also look among other registered themes. Modules can
register their own theme functions, making these themes available to the theme
system. If no theming is provided by the default theme, the module's theme will be
used. Since our module is providing new content that needs some theming, we will
need to register a theming function to provide default theming.

In Chapter 2, we created the Goodreads module. The output generated by
that module was hard-coded HTML. To improve that module, we could
make use of the theme system in much the same way that we are about to
do for this module.

Chapter 4

[105]

Registering a Theme
The philquotes module needs to register a theme function that takes a quote
content item and formats it for display as an HTML block.

Essentially, when a theme is registered, it declares new theme hooks, which other
parts of the theme system can use or override.

To register the module's default theme, we need to implement the theme registration
hook (hook_theme()), following the naming convention <modulename>_theme(),
where <modulename> is the name of the module:

/**
 * Implementation of hook_theme().
 */
function philquotes_theme() {
 return array(
 'philquotes_quote' => array(
 'arguments' => array('text' => NULL, 'origin' => NULL),
),
);
}

In a nutshell, this function provides the theme system with a comprehensive list of
what theme functions (hooks) are provided by this module, and how each function
should be called.

There are a lot of different configurations that we might want for a theme hook.
Unfortunately, the result of this is that the data structure that hook_theme() must
return is a daunting series of nested associative arrays.

In the above example, the arrays are nested three‑deep. Let's start with the
outermost array.

The outermost array contains elements of the form 'theme_function_name' =>
configuration_array. In the above example, it looks as follows:

return array(
 'philquotes_quote' => array(
 // Contents of the array...
),
);

The theme_function_name string should be the name of a theme hook that this
module implements or provides. In our theme, for example, we will provide a theme
for philquotes_quote.

Theming Modules

[106]

The actual name of the theme hook function will be theme_philquotes_quote(),
but the theme_ portion is omitted when we register the handler.

The value of this array element, configuration_array, is another associative array
that provides Drupal with information about how this module handles the theme.
We will look at this array in a moment.

The outer array may register more than one theme function. For example, we might
register three different theme functions for a module as follows:

return array(
 'mytheme_a' => array(/* settings */);
 'mytheme_b' => array(/* settings */);
 'mytheme_c' => array(/* settings */);
);

This code would register three theme hooks, each with an array of
configuration options.

We are registering only one theme hook, though, and we can now take a closer look
at the second level of associative arrays.

This array will contain configuration information about how this module implements
the theme hook. Let's look at the configuration options that our philquotes_quote
theme hook will have:

'philquotes_quote' => array(
 'arguments' => array(/* parameter info */),
),

The value for the philquotes_quote key in the outer array is itself an associative
array. The keys that this array holds are well defined, and all the eight keys are
explained in the hook_theme() API documentation (http://api.drupal.org/api/
function/hook_theme/).

For example, the template key can be used to point to a template file that should
be used instead of a theme function. Had we chosen to use a template file called
philquotes_quote.tpl.php, we could have called the above as follows:

'philquotes_quote' => array(
 'template' => 'philquotes_quote',
 'arguments' => array(/* parameter info */),
),

When theme_philquotes_quote() is called with these parameters, it would
look for a file called philquotes_quote.tpl.php inside the philquotes module
directory. (The template file extension is appended automatically.)

Chapter 4

[107]

In this example, the items in the arguments array would be passed in as
variables to the template. To see an example of a module template,
see Chapter 8.

Other similar directives exist for adding preprocessing functions, including other
PHP files, and so on.

For our module, however, we will implement the hook as a function. The only
directive we want in this array is arguments.

In the context of a hook function (as opposed to a template), this array entry is used
to indicate what parameters will be passed to the function.

For our module hook, we only need two: text and origin.

/**
 * Implementation of hook_theme()
 */
function philquotes_theme() {
 return array(
 'philquotes_quote' => array(
 'arguments' => array('text' => NULL, 'origin' => NULL),

),
);
}

Items in the arguments array are of the form 'argument_name' =>
default_value.

Initially, we set both values to NULL; however, if we want to provide more robust
default values, we could do so here.

Based on this array, we can now construct the method signature of our theme hook.
It will be:

function theme_philquotes_quote($text, $origin)

The name of the function is the hook name with theme_ prepended, and the two
parameters here should correspond to the elements in the arguments array.

Now we are ready to create this function.

Theming Modules

[108]

Creating a Theme Hook Function
We have just created a theme registration function, overriding the hook_theme()
function for our module. In it, we have declared that this module implements a hook
called theme_philquotes_quote() that takes two arguments, $text and $origin.
Now we will create that function.

The goal of this function is to take the same content (a single quote) and configure
it for display. Here is our first version of this function, which will provide a basic
display of the quote:

/**
 * Theme function for theming quotes.
 *
 * @param $text
 * The quote content as a string.
 * @param $origin
 * The original source of the quote, as a string.
 * @return
 * An HTML themed string.
 */
function theme_philquotes_quote($text, $origin) {
 $output = '<div id="philquotes-text">'. t($text)
 .'</div><div id="philquotes-origin">'. t($origin) .'</div>';
 return $output;
}

All we have done in this function is wrap the content of the $text and $origin
variables in <div/> tags, each of which has an id attribute.

Looking back at our philquotes_block() function, we can see what happens from
here: The string that this function returns will be rendered as a block item. When it is
rendered, it should look something like this:

The header, Pithy Quote, comes from philquote_block(), while the text and origin
of the quote are rendered into two un-styled <div/> elements. We have taken our
node content and formatted it as HTML.

Chapter 4

[109]

The block might not show up for two reasons. First, if there are no
published quotes, nothing will be displayed here. Second, the block
cache may need to be cleared. The cache-clearing tool included with the
Devel module can do this for you. See Chapters 1 and 3 for more on the
Devel module.

But this formatting of our quote is not particularly attractive. We can improve it by
adding a CSS stylesheet to our module.

Adding a Stylesheet
Earlier, the theme_philquotes_quote() function wrapped our quote's text and
origin information inside of two <div/> tags. Each tag has a unique id attribute:

philquotes-text
philquotes-origin

Using those IDs, we can create a stylesheet that styles those two elements.

By convention, a module's main stylesheet should be named <module_name>.
css (where <module_name> is the name of the module). As with all other module
files, this file belongs inside the module directory (drupal/sites/all/modules/
philquotes, for this example). Our philquotes.css file looks as follows:

#philquotes-text:first-letter {
 font-size: 18pt;
 font-weight: bold;
}

#philquotes-origin {
 font-style: oblique;
 text-align: right;
 margin-right: 5px;
}

Here we have a simple stylesheet. When used, it will add some additional styling to
our bland HTML.

However, simply having the stylesheet (and naming it correctly) is not enough to
add this style to the default theme. Drupal does not automatically include a module's
stylesheet when the page is rendered. We have to tell the theme system to include it.

•

•

Theming Modules

[110]

Adding a stylesheet is done with a built-in function: drupal_add_css(). Using this
function in our theme_philquotes_quote() hook, we can instruct the theme system
to include the module's CSS file along with the other stylesheets Drupal will list in
the HTML it sends to the client.

function theme_philquotes_quote($text, $origin) {

 $module_path = drupal_get_path('module', 'philquotes');

 $full_path = $module_path .'/philquotes.css';

 drupal_add_css($full_path);

 $output = '<div id="philquotes-text">'. t($text)
 .'</div><div id="philquotes-origin">' . t($origin) . '</div>';
 return $output;
}

The above highlighted lines show the necessary modifications. Before Drupal can
load the stylesheet, it must have the full path to the location of that stylesheet. The
CSS file is located in our module, and we can construct the full path to this module
using the drupal_get_path() function. Then we can append /philquotes.css to
the string returned by drupal_get_path().

drupal_get_path() is another useful function that is often needed for module
development. It takes two arguments.

The first is the item type, which (for module developers) is usually either theme or
module, depending on whether the path is part of a theme or a module. The second
parameter is the name of the theme or module that this should get the path for. To
get the path of the Descartes theme we created in the last chapter, then, we could use
drupal_get_path('theme', 'descartes').

For the details of drupal_get_path(), see http://api.drupal.
com/api/function/drupal_get_path.

We can now pass $full_path into the drupal_add_css(), which will include a link
to our CSS file in the header of the HTML output when this module is used.

The output from our module should now look something as follows:

Chapter 4

[111]

With the addition of our stylesheet, the output of our philquotes module is
now styled.

What we have done so far is created a default theme for our module. But why go
through all of this trouble when we could have just hard-coded the HTML into
the module?

Here is one very good reason.

By creating a default theme, we have ensured that our module can be displayed
regardless of whether a theme developer created templates or theme functions
specifically for our module.

Yet by using the theme system, we have also made it possible for a theme designer
to override (or modify) our default theme. Thus, a theme developer can change
the layout and styling for our module's content without having to edit a line of the
module's code.

In the next section, we will see how this is done.

Overriding the Default Theme from a
Theme
One of the chief advantages of using the theme system in a module is that it affords
the theme developer the ability to use a module, but theme the module's contents as
desired. Here we will take a look at theming module contents from a theme.

A Quick Clarification
We are now treading on the verges of terminological overload. The word 'theme'
runs the risk of becoming ambiguous. So let's pause for just a moment and get clear
on what we are about to do.

Thus far, we have been working on a module. In this module, we have created a
default theme. This default theme has provided layout for this module's content. The
default theme is used when the site's theme (be it Descartes, Bluemarine, Garland,
or another theme) does not provide facilities for handling this module's content.

Now we are going to take a lateral step and work on a theme. We are switching
directories from drupal/sites/all/modules to drupal/sites/all/themes.

In the previous chapter, we created the Descartes theme, which made use of
PHPTemplate templates to render content into HTML. We are going to revisit that
theme here (though this same process could be applied to any theme).

Theming Modules

[112]

We will modify that theme, creating an alternative presentation of the quotes that
are retrieved from our philquotes module. In other words, we are overriding the
module's default theme.

We will look at two ways of doing this. One method will override the CSS styling
only, and the other will make use of PHPTemplates to override the theme hook.

Overriding the Default Theme's CSS
If we look at in the <head/> section of a page that uses the philquotes block, we
should see a link to the module's stylesheet:

<link type="text/css" rel="stylesheet" media="all"
 href="/drupal/sites/all/modules/devel/devel.css" />
<link type="text/css" rel="stylesheet" media="all"

 href="/drupal/sites/all/modules/philquotes/philquotes.css" />

<link type="text/css" rel="stylesheet" media="all"
 href="/drupal/themes/bluemarine/style.css" />
<link type="text/css" rel="stylesheet" media="all"
 href="/drupal/sites/all/themes/descartes/new.css" />

The highlighted link was added by the module's call to drupal_add_css().

What if we want to override the styles from that file?

The placement of the CSS files is significant. Module CSS files are always loaded
before theme CSS files. That way, theme files can use the CSS cascade rules
to override or augment the styles specified in a module's CSS. (See the CSS2
specification for more information on the cascade: http://www.w3.org/TR/CSS21/
cascade.html.)

Because of the order, the theme developer can override the module's default CSS by
adding CSS statements to the theme's stylesheets.

So, for example, we could change the style of the <div id="philquotes-text"/>
element simply by adding a few lines to the end of the new.css file we created for
the Descartes theme:

#philquotes-text {
 color: pink;
}

This change doesn't directly override any of the styling added by the philquotes.
css. Instead, it augments existing style.

Chapter 4

[113]

Now, in addition to the styles already added by philquotes.css, the text of the
quote will be rendered in a lovely shade of pale pink:

In this way, theme developers can override and extend the default CSS defined in
the module.

Overriding Layout with Templates
In addition to being able to override CSS directives, a theme developer can also
override the module's default theme hook. For example, we could create a simple
template file in the Descartes theme to override the layout provided by the
philquotes module's theme_philquotes_quote() function.

For the theme engine to recognize that this template is overriding the
theme_philquotes_quote() hook implementation, it must be named
philquotes_quote.tpl.php.

As an example, we can create a simple template in drupal/sites/all/themes/
descartes/philqyotes_quote.tpl.php that looks as follows:

<?php
// Id
?>
<div id="philquotes-text">
<?php print $text; ?>
</div>
<div id="philquotes-origin" style="background-color: #efefef">
<?php print $origin; ?>
</div>

This preserves the same basic structure as the previous module, but hard-codes in a
background color. When rendered, the output would look something like this:

Theming Modules

[114]

Note the light gray background in the origin section, as added in the preceding
template.

But what happened to the other styles? Why isn't the origin in italics or the first letter
of the quote's text in large caps?

The answer is found in the fact that the template overrode the theme_philquotes_
quote() function. That function was responsible for the initial addition of the
stylesheet with drupal_add_css().

However, with the addition of the template, that function is no longer called and the
stylesheet is no longer included. To include it, we would have to add the appropriate
stylesheets[all][] directive to the theme's .info file.

stylesheets[all][] = style.css
stylesheets[all][] = new.css
stylesheet[all][] = philquotes.css

It is good for a module to provide a default theme, and when this is done correctly,
it maximizes the effectiveness of Drupal's module and theme systems. A module
will never be without a theme, but the theme developer will also be able to keep a
module's look and feel consistent with the rest of the site.

Summary
In this chapter, we synthesized the knowledge of modules that we gained in Chapter
2 with the knowledge of the theme system from Chapter 3. We created a new module
that provides a default theme.

In addition to this we worked with a simple custom content type and even made our
first foray into the Drupal database API. At this point, we have a solid foundation for
future module development.

In the upcoming chapters, we will start branching out, creating some more
sophisticated modules. In the next chapter, we will continue developing the
Philosophy Quotes module, integrating some sophisticated JavaScript and AJAX
functionality. After that, we will turn to the administration interface, and create an
administration module in Chapter 6. In Chapter 7, we will dive into the database
API, creating a rich content type.

Using JavaScript and AJAX/
JSON in Modules

The module we created in the last chapter used the theme system to provide
user-interface elements for our Philosophy Quotes module. In this chapter, we will
pick up where we left off, and we will take steps toward a richer user interface.

In this chapter, we will use Drupal's JavaScript libraries (including the popular
jQuery library) to add client-side features to the Philosophy Quotes module. We
will also use AJAX (Aysnchronous JavaScript and XML) technology to dynamically
change page contents without having to do a full page reload.

Here are some of the items we will cover while working on this module:

Using the Drupal and jQuery JavaScript libraries
Adding new locations (URLs) using hook_menu()
Building a JSON (JavaScript Over the Network) service
Fetching content using AJAX/JSON queries

Picking up Where We Left Off
In the last chapter, we built a module that read data from a custom content type,
and displayed it as block content. This module made use of the Quote content type
that we created. In order to provide layout information for our new content type,
we created a default theme as part of the module. That theme code generated the
necessary HTML and CSS for displaying quotes.

•

•

•

•

Using JavaScript and AJAX/JSON in Modules

[116]

At the end of the last chapter, we overrode the module's default theme
by adding a template to the Descartes theme. In this chapter, however,
we will work on the default theme again. You will need to disable the
philquotes‑specific changes in the Descartes theme in order to work
with the default theme again.

When our philquotes module is viewed as a block, a single quotation is displayed
as the block's contents. The output looked somewhat as follows:

Now we will extend the philquotes module.

We will add features that make it possible to refresh the quotation without reloading
the page. To do this, we will make use of several features of the Drupal JavaScript
API, as well as the jQuery library.

So our module, when it is complete, should generate a block that looks as follows:

Note the Next >> link at the bottom of this quote. When clicked, it should reload
the origin and text of the quote above, choosing another random quote node from
the database.

How will we get there from here? We'll start from our existing code. But most of that
code will stay untouched. Our endeavor here will be additive.

The Philosophy Quotes module that we developed in the last chapter defined the
following functions:

philquotes_help(): An implementation of hook_help(). We will not make
any changes to that function.

•

Chapter 5

[117]

philquotes_block(): An implementation of hook_block(). Since we
will not change any of the block code, we will not do anything with this
function, either.
philquotes_theme(): An implementation of hook_theme(). This, too, is fine
as it is.

They will not provide any new services for our update, though they do
continue to perform an important role in the module. We will make use of the
following functions:

_philquotes_get_quote(): This private function handled the database
query. Here, we will use the function in a different context.
theme_philquotes_quote(): We will make some minor modifications to
this function.

Of course, we will add some new functions to our module as we go. However, some
of the big coding tasks in this chapter won't be in PHP. They will be in JavaScript.

Debugging JavaScript can be a headache. The FireBug Firefox extension
(http://www.getfirebug.com/) can be a big help. Along with a
debugger, FireBug provides DOM (Document Object Model), HTML, and
CSS browsing, an advanced logging facility, and command-line access to
the JavaScript interpreter.

The first thing we will do is use some JavaScript to add some HTML into our page.

Introducing jQuery
jQuery is one of the most innovative JavaScript libraries to come around. Using an
Object-Oriented design pattern called the Fluent Interface, jQuery makes it possible
to chain a sequence of function calls together to construct elaborate queries.

What does jQuery query? Usually, it is used to query the DOM tree.

A DOM (Document Object Model) tree is a data structure that defines
the structure of a document—usually an HTML or XML document. The
document is presented as a tree structure, where the first element is the
root. The API is standardized (see http://w3.org).

DOM is known for its complex object model. jQuery provides an API that is more
compact and easier to use.

•

•

•

•

Using JavaScript and AJAX/JSON in Modules

[118]

However, it can be used for more than just querying. It has a suite of AJAX tools,
tools for event handling, glitzy effects, and some very useful utility functions. We
will use a little bit of everything in this chapter.

For more information on jQuery, see http://jquery.com. A fantastic
book entitled Learning jQuery by Karl Swedberg and Jonathan Chaffer
(Packt Publishing, 2007), has received rave reviews as well.

The first thing we will do with jQuery is use it to find a particular location in the
HTML generated by Drupal's template, and then insert some additional HTML
elements into the DOM. This is the way we will add a link.

Modifying HTML with jQuery
The philquotes module's hook_block() implementation (in philquotes.module)
creates a block of HTML that looks as follows:

<h2 class="title">Pithy Quote</h2>
<div class="content">
 <div id="philquotes-text">
 The only principle that does not inhibit progress is:
 anything goes.
 </div>
 <div id="philquotes-origin">
 P. Feyerabend, Against Method
 </div>
</div>

Two of the <div/> elements above, those with IDs philquotes-text and
philquotes-origin, are created by the module's theme function,
theme_philquotes_quote().

Now we will begin writing some JavaScript code. This code will be part of our
module, and it will go in its own file. Following standard naming conventions, the
file will be stored in drupal/sites/all/modules/philquotes/philquotes.js.

The first thing that we want to do with our JavaScript is insert a Next link at the end
of this block, just after the quote's origin.

jQuery provides the tools to do this simply and efficiently. With jQuery, this is a
two-step process:

1. Find the philquotes-origin element
2. Insert a link after the element

Chapter 5

[119]

The code is as follows:
$("#philquotes-origin").after("<a>Next »");

This one line of code, at first glance, might appear to be both clean and confusing.
Since we will be using jQuery several times in this chapter, we will devote a little
time here to see what is going on.

The above line contains two function calls. The first function call looks like this:
$("#philquotes-origin"). The function name, here, is $(). In JavaScript, the dollar
sign ($) is a legal character when used in variable and function names. That means
countMy$() and and give$away() are both valid function names in JavaScript. So
is $(). By default, the jQuery library uses this function as a way to access the jQuery
object. (You can also use the longer version, jQuery(), if you prefer.)

The $() function can be called several different ways, but the most common use of
the function is to pass it a query, in the form of a CSS selector. (See http://docs.
jquery.com/Selectors for a list of supported selectors.)

When jQuery is called this way, it searches the DOM tree for the current HTML and
returns a jQuery object that contains a list of elements that match the query.

The jQuery library is well documented. In addition to complete API
documentation, there are also many tutorials on the topic. The best place
to start is with the official jQuery documentation page: http://docs.
jquery.com/Main_Page.

Looking back at our code above, the $("#philquotes-origin") call returns a
jQuery object. Since the selector, #philquotes-origin, refers to an element ID, it
will match no more than one element. According to our earlier HTML, it should
match this element:

 <div id="philquotes-origin">
 P. Feyerabend, Against Method
 </div>

So our first call to $() returned a jQuery object. Making use of the fluent interface,
we simply call the after() method on that returned object:

$("#philquotes-origin").after("<a>Next »");

The after() method inserts content after the referenced element. In this case, it will
put the content after the <div/> element above. So if we ran this query on a page
with a quote on it, the resulting HTML would look like as follows:

<h2 class="title">Pithy Quote</h2>
<div class="content">
 <div id="philquotes-text">

Using JavaScript and AJAX/JSON in Modules

[120]

 The only principle that does not inhibit progress is:
 anything goes.
 </div>
 <div id="philquotes-origin">
 P. Feyerabend, Against Method
 </div>
 <a>Next »

</div>

While we don't make use of it in the code above, the after() function also returns a
reference to the jQuery object, so we could continue chaining if we wanted.

Using your browser's "View Source" feature will not show the newly
inserted element. To see the source as it is modified by JavaScript, you
will need FireBug or some other JavaScript development tool.

The jQuery object has a number of similar functions to after(). The html() function
inserts HTML inside the selected element. The before() function inserts HTML
before the selected element.

Getter or Setter?
One aspect of jQuery that can be startling at first is that one method may
serve as both a getter and setter (or, an accessor and a mutator). That
means that html("
") will insert content into the current element
and return a jQuery object, while html() (with no arguments) will not
change anything, but will return the contents of the element.

What we have accomplished so far is the insertion of a small piece of HTML into our
existing document. However, this little query alone may not work. Why?

There are two reasons:

First, the browser may not support the requisite JavaScript. If this is the case,
we don't want to insert this element at all.
Second, the browser may execute the query before it has finished loading
the HTML. In such a case, the query might not even find the philequotes-
origin element.

We need to fix these two problems before moving on.

•

•

Chapter 5

[121]

Checking for JavaScript Support with Drupal
For the first of our two steps we will use Drupal's JavaScript library.

The jQuery library introduced earlier is distributed with Drupal, but it contains
no Drupal‑specific code. JavaScript that is closely coupled with Drupal is stored
in several different JavaScript files. The core functions, however, are all in
drupal/misc/drupal.js.

Namespaces in JavaScript
All Drupal‑specific JavaScript has a shared namespace in common. A namespace is
an organized naming structure that signifies relationships between various pieces
of code.

Without namespaces, function names are stored in the global namespace: getURL(),
toString(), and so on. Such names, because they are common, are prone to
collisions—multiple JavaScript libraries might use the same function name.

A namespace reduces the likelihood of this by using a distinctly named object or
objects to serve as containers. Functions and variables are stored in that object, and
accessed using the dot-notation.

Thus, the examples above would be called using the full namespace:

Philquotes.toString();
Philquotes.getURL();

Since the toString() and getURL() functions are contained by the Philquotes
object, to access those functions, we must specify the complete namespace.

Namespaces can be simple, as in the examples above. However, it is not
uncommon to see namespaces used to produce organized hierarchies
of objects, functions, and variables. Calling a function inside such
a hierarchy might look something like this: RSSFeeds.reader.
getURL(rssUrl).

Drupal's Namespace
Drupal's JavaScript is organized into a hierarchically organized namespace. The top
level of this namespace is Drupal. Commonly used JavaScript functions like the t()
function and the checkPlain() function are stored directly under that namespace:

Drupal.t("Translate me!");
Drupal.checkPlain("bold");

Using JavaScript and AJAX/JSON in Modules

[122]

The Drupal.t() and Drupal.checkPlain() JavaScript functions
perform tasks analogous to their PHP counterparts.

Many of the Drupal JavaScript functions that are designed to manipulate HTML
content directly are stored in the Drupal.behaviors namespace. For example, the
Drupal.behaviors.teaser() and Drupal.behaviors.autocomplete() functions
are designed to alter HTML content from the client side.

In this chapter we will use functions directly under the Drupal namespace.

Respecting namespaces
The Drupal namespace is reserved for core Drupal JavaScript. Module
developers should generally refrain from adding their own functions
within the Drupal namespace. Instead, modules should have their
own namespaces.

A Drupal Function: Drupal.jsEnabled()
The problem we are currently trying to solve is: We want to make sure that the
jQuery query we created earlier only runs when the browser has the required level of
JavaScript support.

If the browser does not support modern JavaScript and AJAX, we will not make any
client‑side modifications to the HTML.

Drupal's JavaScript library has a function for testing whether or not the client
browser has the requisite level of JavaScript support. The function is named Drupal.
jsEnabled(). This function returns true if the browser has adequate JavaScript
support, and false otherwise.

The name is slightly misleading. Drupal.jsEnabled() checks for a specific level of
support. A browser that has only some of the required features will not be marked by
Drupal as JS-enabled. So a browser can support JavaScript, but not be considered by
Drupal.jsEnabled() to be a JavaScript browser.

With this function, we can add to our philquotes.js file:

if(Drupal.jsEnabled) {
 $("#philquotes-origin").after("<a>Next »");
}

Chapter 5

[123]

Now the jQuery call will only be executed if the browser supports the modern
JavaScript features needed by Drupal's JavaScript libraries.

We still have a problem, though. There is the distinct possibility that the jQuery call
will be executed before the HTML is fully loaded. In that case, the new HTML may
not be inserted.

Delaying JavaScript Execution with jQuery
There were two conditions we identified that would prevent our original HTML
modification from working. The first, the issue of the browser's JavaScript support,
was solved above.

The second problem was that the query might execute before the document was
completely loaded. (A browser can start executing JavaScript as soon as the script is
loaded—even if the entire page has not yet loaded.) We will solve that problem now.

Execution of the jQuery code must be delayed until the HTML is completely loaded
(though we don't need to wait for the images or other files to load).

Again, jQuery provides a convenient method for handling this problem. It provides
an event handling function, ready(), which executes a function only when the
document is loaded.

The ready() function takes a function as a parameter. The function passed to
ready() is then executed as soon as the page is loaded. Here's how we will use it:

if(Drupal.jsEnabled) {
 $(document).ready(
 function(){
 $("#philquotes-origin").after("<a>Next »");
 }
);
}

In the first highlighted line above, we use jQuery to select the document object:
$(document). In addition to using CSS selectors, jQuery can also select and operate
on objects. The document object is the object that represents the DOM tree for the
HTML page.

With the jQuery object returned by $(document), we want to attach a new ready()
event handler. Instead of creating a function elsewhere and then passing the function
reference to ready(), the code in the example above creates an anonymous function.

$(document).ready(function() { /* Code here */ });

Using JavaScript and AJAX/JSON in Modules

[124]

When the page is loaded and the DOM is ready for manipulation, the anonymous
function will be executed.

Inside the anonymous function, we have inserted the HTML modification query that
we created earlier.

In a nutshell, our script now does the following (in order):

It checks to make sure adequate JavaScript support is enabled.
Then, it adds an event listener that will be run when the document is loaded.
When the document is loaded, it finds the element with the ID
philquotes-origin and inserts a new link after that element.

The script file, philquotes.js, contains our code, and we are at a point where we
can test out our JavaScript. However, we need to make sure that the JavaScript file
is loaded.

Including JavaScript from the Module's
Theme
We have a JavaScript file. But somehow we need to let Drupal know that whenever
the philquotes block is used, a reference to the philquotes.js file needs to be
inserted into the generated HTML.

Script files in HTML are referenced using the <script/> tag. Typically, this tag is
inserted into the HTML's <head/> section, and that is where we want our script
to go. However, the HTML that we directly control is a small portion of a block
container nested somewhere in the page's body. How do we insert a script file
reference into the header?

The answer to this question is similar to the strategy we used to include a CSS file.
The script file is inserted inside the theming function, theme_philquotes_quote(),
using a special Drupal function called drupal_add_js().

Like its CSS counterpart, drupal_add_css(), the drupal_add_js() function notifies
the theme system that a JavaScript file needs to be included in the
header section.

Unlike its CSS counterpart, though, the drupal_add_js() function is considerably
complex. This function can add a reference to a JavaScript file—which we will do
shortly. However, it can also add arbitrary JavaScript, or even be used to extend the
Drupal.settings JavaScript object. Here are some examples:

•

•

•

Chapter 5

[125]

drupal_add_js("my.js"): This will cause Drupal to insert a reference to the
my.js file in the header. The file will be assumed to be a module's JavaScript
file, which means that it will be loaded before any theme JavaScript files
are loaded.
drupal_add_js('alert("Hello!")', 'inline'): The second argument in
this method, inline, tells Drupal not to treat the data in the first argument
as a file name, but as a script. The script is then inserted as‑is inside a
<script/> tag: <script>alert("Hello!")</script>.
drupal_add_js(array("name" => "value"), 'settings'): When
the second argument is settings, then Drupal will attempt to take the
associative array passed in the first value and append the key/value pairs to
the Drupal.settings object. In the above example, then, a script referencing
Drupal.settings.name would get the string value.

As with other Drupal functions, the API documents describe this
function in detail: http://api.drupal.org/api/function/
drupal_add_js/.

Later in this chapter, we will use drupal_add_js() to extend the settings object.
Now, however, we want to use the first version as we make a small modification to
the theme_philquotes_quote() function of our module:

function theme_philquotes_quote($text, $origin) {
 $module_path = drupal_get_path('module', 'philquotes');
 $full_path = $module_path .'/philquotes.css';

 drupal_add_css($full_path);
 drupal_add_js($module_path .'/philquotes.js');

 $output = '<div id="philquotes-text">'. t($text)
 .'</div><div id="philquotes-origin">' . t($origin) . '</div>';
 return $output;
}

The highlighted line above shows the use of drupal_add_js() to insert the reference
to the philquotes.js file.

It is important to note that Drupal looks for the JavaScript file relative to the
application's base path.

•

•

•

Using JavaScript and AJAX/JSON in Modules

[126]

If we just used drupal_add_js('philquotes.js'), Drupal would create
<script/> element looking something like <script src="/philquotes.js"></
script> or <script src="/drupal/philquotes.js"> (depending on where on
your web server Drupal is installed).

Our script file, however, is located inside the philquotes module's directory. Rather
than hard-code that path, we use the results of a call to the drupal_get_path()
function described in the last chapter.

And now we are ready for the moment of truth. Reloading the page, the Next link
should now show up.

The Next link has been inserted dynamically by the JavaScript. The script file,
philquotes.js, should be loaded somewhere in the HTML's head:

<script type="text/javascript"
 src="/drupal/misc/jquery.js"></script>
<script type="text/javascript"
 src="/drupal/misc/drupal.js"></script>
<script type="text/javascript"
 src="/drupal/sites/all/modules/devel/devel.js"></script>
<script type="text/javascript"

 src="/drupal/sites/all/modules/philquotes/philquotes.js"></script>

Notice that jquery.js and drupal.js are automatically included, as well. (devel.
js comes from the Devel module described at the end of Chapter 1.)

But as it stands, the new <a/> element that is dynamically inserted does nothing. We
are ready to take the next step.

What we want is: When the Next link is clicked, a new quote should be loaded and
the new quote should be loaded without a full page reload. We can accomplish this
with an AJAX request.

To make this happen, we have a fairly large task ahead of us. We need to write both
ends of the AJAX service.

Chapter 5

[127]

Writing a Drupal AJAX/JSON Service
AJAX stands for Asynchronous JavaScript and XML. AJAX refers to the practice of
using JavaScript on the client side to retrieve XML from the server without requiring
a page reload. This is typically done with the XMLHttpRequest (XHR) family of
JavaScript objects.

However, the term is often used to capture a broader range of functionality than
just XML over HTTP. For example the term AJAX is also used to describe retrieving
fragments of HTML or JavaScript using XHR objects.

The JSON Format
One common alternative to using XML as the format for data exchange is to use
the JSON format. JSON (JavaScript Over the Network) is a compact, easy-to-parse
format that uses a syntax identical to JavaScript's array and object literal syntax.

The JSON specification, along with numerous links to implementations
and tutorials, can be found at http://json.org/.

For example, an XML document describing three British Empiricist philosophers
might look as follows:

<empiricists>
 <name>
 <first>David</first>
 <last>Hume</last>
 </name>
 <name>
 <first>John</first>
 <last>Locke</last>
 </name>
 <name>
 <first>George</first>
 <last>Berkeley</last>
 </name>
</empiricists>

There's nothing wrong with this XML, but we might spare some processing time on
both the server and the client by using a simplified format. JSON provides this.

Using JavaScript and AJAX/JSON in Modules

[128]

The following code would be the JSON equivalent of the above:

{"empiricists":
 [
 {"name": {
 "first": "David",
 "last": "Hume"
 }},
 {"name": {
 "first": "John",
 "last": "Locke"
 }},
 {"name": {
 "first": "George",
 "last": "Berkeley"
 }},
]
}

The above may not be as easy for humans to read, but it is simpler for the
JavaScript interpreter.

There are two basic data structures used in the above example:

Arrays: These are denoted by square brackets, and contain a list of items
separated by commas. For example: ["a","b","c"].
Objects: These contain key/value pairs. Objects, in this case, work like
dictionaries, maps, and associative arrays. These are denoted by curly braces
and lists of colon-separated pairs individuated by commas. For example:
{"key 1": "value 1", "key 2": "value 2" }.

Since JSON matches the JavaScript array and object notation perfectly, instead of
parsing the contents with a sophisticated parse, the JavaScript eval() function can
be used instead.

In regards to Drupal and jQuery, using JSON is even easier, since these libraries
provide special tools for dealing with JSON data.

As we build our service, JSON will be our underlying data format. However, we will
have to provide both server-side and client-side functions for passing this data.

•

•

Chapter 5

[129]

Our Module Roadmap
As it stands now, philquotes.module contains the code necessary to display quote
content as a block during the normal Drupal page rendering process.

However, there is no code either in our module or built into Drupal that will handle
an AJAX request for just the contents of one quote. What do we need to do to make
this happen?

We need to perform the following:

Create a PHP function for serving a random JSON-encoded quote
Map that PHP function to a URL handled by Drupal
Create a JavaScript AJAX function for obtaining and displaying the quote
Modify our existing JavaScript to call this function whenever the Next link
is clicked

The first two tasks on the list are performed on the server side, and will be handled
within our philquotes.module file. The third and fourth involve client‑side
scripting with JavaScript.

In the next section, we'll handle the PHP code and in the section following that, we
will switch back to JavaScript to finish out the module.

Server Side: Defining a New Page
Two of our PHP programming tasks will be to first create a function to fetch a
random quote and encode it into JSON format, and then map that function onto a
particular URL that the client code can then use to make its request.

Creating a JSON Message
The first function will retrieve a random quote from the database, and then encode it
into JSON and return it to the client.

The function we need to define will not implement a hook. Instead, we will use it
later as a callback function from another hook. When it is called, it will return the
JSON content directly to the client.

Following the module naming convention, we will create a new philquotes_
function: philquotes_item(). The function needs to do only a few things:

Get a random quote
Set an HTTP header to let the client know what type of content to expect
Print an appropriately formatted message to the client

•
•
•
•

•
•
•

Using JavaScript and AJAX/JSON in Modules

[130]

By making use of existing functions, we can do these three things with
minimal coding:

/**
 * Callback to handle requests for philquotes content.
 * @return
 * JSON data.
 */
function philquotes_item() {
 $item = _philquotes_get_quote();

 drupal_set_header('Content-Type: text/plain; charset: utf-8');

 printf(
 '{ "quote": { "origin": "%s", "text": "%s"}}',
 $item->title,
 $item->body
);
}

The philquotes_item() function doesn't require any parameters.

The first thing this function does is retrieve a quote node object and store it in the
$item variable.

In the last chapter, we created a private function called _philquotes_get_quote()
that retrieved a node object that represented a random quote. Since this node
contains the content we want, we can make use of that function again.

Next, we need to notify the browser that the content that will be returned is not
HTML or XML:

drupal_set_header('Content-Type: text/plain; charset: utf-8');

The drupal_set_header() function is used to set an HTTP header. Headers are sent
at the beginning of the HTTP request and response messages, and contain information
used to help the user agent and server better determine how to communicate.

In this case, we are setting a header to tell the browser what type of content the
server is sending.

Ideally, we would use the MIME type for JSON (application/json as defined in
RFC 4627), but until that MIME type is widely used, it is safer to use the text/plain
MIME type. The browser will then hand the data to JavaScript without attempting to
parse it.

The last lines in the function handle the printing of the JSON data:

printf(
 '{ "quote": { "origin": "%s", "text": "%s"}}',

Chapter 5

[131]

 $item->title,
 $item->body
);

The PHP built-in printf() function formats a string and then prints it. The first
argument to this function is a format string containing a couple of placeholders (%s).

The sprintf()/printf() family of functions was introduced
in Chapter 2. See the PHP manual for details about these useful
functions: http://php.net/manual/en/function.printf.php.

The rest of the parameters will be substituted for placeholders in order of
appearance. $item->title will replace the first placeholder, and $item->body will
replace the second placeholder. The result should be something as follows:

{ "quote": { "origin": "R. Descartes", "text": "Cogito, ergo sum."}}

Since printf() prints the data to the standard output, this data will be sent directly
to the client.

That's all that there is to our JSON function. Next, we need to configure our module
to map this function to a particular URL.

Mapping a Function to a URL
The second PHP function to add to our module will make it possible for our
client‑side AJAX function to connect to a specific URL and retrieve the JSON data.

Adding a new page with a distinct URL is not an uncommon task for Drupal module
developers. As is to be expected in such a case, there is an existing hook designed to
handle just such a case. This hook is called hook_menu().

The basic purpose of hook_menu() is to allow module developers the ability to
register a particular URI (or, more specifically, a relative URL path) and map that
URI to a handling function. As the name suggests, this hook is often used to create
menus for module administration. However, it can also be used for registering
user-accessible pages, too.

The hook_menu() mechanism is described in detail in the Drupal API
documentation (http://api.drupal.org/api/function/hook_
menu). The API even provides several example modules that implement
this hook: http://api.drupal.org/api/file/developer/
examples/page_example.module/6.

Using JavaScript and AJAX/JSON in Modules

[132]

As with some of the other hooks we've seen so far, an implementation of
hook_menu() is expected to return an array. In this case, it should return an
array of menu items that will be registered with the Drupal core.

For the philquotes module, we need to register a path that the client can use to
access JSON content. Our implementation of hook_menu() looks as follows:

/**
 * Implementaiton of hook_menu()
 */
function philquotes_menu() {
 $items['philquotes.json'] = array(
 'title' => 'Philquotes AJAX Gateway',
 'page callback' => 'philquotes_item',
 'access arguments' => array('access content'),
 'type' => MENU_CALLBACK,
);

 return $items;
}

The associative array returned by the menu hook should contain one entry for each
path that is registered. The key of the array should be the path being registered.
The value is another associative array, which contains configuration parameters for
the handler.

Based on these configuration parameters, Drupal will determine how to handle a
client's request for the registered path. We will see how this works for the handler
defined above.

The philquotes_menu() hook implementation registers one path: philquotes.
json. When philquotes.json is registered, a handful of configuration parameters
are defined for it:

$items['philquotes.json'] = array(
 'title' => 'Philquotes AJAX Gateway',
 'page callback' => 'philquotes_item',
 'access arguments' => array('access content'),
 'type' => MENU_CALLBACK,
);

The first entry in the configuration parameters is the title. This setting is required,
and in many cases it will be used by other parts of Drupal to display, for example, a
menu link to this page.

Chapter 5

[133]

For our application, however, it is practically unused.

The second setting is the most important. page callback defines which function will
be executed when this path is requested by a client.

The value of this parameter is the function name, with no parentheses at the end. In
our case, this is the name of the function we defined earlier: philquotes_item.

The access arguments parameter lists what permissions a user must have in order
to access this menu item. By default, the values in access arguments are passed to
the user_access() function, which will check the permissions table to make sure
that the requesting user has permission to access the menu item.

When used in conjunction with hook_perm(), a module can define and enforce
permissions that administrators can customize using the Administer | User
management | Permissions page.

The API documentation for hook_perm() and hook_menu() describes
the specific roles for these functions, but the Drupal Menu System
handbook provides a better overview of how the access control system
works: http://drupal.org/node/102338

Our module, though, doesn't need any special access controls, and the array passed
in here contains only the standard access content permission. This means any
visitor who can access content can access this page.

Finally, the last of the four settings for this item is the type. Roughly speaking,
this setting indicates what kind of item this page is. Based on the type, Drupal will
determine how (and where) to display links to this item.

The situation is a little more complex. The value of type should be a bitmask
defining specific characteristics of the item. Is it a root item? Should it be displayed in
breadcrumb trails? Is this item modifiable by an administrator? By crafting a bitmask
(a set of 1s and 0s), several such questions can be answered with one value.

Fortunately, most of the common bitmasks are already identified by constants.
In fact, drupal/includes/menu.inc defines almost twenty such masks.
The most important (and commonly used) ones are listed in the API docs
(http://api.drupal.org/api/function/hook_menu).

The bitmask we have chosen, MENU_CALLBACK, simply makes this item accessible
by URL. It does not, though, automatically create links to this item in the menu or
anywhere else.

Using JavaScript and AJAX/JSON in Modules

[134]

To summarize what we've just done, we have registered the path philquotes.json,
providing Drupal's menu engine with the following information:

The title of this path is "Philquotes AJAX Gateway."
When the path is accessed by a client, the function philquotes_items()
should be called.
Permissions-wise, anyone who can view Drupal content (even non-
authenticated users) should be able to access this resource.
The resource should be accessible by direct URL, but should not be included
in menus or other navigation.

As is evident, the menu system is powerful, and lots of features are packed in this
compact settings mechanism. As we develop more sophisticated modules later in the
book, we will revisit this hook, creating some more sophisticated mappings.

Now that our menu hook is finished, we can directly access the JSON content by
entering the newly-registered URL in the browser:

As the screenshot above shows, accessing the URL directly shows the raw JSON
content. This is the content our client-side JavaScript will later parse and insert into
the philquotes block area.

Note that the registered path (philquotes.json) is passed to Drupal with the GET
parameter syntax (http://localhost/drupal/q=philquotes.json). This is the
default Drupal setting. If you have Drupal configured to use Apache's mod_rewrite
engine, the path will look something like this: http://localhost/drupal/
philquotes.json.

In this chapter, it is assumed that Drupal is configured without
mod_rewrite. If mod_rewrite is enabled, you may want to adjust
your URLs accordingly (though they should work using the GET
parameter syntax).

We are almost done with the PHP coding for this module. In fact, our last change in
this section will be a transitional effort, where we use PHP to generate JavaScript.

•

•

•

•

Chapter 5

[135]

Passing PHP Settings to JavaScript
All we have left to do in philquotes.module is to provide a configuration
parameter to the client‑side JavaScript that tells it where to find the newly‑registered
philquotes.json page. This is done in theme_philquotes_quote():

function theme_philquotes_quote($text, $origin) {
 $full_path = drupal_get_path('module', 'philquotes')
 .'/philquotes.css';

 drupal_add_css($full_path);
 drupal_add_js(drupal_get_path('module', 'philquotes')
 .'/philquotes.js');

 $opts = array('absolute' => TRUE);

 $json_url = url('philquotes.json', $opts);

 drupal_add_js(

 array('philquotes' =>

 array("json_url" => $json_url)), 'setting');

 $output = '<div id="philquotes-text">'. t($text)
 .'</div><div id="philquotes-origin">' . t($origin) . '</div>';
 return $output;
}

The highlighted lines above are the only addition. What do they do? These lines
build a URL reference to the JSON page, and then store it in the JavaScript-side
settings. Let's look at the lines more closely.

The first thing to do is create an absolute URL to the JSON data.

$opts = array('absolute' => TRUE);
$json_url = url('philquotes.json', $opts);

The Drupal function url() takes a Drupal path and an optional list of options. It
returns a URL that the client can use to access the given path.

If a system uses mod_rewrite, the URL will be constructed to take advantage of this
fact. Otherwise, the system will use the GET-style URL we saw earlier.

The options ($opts) parameter is an associative array that can contain additional
information about how the URL should be constructed. Extra path information,
anchors, and so on can be specified in this array.

See the url() Drupal API documentation for details on all of
the supported options: http://api.drupal.org/?q=api/
function/url.

Using JavaScript and AJAX/JSON in Modules

[136]

The only option we specify is the absolute option. We want the generated URL
to be absolute, not relative: 'absolute' => true. (By default, url() constructs
relative paths.)

Once we have the URL, stored in $json_url, we just need a way to get this
information to the JavaScript. To do this, we will once again use the drupal_add_
js() function, but with a twist.

This time, instead of passing in a JavaScript file name, we want to modify Drupal's
JavaScript settings. Drupal stores its JavaScript settings in the Drupal.settings
JavaScript object. Using drupal_add_js(), we can modify this object from the PHP
code (which generates JavaScript that it sends to the client).

We want to create a setting, Drupal.settings.philquotes.json_url, that
our JavaScript can access later to find out what URL to connect to in order to get
JSON data.

Why the long name?
Why choose Drupal.settings.philquotes.json_url instead of
something shorter, like Drupal.settings.json_url? The answer is
that we want to employ namespaces so that we reduce the likelihood of
collisions with other modules.

The way to insert this configuration information into Drupal is to use the
'setting' mode for drupal_add_js(). The syntax for this is drupal_add_
js($config_array, 'setting'), where $config_array is an associative array of
configuration parameters.

In our case, the function call looks as follows:

drupal_add_js(
 array('philquotes' =>
 array("json_url" => $json_url)),
 'setting');

The configuration array here is two levels deep: The value of the 'philquotes' key
is another associative array.

When Drupal renders this into JavaScript, the associative arrays will be converted
into JavaScript objects, and will be inserted into Drupal.settings. Thus,
array('philquotes' => array("json_url" => $json_url)) will become
Drupal.settings.philquotes.json_url =
 http://localhost/drupal?q=philquotes.json.

That's it for the PHP code.

Next, we will return to philquotes.js and finish coding this module.

Chapter 5

[137]

Client Side: AJAX Handlers
Now that we have a service that provides quotes in JSON format, we need to
develop some client-side JavaScript to dynamically retrieve this information.

Doing this will be a two-step process:

Creating a JavaScript AJAX function for obtaining and displaying the quote
Modifying our existing JavaScript to call this function whenever the Next
link is clicked

The function we will create will have its own namespace. Since it is a module‑specific
function, we will define a module‑specific JavaScript namespace, and then create this
function within that namespace.

A JavaScript Function to Get JSON Content
Beginning where we left off, we will stub out our new function:

var Philquotes = {};

if(Drupal.jsEnabled) {

 $(document).ready(
 function(){
 $("#philquotes-origin").after("<a>Next »");
 }
);

 /**

 * A function to fetch quotes from the server, and display in the

 * designated area.

 */

 Philquotes.randQuote = function() {

 /* Code will go here. */

 }

}

The highlighted lines above show our new additions. On the first line, we define
the new namespace. Recall that in JavaScript, a namespace is just an object. Creating
a new namespace entails nothing more than creating a new (empty) object: var
Philquotes = {};.

Several lines later, we define our first function in this newly‑created namespace.
Philquotes.randQuote() will be a function that fetches a random quote using the
JSON structure we built in the preceding part of this chapter.

•

•

Using JavaScript and AJAX/JSON in Modules

[138]

Why define the function inside a conditional?
The Philquotes.randQuote() function is inside the if(Drupal.
jsEnabled) conditional. Why?
Since the function is only useful when the browser's JavaScript provides
the necessary features. Defining the function outside of this conditional
might cause browser errors or warning messages to be displayed.

Next, we can created the body of the randQuote() function. Thanks to jQuery, the
body of this function is brief:

Philquotes.randQuote = function() {

 $.get(Drupal.settings.philquotes.json_url, function(data) {

 myQuote = Drupal.parseJson(data);

 if(!myQuote.status || myQuote.status == 0) {
 $("#philquotes-origin").text(myQuote.quote.origin);
 $("#philquotes-text").text(myQuote.quote.text);
 }

 }); // End inline function

 }

The first line of Philquotes.randQuote() is the most complex. It uses jQuery's
get() function, which handles simple AJAX requests.

The $.get() function takes two arguments: the URL that it should contact and a
function to call when it is done communicating with the server.

Rather than hard-code the URL into the get() call, we can make use of the setting
we created at the end of the last part. In the PHP code, we stored the absolute URL
for the philquotes.json page using drupal_add_js(). Now, on the JavaScript side
we can use Drupal.settings.philquotes.json_url to access that URL string.

That takes care of the first parameter. The second parameter to get() should be a
function reference, which jQuery will call immediately after closing the connection to
the remote server.

This function will be called with one argument (data), which will contain the data
received from the remote server.

In the code above, this function is defined as an inline anonymous function that
looks as follows:

function(data) {

 myQuote = Drupal.parseJson(data);
 if(!myQuote.status || myQuote.status == 0) {

Chapter 5

[139]

 $("#philquotes-origin").text(myQuote.quote.origin);
 $("#philquotes-text").text(myQuote.quote.text);
 }

}

As mentioned earlier, data will contain the data retrieved from the remote server.
This should be a JSON document—unless an error occurs. Then it will be an
HTML document.

Rather than parsing the JSON data by hand or calling the eval() function directly,
we can use another built-in Drupal JavaScript function: Drupal.parseJson(). This
function does some basic analysis of the data to ensure that it really is JSON data,
and then transforms the JSON data into JavaScript data structures.

The results of the parsed JSON are stored in the myQuote object.

One feature of the Drupal.parseJson() function is that it provides some basic error
handling, and we can take advantage of that to make sure that the data returned is
JSON data.

If the data that comes back is not JSON data, then Drupal will return a status
code (myQuote.status). If the returned status code is greater than zero, then an
error occurred.

So, in the code, we do a simple check: If myQuote.status doesn't exist, then no error
occurred. Or, if the status code exists, but is 0, then no error occurred. (Normally, if
the transmission was successful, the status object is not created.)

If status is anything other than 0, then this function silently exits. No change is made,
and the user will see the old quote.

Otherwise, a couple of jQuery statements set the text and origin of the quote:

$("#philquotes-origin").text(myQuote.quote.origin);
$("#philquotes-text").text(myQuote.quote.text);

Each line uses jQuery to select a specific element (<div id="philquotes-origin"/>
and <div id="philquotes-text"/>) and assign new text content to that element.

The content it will assign these elements comes from the data returned by the server.
Consider the case where the server returns this JSON content:

{ "quote": {
 "origin": "S. Kierkegaard",
 "text": "Purity of heart is to will one thing."
}}

Using JavaScript and AJAX/JSON in Modules

[140]

When Drupal.parseJson() evaluates this, it will create an object called quote, and
store in this two string objects, origin and text. So, to access the quote's text, we
can use the JavaScript dot-object notation: myQuote.quote.text.

That is all there is to the Philquotes.randQuote() function. In fourteen lines of
code, we retrieve and display a random quote from the server.

Now there is only one more thing to do. We need to connect the Next link to the
Philquotes.randQuote() function.

Adding an Event Handler
The last change to make will be within the ready() event handler. We need to add
a new event handler to the <a>Next » link so that when it is clicked, it
calls Philquotes.randQuote().

Our last bit of code is just a small addition to the code we wrote earlier in
the chapter:

$(document).ready(
 function(){
 $("#philquotes-origin").after("<a>Next »")
 .next().click(Philquotes.randQuote);

 }
);

Only one line, highlighted above, needs to be added.

Let's start again with the query ($("#philquotes-origin")). This code selects the
<div id="philquotes-origin"/> element and then, using after(), inserts a link
after it.

The call to after() returned a jQuery object, so we can just continue to call methods
on that object. Don't let the line break fool you. The next() function is called on the
jQuery object returned by after(). In other words, the chain of functions looks
like this:

$().after().next().click()

The role of the next() function might at first be confusing, so let's look at what's
happening. What is the selected element that after() returns? It's not the <a/>
element that we just inserted. It is still <div id="philquotes-origin"/>. Adding
an element with after() doesn't result in jQuery automatically selecting that
new element.

Chapter 5

[141]

We want to add an event handler to the new <a/> element, though. Since this is the
next sibling to the currently selected element, we can use next() to select it.

Now we have a jQuery object pointing to the <a/> element. We want it to be
the case that when this link is clicked, the Philquotes.randQuote() function is
called. All we need to do to make this happen is add a handler for the click event:
click(Philquotes.randQuote).

Note that we pass click the function reference. Passing Philquotes.
randQuote() instead of Philquotes.randQuote would pass the
event handler the results of the function call, not the function itself.

Now we've created one long chain of jQuery commands: $("#philquotes-origin").
after("<a>Next »").next().click(Philquotes.randQuote);

When this chain is executed, the new HTML will be inserted in the appropriate
place and the new event handler will be registered. Now, each time the Next link
is clicked, Philquotes.randQuote() will be executed and a new quote will be
displayed to the user.

Summary
The focus of this chapter was on JavaScript and integrating JavaScript services into
Drupal modules. In the course of this chapter, we explored many of the features
of jQuery and the Drupal JavaScript library. We also built on a previous module
to create a JSON service for our module. We then linked that module to client-side
JavaScript in order to add dynamic content to an existing block.

In the next chapter, we will build an administrative module. This module will
provide new features for administrators, and will make use of some of the
hook_menu() hook features introduced in this chapter.

An Administration Module
In this chapter, we will create a module with an administration interface. The
module we create will provide a way for administrators to send email messages to
users—all from within the administration section of Drupal.

This chapter has another intent, though. We will use a couple new hooks, the Forms
API, and some other Drupal functions and constructs. These APIs are selected in part
because they have undergone significant revision since Drupal 5. Thus, if you are
already acquainted with Drupal 5 programming, this chapter will help the transition
to Drupal 6.

In the course of creating our email module, we will perform the following:

Take a closer look at hook_menu(), making use of access control settings
Use the Forms API to create a form and handle the form's lifecycle
Make use of Drupal's new mail subsystem and hook_mail() for sending
messages to users
Use hook_mail_alter() to add system-wide information to outbound email
Implement hook_user() to add information to a user's profile page

We will start by defining the module's behavior.

The emailusers Module
The module we will create will provide an administration interface. It will make
it easy for administrators to send a user an email message directly from the
user's profile. This sort of module might be helpful in cases where administrators
occasionally need to communicate with specific users through Drupal.

•

•

•

•

•

An Administration Module

[144]

There are already a host of mail-related modules available for Drupal.
In fact, the Contact module bundled with Drupal provides similar
functionality for user-to-user communication. (Ours is focused on
administrator-to-user email). You can also browse the contributed
modules by going to the Drupal module site and clicking on the Mail
category: http://drupal.org/project/Modules/category/66

Given its function, we will name this module emailusers. We want this module to
support the following features:

An administrator will be able to send messages through a form-based
interface.
The form should be linked to the user's profile.
Users who are not "user administrators" (administrators with access to user
account information) should not be able to see or use the email form.
Email messages ought to be delivered through the standard Drupal
mail system.

As we develop this module, we will provide these features. Toward the end of
the chapter, we will add another feature, too—cross‑module feature. We will
create an email footer that will be attached to any email leaving our Drupal
installation—whether it goes through the emailusers module or not.

The Beginning of the Module
As with all modules, we will begin by creating a module folder, emailusers/. This
folder will be located inside drupal/sites/all/modules.

Inside this folder, we will place the two required files: emailusers.info and
emailusers.module. The info file is boilerplate:

; Id
name = "Email Users"
description = "Email a user from within the user administration
screen."
core = 6.x
php = 5.1

The fields here were described in Chapter 2, and nothing should be surprising.

We will start with a stubbed-out module, as well. It is always advisable to implement
hook_help(), as we have done with the previous modules. Here's the beginning of
our emailusers.module file:

•

•

•

•

Chapter 6

[145]

<?php
// Id

/**
 * This module provides an email interface for administrators.
 * Using this module, administrators can send email to a user from the
 * user's "view" page.
 * @file
 */

/**
 * implementation of hook_help()
 */
function emailusers_help($path, $arg) {

 if ($path == 'admin/help#emailusers') {
 $txt = 'This module provides a way for an administrator to send'.
 'email to a user. '.
 'It assumes that the Drupal mailer is configured.';
 return '<p>'. t($txt) .'</p>';
 }
}

Again, nothing in the implementation of this hook is new. Only the help text varies
from our earlier implementations.

Mail Configuration
By default, Drupal sends email using the built-in PHP mail() command. The
behavior of this command varies from operating system to operating system.
For example, on Linux (by default) a call to mail() will invoke the sendmail
command-line program. When PHP is running on Windows, in contrast, PHP will
create direct SMTP socket connections to a mail server.

To configure how your system sends mail, you can edit your php.ini file.

The PHP mail() function has its limits, though and sometimes it is desirable to use
an alternative mail library.

Drupal 6 allows extensions to the mail system. This is done by creating a custom mail
library (not necessarily in the form of a module) which contains the drupal_mail_
wrapper() function. By setting the value of the configuration variable smtp_library
to point to the location of this mail library, you can cause Drupal to send mail
through that library instead of through PHP's mail() function.

An Administration Module

[146]

The best source of information on this is the well-documented Drupal
source code for drupal/includes/mail.inc, particularly the function
drupal_mail_send().

For our purposes, we will be using Drupal's default configuration.

Registering an Administration Page
Now that we have our basic module stubbed out, we will begin by registering a URL
for the new page that we are going to create.

Our module will only need to register one new page. This is the page that will
manage the email composition form. In the last chapter, we registered a JSON
handler by implementing the hook_menu() function. We will use the same hook
here as well. This time we are creating a page intended to be accessed by an
administrative user.

/**
 * Implementation of hook_menu()
 */
function emailusers_menu() {

 // Need to pass User ID here:
 $items['admin/emailusers/compose/%'] = array(
 'title' => 'Compose a Message',
 'page callback' => 'emailusers_compose',
 'page arguments' => array(3), // <- userID (from % in node path)
 'access arguments' => array('administer users'),
 'type' => MENU_CALLBACK,
);

 return $items;
}

As you may recall from the last chapter, the purpose of the menu hook is to register a
URL. When we register a URL, we are mapping a URL or URL pattern to a function
or page inside a Drupal module. In addition to registering the program, we also
provide information to Drupal that indicates how the page is to be displayed and
who has access to use this page.

An implementation of hook_menu() is expected to return an associative array
where the keys in this array are paths and the values are associative arrays
containing configuration information about each path. We covered many aspects of
this in the last chapter, but in the present case we are using some different features.
Let's take a closer look at the $items array created here.

Chapter 6

[147]

$items['admin/emailusers/compose/%'] = array(
 'title' => 'Compose a Message',
 'page callback' => 'emailusers_compose',
 'page arguments' => array(3), // <- userID (from % in node path)
 'access arguments' => array('administer users'),
 'type' => MENU_CALLBACK,
);

A Detailed Look at the Path
The key added to the $items array is the string admin/emailusers/compose/%. This
is the new path that we are registering and will be accessible with a URL as follows:
http://example.com/drupal/?q=admin/emailusers/compose/1. (On hosts that
have mod_rewrite support enabled, the ?q= could be omitted.)

Unlike the path we registered in the last chapter, this one uses a placeholder in
the path. This placeholder is denoted by the percent sign (%). The placeholder
indicates to Drupal that an additional (unspecified) argument is expected at the end
of the path.

As the menu system interprets this path, the path is composed of four elements:
admin, emailusers, compose, and whatever value is passed as %. It assigns each an
integer value, starting with 0 (for admin), and ending with 3 (for the value of %).

The % wildcard requires that some parameter value be passed. That space
cannot be left empty. For example, if the browser requested a URL with
the query string q=admin/emailusers/compose, the menu item above
would not be invoked. Since there is no value to replace %, Drupal will
not match the paths.

In our module, the % placeholder should be filled with a User ID, which is the unique
integer that identifies a user. We will use this placeholder to find out to what user the
mail should be sent.

Marking the Path as an Administration Page
There is another important thing to note about the path above. The first element
of the path, admin, has special significance. It alerts Drupal that this URI is to be
considered an administration page. Thus, the administration theme will be applied,
and the page will be treated as part of the administration back end.

Note that the string admin must come first in the path for Drupal to treat the page as an
administration page.

An Administration Module

[148]

Simply making a page an admin page is not enough to protect it from
unauthorized access. You should also set access arguments for the
page. This is discussed below.

The path is the key to the $items array. The value to that key is another associative
array—this one with configuration information related to that path. Let's look at
that array.

Path Registration Parameters
We are now looking at the array of configuration information for our new
menu item:

$items['admin/emailusers/compose/%'] = array(
 'title' => 'Compose a Message',

 'page callback' => 'emailusers_compose',

 'page arguments' => array(3), // <- userID (from % in node path)

 'access arguments' => array('administer users'),

 'type' => MENU_CALLBACK,

);

As we saw in the previous chapter, the title entry, which is required, should
indicate the title of the link. For the most part, this value is used to generate menus.
The page we are creating, however, will not be placed in an automatically generated
menu.

There are a couple of other entries that can be set for a menu item. The
Drupal API documents all recognized keys: http://api.drupal.org/
api/function/hook_menu/6.

Also, as we saw in the last chapter, the value of page callback is the name of a
function that Drupal will invoke when this URL is requested. In just a moment, we
will create a function called emailusers_compose() which will be called when this
menu item is accessed.

The emailusers_compose() function will take one argument: the User ID of the user
to whom the module will send mail. Where do we get this ID? We will get it from the
value of % from the registered path.

Chapter 6

[149]

In order to pass arguments to the callback function, we set the page arguments
entry: 'page arguments' => array(3). Page arguments takes an array of
arguments. In our case, the array will have only one member: 3. What does this do?
Let's take a look at the path again, as it would appear in the query string of a URL:

q=admin/emailusers/compose/1

As I mentioned earlier, this path appears to Drupal as four parameters: admin,
emailusers, compose, and (in this case) 1. This last value indicates that we are
dealing with the user whose User ID is 1.

Each of these parameters is associated with a number in ascending order from
left to right. Thus, admin is 0, emailusers is 1, compose is 2, and the value of the
placeholder (the User ID 1) is 3.

To pass the placeholder to the page callback function, then, we reference it by
number. Thus 'page arguments' => array(3) directs Drupal to pass the value of
the fourth item in the URI (the placeholder) as an argument to the emailusers_
compose() function.

The next line controls page access:

 'access arguments' => array('administer users'),

We glanced at access arguments in the last chapter. It plays a more important role
here, so we will look at it in more detail.

This entry tells the Drupal menu system who should have rights to access this page.
The value of the argument is an array of permissions strings.

Permissions strings are managed through the administration pages. You can access
them through Home | Administer | User management | Permissions. According
to our access arguments, our new page should be accessible to any user with
administer users permissions.

An Administration Module

[150]

Looking at the Permissions page in User management, we can see what Drupal roles
have this level of permissions:

The second to last row (the one with the big arrow pointing to it) shows the
administer users permission. Of the three defined roles, anonymous user,
authenticated user, and site administrators, only the last group has permission to
administer users.

While anonymous user and authenticated user are built-in Drupal roles,
site administrators is a custom role defined using Administer | User
management | Roles.

By setting the access arguments entry for our new menu item, we have restricted
access to only users with the site administrators role. (Remember that the
Drupal administrator (User ID 1) is allowed access to all pages, regardless of roles.
This user does not need to be assigned to the site administrators role to get
administrative abilities.)

Chapter 6

[151]

Define you own permissions
By implementing hook_perm() in your module, you can define
permissions for your module. This hook is very easy to implement. See
the API documentation at:
http://api.drupal.org/api/function/hook_perm/6

The last configuration entry for our new page tells Drupal what type of page this is:

'type' => MENU_CALLBACK,

As with the JSON page created in the last chapter, this item is a menu item type
MENU_CALLBACK, which means it will not automatically be included in any
dynamically generated menu, or even in lists of items that can be included in menus.
Typically, they are accessed by direct links from other pages. See the section Mapping
a Function to a URL in the last chapter for more information on the type parameter.

Now we have a path registered. When Drupal receives a request for this resource,
it will invoke the emailusers_compose() function, passing it the value of % as a
parameter. Our next task is to create this callback.

Since menus are frequently requested, Drupal will cache the generated
menus. That means that updates to menu hooks may not be seen
immediately. Using the Devel module, you can manually clear the
menu router between code changes to your module using the Rebuild
menus link.

Defining the Callback Function
Our callback function will have a simple task: Verify that the incoming parameter is
a User ID, and then hand off control to the form generator.

/**
 * Compose a message.
 * This creates the form necessary to compose an email message.
 *
 * @param $to
 * The address to send to.
 * @return
 * HTML.
 */
function emailusers_compose($userid) {
 $userid = intval($userid);
 if ($userid == 0){
 return t('User ID must be an integer.');
 }

An Administration Module

[152]

 $account = user_load($userid);
 if (empty($account)) {
 return t('No such user found.');
 }

 $to = $account->mail;
 $sb = '<p>'
 .t('Send a message to @email.', array('@email' => $to))
 .'</p>';
 $sb .= drupal_get_form('emailusers_compose_form', $account);
 return $sb;
}

The first five lines check the User ID and then attempt to load the user's account
information. The user_load() function performs a database lookup to retrieve
complete account information.

As used above, the user_load() function takes a User ID and returns
account information. However, the function is more robust than this.
It can also take an associative array of values, and do a lookup based
on those values. For example, to look up a user by email address, you
can invoke the function as follows: user_load(array('mail' =>
'dave@example.com'));.

Once the user information is loaded, a brief informative message is created and
stored in $sb: Send a message to @email, where @email will be replaced with the
value from the $account object. (If we so desired, we could hand this off to the
theme system to theme the message. See Chapter 8 for an example of theming
email messages.)

The next few lines are the most important of the function:

$sb .= drupal_get_form('emailusers_compose_form', $account);
return $sb;

To the $sb string is appended the output of drupal_get_form(), and then $sb is
returned. The drupal_get_form() function is the workhorse of the Forms API. It is
responsible for processing form definitions. We will start off the next section with a
discussion of this function.

Chapter 6

[153]

Handling Forms with the Forms API
(FAPI)
Perhaps the most banal but time consuming aspect of web development is form
handling. Typically, a form must be defined and prepared for display. Then,
when form data is submitted to the server, various form processing tasks must be
conducted to validate, manipulate, and store form data. Drupal has a special API
for handling forms—the Forms API (FAPI). FAPI automatically handles the
mundane details of form handling, making it much easier for developers to quickly
write forms.

Using the Forms API, developers can create a single form definition that is then used
by Drupal to perform various aspects of form handling. The same data structure that
is used to generate the form is also used to validate the form. And with a few simple
functions, complex forms can be handled effectively. FAPI stands out as one of the
gems in Drupal's crown because of these features.

In this section, we will implement a form using the FAPI.

Regarding terminology, you may notice that in the Drupal documentation
the forms library is variously called the Forms API, Form API, and FAPI.
All refer to the same set of tools.

Of course, looking at a single simple form can hardly do justice to the powerful and
complex Forms API. While we will return to some aspects of the API later in the
book, if you are looking for an in-depth discussion beyond what this chapter has to
offer, the Drupal website has some very good articles:

The "quickstart" guide to the Forms API: http://api.drupal.org/api/
file/developer/topics/forms_api.html/6

The Forms API Quick Reference: http://api.drupal.org/api/file/
developer/topics/forms_api_reference.html/6

Form API changes between Drupal 5 and Drupal 6: http://drupal.org/
node/144132

The Form Generation API overview: http://api.drupal.org/api/group/
form_api/6

•

•

•

•

An Administration Module

[154]

Loading a Form with drupal_get_form()
Near the end of the emailusers_compose() function we created in the last section,
we called the drupal_get_form() function:

$sb .= drupal_get_form('emailusers_compose_form', $account);

In its simplest form, the drupal_get_form() function takes a callback function and
uses the results of that function to create a form structure and then manage handling
of the resulting form. In the above example, it will return an HTML-formatted form.

While the drupal_get_form() function only makes use of one argument—the name
of the callback function—it can take more arguments. Any additional arguments will
simply be passed on to the functions that it calls.

In our case, we pass in the additional $account parameter, which contains the
account information of the user we want to send an email.

The next thing to look at is the form "constructor" callback.

A Form Constructor
In Drupal parlance, the function that is used to create a form is called a form
constructor. The term constructor has a narrow meaning here, and is not
synonymous with the object-oriented programming term.

A form constructor creates an elaborate data structure that is used to construct,
validate, and manage forms. In key ways it works like a hook: a particular naming
convention is followed, and all form constructors are expected to return the same
type of data structure.

Before we look at the form constructor, here's a list of the features we want our form
to have:

First, since we will need to use the $account object throughout form
processing, we want to keep a reference to that object. Normally this is
done with hidden fields in forms, but Drupal has a better way of handling
these cases.
Next, we need a couple of form fields to capture the subject and body of the
email message.

The subject field will be a single‑line text input.
The body field will be a multi‑line text area.

To keep our form well organized, we want to group the above using a field
set (<fieldset/> in HTML).

•

•

°

°

•

Chapter 6

[155]

Since the administrator is sending this form through Drupal, he or she might
like to have a copy of the message sent to him or her for archival purposes.
So we will add a checkbox to indicate whether a BCC (blind carbon copy) of
the message should be sent to the administrator.
Again, to keep this form organized, we will create a "details" field set for
the checkbox.
Finally, we will need a submit button.

Now we can translate this list into a form constructor. The function is a little long
simply because there are a lot of fields to create. However, it is not very complex
to read:

function emailusers_compose_form($context, $account) {

 // This is a value only -- equivalent to a hidden field, except
 // that it is never rendered into the HTML.
 $form['to'] = array(
 '#type' => 'value',
 '#value' => $account,
);

 // Create a fieldset for the body:
 $form['message'] = array(
 '#type' => 'fieldset',
 '#title' => t('Compose the Message'),
);

 // Textfield for subject of the body
 $form['message']['subject'] = array(
 '#type' => 'textfield',
 '#title' => t('Subject'),
 '#size' => 50,
 '#maxlengh' => 255,
 '#description' => t('The subject of the email message.'),
);

 // And a text area for the body.
 $form['message']['body'] = array(
 '#type' => 'textarea',
 '#title' => t('Message'),
 '#cols' => 50,
 '#rows' => 5,
 '#description' => t('The body of the email message.'),
);

 // Create a fieldset for details
 $form['details'] = array(

•

•

•

An Administration Module

[156]

 '#type' => 'fieldset',
 '#title' => t("Details"),
);

 // Checkbox: if checked, CC the author, too.
 $form['details']['cc_me'] = array(
 '#type' => 'checkbox',
 '#title' => t('BCC Yourself'),
 '#default_value' => 1,
 '#description' =>
 t('If this is checked, the message will also be sent to you.'),
);

 // Finally, a submit button:
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Send Mail'),
);
 return $form;
}

The general structure of this function should be familiar. It is very similar to other
Drupal functions. The variable $form is an associative array, where each entry
corresponds (roughly) to a form element. There are seven such form elements, and
we will look at those in a moment.

The value of each entry in the $form array is another associative array containing
configuration information for that element.

The function builds the $form array and then returns it. Other functions that call this
function, such as drupal_get_form(), can then make use of this form definition
for a variety of purposes, including creating an HTML representation of the form or
performing rudimentary form validation.

Let's take a look at some of the items in the $form array. The first item stores the
account information:

$form['to'] = array(
 '#type' => 'value',
 '#value' => $account,
);

This entry is a value field. Unlike the other elements we will look at, it does not
correspond to a visual form element. Instead, it just holds a reference to a value
(in this case, the $account variable) that the Forms API can use throughout
form processing.

Chapter 6

[157]

Since this is a short definition, it provides a good starting place. The key in the
$forms array, to in this case, is used to reference data about this form. Thinking
in terms of an HTML form, this is roughly equivalent to a form element's
name attribute.

The value of this entry is an associative array that provides information about this form
item. Given the complexity of forms, there is a wide variety of recognized values that
can go in this array, but the two keys here are common to many form fields.

For a complete list of supported parameters, see the Forms API Reference
page: http://api.drupal.org/api/file/developer/topics/
forms_api_reference.html/6. Along with the list of parameters it
includes matrices indicating which parameters are supported by which
form element types.

The first, #type, indicates what type of form element this is. There is a type for
each HTML form element. There are also a handful of special form fields. The
value type is an example of such an element. In many ways, it performs a role
analogous to the <input type="hidden"/> HTML form field. It makes it possible to
attach information to a form without providing the user with a way to modify the
information. However, it is different in one important respect: the value is never sent
to the client. It is stored on the server only.

All the parameters used to define a form entry begin with the # sign. This
is done to distinguish parameters from nested form fields. For example,
see the discussion of field sets later.

The next parameter is the #value parameter. This, too, is used by a couple of
different form types. It stores the value of the field for form types whose content
cannot be modified by the user. In this case, it references the $account data.

Most of the time, the value of a #value field should be an easily printable
type (like a string or integer). However, when the #type is set to value,
then #value's referent can be any object.

The repeated use of the term 'value' can get confusing here. There is a
#type called value, which indicates what sort of form element is being
described. There is also a #value element in the array. This indicates
what the value of the form element should be set to. In our case, this
leads to the unfortunate fact that we can say that the value of the value
element is #value's value.

An Administration Module

[158]

This should provide a basic idea as to how a form element is defined. Now let's take
a quicker look at some of the other entries in the $form array.

// Create a fieldset for the body:
$form['message'] = array(
 '#type' => 'fieldset',
 '#title' => t('Compose the Message'),
);

// Textfield for subject of the body
$form['message']['subject'] = array(
 '#type' => 'textfield',
 '#title' => t('Subject'),
 '#size' => 50,
 '#maxlengh' => 255,
 '#description' => t('The subject of the email message.'),
);

// And a text area for the body.
$form['message']['body'] = array(
 '#type' => 'textarea',
 '#title' => t('Message'),
 '#cols' => 50,
 '#rows' => 5,
 '#description' => t('The body of the email message.'),
);

Together, these three entries define a field set with the Subject text field and the
Message text area.

The first entry of the three defines the field set (note that the value of #type is
fieldset). The #title parameter can be used for most of the elements, and is used
to create the legend for a field set and the labels for other form fields.

As usual, plain text that is passed on to the user should be wrapped
inside the t() translation function.

The next entry defines the Subject text input area. In order to indicate that this field
belongs inside the field set, the subject array is nested inside the $form['message']
array as $form['message']['subject']. Using this nesting capability, complex
forms can be structured in a logical way. When submitted form data is captured and
presented by Drupal, you have the option of accessing it in a data structure identical
to the one above.

Chapter 6

[159]

The textfield type is rendered as a single-line text input box (<input
type="text"/>) in HTML.

In this example, the #size and #maxlength parameters are used to set the visible
field size and the maximum number of characters that this field can contain. In the
case of #maxlength, not only is it used to generate the form, but when form data is
uploaded, Drupal performs a server-side check to make sure the user-submitted
data does not exceed this limit. The #description is rendered as help text for the
input field.

Like the text field, the text area for the message body is defined as a sub‑element of
the $form['message'] array. The text area will also be displayed inside the field set.
Two new parameters are used here, #rows and #cols. These correspond directly to
the identically named HTML attributes for the <textarea/> element.

Now that we have looked at a few fields, let's see how Drupal converts this data
structure into a form. Rendered into HTML, these three entries look as follows:

In case of the field set, the title is embedded into the border. With the other two
elements, the title is presented above the field, and the descriptive text is drawn
below the field.

The last three definitions work in much the same way:

// Create a fieldset for details
$form['details'] = array(
 '#type' => 'fieldset',
 '#title' => t('Details'),
);

An Administration Module

[160]

// Checkbox: if checked, CC the author, too.
$form['details']['cc_me'] = array(
 '#type' => 'checkbox',
 '#title' => t('BCC Yourself'),
 '#default_value' => 1,
 '#description' =>
 t('If this is checked, the message will also be sent to you.'),
);

// Finally, a submit button:
$form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Send Mail'),
);

In this section, a new field set is created for Details. The checkbox indicating that
the sender should be BCC'd is added to the details field set. In the cc_me checkbox
definition, the #default_value is used to indicate that the box should be checked
by default (1 = checked, 0 = unchecked). But a #default_value differs from #value
in an important way: A #default_value indicates that the user may choose a
different value if he or she wishes, while the value of a #value parameter cannot be
changed by a user.

Finally, after the field set with its checkbox comes the form submit button. Here,
again, #value is used—this time to add a label to the submit button.

At this point, if we were to access the page in a browser using a URL:
http://example.com/drupal?q=admin/emailusers/compose/3, what would
happen? First, the emailusers_menu() hook would cause Drupal to use the
emailusers_compose() callback (passing it the integer 3). This function would
load the user's account info ($account), generate a line of text, and then pass control
to drupal_get_form(). The drupal_get_form() function would load the form
constructor from emailusers_compose_form() and then render it into HTML,
which would then be sent to the user.

When debugging, clear the cache
Forms and supporting form objects are cached. Sometimes, this caching
can interfere with development. Using the Empty cache link on the Devel
module's Devel block can save you frustration.

Chapter 6

[161]

The user would be presented with a page that looks like the following screenshot:

But what happens when the form is submitted?

Handling Form Results
Drupal automatically handles submitted form data. It first checks the fields against
the definition provided by the form constructor to ensure that the data is valid and in
the expected form. It then executes a couple of callback functions.

The first, which should be the name of the form constructor with _validate()
appended to the end (e.g. emailusers_compose_form_validate()) is used to
perform additional validation on the data. We will forgo that function in this chapter,
though we will make use of it in later chapters.

An Administration Module

[162]

For more on the _validate() callback and other aspects of the Forms
API, see the Forms API Quickstart Guide in the Drupal API: http://
api.drupal.org/api/file/developer/topics/forms_api.
html/6. At the time of this writing, some of the material in this reference
is out of date. You may want to consult the API docs for the Drupal form
documents, as well as the release notes for your version of Drupal 6.

Once data validation is complete, Drupal issues a second callback—this time for a
function with the name of the form constructor with _submit() appended to it. In
our case, this function is named emailusers_compose_form_submit().

These functions are not hook implementations. There are no
hook_validate() and hook_submit() functions in the Forms API.

The Form Submissions Callback
The responsibility of the _submit() callback is to determine what is to be done
with the data. For example, a _submit() callback might store the form data in the
database or turn it into a Drupal node. In our case, we want to format it as an email
message and then send it.

Here is our submissions handler:

/**
 * Form submission handler, which functions like a hook.
 * Note that the params $form and &$form_state are new in D6. They
 * replace $form_id and $form_values.
 */
function emailusers_compose_form_submit($form, &$form_state) {
 $form_values = $form_state['values'];
 $account = $form_values['to'];

 drupal_mail(
 'emailusers',
 'composemessage',
 $account->mail,
 user_preferred_language($account),
 $form_values,
 variable_get('site_mail', null),
 true // Automatically send
);
 $form_state['redirect'] = sprintf('user/%d', $account->uid);
}

Chapter 6

[163]

When the Forms API calls the _submit() callback function, it passes the function
two arguments: $form and $form_state. Since code elsewhere uses the values in
$form_state, and the _submit() callback function often needs to modify that data,
it is passed by reference (&$form_state). That way, any changes made to the values
in $form_state will be available beyond the scope of this function.

Drupal and PHP references
In Drupal 6, more functions use PHP references to manipulate data
without having to explicitly return modified objects. Along with being
more efficient, this method is considerably more flexible. For example,
three variables can be passed by reference, and all three can be modified
by the function without having to return a complex object. For an
explanation of how references work, see the PHP manual at:
http://www.php.net/manual/en/language.references.php.

These two variables passed to the _submit() callback contain information about
the form. The $form variable contains an associative array generated using the
form constructor. But this time, all the information sent by the user (and all the
information generated by Drupal's Forms API) is present in the array.

For example, $form['to'] will contain the user's account information (since we set
the value of $form['to'] to be the contents of $account in our form constructor),
and $forms['#post']['subject'] will contain the user-submitted value of the
$forms['message']['subject'] field.

The $forms variable can be useful for extracting detailed information about the form.
But the $form_state variable also holds a reference to the form data, and can be
easier to use. In the emailusers_compose_form_submit() function opposite, we use
the $form_state variable to retrieve the form information:

$form_values = $form_state['values'];
$account = $form_values['to'];

$form_state contains state‑specific information about the form, including what
information has been posted, and what should happen next in the form processing
sequence. In advanced cases, it can be leveraged to create multi-page forms.

In the above two code lines, we use it for a simpler task—retrieve form information.
All the form field values—both user‑submitted and Drupal‑generated—are stored
in the $form_state['values'] entry. Thus, $form_state['values']['to'] holds
the account object, $form_state['values']['subject'] holds the user-submitted
subject, $form_state['values']['body'] holds the user-submitted body text, and
so on for all of the fields we defined in the form constructor.

An Administration Module

[164]

To simplify the code and keep things similar to Drupal 5 idioms, we use the
variable $form_values to refer to the contents of the $form_state['values']
array. If memory consumption is an issue, you may prefer to just use the
$form_state['values'][] fields rather than making a copy of the form data.

Next, the submission function calls drupal_mail() to send an email message. We
will look at that function in the next section, but for the moment let's skip to the last
line of the submission function:

$form_state['redirect'] = sprintf('user/%d', $account->uid);

This line tells the Forms API that now that the submission process is over,
the client browser should be redirected back to the user's account page
(e.g. http://example.com/drupal?q=user/3).

How does this work?

First, $form_state was passed by reference. When we change the value of
redirect, that value is accessible to other functions that also have access to $form_
state. Some other function (in this case, drupal_process_form()) uses the contents
of this variable to determine where to redirect the browser.

Is your redirect failing?
Is your form data being processed correctly, but the redirect is failing?
Chances are good that the problem is that the $form_state variable was
not passed by reference. Make sure your _submit() function looks like
this: example_submit($form, &$form_state).

So, by assigning the path 'user/<User ID>' (where <User ID> is the user's unique
integer identification number) to $form_state['redirect'], this function registers
a redirection event that will occur after the form processing is complete. In our
function, once an email message has been sent to the user, the administrator will be
returned to http://example.com/drupal/?q=user/3.

As far as this module is concerned, we have now finished with the Forms API
(though we will use FAPI in almost every remaining chapter in the book). From
creation through processing, we have taken care of the complete lifecycle of our new
form. Now we will move on to the mail API to examine how mail messages are sent
from Drupal.

Chapter 6

[165]

Sending Mail with the Mail API
The Drupal 6 Mail API is used to provide mail-sending services to Drupal modules.
In most cases, using the Mail API is a two-step process:

1. Implement hook_mail() in your module.
2. Elsewhere in your module, use the drupal_mail() function to invoke

your hook_mail() implementation and also do additional formatting
and sending.

In the previous section, we briefly glanced at the drupal_mail() function. Here, we
will start by looking at the function in more detail. Inside emailusers_compose_
form_submit(), we called drupal_mail() with the following parameters:

drupal_mail(
 'emailusers',
 'composemessage',
 $account->mail,
 user_preferred_language($account),
 $form_values,
 variable_get('site_mail', null),
 true // Automatically send
);

Seven parameters! To get an idea as to what is going on here, let's look at each
in turn.

The first parameter (emailusers) is the name of the module that contains an
implementation of hook_mail(). Later, we will look at the emailusers_mail()
hook that will be called when this drupal_mail() function is executed.

The second parameter, composemessage, is used as a key and passed on to the
hook_mail() implementation. As we will see shortly, the mail hook can then
determine how to treat the message based on the key. In other words, you can
use one mail hook to handle various different mail-sending tasks simply by using
different keys.

The third parameter should contain the destination address. In this case, an
administrator will be sending the message to the email address for the account he or
she is examining. This is stored in $account->mail.

The fourth parameter is the language that should be used by t() and other
translation facilities when translating the message. Why is it necessary to specify
this? Since the user receiving the message may prefer a different language than that
of the system administrator who is sending the message.

An Administration Module

[166]

Fortunately, the user_preferred_language() function, which takes an account
object (like the one returned from load_user()), can return the appropriate
locale information.

The fifth parameter holds an associative array of data that might be used when
generating the message. This data is passed on to the hook_mail() implementation,
and we will make use of it in a few moments. In this case, though, the data we want
happens to be the values submitted through our form. So we pass $form_values
here.

Moving to the sixth parameter, we need to specify a delivery address. Who is
this message from? One of the values in Drupal's site‑wide configuration is the
administration email address. We can use this address by retrieving the setting:
variable_get('site_mail', null). This will attempt to get the 'site_mail'
setting. If no such setting is found, this will return the default value null (in which
case the mailing library will attempt to assign an appropriate from address).

The last of the seven parameters is a Boolean flag to indicate whether or not the
message should be sent. When drupal_mail() is executed, it will return a specially
structured array, which can be passed to drupal_mail_send(). However, if this last
parameter is set to true, then the drupal_mail() function will send the mail before
returning. In that case, there is no need to call the drupal_mail_send() function or
even capture the data returned from drupal_mail().

What happens if mail can't be sent?
If the mailer is mis‑configured or Drupal or PHP detect an error
with the mailing subsystem, an error message will be printed to the
screen. However, in cases where the mail is accepted for delivery by
the underlying mail system, bad messages will be sent to the address
indicated in the from parameter. For this reason, it is a good idea to create
a mailbox (or an alias) to route mailer delivery errors.

When drupal_mail() is called, it goes through a series of steps to take the data
passed in the seven parameters and create a suitable mail message. For example, it
sets default RFC 2822 mail headers and makes sure that certain values (like a from
address) are set.

Then it executes the hook_mail() implementation (if found).

After that, it proceeds through a few other steps, like executing any hook_mail_
alter() implementations before it (optionally) sends the email and returns a
formatted message.

Chapter 6

[167]

So the mail hook is executed right in the middle of this process. What does it do? In
a nutshell, it is responsible for setting appropriate fields (like the subject, CC, or BCC
fields) as well as creating a formatted body for the message.

Formatting Mail with hook_mail()
Most of the work involved in sending a message from Drupal is standard enough
that Mail API functions can perform the task without custom code. But right in the
middle of this process, there comes the matter of formatting the message.

This task is one that requires some per-module (or even per-task) coding. To facilitate
this, Drupal 6's Mail API includes the hook_mail() hook. Implementing this hook
allows us to configure the email message headers and body to our liking before
sending it off into the ether.

Earlier, we invoked drupal_mail() with a list of seven parameters. The first was
the name of the module whose mail hook should be used: emailusers. Thus, when
drupal_mail() gets to the appropriate point in its processing, it will look for a
function called emailusers_mail(). We need to supply that function:

/**
 * Implementation of hook_mail()
 */
function emailusers_mail($key, &$message, $params) {

 // Just catch calls to this hook from compose form.
 if ($key == 'composemessage') {
 $language = $params['language'];
 $account = $params['to'];

 if ($params['cc_me']) {
 // Look up current user's email address:
 $my_account = user_current_load(null);
 $message['headers']['bcc'] = $my_account->mail;
 }

 $message['to'] = $account->mail;
 $message['subject'] =
 t('Drupal Message: ', array(), $language->language);

 // If these were automatically-generated messages, they should be
 // run through t(), but since text is user-entered, don't use
 // t().
 $message['subject'] .= $params['subject'];
 $message['body'] = $params['body'];
 }
}

An Administration Module

[168]

When a hook_mail() implementation is executed, it is passed three arguments:

$key: A string key that can be used to determine information about how mail
should be formatted.
$message: The data structure that represents the email message as Drupal
has constructed it so far. Note that this must be passed by reference
(&$message) if you intend to modify it.
$params: A collection of parameters passed from the module's invocation of
drupal_mail().

The first and third of these are passed unaltered from our call to drupal_mail().

The $key parameter will contain the string we passed as the second argument to
drupal_mail(). That is, it will contain the string composemessage. What is
this for?

To understand, consider this case: You have a module that sends two differently
formatted types of email messages, maybe a confirmation message and a monthly
account reminder. The hook_mail() implementation should be able to handle both.
But how can it distinguish them? Here's where the $key comes in. The module
developer can set distinct keys that can be passed from the module code to the mail
hook so that the mail hook can determine what rules to use when manipulating
the message.

Another way to understand the role of $key is to compare it to the $opt
parameter passed in hook_block(). We looked at hook_block() in
Chapter 2. $key performs a similar role, but it is the module developer,
not Drupal core developers, who determine what values are assigned
to $key.

Taking a good look at the code, we can see the key used in this way
(though we are only sending one type of message from our module):

function emailusers_mail($key, &$message, $params) {

 // Just catch calls to this hook from compose form.

 if ($key == 'composemessage') {

 // Do all processing here...

 }

}

The rules inside this if statement are only intended to apply to cases where mail
is sent after data is collected from the composition form. So only those that pass
in the composemessage key will be modified by the hook. Any other call to
emailusers_mail() will return with no processing done.

•

•

•

Chapter 6

[169]

The second parameter passed in to the mail hook, $message, is a reference to a
partially-constructed mail message. $message is an associative array.

The drupal_mail() function has already populated the $message array with the
information it already has accessible, such as the to and from addresses, the default
mail headers, and some data used internally by Drupal. Even $message['body'] is
set, though it is by default an empty array.

The intended job of an implementation of hook_mail() is to finish filling out the
$message data. But for that, the hook will need access to the information it will use to
fill out the form. In our case, for example, it will need access to the form submission
results, and that is where the third parameter comes in.

The last parameter, $params, is another item passed through from drupal_mail().
The fifth argument we passed to drupal_mail() was an associative array of values.
In our specific module, the array passed was $form_values, which contains the
form data we collected with emailusers_compose_form() and passed on in
emailusers_compose_form_submit().

The brunt of the emailusers_mail() function is spent taking data from the $params
data, formatting it, and inserting it into the $message.

First off, a few parameters are assigned to local variables for convenience:
$language = $params['language'];
$account = $params['to'];

Next, the function determines whether to BCC the administrator who is sending
the message.

if ($params['cc_me']) {
 // Look up current user's email address:
 $my_account = user_current_load(null);
 $message['headers']['bcc'] = $my_account->mail;
}

If the cc_me value, appearing in the form as a checkbox, is set, then we need to
do two things: First, we need to load the account data for the current user (the
administrator who is sending the message). This is done with the user_current_
load() function.

Second, once we have that user's account object, we need to include that user's
address in in the BCC field.

While the recipient (to) address is stored directly in the $message object, CC and
BCC information must be added directly to the message headers. So instead of
setting $message['bcc'] to the administrator's address, we must set $message['he
aders']['bcc'] instead.

An Administration Module

[170]

Headers are strings
The values in the $message['headers'] array must all be strings. So if
you want to set multiple CC or BCC recipients, you must convert the list
to a string of comma-separated addresses: $message['headers']['cc
'] = implode(',', array($addr1, addr2));

Other than MIME encoding and imploding the header array, Drupal will do no
further processing to anything in the $message['headers']. You may set custom
headers without worrying about Drupal's interference.

Next, the function simply does the basic formatting necessary for generating
the message:

$message['to'] = $account->mail;
$message['subject'] =
 t('Drupal Message: ', array(), $language->language);

// If these were automatically-generated messages, they should be
// run through t(), but since text is user-entered, don't use t().
$message['subject'] .= $params['subject'];
$message['body'] = $params['body'];

The recipient is set explicitly here, though if we omitted this, Drupal would use the
correct ID (as gleaned from the parameters to drupal_mail()).

For the message's subject, we want to do two things: First, we want to include
a hard‑wired notification (Drupal message:) that the message was generated
by Drupal. Then we want to append the user-submitted subject line. There is an
important difference in the way we do these two tasks.

When we set the automated subject line, we want to do so in a way considerate to
the recipient. Since the Drupal message: message is hard-coded, it should be made
available to the translation subsystem. So we will wrap it in the t() function.

But in order to get t() to work on behalf of the recipient, we need to make sure we
pass it information about what language to translate the message into. This is done
by passing in the $language value of the $language object (which we obtained
originally from the recipient's account record): t('Drupal Message: ', array(),
$language->language).

Chapter 6

[171]

While you should use t() as often as it is practical, it should not be used in cases
where the text is supplied by the user or another source that is external to Drupal.
Thus, when we append the user-submitted subject to the hard coded value, we do it
simply by appending the string as-is. And the same goes for the message body:

$message['subject'] .= $params['subject'];
$message['body'] = $params['body'];

Here, the two values are simply retrieved as-is from the $params array and assigned
to their respective fields in the $message array.

At this point, we have done all we need to do to complete the $message. Since it was
passed by reference, it is not returned at the end of the function.

When the mail hook returns, the Drupal Mail API will do the necessary encoding of
information, execute any hook_mail_alter() hooks, and then send the message. A
message sent from this would look something like this:

Return-Path: <www-data@example.com>
X-Original-To: dave@example.com
Delivered-To: dave@example.com
Received: by mail (Postfix, from userid 33)
 id 8C59AF85CB; Fri, 14 Dec 2007 15:27:16 -0700 (MST)
To: dave@localhost
Subject: Drupal Message: Content editor?
MIME-Version: 1.0
Content-Type: text/plain;
 charset=UTF-8;
 format=flowed;
 delsp=yes
Content-Transfer-Encoding: 8Bit
X-Mailer: Drupal
Errors-To: root@example.com
Sender: root@example.com
Reply-To: root@example.com
From: root@example.com
Message-Id: <20071214222716.8C59AF85CB@mail>
Date: Fri, 14 Dec 2007 15:27:16 -0700 (MST)

Dave,

You've been very active in our community. Would you be interested in
taking on an even more active role by becoming a content editor?

Let us know,
Matt

An Administration Module

[172]

Headers that are generated directly by the Drupal Mail API (including hook_mail())
are highlighted. Those headers can all be altered in the $message data passed into
the mail hook. However, a module can also alter them after a mail hook has been
called using the mail alter hook.

Altering Messages with hook_mail_alter()
As we have seen, drupal_mail() calls only one specific mail hook. But what if we
want to write a mail message post-processor or a mail hook that is invoked every
time drupal_mail() is called?

This can be accomplished by implementing another hook—hook_mail_alter().
Drupal's Mail API invokes all instances of hook_mail_alter() immediately after it
has executed the specified mail hook.

Before implementing our own mail altering hook, we will take a quick look at
altering as a concept in Drupal.

Altering Hooks
There are a handful of hooks provided in Drupal whose purpose is to allow module
developers to intercept and alter data after a main hook has been called. These are
called alter hooks or altering hooks.

The following are a few of the main hook/altering hook pairings:

hook_mail()/hook_mail_alter(): Format mail message/alter mail
message before it is sent.
hook_link()/hook_link_alter(): Create a list of links/alter a list of links
before they are sent to the user.
hook_menu()/hook_menu_alter(): Register Drupal paths/alter the list of
paths before Drupal routes them.

All of these are documented in the Drupal API (http://api.drupal.org/api/
group/hooks/6). But this selected list ought to give an idea as to how altering hooks
provide the ability to intercept some bit of data and do a little extra processing.

To demonstrate how this works, we will use the hook_mail_alter() hook to add
a standard footer to an email message. But be wary when using this hook—it will
operate not only on mail from our emailusers module, but also on any email sent
through the Mail API.

•

•

•

Chapter 6

[173]

Adding a Mail Footer
To add a standard footer to all email messages leaving our Drupal installation, all we
need to do is alter the mail message after the mail hook has been executed, and this is
easily done by implementing hook_mail_alter().

Here's how we can implement this:

/**
 * Implements hook_mail_alter().
 */
function emailusers_mail_alter(&$message) {
 $append = "\n=======================\n"
 ."This message was sent from !site_name (!website). "
 ."If you believe this message to be a case of abuse, "
 ."please contact !site_email.\n";

 $args = array(
 '!website' => url('', array('absolute' => true)),
 '!site_email' => variable_get('site_mail', null),
 '!site_name' => variable_get('site_name', 'Unknown'),
);

 $message['body'] .= t($append, $args);
}

An implementation of the mail altering hook is passed only one argument:
$message. Just as was the case with hook_mail(), $message should be passed by
reference (&$message) so that any changes made within the body of the function will
be available outside the scope of this function.

This theme's function is simple: Append a standard message to the end of the
message body. To do this, we first create the footer message:

$append = "\n=======================\n"
 ."This message was sent from !site_name (!website). "
 ."If you believe this message to be a case of abuse, "
 ."please contact !site_email.\n";

There are three placeholders in this message: !site_name, !website, and !site_
email. (Recall that using ! in a placeholder instructs Drupal not to perform encoding
or escaping for these values. Since the message is in plain text, we don't need HTML
Escaping.) When this string is passed to the translation function, those should
be replaced.

An Administration Module

[174]

Next, we need to define the replacement values for the three placeholders:

$args = array(
 '!website' => url('', array('absolute' => true)),
 '!site_email' => variable_get('site_mail', null),
 '!site_name' => variable_get('site_name', 'Unknown'),
);

According to this array, the !website placeholder will be replaced by the base URL
of the website (which is generated by the calling url() with an empty string and the
absolute flag, which generates an absolute URL).

Both !site_email and !site_name will be replaced by values from the site
configuration. The site_email value, as we saw earlier, is the main email address
for the site, and the site_name value is the name of the site. Both these values are
set through the administration interface using Administer | Site configuration |
Site information.

Finally, we append these to the existing message body:

$message['body'] .= t($append, $args);

We pass this through the translation function since the message is static text. Note
also that we are appending (.=) the string to the existing text. If the equals (=)
operator were used instead, it would replace whatever message was created by the
original mail hook (emailusers_mail(), in our case).

Let's see how this hook takes effect when we send email. The email generated
from the compose form we created earlier in this chapter will now have an
additional footer:

Return-Path: <www-data@example.com>
X-Original-To: dave@example.com
Delivered-To: dave@example.com
Received: by mail (Postfix, from userid 33)
 id 8C59AF85CB; Fri, 14 Dec 2007 15:27:16 -0700 (MST)
To: dave@example.com
Subject: Drupal Message: Content editor?
MIME-Version: 1.0
Content-Type: text/plain;
 charset=UTF-8;
 format=flowed;
 delsp=yes
Content-Transfer-Encoding: 8Bit
X-Mailer: Drupal
Errors-To: root@example.com
Sender: root@example.com
Reply-To: root@example.com

Chapter 6

[175]

From: root@example.com
Message-Id: <20071214222716.8C59AF85CB@mail>
Date: Fri, 14 Dec 2007 15:27:16 -0700 (MST)

Dave,

You've been very active in our community. Would you be interested in
taking
on an even more active role by becoming a content editor?

Let us know,
Matt
=======================

This message was sent from Philosopher Bios (http://example.com/
drupal/). If you believe this message to be a case of abuse, please
contact root@example.com.

The footer, highlighted above, is the result of our new useremail_mail_alter()
hook.

To gain additional flexibility, we could have used the theme system to do
the formatting of this message (and the same could be said for hook_mail()
implementations). In fact, in Chapter 8 we use the theme system for just this purpose.

There is one final thing to keep in mind about using hooks of this sort: since they
will apply to all outgoing email, they should be constructed carefully. For example,
it is entirely possible that some instance of hook_mail() might format a message
in HTML or encode the message in another way. If this is the case, then the hook
implementation above might actually break existing markup. Thus, a production-
grade hook would need a series of additional checks on the contents of the $message
data to make sure that the footer was inserted appropriately (if at all).

Incorporating the Module into
Administration
So far, we have registered a new path for our mail composition form, implemented
that form with the Forms API, and used the Mail API to send the results as an email
message. But our module is missing one component. As it currently stands, the only
way to access this composition form is to access the appropriate URL directly.

Our last step is to incorporate this module into the administration interface. This
module targets administrators who need to send an email message to a particular
user. We want the administrator to be able to go directly from a user's profile to the
message composition form.

We can do this by implementing another hook.

An Administration Module

[176]

Modifying the User Profile with hook_user()
By default, every registered user can visit the My account page for his or her own
account. The URL to access this page is usually something like this: http://example.
com/drupal/?q=user/3. The page looks like the following screenshot:

An administrator (with the appropriate permissions) can also visit this page. In fact,
an administrator can visit the account page for any user on the system. This is the
main interface for user administration.

Much of the content for the page above is generated by the hook_user() hook. By
implementing this hook in our module, we can use this page to tie the rest of our
module to the user administration interface.

Actually, the hook_user() hook does a lot more than paint the user's account page.
In Drupal 6, there are thirteen registered operations that this hook might perform.
It is invoked in cases ranging from addition, modification, or deletion of a user to a
user's logging in or logging out of Drupal. (And, of course, the API docs are the place
to go to learn about these thirteen different operations: http://api.drupal.org/
api/function/hook_user/6.)

Here, though, we are only concerned about the operation that is used to display the
main user page. This is the view operation. Our user hook looks as follows:

/**
 * Implementation of hook_user().
 */
function emailusers_user($op, &$edit, &$account, $category) {

 if ($op == 'view' && user_access('administer users')) {

 // Create the outer "block"
 $account->content['EmailUsers'] = array(
 '#type' => 'user_profile_category',
 '#attributes' => array('class' => 'user-member'),

Chapter 6

[177]

 '#weight' => 0,
 '#title' => t('Contact user'),
);

 // Create the content of the block
 $account->content['EmailUsers']['EmailLink'] = array(
 '#type' => 'user_profile_item',
 '#title' => t('Send a message to this user from the site '
 . 'administrator.'),
 '#value' => l(
 'Email',
 'admin/emailusers/compose/'. $account->uid
),
);

 }
}

This code is responsible for generating a chunk of text that will point an
administrator to the email composition form. When an administrator views a user's
profile page, she or he will see an additional chunk of content:

Let's take a closer look at the above code to see how this new content is added.

A hook_user() implementation will receive as many as four parameters:

$op: The name of the operation (Examples: view, login, delete). There are
thirteen possible operations.
$edit: An array containing any values submitted from a form. This is used
by operations that handle posted data (like insert). It is intended to be
passed by reference.

•

•

An Administration Module

[178]

$account: The account object for the given user. This is the same kind of
account object we have looked at elsewhere in this chapter (constructed by
load_user()). It is also intended to be passed by reference.
$category: A few of the operations (and the view operation is not one
of them) use additional category information to determine what part of a
profile's data should be used for the transaction.

This last parameter, $category, is never passed during the view operation, so we
have omitted it from our function declaration.

The first line of the function body sets a few constraints on when this function should
perform its task.

if ($op == 'view' && user_access('administer users')) {

Since we are only concerned with the view operation, we want our hook to do its
work only when the $op parameter is set to view. (Of course, the hook could handle
more than just the view operation using more conditionals or a switch statement. But
this module does not require anything else.)

There is a second constraint that we want to check before doing any further processing.
The email link should appear only if the user accessing the page is an administrator.
Recall that when we registered the path for admin/emailuser/compose/% using
emailusers_menu(), we set the access arguments parameter to restrict access to
administer users. Basically, we are implementing the same restriction here. But this
time, we do so with an explicit call to the user_access() function.

The user_access() function checks to see if the given permission is available
for a given user (by default, the current user). It is usually called like this:
user_access($permission_string, $account). And if $account is omitted,
the current user account is used. It returns Boolean TRUE if the user does have this
permission, and FALSE otherwise.

So, according to the conditional that opens our function, the operation must be
'view' and the user must have the administer users permission. If these two
conditions are satisfied, the message we saw in the screenshot is constructed.

Constructing the Content
The next thing to do is construct the content that will be displayed on the user
profile. Accomplishing this is done in a surprising way.

Recall that the $account object is passed in by reference. $account contains an
attribute, $content, that is used to display the user profile.

•

•

Chapter 6

[179]

To modify the information displayed on the user profile page, we modify the user's
$account object.

This modification is only temporary, and is not written to the user's
permanent database record.

Moreover, $content is an array structured analogously to the form constructors we
looked at earlier in the chapter. Each entry in the array has a name, and contains a
handful of values. These values may be parameters (strings beginning with a hash
sign (#)) or another associative array. This is similar to the way that forms support
nesting elements.

We want to create a two-tiered entry: a profile category (which, roughly speaking,
defines an area of similar information, like a field set), and a profile item, which
belongs to the category.

Here's a closer look at the first of these two tiers:

// Create the outer "block"
$account->content['EmailUsers'] = array(
 '#type' => 'user_profile_category',
 '#attributes' => array('class' => 'user-member'),
 '#weight' => 0,
 '#title' => t('Contact user'),
);

The above creates the profile category for this new section, and it works in much the
same way as the form declarations we developed earlier in the chapter. The #type
field is set to user_profile_category, which is the correct category for a profile
category in the hook_user() hook.

The #attributes field is used for adding HTML attributes to the rendered HTML
elements. In this case, it will add an attribute that looks like this: class="user-
member". When the CSS stylesheet is applied to the rendered HTML, this class
declaration is used to style the element.

The #weight field is used to indicate roughly where in the generated list of user
profile items this particular one should go. The heavier the weight, the lower on the
list it goes (and thus the closer to the bottom of the page). Think of it this way: The
heavier the weight, the lower it sinks. Negative numbers may be used as well (they
"float up"). Zero is the default weight and we will leave it at that.

Finally, the #title field is used to give this profile category a title. The section will
have the title Contact user.

An Administration Module

[180]

Inside this profile section, we want to add a single item, which will point to the
email composition screen that we created earlier in this chapter. Just as we did when
adding form fields to a field set, here we will add a profile item to a profile category:

// Create the content of the block
$account->content['EmailUsers']['EmailLink'] = array(
 '#type' => 'user_profile_item',
 '#title' => t('Send a message to this user from the site '
 . 'administrator.'),
 '#value' => l(
 'Email',
 'admin/emailusers/compose/'. $account->uid
),
);

The profile category was stored in $account->content['EmailUsers']. Now, we
are adding a new element to the EmailUsers array:
$account->content['EmailUsers']['EmailLink'].

The #type for this item is user_profile_item, and just as with the profile category,
we need to assign it a #title. We are taking some liberties, though, by using the
title a little more like a description, since it will appear immediately below the profile
category's title: Send a message to this user from the site administrator.

The #value entry should contain text that will display after the title. In this case,
we just want to create a link to the composition form. We do that with the l()
function introduced in Chapter 2. This link points to the path that we registered with
emailusers_menu(), appending the user's ID ($account->uid) to the end.

Drupal will generate a URL that looks something like this: http://example.
com/drupal?q=admin/emailusers/compose/3. This URL maps onto the path we
registered in the menu hook, and when an administrator clicks on the link, he or she
will be taken to the email composition form.

Summary
In this chapter, we explored the administration side of Drupal. We created a module
that allows an administrator to send an email to a user directly from the user's
account profile in Drupal. While creating this module, we took another look at
hook_menu(), and also looked at a handful of new hooks. We created a new form
plus form handling utilities using the Forms API. Using the Mail API we created
and sent an email message, and looked at how to use altering hooks as well. Finally,
using hook_user(), we added this new module to the user profile.

In the next chapter, we will continue building on the material we started here, but
with a new module. We will create a new content type from scratch, and that will
involve working more closely with the database layer.

Building a Content Type
In Chapter 5, we created a simple content type using the Drupal administration
interface. In this chapter, we will write a module that defines a more complex content
type. Doing so will allow us to explore some new APIs including the database
and schema APIs. We'll also revisit some of the hooks and APIs we used in the
previous chapters.

The module we will create in this chapter will define a biography content type. As
we create it, we will perform the following:

Create a module installation file
Use the Schema API to define a new database table
Implement a host of new hooks, mostly from the Node API
Use the Database API to execute queries against the database
Revisit some already-used APIs and hooks such as the access control hooks
and the Forms API

We will start by defining the module's behavior.

The biography Module
The name of our fictional website is "Philosopher Bios". So far, we have created a
host of modules, but nothing related to the idea of a biography. In this chapter, we
will create the biography module.

This module will define a new content type (sometimes called a node type) that will
contain specialized fields for storing a simple biographical profile.

•

•

•

•

•

Building a Content Type

[182]

What should a biographical profile look like? Well, for us it will have the
following fields:

The name of the person the biography is about
A brief summary of what makes that person notable
The date of birth and date of death
A history of the person
A list of notable works or achievements of that person

While we can use the default title and body fields available to all nodes, we will need
to create additional fields for the rest of the data.

The Content Creation Kit
In this chapter, we are creating our new content type by coding a module.

However, there is another way we could create a new content type. One of the most
prolific Drupal add‑on modules is the Content Creation Kit (CCK). CCK provides a
visual interface for creating custom content types.

The future of CCK and Views
It is very likely that CCK will be incorporated into the core in Drupal 7.
Why? Because it is a robust, well-written, useful module that is among the
most frequently used, and it provides a set of features desirable in a CMS
framework. A similarly popular module, the Views module, is also likely
to be incorporated.

When creating a content type of moderate complexity, CCK is usually the right tool
for the job. However, there are a few reasons why we will write a module instead of
using CCK:

1. Writing a content type from scratch gives us more insight into internals, and
provides the opportunity to examine several powerful APIs. By writing this
low-level module, we will have a good excuse to examine the database API,
access control APIs, the new Schema API, and take another look at some of
the libraries we've worked with already.

2. There is a good argument to be made for coding custom content types when
they are directly related to modules. Custom content types are often easier
to maintain this way, and users do not need to worry about tinkering with
content types through the administration interface. And, of course, there is
no dependency on the CCK module.

•

•

•

•

•

Chapter 7

[183]

3. At the time of this writing a production-quality Drupal 6 version of CCK has
not yet been released, but a beta version has been released. Hopefully, by
the time this book is published, a stable version of CCK will be available for
Drupal 6.

Although CCK would be capable of creating a biography content type such as the
one we are defining, we will write a module to provide our new content type.

The Starting Point
As with the other modules, we will start by creating our new biography module.
As usual, we will put this module in the drupal/sites/all/modules/biography
directory. Also, as with other modules, we will immediately create the biography.
info and biography.module files.

The biography.info module includes nothing new or notable:

; Id
name = "Biography Content (Node) Type"
description = "This provides a custom content type to store simple \
online biographies."
core = 6.x
php = 5.1

As with the other modules, we will start our biography.module by implementing
the hook_help() hook:

<?php
// Id

/**
 * Provides the biography content type.
 * @file
 */

/**
 * implementation of hook_help().
 */
function biography_help($path, $arg) {

 if ($path == 'admin/help#biography') {
 $txt = 'A biography is a textual description of a '
 .'person\'s life and works. The summary should give '
 .'a brief overview of the person explaining why the '
 .'person is important. The \'dates\' area should '
 .'provide information on birth date and death date for '
 .'the person. This field is free-text, and might look '

Building a Content Type

[184]

 .'like this: \'c. 500 BCE-450 BCE\'. \'Life\' should '
 .'provide a biography of the person, and \'Works\' '
 .'should contain a list of this person\'s works.';
 $replace = array();
 return '<p>'. t($txt, $replace) .'</p>';
 }
}

Now that we have the boilerplate material complete, we will turn to a new task. We
will create an installer.

The Module Installation Script
Our new module is going to create a new content type. This new node type will need
some additional data fields that the default node implementation does not provide.

Where will these fields be stored?

Answer: In a custom database table.

Thus, when our biography module is first enabled (in Administer | Site building
| Modules), we need to make sure that a new table is created. Likewise, when this
module is uninstalled (from the Uninstall tab of Administer | Site building |
Modules), we need to make sure that the database table is removed.

To accomplish this, we will create a new file, biography.install. When Drupal first
enables a module, it looks in the module's directory for a file named <modulename>.
install. If it finds this file, it will load it and then check to see if the installation
hook, hook_install(), is implemented. If it is, Drupal will execute it.

To create a new table, then, we simply have to implement hook_install() with
code for creating a database table.

Drupal also has a hook_uninstall() hook for tasks that should be performed
when a module is uninstalled. hook_update_N() provides a function for specifying
changes that should be made when a module is upgraded from a previous version.

The hook_update_N() hook is named like this: <modulename>_
update_<revision number>, where revision number is a four digit
code. The first digit corresponds to the core Drupal release: 6. The second
digit is the module's major release number. The last two digits are for
sequential update numbers. For example, our first module update may
be 6100 (Drupal 6, our module version 1, and the first update, 00) and we
would implement hook_update_6100(). A subsequent bugfix release
would be 6101.

Chapter 7

[185]

While we don't have any updates, we do want to configure an installation process
and an uninstallation process.

So the beginning of our biography.install file looks as follows:
<?php
// Id

/**
 * Install the biography module, including it's content (node)
 * type.
 * @file
 */

/**
 * Implementation of hook_install().
 */
function biography_install() {
 drupal_install_schema('biography');
}

/**
 * Implementation of hook_uninstall().
 */
function biography_uninstall() {
 drupal_uninstall_schema('biography');
}

The two functions, biography_install() and biography_uninstall() implement
the installation and uninstallation hooks. Both simply call existing Drupal functions
to install and uninstall existing schemas. We will take a closer look at this idea.

We only have one major task for our installer to do. We want it to add a new table.
In older versions of Drupal, this required writing SQL inside of the hook_install()
implementation. But now, in Drupal 6, we can make use of a powerful new API: the
Schema API.

In the following section, we will see how a new table is defined with the schema.
But for now, it is sufficient merely to understand what the two Drupal schema
functions do.

drupal_install_schema() installs a module's schema. It takes only the
module's name (here, biography) as a parameter. Drupal then invokes
hook_schema() to retrieve the schema information. Once it has the schema, it
converts the schema to SQL and executes the SQL against the database.
drupal_uninstall_schema() also takes a module name (biography), and
loads that module's schema by invoking hook_schema(). It then takes that
schema and generates the appropriate table-deletion SQL, which is then
executed in the database.

•

•

Building a Content Type

[186]

The installer performs only one simple task—it creates a new table in the database.

Likewise, the uninstall process is also simple. The table is dropped.

However, since we have a schema, there is no need to hand-author any SQL.

As mentioned, both drupal_install_schema() and drupal_uninstall_schema()
cause Drupal to invoke the hook_schema() implementation for this module. Let's
turn now and look at this hook.

The Schema API: Defining Database
Structures
The next task in our module installation process is the defining of our new table.

In previous versions of Drupal, a module author wrote SQL DDL (Data Definition
Language) to define any new database structures. However, this caused portability
problems. Since SQL DDL is not particularly transferable from one DBMS (DataBase
Management System) to another, modules that worked on, say, MySQL could not
then be installed on PostgreSQL.

Database abstraction is a good goal
In the past, Drupal has been tightly integrated with MySQL, with
moderate support for PostgreSQL. But as Drupal continues to evolve,
it is likely that support may be extended to other databases. Oracle, MS
SQL Server, and others have been suggested as database platforms for
Drupal. For this reason, Drupal developers are starting to emphasize the
desirability of portable SQL. Database-agnostic APIs and generic SQL are
desirable for keeping modules portable.

To rectify this situation—and also simplify database management tasks—Drupal
developers added a new API. This Schema API provides the facilities for defining
abstract database structures, and then converting them to DBMS‑specific SQL DDL.
In other words, the API allows you to define tables, indexes, and so on as PHP
code. Then, as necessary, the Schema API can translate these PHP data structures
into SQL specific to the particular database engine. From a single schema, Drupal
can then create MySQL and PostgreSQL versions (or, indeed, versions for any
supported DBMS).

The Schema API overview describes the API and provides links to all of
the functions in the Schema API:
http://api.drupal.org/api/group/schemaapi/6.

Chapter 7

[187]

Also, once Drupal has a complete schema, it can perform different operations. For
example, a table schema can be used to create or drop a table (as well as its indexes).

Practically speaking, then, we will use the hook_schema() hook to define a new
schema, and let Drupal do the conversions to SQL as required.

A First Look at the Table Definition
For our new content type, we only need to create a single table, so our hook
implementation will be fairly straightforward:

/**
 * Implementation of hook_schema().
 */
function biography_schema() {
 $schema['biography'] = array(
 'fields' => array(
 'vid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
),
 'nid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
),
 'dates' => array(
 'type' => 'varchar',
 'length' => 127,
 'not null' => TRUE,
 'default' => '',
),
 // Note: On MySQL, text fields cannot have default values.
 'life' => array('type' => 'text', 'not null' => FALSE),
 'works' => array('type' => 'text', 'not null' => FALSE),
),
 'indexes' => array(
 'nid' => array('nid'),
),
 // Version is primary key. Could do nid, vid.
 'primary key' => array('vid'),
);

 return $schema;
}

Building a Content Type

[188]

A hook_schema() implementation is expected to return an associative array, where
the top level of each array is a table name. Consider a simplified version of the
second line of biography_schema():

$schema['biography'] = array();

The $schema array will be the associative array we will return. This line indicates
that we are defining a table named biography.

However, this isn't a complete schema. We need to add information about each
column in our table.

Our table is to have five columns: vid, nid, dates, life, and works. Let's talk about
the purpose of each of these, and then we will revisit the code.

vid: This is the version ID of the entry in this table. VIDs are unique to
the table, and will serve as the primary key. In a Drupal installation that
supports versioning, each version of a document will result in a new line
being created in this table. This field is required for a content type
extension table.
nid: The node ID tracks the unique ID of a particular node (specified in
the node table). When Drupal retrieves a node, it will retrieve the latest
available vid for the requested nid. This field is required for a content type
extension table.
dates: This will be a free‑form text field for entering date information. Why
free‑form text instead of a date selection field? Because we need to allow
 less than precise dates like "Circa 500 B.C.E. to 450 B.C.E" or "Unknown
to 368 C.E.".
life: This field will contain free‑form text content (actually, restricted HTML
text) that will describe the individual's life.
works: This will also be used to hold restricted HTML text. This field is used
to store bibliographic information.

Now that we know basically what each column is supposed to do, let's take a closer
look at the schema.

Defining Fields (Columns)
Inside the array of the biography schema, there are three main arrays:

$schema['biography'] = array(
 'fields' => array()
 'indexes' => array()
 'primary key' => array('vid'),
);

•

•

•

•

•

Chapter 7

[189]

These arrays provide various aspects of the table's definition.

fields: This array contains a definition for each of the columns in the table.
Since our table will have five columns, this array will contain five entries.
indexes: This array contains an entry for each index that is to be added to
the table.
primary key: This array contains entries for each component of a
primary key.

In addition to these three, the schema API defines two more:

unique key: This array contains entries for each unique (non-primary) key
in a table.
description: This allows you to attach a textual description to the
schema definition.

Let's look at a couple of the definitions in the fields array:

'nid' => array(
 'type' => 'int',
 'unsigned' => TRUE,
 'not null' => TRUE,
 'default' => 0,
),
'dates' => array(
 'type' => 'varchar',
 'length' => 127,
 'not null' => TRUE,
 'default' => '',
),

Here are the definitions for the nid column and the dates column. The NID (Node
ID) is a positive (unsigned) integer that can never be null. The purpose of this field
is to correlate our extended table with the main nodes table. A nid in this table
will always correspond to the nid field in the node table. Hence, we don't need to
configure it to increment automatically.

If we were to take this definition and convert it to MySQL‑brand DDL, it would look
as follows:

CREATE TABLE `biography` (
 `vid` int unsigned NOT NULL default '0',
 `nid` int unsigned NOT NULL default '0',

 `dates` varchar(127) NOT NULL default '',
 `life` text,

•

•

•

•

•

Building a Content Type

[190]

 `works` text,
 PRIMARY KEY (`vid`),
 KEY `nid` (`nid`)
)

The nid array key becomes the column name, and the contents of the array are
combined to create the definition. All this transformation is done under the hood by
the schema API.

Each of the possible fields that can be used in a schema definition is
documented in the Schema API manual: http://drupal.org/
node/146939. For the most part, the Schema API names follow the
naming patterns used by MySQL.

Likewise, the dates entry also represents a column, though in this case the type is
varchar instead of an int. Since we know a date field is short, even when expressed
in text, we can limit the length of the field to 127 characters. To express the size limit,
instead of defining type as varchar(127), we define the type as varchar and set
length to 127.

There are a number of predefined sizes, such as small, big, tiny, and so on. (These
sizes are commonly used with ints in MySQL.) If no size is specified, or if size is set
to normal, then the defaults of the underlying database system are used.

The text type and default values
MySQL does not allow columns of type text to have default values.
When the Schema API encounters a default value for a text column, it
simply ignores the definition. This, however, can cause unexpected errors
if SQL statements assume that a default will be set. For this reason, it is
better to insert empty strings into text fields in a Drupal database. (We
will see an example of this later in the chapter.)

The other field definitions follow the same patterns. Rather than belaboring the
point, we will skip the other fields and take a look at the next two entries in the
definition: indexes and primary key.

Defining Keys and Indexes
As we noted earlier, there are three items in the $schema['biography'] array:
fields, indexes, and primary key. Above, we looked at the field definitions, which
are used to define columns in a database table. Now we will look at the other two:

Chapter 7

[191]

'indexes' => array(
 'nid' => array('nid'),
),
'primary key' => array('vid'),

The indexes array is used to define database indexes. To ensure good performance,
you should define indexes on fields used to match rows in a database query. The
rule of thumb for this is that fields that are frequently used in the WHERE clause or in
JOINs in your SQL are those that make good candidates for indexes.

Defining an index is fairly simple. Every index needs a name and a list of fields to
index. The name can be the same as the indexed fields.

In the example above, we define an index on Node IDs (nid), since that field is
frequently used in retrieving information from the table. The index is defined as
'nid' => array('nid'). The array key, nid, will be the name of the index, and the
array that it references, array('nid'), is the list of fields indexed here.

To improve performance on some queries, we could change this index to include
cases where nid and vid (Version ID) were both used in the WHERE clause of a query.
Consider an index like this: 'nidvid' => array('nid','vid'). This defines an
index named nidvid that will optimize for queries against Node ID and Version
ID. (For example a query like: SELECT * FROM {biography} WHERE nid=10 AND
vid=11;.)

MySQL and multi-column indexes
With MySQL, the nidvid index would not only be used for cases where
both columns were accessed in the WHERE clause, but also for cases where
the first of the columns (nid) is used. In other words, this one index can
function as two different indexes—one on nid alone, and one on nid
and vid.

Finally, a primary key entry indicates which field or combination of fields is to be
treated as the table's primary key. A primary key must be unique and can never
be null.

In most content type extension tables (like ours), the vid should be treated as the
primary key. (Optionally, you can use the combination of nid and vid, but it is not
clear that this offers any benefit.)

Once a field is identified as a primary key (or even a unique key, see the description
above) then the field should not be indexed. Attempting to do so will cause
database errors.

Building a Content Type

[192]

The structure of the primary key definition is simpler than the index definition:
'primary key' => array('vid'). Primary keys do not need names. Consequently,
all the primary key entry requires is an array of fields to treat as the key. The unique
keys definition also follows this same pattern.

Now we have created a complex data structure representing our schema definition.
Any time the hook_schema() hook is called on this module, this schema definition
is returned. Also, in our installation file, the scheme is retrieved twice—once by
drupal_install_schema() and once by drupal_uninstall_schema().

At this point, we are done with the biography.install file. The three functions,
biography_install(), biography_uninstall(), and biography_schema(), are
the only functions we need to install this module.

Now we are ready to return to biography.module and make use of our
newly defined database table.

Correlating the New Table with Nodes
The install script defined a new table. But how does Drupal know that this table is
to be treated as part of a content type? In fact, how is Drupal to know that we are
defining a content type at all?

In the first chapter, we discussed nodes. From the developer's point of
view, each piece of content is backed by a node and (perhaps) some
extensions to that node. What extensions are used depends on the
content type of that piece of content. The table we just created represents
extensions to the node for our biography content type.

The hook function hook_node_info() is used to register a new content type. Other
functions that we will look at shortly (namely, our implementation of hook_load())
will provide Drupal with information on how we have augmented the node with our
custom fields.

An implementation of the hook_node_info() hook must return an array of
information about the node. This information is basic, and does not include details
about the table we have created. Most of the options, in fact, deal with how the basic
content authoring form is displayed.

Chapter 7

[193]

Hence, we will take a quick look at the content authoring form for a Story content
type before looking at the hook_node_info() code for our biography module. This
will give us the basis for a visual comparison.

The name of this content type is Story. The description of a Story, which appears on
the Create content page, reads as follows:

A story, similar in form to a page, is ideal for creating and displaying content
that informs or engages website visitors. Press releases, site announcements, and
informal blog-like entries may all be created with a story entry. By default, a story
entry is automatically featured on the site's initial home page, and provides the
ability to post comments.

By default, the Create content page is accessible from the main site
navigation, or through a URL like this: http://example.com/
drupal/?q=node/add (replacing example.com with your domain).

The title and body fields (labeled Title and Body in the above form) are both enabled
for the Story content type. The four fields—name, description, title, and body—are
fields that we will set for our biography content type.

Now we are ready to look at biography_node_info(), our implementation of
hook_node_info().

/**
 * Implements hook_node_info().
 */
function biography_node_info() {

Building a Content Type

[194]

 return array(
 'biography' => array(
 'name' => t('Biography'),
 'module' => 'biography',
 'description' => t('A biography of a person.'),
 'has_title' => TRUE,
 'title_label' => t('Biography of'),
 'has_body' => TRUE,
 'body_label' => t('Overview'),
)
);
}

This hook is expected to return an array describing all the content types that our
module provides. Our implementation only provides one, a content type named
biography. The content type's name is used as an array key. In Drupalish style,
the value of that array entry is another array: an associative array loaded with
information about the content type:

biography' => array(
 'name' => t('Biography'),
 'description' => t('A biography of a person.'),
 'has_title' => TRUE,
 'title_label' => t('Biography of'),
 'has_body' => TRUE,
 'body_label' => t('Overview'),
 'module' => 'biography',
)

Most of these fields determine how our new content type will appear on the Create
content list and for the content creation form (like the one in the previous screenshot)
for our content type. Let's look at them in order:

name: This will be the content type's name, as displayed to the user.
description: A sentence or two describing the content type. This is
displayed on the Create content page. For brevity's sake, we will use a short
label: A biography of a person. Usually, something a little more descriptive
is appropriate.
has_title: This takes a Boolean value. If it is set to FALSE, no title form field
will be displayed. If it is set to TRUE, the title form field will be displayed,
along with the label set in title_label. We want a title entry field, so we set
this to TRUE.
title_label: This should be the user‑friendly label for the title form field.
By default, this is Title. We will use this as the field to display who the
biography is about. So our label is Biography of. Note that we must run this
through the t() translation function.

•

•

•

•

Chapter 7

[195]

has_body: If this is set to TRUE, a text area will be displayed. Users creating
content will be able to enter the node's main content through this form. If it is
set to FALSE, no text area will be displayed. We will use this field, so we set it
to TRUE.
body_label: Like title_label, this specifies the label to be used for the
body section (if has_body is set to TRUE). By default, this is Body. We will
use this field to display a short summary of our biography, so the label is set
to Overview.

The last field is in some ways an exception. The fields above deal with the look and
feel of this new content type. This last field, though, plays a functional role in the
node subsystem:

module: The computer-friendly name of this module (biography). This will
be used to construct hook function calls for this content type. In rare cases,
you may need to set this to something other than the name of this module.
But we will define all of the necessary hooks below.

There are a few other fields that we have not used in our hook_node_info()
implementation. These are help for help text, min_word_count to specify
the minimum number of words in the body, and lock to indicate whether an
administrator can override the labels we have given this content type.

In Chapter 4, we created the Quote content type. We changed the
title_label and body_label through the Administer | Content
management | Content types interface.

To take a look ahead, we have set up the labels so that the content creation form
would look like this:

•

•

•

Building a Content Type

[196]

However, until we implement hook_form(), the form will not display. Now we will
take a look at that hook.

The Content Creation Form
In Chapter 4, we created the Quote content type. Creating new content was easy.
The form displayed in Create content | Quote was the same form used by Create
content | Page and Create content | Story.

Now, however, we have a more complex content type. We need a form that will
display all the biography fields: Biography of (stored as the document's title),
Overview (stored in the document's body), Dates, Life, and Works.

To specify how the form for our new content type ought to look, we will implement
hook_form(). Drupal will call this hook whenever a user creates a new biography.

In the last chapter, we looked at the Forms API (FAPI) in some detail. Here, we will
make use of many of the same features. Since we have seen this API before, I will
keep the explanation brief.

/ **
 * Implementation of hook_form().
 */
function biography_form(&$node) {
 $type = node_get_types('type', $node);

 // Existing files: title (Biography of) and body (Overview)
 if ($type->has_title) {
 $form['title'] = array(
 '#type' => 'textfield',
 '#title' => check_plain($type->title_label),
 '#required' => TRUE,
 '#default_value' => $node->title,
 '#weight' => -5,
);
 }

 if ($type->has_body) {
 $form['body_field'] = node_body_field(
 $node,
 $type->body_label,
 $type->min_word_count
);
 }

 // Our custom fields: Dates, Life, Works.

Chapter 7

[197]

 // (See FAPI docs for specification)
 $form['dates'] = array(
 '#type' => 'textfield',
 '#size' => 50,
 '#maxlengh' => 127,
 '#title' => t('Dates'),
 '#description' => t('Birth and death dates.'),
 '#default_value' => isset($node->dates) ? $node->dates : '',
);

 $form['life'] = array(
 '#type' => 'textarea',
 '#title' => t('Life'),
 '#cols' => 50,
 '#rows' => 15,
 '#description' => t('A description of this person\'s life.'),
 '#default_value' => isset($node->life) ? $node->life : '',
);
 $form['works'] = array(
 '#type' => 'textarea',
 '#title' => t('Works'),
 '#cols' => 50,
 '#rows' => 5,
 '#description' => t('An annotated bibliography of this person\'s
works.'),
 '#default_value' => isset($node->works) ? $node->works : '',
);

 return $form;
}

Our biography_form() hook implementation is passed one parameter. The $node
variable (which is passed by reference) will contain the base node object for our new
content. This node is initialized with default information.

Part of the job of this hook is to override existing defaults with defaults more
appropriate for our content type.

Also, at this point Drupal doesn't have any biography‑specific fields set. Therefore,
the second purpose of this function will be to configure extra default data for a
biography content type.

Let's start with the first.

Building a Content Type

[198]

Overriding hook_form() Defaults
Most of the contents of this function should look familiar. It is the first section, if
anything, that should appear uncommon for a form definition. The following code is
responsible for overriding existing defaults.

$type = node_get_types('type', $node);

// Existing files: title (Biography of) and body (Overview)
if ($type->has_title) {
 $form['title'] = array(
 '#type' => 'textfield',
 '#title' => check_plain($type->title_label),
 '#required' => TRUE,
 '#default_value' => $node->title,
 '#weight' => -5,
);
}

if ($type->has_body) {
 $form['body_field'] = node_body_field(
 $node,
 $type->body_label,
 $type->min_word_count
);
}

The first thing this code does is retrieve information about the type of node that we
are working with.

At first, this might seem silly. After all, we know that this node is a biography node.
But the object returned by node_get_type() is richer than that. It returns an object
that contains some important information about the configuration of the biography
content type.

The $type object contains attributes matching those we created in biography_node_
info(). But the values of these fields might be different. While our biography_
hook_info() function sets the defaults for title_label, body_label, has_body
and so on, an administrator can override these values.

Using node_get_type(), we can get the latest information about this content type's
configuration—including any changes the administrator has made over and above
our initial setup with biography_hook_info().

Chapter 7

[199]

With this information, we can begin to define the first two fields of our form. If this
form is to have a title (that is, if $type->has_title is TRUE), then we define the title's
text field:

if ($type->has_title) {
 $form['title'] = array(
 '#type' => 'textfield',
 '#title' => check_plain($type->title_label),
 '#required' => TRUE,
 '#default_value' => $node->title,
 '#weight' => -5,
);
}

Note that we use $type->title_label to set the field's title. If an administrator has
not made a change, the #title field should be set to Biography of.

A similar setup is used for the body (Overview) field. If $type->has_body is TRUE,
then a form field is configured for the body, as well.

Drupal uses a sophisticated set of elements to display the body field—elements
including a separator bar to delimit what part of the body is to be treated as the
Summary, a text area field, and the Input format submenu. To conveniently create
all of these fields, Drupal provides the node_body_field() function.

Generally speaking, the node_body_field() function should only be
called to create the node's body field. It is not suitable for use to create
additional custom fields. For more information on node_body_field(),
see the Drupal API notes: http://api.drupal.org/api/function/
node_body_field/6.

Now the title (Biography of) and body (Overview) fields are correctly configured.
Next, we need to add a few new fields to our form.

Adding New hook_form() Form Elements
As we saw earlier, the first purpose of the hook_form() hook was to give us a chance
to override Drupal's defaults for our new content type.

The second purpose is to give us the opportunity to specify form elements for our
content type.

Building a Content Type

[200]

Accomplishing this is simply a matter of using FAPI to define the desired
form elements:

$form['dates'] = array(
 '#type' => 'textfield',
 '#size' => 50,
 '#maxlengh' => 127,
 '#title' => t('Dates'),
 '#description' => t('Birth and death dates.'),
 '#default_value' => isset($node->dates) ? $node->dates : '',
);
$form['life'] = array(
 '#type' => 'textarea',
 '#title' => t('Life'),
 '#cols' => 50,
 '#rows' => 15,
 '#description' => t('A description of this person\'s life.'),
 '#default_value' => isset($node->life) ? $node->life : '',
);
$form['works'] = array(
 '#type' => 'textarea',
 '#title' => t('Works'),
 '#cols' => 50,
 '#rows' => 5,
 '#description' => t('An annotated bibliography of this
 person\'s works.'),
 '#default_value' => isset($node->works) ? $node->works : '',
);

return $form;

The form elements created above do not differ markedly from the forms we created
in the last chapter. In a nutshell, this code creates three additional form fields:

1. A text field for entering a person's dates (Dates)
2. A text area for adding a biography (Life)
3. A text area for adding a bibliography or list of accomplishments (Works)

These three fields correlate to the three identically named columns we created in the
bibliography database at the beginning of this chapter.

Chapter 7

[201]

Once the form data structure is complete, we return it. When Drupal renders it, it
will look something like the following screenshot:

(Note that the text areas were sized down to fit in the screenshot)

The content entry form is now complete. But what happens to the data when it
is submitted?

The short answer is—lots of things.

Permissions are checked, form data is validated, extra processing tasks are
performed, and then the data is inserted into the database. We are only concerned
with a couple of these tasks, though.

First, we will examine the permission checking features. Then, we will move on to
the database API.

Building a Content Type

[202]

Access Controls
In the last chapter, we took a quick look at access controls as a way to allow some
users the ability to send email messages, while denying others such capabilities.

Here, we will be doing something similar. We will create one hook to register three
new permissions, and then we will create a second hook that will test a user to see if
she or he can access a biography.

First, let's look at hook_perm(), which is responsible for registering new permissions:

/**
 * Implements hook_perm()
 */
function biography_perm() {
 return array(
 'create biography node',
 'edit biography nodes',
 'delete biography nodes',
);
}

An implementation of hook_perm() simply returns an array of permission strings.
Our implementation, biography_perm(), registers three new permissions: create
biography node, edit biography nodes, and delete biography nodes.

These permissions will now show up on Administer | User management |
Permissions:

Using this screen, an administrator can choose which roles to assign these
permissions to.

Chapter 7

[203]

Roles and permissions were introduced in Chapter 1 and covered again in
Chapter 6. The email_user() function we created in Chapter 6 used the
user_access() function (an implementation of hook_access()) to
determine if a user could administer users.

Though these three permissions strings are meaningful to us, by themselves they
have no special meaning for Drupal. We could have named them A, B, and I like
butterflies, and it would not make a functional difference.

For Drupal, the purpose of these strings is determined by the context in which
Drupal invokes the hook_access() hook.

For example, when a user tries to create a new biography entry, Drupal will try to
invoke biography_access(), passing it the operation create. If the function returns
TRUE, then Drupal will allow the user to create the biography node. But a FALSE
return will prevent the user from creating new biography nodes.

We can use our hook implementation to only grant create rights to users who are
members of a role with create biography node permissions.

Permissions are assigned to roles. Users are members of roles. Any access
control, then, is based on a user's role.

Here is our biography_access() hook implementation:

/**
 * Implements hook_access()
 */
function biography_access($op, $node, $account) {
 switch ($op) {
 case 'create':
 return user_access('create biography node', $account);
 case 'update':
 return user_access('edit biography nodes', $account);
 case 'delete':
 return user_access('delete biography nodes', $account);
 }
}

Building a Content Type

[204]

Three arguments are passed into this function:

$op: The name of the operation Drupal will perform if this function returns
TRUE. In our case, we are concerned with three operations: create, update,
and delete—all of which have to do with manipulating nodes with our
biography content type.
$node: The node that Drupal will act on if this form returns TRUE. This is
passed in to allow for advanced checking. We could, for instance, make a
determination based on whether the user was the owner of that node.
$account: The user's account object. We looked at the $account object in the
last chapter. Here, we can use it to find out about a user's permissions.

Our function maps the permissions we created with biography_perm() to the
names of the three operations. The create operation is permitted for a user only if
that user's $account object has the permission create biography node. Similarly,
modify attempts return true only if the user has modify biography nodes set;
delete attempts are allowed only if the user has the delete biography nodes
permission.

Calling another hook implementation
Rather than replicating the permissions testing logic, which would require
getting a user's role and then checking the permissions in that role, our
code above calls another instance of hook_access(). user_access()
already contains the requisite logic, so we use that instead of writing
redundant code.

As this example illustrates, there is no reason why one hook
implementation cannot call another hook implementation.

What happens if the hook_access() function does not handle the
$op operation? Drupal does not simply assume that the user does not
have permissions. Instead, Drupal examines the node_access table in
the database and tries to determine whether the user should be allowed
to perform the requested operation. This may lead to situations where
users are granted permissions that were not intended. See
http://api.drupal.org/api/group/node_access/6 for a
description of the node access system. (This document also explains what
happens if hook_access() is not defined for a module.)

Now we have configured the permissions and access control aspects of our new
content type. Next, we are going switch to a lower-level task. We are going to
implement a handful of database hooks, which will be responsible for dealing with
the underlying database.

•

•

•

Chapter 7

[205]

Database Hooks
When we created the installer, we used the Schema API to define how our new
biography content type table looks. However, the Schema API is abstract enough
that we wrote no SQL, and we didn't directly call any database functions.

Now we will create four functions that deal with the database at a low level, and we
will write SQL statements to perform database operations.

We need to define functions to perform the following:

Insert a new biography entry into the biography table.
Remove an unwanted entry from the biography table.
Update an existing entry in the biography table.
Remove a particular version (or revision) from the biography table.

Keep in mind that the biography table that we created earlier is an auxiliary table.
Much of the content type's data is stored in the node table. Only identification
information and data that is specific to our content type (like dates, life, and
works) is stored in our custom table.

The functions that we define will only need to operate on our custom table. Drupal
already contains functions for manipulating entries in the node table.

We will begin with the insertion code.

Database Inserts with hook_insert()
When a user submits a new biography (as defined by biography_form()), Drupal
will go through a checking and cleaning procedure, and then it will attempt to store
the data.

Part of the storage procedure involves calling the appropriate hook_insert()
implementation for the module specified by hook_node_info(). Our biography_
node_info() set 'module' => 'biography', so Drupal will look for the biography_
insert() function to handle the task of inserting biography data into custom tables.

biography_insert() is passed one parameter, $node, which contains the data that
the user submitted. All the default node fields will be present, as will the fields that
we set up in $biography_form().

•

•

•

•

Building a Content Type

[206]

Our responsibility will be to take the appropriate subset of information from the
$node object and use it to populate the custom biography table.

/**
 * implements hook_insert().
 */
function biography_insert($node) {
 if (!isset($node->life)) {
 $node->life = '';
 }
 if (!isset($node->works)) {
 $node->works = '';
 }

 db_query(
 'INSERT INTO {biography} (vid, nid, dates, life, works) '
 ."VALUES (%d, %d, '%s', '%s','%s')",
 $node->vid,
 $node->nid,
 $node->dates,
 $node->life,
 $node->works
);
}

What do we do with the $node object passed in? We put the requisite fields into
an SQL statement and run it. This is all done in one step. The Drupal db_query()
function handles most of the mundane database preparation.

Checking text fields
In the first few lines of the above function, we add a default value (if
necessary) to $node->life and $node->works. Both these fields
are stored in the database using the text type. So it is necessary to set
defaults because MySQL cannot set default values for text fields. The
dates field (which is a varchar field) already has a default, so we don't
need to define one here. This was noted when we created the schema at
the beginning of this chapter.

The db_query() function takes the SQL statement, and then any number of
arguments that it will format and insert into the SQL. Let's begin by looking at the
SQL statement. As a plain old string, it looks as follows:

INSERT INTO {biography} (vid, nid, dates, life, works)

 VALUES (%d, %d, '%s', '%s','%s')

Chapter 7

[207]

This statement is a basic SQL insert that sets values for vid, nid, dates, life,
and works.

Before passing this string on to the database to be executed, Drupal does some
interpolation. The first things it will examine are the table names.

The table name is enclosed in curly braces: {biography}. This additional
punctuation informs Drupal that this is a table name. Under some circumstances,
Drupal will need to rewrite the table name. For example, it is possible to configure
Drupal to add a prefix to every table. The db_query() function handles this for us,
rather than the developer handling prefixes.

Any table name surrounded by curly braces will be automatically adjusted according
to table configuration rules for Drupal. (This actually happens behind the scenes in
the Schema API, too.)

The next thing to look at is the series of placeholders. In the code, there are two
instances of the %d placeholder, and three instances of the %s placeholder.

When db_query() executes, it will replace each of the placeholders with the
remaining arguments. Since there are five placeholders, it will expect five additional
parameters to be passed in:

db_query(
 'INSERT INTO {biography} (vid, nid, dates, life, works) '
 ."VALUES (%d, %d, '%s', '%s','%s')",
 $node->vid,
 $node->nid,
 $node->dates,
 $node->life,
 $node->works
);

The five $node attributes (vid, nid, dates, life, and works) are substituted for
placeholders in order. So $node->vid will replace the first %d, and $node->nid will
replace the second. Then, each of the three remaining parameters will replace (in
order) the three %s placeholders.

A string with placeholders in it, especially one intended to be used by the
printf()/sprintf() family of functions, is called a format string.

Building a Content Type

[208]

So what's with the %d and %s things? These placeholders identify the data type of the
variable that will be substituted in. Briefly, the following are the common placeholders:

%d represents an integer (one or more digits, but no decimals).
%s represents a string.
%b represents a binary number.
%f represents a floating point number (digits and decimals).
%% escapes a percent sign. In other words, it is converted to %.

Drupal's substitution mechanism does not support the more advanced patterns
(like %2.5f) that PHP's sprintf()/printf() family of functions provide. Only
these five simple placeholders are supported. Thus, if you want to round a decimal
before inserting it, you will need to do the rounding in code, instead of relying upon
db_query().

Note that when we use the %s placeholder for a value, we surround it in
quotes. But integers (%d) and floats (%f) don't need to be quoted. This is
a function of SQL, not of Drupal's library, though. For example, if you
enclose an integer in quotation marks, yet insert it into an integer field,
MySQL will automatically convert it to an integer.

Why use the placeholder function instead of just concatenating strings? Why not just
write SQL like this: 'SELECT ' .implode(', ', fields). ' FROM {mytable};'? (Do
not ever write your Drupal code this way!)

There are two reasons why the above is frowned upon. First, it is more difficult to
read concatenated strings than it is to read a format string. This leads to errors, some
of which are hard to detect.

Second, and more importantly, using the placeholder method is more secure.
Drupal's db_query() function does more than just format the string. It also performs
a series of checks and escapes on the data.

Values earmarked to replace %d are converted to integers and those replacing %f
are converted to floats. Binary values (%b) are encoded with the Drupal db_encode_
blob() function, and strings are escaped with the db_escape_string()
Drupal function.

db_encode_blob() and db_escape_string() are wrapper
functions. The underlying database libraries will use the strongest
available escaping algorithms to prepare data for database queries. For
example, db_escape_string() will use pg_escape_string() on
PostgreSQL, and mysqli_real_escape_string() for MySQL (with
the MySQLi library).

•

•

•

•

•

Chapter 7

[209]

These measures provide vital protection against accidents, mistakes, and malicious
attempts to subvert the system. For that reason, you should always use placeholders
for your data (especially for user-submitted data).

When biography_insert() is run, a new row will be added to the biography table.
The nid (Node ID) and vid (Version ID) will correlate to the matching nid and
vid in the node table. That is how the title (Biography of) and body (Overview)
data, which is stored in the node table, retains its connection with the data in the
biography table.

In order to introduce the features of Drupal's db_query(), we've lingered over the
hook_insert() hook. Now we'll move along faster.

Updating and Deleting Database Records
With a general idea of how database queries work, we can move along faster through
the remaining database functions.

We already have a function to perform inserts. Next, we need to create one to update
existing data:

/**
 * implements hook_update().
 */
function biography_update($node) {
 if ($node->revision) {
 biography_insert($node);
 }
 else {
 db_query("UPDATE {biography} "
 ."SET dates = '%s', life = '%s', works='%s' "
 ."WHERE vid = %d",
 $node->dates,
 $node->life,
 $node->works,
 $node->vid
);
 }
}

This function handles updates.

Actually, it does just a little more than that. This function might be called for a row
that does not already exist. When a new revision is created for an existing node, the
revision is handled by hook_update() instead of hook_insert(). So the first thing
we need to do is see if the $node->revision flag is set. If it is TRUE, then we treat the
update as an insert, and pass the $node on to biography_insert().

Building a Content Type

[210]

Otherwise, we assume that the existing row is to be modified, and we perform an
SQL update. In the update itself, we use the vid (which is the table's primary key) to
locate the row that should be changed. Since nid will remain static, we don't bother
with it at all in this operation.

Next, we need to define a function for deleting a node. When a node is deleted,
all rows containing that node's ID (nid) should be removed. If Drupal is tracking
revisions (using vid), that may mean that more than one row is deleted from
our table:

/**
 * Implements hook_delete().
 */
function biography_delete($node) {
 db_query(
 'DELETE FROM {biography} WHERE nid = %d',
 $node->nid
);
}

While we update using the vid, hook_delete() should delete using the nid because
we want to delete all the versions of this node.

But what if we need to delete just a revision of a particular node? There is no hook
for doing that, so we have to implement hook_nodeapi(), a general purpose hook
for handling nodes.

The hook_nodeapi() hook works like other Drupal functions we've seen. It is passed
three parameters:

$node: The reference to the current node
$op: The name of the operation to perform
$teaser: The teaser parameter (when $op is view) or form parameter (when
$op is validate)
$page: The page parameter when $op is view

While there are over a dozen different possible $op values, we are only concerned
with one: 'delete revision'. That is the operation that is requested when only one
vid should be deleted.

/**
 * This implementation just handles deleting node revisions.
 * Implements hook_nodeapi().
 */
function biography_nodeapi(&$node, $op, $teaser, $page) {
 if ($op == 'delete revision') {
 db_query(

•

•

•

•

Chapter 7

[211]

 'DELETE FROM {biography} WHERE vid = %d',
 $node->vid
);
 }
}

When the delete revision operation is passed, we delete the row with the primary
key stored in $node->vid.

hook_nodeapi() is a veritable Swiss army knife of tools for dealing
with nodes. As with most other Drupal hooks, hook_nodeapi() is
documented, and the documentation can be viewed at: http://api.
drupal.org/api/function/hook_nodeapi/6.

At this point, we have finished with the majority of the database code (we still have a
SELECT coming up).

When developing modules with low-level database code like we have used here,
it is important to keep security in mind. In many cases, simply by using the correct
functions (like db_query()) correctly (by using placeholders), a module developer
can avoid the common pitfalls associated with SQL development.

We've implemented half a dozen hooks already, but we've still got more to go in
order to create a fully functional content type. The next class of hooks is those used
to assist in loading and viewing the content.

Hooks for Getting Data
We're getting close to the end, now. We have only three more functions to go.

So far, we've created an installer, implemented hooks to create the database
tables, implemented access controls, created a form, and developed functions for
maintaining our custom tables.

In this section, we will look at functions used for accessing our content. And once
again, we will be moving back toward the familiar. We will start by implementing
hook_load(), then we will take a look at hook_view() and hook_theme().

In the subsection Getting the Node's Content in Chapter 4, we used the
function node_load() to load the contents of a node. That function
is an implementation of hook_node(). In that chapter we also looked
carefully at adding theme support to a module, covering hook_theme()
as well.

Building a Content Type

[212]

Loading a Node with hook_load()
The hook_load() hook provides a chance for extended content types, like the one
we are creating, to load additional data. This extra information is combined with the
existing node data to return a custom node object.

While this sounds confusing, in fact it is fairly straightforward. Any content type is
going to have an entry in Drupal's node table. So any time Drupal loads a node, it
will first fetch data from the node table.

Let's refer to our node object as $node. When Drupal first loads $node, it will contain
the fields set in the node table and its supporting tables.

But our content type, biography, has some additional fields that are not stored in the
default tables, and so do not get initially added to $node.

That's where hook_load() comes in. While loading the node, Drupal will call the
appropriate hook_load() for that node type. In our example, then, that would be
biography_load(). In general, the responsibility of this function is to load and
prepare any additional data for the biography content type. We will do this by
selecting some data out of our biography table.

/**
 * Implementation of hook_load().
 */
function biography_load($node) {
 $result = db_query(
 'SELECT dates, life, works FROM {biography} WHERE vid = %d',
 $node->vid
);
 return db_fetch_object($result);
}

A hook_node() implementation is passed a $node object that has been partially
built. All its fields have been loaded from the node table (and any supporting tables),
and the object is initialized.

Why do I say $node is partially built? Because the fields that we are going to fetch
from the database will eventually become part of this object, as well.

Chapter 7

[213]

This function is not exactly daunting. The $node that is passed into biography_
load() has a vid, and that is all we need to select our fields from the database. (It
also has a nid, so we don't need to fetch that from the database.) We only need to
create a basic SELECT statement to retrieve the data:

'SELECT dates, life, works FROM {biography} WHERE vid = %d'

Again, keep in mind that {biography} is treated as a placeholder for the biography
table name and %d will be replaced with the vid.

Our use of db_query() here differs a little from our previous cases. Here, we capture
the return value of db_query(), which is a database‑specific resource ID. (Its content
differs between PostgreSQL and MySQL.)

Earlier, we didn't need to capture this return value because we had no need of
returned data. But after executing a SELECT, we want to access the returned rows.

The ID returned from the query can be used to fetch this data using
db_fetch_object().

Capturing results with db_fetch_* functions
There are two different functions for fetching the results of a database
query: db_fetch_object() and db_fetch_array(). The first, db_
fetch_object(), returns on object representing the returned values.
These values are accessed as members: $obj->my_column_name. db_
fetch_array() returns an associative array whose values are accessed
this way: $arr['my_column_name']. There are other methods of
accessing returned data, like db_result(), but the two db_fetch_*
functions are the most frequently used.

We simply return the results of db_fetch_object() at the end of the function.
Drupal will take care of combining this object with the existing $node.

When we later work with the resulting $node object, we will find that it contains
all the fields from the node table, as well as these that we've added from the
biography table.

We're working our way from low‑level DB work up to a theme. Next, we'll look at
the process of preparing the node for display.

Building a Content Type

[214]

Preparing the Node for Display with
hook_view()
The hook_view() hook is called once a $node object has been loaded, but before
the $node has been displayed. It gives us a chance to prepare that node for display
before passing it on to the theme engine.

Why do we need a function like this? Because Drupal doesn't know what to do with
the extra fields of our content type.

For example, our data has not been checked and escaped for display in the browser.

In addition, the theme system does not have any information regarding how it
should display our content. We need to supply information about theme rendering,
as well.

With this in mind, let's look at the function:

/**
 * Implementation of hook_view().
 */
function biography_view($node, $teaser = FALSE, $page = FALSE) {
 $node = node_prepare($node, $teaser); // get it ready for display

 $dates = check_plain($node->dates);
 $life = check_markup($node->life);
 $works = check_markup($node->works);

 // Add theme stuff here
 $node->content['biography_info'] = array(
 '#value' => theme('biography_info', $dates, $life, $works),
 '#weight' => 1,
);

 return $node;
}

The function is passed three arguments:

The fully initialized $node, which now contains the extra fields from our
biography database.
A flag, $teaser, telling us whether the article should be displayed as a
teaser only.
A flag, $page, telling us whether the article is on its own page. This effects
theme rendering.

•

•

•

Chapter 7

[215]

For our module, we won't be doing much with $teaser or $page—we'll just pass
them on to other functions that will take care of any specific formatting.

In some cases, though, you might want to use these flags in order to better control
the display of your content type.

The first thing this function does is call node_prepare(). The node_prepare()
function handles a variety of boilerplate preparation tasks. It makes sure that a read
more link is added if the node is displayed in teaser form (i.e. if $teaser is TRUE). It
does some safety checking on the title (Biography of) and body (Overview) fields
that have been retrieved from the node table. Specifically, it runs check_markup()
on both of these.

Safety-checking HTML with check_markup()
The check_markup() function handles formatting of user-entered
text. By default, it checks to make sure that any HTML tags used in the
field are allowed tags. (Some tags, like <script/>, are not allowed
for security reasons.) It also does a certain amount of cross-platform
conversion and other cleanup. check_markup(), along with check_
plain(), is one of the most important functions in a module developer's
toolbox. It should always be used when sending user-submitted HTML to
the client. See the API documentation for more details at: http://api.
drupal.org/api/function/check_markup/6. We will look at this
function again in the next chapter, as well.

Finally, $node_prepare() begins the process of building the $node object's content
field. This field is used by the theme API to display the node.

After doing the base node preparation with node_prepare(), we need to do some
additional work to prepare the biography fields.

$dates = check_plain($node->dates);
$life = check_markup($node->life);
$works = check_markup($node->works);

We want to make sure that all the three fields are safe for display on the user's
browser. To do this, we use check_* functions on our fields.

It is absolutely critical to do this checking. Failure to do so opens the door
for a malicious user to attempt a Cross Site Scripting (XSS) attack using
your site.

Building a Content Type

[216]

The check_plain() function, which we have seen before, removes all HTML
from a string. check_markup() allows "safe" HTML only. Both do some additional
formatting of the data. See the tip Safety-checking HTML with check_markup()
earlier for more information on check_markup().

Finally, the function finishes up by preparing the content for the theme engine and
returning the finished node:

$node->content['biography_info'] = array(
 '#value' => theme('biography_info', $dates, $life, $works),
 '#weight' => 1,
);

return $node

The first section above continues the process of building the $node->content array,
which will eventually be used to display the content in the node template or
theming function.

We will add an element to the content array and element named biography_info.
This element itself must have a #value (the formatted content to display) and a
#weight (to indicate roughly where this data will be placed in the rendered page).

The documentation for hook_view() is a good starting point for
learning more about preparing node contents for theming:
http://api.drupal.org/api/function/hook_view/6.

The #weight field determines how high on the page a field will display. Putting it at
1 will ensure that it displays after the title and body.

We discussed using weights in the last chapter. Remember, the higher the
number, the "heavier" the object, and the lower it will sink on the list. You
can use the theme examining features in the Devel module to examine the
effect of weights on the output.

To generate the #value, we will connect our module to the theme engine. We are
going to create a biography_info theme, which will function a lot like the theming
we did at the end of Chapter 4.

Let's move on and look at the theming of our new content type.

Chapter 7

[217]

Theming Biography Content
We are at the last step of developing our custom content type. The code presented in
the last section handled the process of retrieving the information from the database,
preparing it, and then handing it off to the theme layer.

Here, we just need to implement the theme layer.

We took our first look at coding themes in Chapter 3. Since then, we have interacted
with the theme layer in subsequent chapters. Once again we will make use of the
theme layer. We will provide a default theme for our content type.

Actually, we will be doing a little less than that. We will provide a default theme
only for the custom fields of our biography content type. The standard node fields
already have theme support, and there is no particular reason why we (as module
developers) would want to override those. After all, we are only providing defaults.
We'll leave more serious theming to the theme developers.

This time around, we are going to use a template for our theme instead of writing a
theming function. So creating our default theme will be a two-step process:

Register a theme by implementing hook_theme().
Create a theme template in biography.tpl.php.

Since we have already taken a look at the theme system (Chapter 3) and also
implemented a default theme (in Chapter 4), we will move quickly, here.

Registering a Theme
The last thing we need to do in biography.module is register the theme that this
module is going to implement.

At the end of the previous section we looked at this snippet of code from
biography_view():

$node->content['biography_info'] = array(
 '#value' => theme('biography_info', $dates, $life, $works),
 '#weight' => 1,
);

In this code, we build the $node->content array. Already, that array has the
standard node content (which was added by node_prepare()). But we need
to format our custom fields, $life, $works, and $dates, and add those to the
content. Formatting work is handled by themes, so we used the theme function:
theme('biography_info', $dates, $life, $works).

•

•

Building a Content Type

[218]

This function will use the biography_info theme function or template to render our
additional content. $dates, $life, and $works will be passed on to the theme.

As it stands now, though, there is no such theme as biography_info. We will start
out by registering this theme:

/**
 * Implements hook_theme().
 */
function biography_theme() {
 return array(
 'biography_info' => array(
 'template' => 'biography_info',
 'arguments' => array(
 'dates' => NULL,
 'life' => NULL,
 'works' => NULL,
),
),
);
}

As you may recall from Chapter 4, hook_theme() is used to register new themes. An
implementation of this hook should return an associative array where the keys are
the names of the newly registered themes, and the values are arrays that describe
how each theme should be executed.

In our example, we want to register one theme, biography_info, and we want to
create a template (instead of a function) to do our theming. To do this, we will need
to add two items to the biography_info entry:

'biography_info' => array(
 'template' => 'biography_info',

 'arguments' => array(

 'dates' => NULL,
 'life' => NULL,
 'works' => NULL,
),

The first item, template points to the name (without the .tpl.php extension) of the
template file. So in this case, we are registering a template named biography_info.
Actually, the file must be named biography_info.tpl.php, but .tpl.php is
added automatically.

Chapter 7

[219]

The second item, arguments, indicates what information should be passed on to
this theme. Since we are using a template, what this setting does is determine what
variables will be available in our template. We want $dates, $life, and $works to
be variables in our template.

Now we have registered the default biography_info theme and tied it to a template
named biography_info.tpl.php. The last thing to do in this chapter is create
the template.

The biography_info.tpl.php Template
We looked at a handful of templates in Chapter 3. Because of the small scope of our
current theme, which only needs to present three variables, this template will be
even simpler than those we have looked at already.

To create our template, we simply create a new file in our module's directory. The
name of the template we registered is biography_info.tpl.php. Here are the
contents of that file:

<?php
// Id
/**
 * Template to display biography nodes.
 *
 * Fields available:
 * $dates: cleaned plain text string
 * $life: cleaned HTML string
 * $works: cleaned HTML string
 */
?>
<div class="biography_info">
 <h2><?php print t('Dates');?>:</h2>
 <?php print $dates;?>
 <h2><?php print t('Life');?>:</h2>
 <?php print $life;?>
 <h2><?php print t('Works');?>:</h2>
 <?php print $works;?>
</div>

The first thing that should stand out is the fact that the comments are almost as long
as the template file. The template we are adding is a default theme. We recognize
that a theme developer may very well want to override our implementation
to provide a better (less generic) display of biography info. Providing detailed
comments here is simply a way of making the theme developer's life easier.

Building a Content Type

[220]

Otherwise, this template consists of some very basic HTML and template code:

<div class="biography_info">
 <h2><?php print t('Dates');?>:</h2>
 <?php print $dates;?>
 <h2><?php print t('Life');?>:</h2>
 <?php print $life;?>
 <h2><?php print t('Works');?>:</h2>
 <?php print $works;?>
</div>

The template simply prints out three sections—one for $dates, one for $life, and
one for $works. Each one gets a header, translated with the t() function. That's
simply all there is to it.

The Results
Earlier, we took a look at the forms we created for adding content. Now that we've
finished the theme, we can see what a biography entry will look like when viewed.

Chapter 7

[221]

The top part of this page (from Thomas Reid to the end of the first paragraph) is
generated by the default theme for a node. In this case, it is generated from the node.
tpl.php file from the Descartes/Bluemarine theme we worked with in Chapter 3.

The lower half of the screenshot, though, is generated from our biography_info.
tpl.php template.

Any time a biography node is viewed, it will be laid out like this (assuming the
theme isn't changed). All of our custom fields will be displayed automatically.

Similarly, a biography node will be treated like all other nodes. Biographies can
be promoted to the front page; they will be visible in RSS feeds, and so on. In short,
by building a custom content type, we have fully integrated biographies into the
Drupal framework.

Summary
In many ways, this chapter has been the most difficult. We looked at several APIs,
including the Schema API, the Node API, the database API, the Forms API, and the
theming system. We implemented many hooks from these APIs.

We moved from installation (with a module install file) to content creation, and on to
content viewing. And we moved back and forth from high-level user interface APIs
(like FAPI and the theme system) down to the lowest database APIs.

In the end, we created a fully integrated custom content type. In the process, we got In the process, we got
a very good view of Drupal's inner workings, learning how to make use of some of
the most fundamental APIs.

The next chapter will continue building upon existing knowledge. In that chapter,
we will explore some of the advanced features of Drupal's module system.

Filters, Actions, and Hooks
In this chapter, we will build a module that will automate the process of sending
a newsletter email to all of the users on our system. In Chapter 6, we looked at
the email features. In this chapter, we will focus on three other important topics:
building content filters, creating an action and assigning a trigger to the action, and
creating a hook that other modules can implement.

Along the way, we will revisit some of the other topics we have already explored,
but we will focus our attention on these three new topics. During the course of this
chapter we will perform the following:

Assign a dependency to a module
Create a simple content type
Create content filter and an administrative interface for that filter
Add a new action
Define a custom hook and implement it
Revisit the mail API—this time to send a message to all users
Use the theme system to theme plain-text email
Create a trigger

This is a lot of ground to cover. But this chapter illustrates how complex module
programming tasks can be accomplished efficiently in Drupal.

As usual, we will begin with a brief description of what we want this new module
to do.

•

•

•

•

•

•

•

•

Filters, Actions, and Hooks

[224]

The sitenews Module
In this chapter, we will build a module that handles sending an email message
containing site news to users of the system. The module will send an email message
about the latest content and features on our site. The message will be made up of the
following components:

The introduction: An administrator will compose a message that will be
placed at the top of the site news message. This message, which we will call
a news brief provides a way of tailoring a message to the system's users. We
will also make this content available on the website.
Zero or more update sections: While the news brief will provide an
introduction to the newsletter, these sections will consist of automatically
generated messages. Modules will be able to define their own sections. We
will use the hook mechanism to define a hook that modules can implement.

In a nutshell, then, every site news email that goes out will have exactly one
news brief item, and zero or more other sections generated automatically by
other modules.

This brief description explains the content of the site news message, but we will
also create a process. We will design code that handles the collecting, composing,
and sending of site news. Also, we will write this code in such a way that an
administrator will be able to determine when the code is executed. To do this, we
will use the Actions API, and configure a trigger to execute that action.

When the appropriate trigger fires, Drupal will send the site news as an email
message to all users of our system.

While it might be desirable in some scenarios to have an opt-in or opt-out
scheme allowing users to decide for themselves whether they will receive
the site news mailing, we will not be creating this feature. Adding an
opt‑in checkbox to a user profile would not be difficult. See Chapter 5.

There's another desirable feature of the news brief content type that we will
implement. By default, Drupal content is targeted toward web browsers. But our site
news will be emailed. To respect the wide variety of email clients, we will format the
content as plain text, not HTML.

While we format text, there is another task we can accomplish. Sometimes it is nice
to insert some generic placeholders in the body of the news brief, and have Drupal
replace those placeholders with generated text as needed.

•

•

Chapter 8

[225]

To accomplish these to formatting tasks, we will use the content filter system from
the Filter module.

By the end of the chapter, we will have a module that performs the following series
of steps:

When a certain event occurs, a site news action will be triggered (and this
action is the sending of the email message). The event, for us, will be the
publishing of a news brief node.
The main site news message will be prepared for sending.

Part of this preparation will be the filtering of this node
through a series of custom filters.

Then the other blocks of content, gathered from modules that implement our
hook, will be formatted, as well.

Once all of this content is formatted, it will be inserted into an email message,
which will then be sent to all the site subscribers.

This module will provide a mostly-automated process for creating a new
newsletter or site updates system without requiring significant labor from the site
administrators or content creators.

As we have done with our other modules, we will begin with the .info file and the
rudiments of our new sitenews.module file.

Getting Started
Our new module will be called sitenews, and will be stored in the drupal/sites/
all/modules/sitenews directory.

Citing Dependencies in the .info File
While the .info files we've been using differ only in name and description, here we
will make use of a new field.

; Id
name = "Site News"
description = "Send an email message of site news to all users."
core = 6.x
php = 5.1
dependencies[] = "trigger"

•

•

°

•

•

Filters, Actions, and Hooks

[226]

The sitenews.info file should look largely familiar. The last line is the only one
with a new directive.

This last line is used to indicate what dependencies a modules has. That is, it
tells Drupal which other modules must be installed before this module can
function appropriately.

Since it is not uncommon for a module to have multiple dependencies, the
dependencies directive is multi-valued. As we saw in Chapter 2, its syntax is
basically like that of a PHP array assignment:

dependencies[] = "trigger"

If we need to add a second dependency, we would simply add another similar line:

dependencies[] = "trigger"
dependencies[] = "othermodule"

Why set a dependency? There are a couple of reasons one might choose to do this.

The most common reason is that the code in one module uses code defined in
another module. But that will not be the case for us.

Another reason is that a module might basically be unusable without the other
module. This is not necessarily a code dependency so much as a process dependency.
This is the case for our module. In order to make it possible for an administrator
to assign an event to module's main action, we need to have the Trigger module
installed and enabled. This will become more apparent as we proceed.

The Trigger module is part of the core Drupal distribution. You should
have it already, though it is not enabled by default.

Since there is no code dependency between our module and the trigger
module, we could have left off the dependencies[] directive. However,
this would not provide the best experience for our user, who would have
a module that is impossible to configure out of the box.

Other than this new dependency setup, this .info file should look familiar. Let's
move on to the first few lines of our new .module file.

Chapter 8

[227]

The Beginning of the .module File
Our sitenews.module file will begin in the same old way. After an initial
documentation section, we implement the hook_help() hook, providing
administrative help:

<?php
// Id

/**
 * The sitenews module.
 * This module adds a content type (News Brief), and
 * provides an action (Send site news) that allows
 * administrators to send periodic updates (via email)
 * about the latest happenings.
 *
 * It also defines a new hook (hook_sitenews()) and
 * defines a new filter (News Brief Placeholders).
 *
 * @file
 */

/**
 * Implementation of hook_help().
 */
function sitenews_help($path, $arg) {

 if ($path == 'admin/help#sitenews') {
 $txt = 'Keep users up-to-date by sending them a status '
 .'report about the latest site happenings. To use this '
 .'module, you will need to assign a trigger to the '
 .'"Send site news as email to all users" action. It '
 .'is recommended that the node publish event be tied to this'
 .'action, as that will result in the site news being sent'
 .'whenever a new "news brief" node is published.';
 $replace = array();
 return '<p>'. t($txt, $replace) .'</p>';
 }

Other than the fact that the help text is a little longer, here, nothing should be
surprising in the above block of code.

Good help is hard to find
The help text is briefly presented in this book. But when writing
production modules, it is best to write good help text. A quick look at the
core modules gives an idea of how help text ought to look.

We will move on to our first pair of functions defining our new content type.

Filters, Actions, and Hooks

[228]

A Simple Content Type, Defined in Code
In Chapter 4, we created our first custom content type. There, we created the new
type through Drupal's administration interface.

In Chapter 7, we created a much more advanced content type. This content type
included additional content stored in additional tables.

Here, we will create a simple content type like the one in Chapter 4, but we
will do it programmatically. Since we are adding no fields beyond the standard
node content, we can create our content type with only two functions (and no
database manipulation).

We have covered the techniques for creating content types already, so we will
proceed rapidly.

Our new content type will be the news brief content type. This content type will be
used to provide some editorial content at the beginning of a new site news email
message. Adding such a simple content type in code requires implementing two
hooks, both of which we saw in the last chapter:

hook_node_info(): Set the defaults for the content type.
hook_form(): Create the basic form for editing a new news brief node.

Let's begin with the implementation of hook_node_info().

/**
 * Create the 'newsbrief' content type.
 * Implements hook_node_info().
 *
 */
function sitenews_node_info() {
 return array(
 'newsbrief' => array(
 'module' => 'sitenews',
 'name' => t('News Brief'),
 'description' => t("A news brief about the state of the site."),
 'has_title' => TRUE,
 'title_label' => t('Title'),
 'has_body' => TRUE,
 'body_label' => t('News Brief'),
)
);
}

•

•

Chapter 8

[229]

In the preceding code, we create a new content type named newsbrief. This new
content type belongs to our sitenews module, and will have two fields: the Title of
the brief, and a body.

For a detailed discussion of hook_node_info() see the
previous chapter.

One thing that makes implementing a simple content type in code more difficult than
creating it through the administration interface is that the code must also create a
form for the content (using the Forms API and hook_form()).

/**
 * Create the form for editing News Brief nodes.
 * Implements hook_form().
 *
 */
function sitenews_form(&$node) {
 $type = node_get_types('type', $node);

 if ($type->has_title) {
 $form['title'] = array(
 '#type' => 'textfield',
 '#title' => check_plain($type->title_label),
 '#required' => true,
 '#default_value' => $node->title,
 '#weight' => -5,
);
 }

 if ($type->has_body) {
 $form['body_field'] = node_body_field(
 $node,
 $type->body_label,
 $type->min_word_count
);
 }

 return $form;
}

This form simply defines fields for the title and body of a news brief node. For all
practical purposes, it is an abbreviated version of the form we looked at in Chapter 7.

Now we've defined our new content type. There's nothing special to do in the
module's .install file, and we aren't going to create any special access rules for this
type. We are ready to move on to the next task.

Next, we will look at a way to pass the contents of this node through a series of filters.

Filters, Actions, and Hooks

[230]

Creating Filters and an Input Format
Earlier, we created a new content type for the news brief that will be included at the
top of each site news message.

However, there are a few things that we want to change about the content of a news
brief node:

1. When we send the content out in an email message, we want to make sure
that the HTML is removed from the news brief. In short, we want plain text.
Drupal's check_plain() function seems a likely candidate for this task, but
it escapes HTML instead of removing it. We want to remove the HTML.

2. There are a couple of common pieces of information that will likely appear
in all of our content, but which we might want to change periodically. For
example, the greeting and the name of the newsletter. We want to create
placeholders for this information, and have Drupal replace the placeholders
with meaningful text as needed.

The first task involves removing unwanted content. The second task involves adding
content. But both of these can be done with filters.

The filtering API is provided by the Filter module.

Using this system, we will define a new input format. An input format is a set of
filters (formatting rules) determining what markup or code is allowed in a piece of
text. Drupal provides two of these out of the box: Filtered HTML and Full HTML.
These two formats determine what HTML tags and constructions are allowed inside
of a piece of text.

Other input formats
The filters used by the two built‑in formats are not the only ones available
in the default Drupal distribution. The PHP module also provides another
type for filtering PHP code. Other filters are available on the Drupal
website as contributed modules. Later in this chapter, we will discuss
creating custom input formats with their own lists of filters.

We will create a new one called Tagless text, which we will use to remove tags and
other unwanted markup from a piece of text.

An input format can be passed to Drupal's built‑in check_markup() function to
instruct Drupal as to how a piece of content should be filtered before it is sent to
the client.

Chapter 8

[231]

In spite of the name, input filters are rarely used to filter content when it
is first put into Drupal. For the most part, text is stored as entered by the
user. No filtering is done before the storage. It is only sent the filters when
being displayed.

An input format itself doesn't perform any of the filtering. An input format is more
like a container. Particular filters are assigned to the input format, and it is the job of
a filter to perform the necessary manipulation of the text.

For example, the default Filtered HTML input format is assigned the
following filters:

HTML corrector: Fix mistakes in HTML markup
HTML filter: Remove unwanted tags
Linebreak converter: Replace line breaks with
 and <p/> tags
URL filter: Convert URLs into hyperlinks

While an input format functions as a container, each filter is backed by a piece of code
(an implementation of hook_filter()) that performs the actual text processing.

Creating Filters
We are going to create two filters:

News Brief Placeholders: This will replace special placeholders,
{{salutation}} and {{brief name}}, with a greeting message and the
name of the site news message, respectively.
Remove All HTML/XML Tags: This filter will remove anything that looks
like an HTML or XML tag.

We will create the main logic for both of these filters with one function. It is one of
the most complex functions in this book. We will glance at the function as a whole,
and then take a closer look at the parts.

/**
 * Implements hook_filter().
 */
function sitenews_filter($op, $delta = 0, $format = -1, $text = '') {
 global $user;

 if ($op == 'list') {
 $list = array(
 0 => t('News Brief Placeholders'),
 1 => t('Remove All HTML/XML Tags'),
);

•

•

•

•

•

•

Filters, Actions, and Hooks

[232]

 return $list;
 }

 switch ($delta) {
 //Delta 0 is for replacing placeholders:
 case 0:
 switch ($op) {
 case 'description':
 return t('Replaces {{salutation}} with the news brief '
 .'salutation, and {{brief name}} with the news brief '
 .'name.');
 case 'prepare':
 return $text;
 case 'process':
 $text = str_replace(
 '{{salutation}}',
 variable_get('sitenews_salutation', 'Dear Community
 Member'),
 $text
);
 $text = str_replace(
 '{{brief name}}',
 variable_get('sitenews_name', 'Site News'),
 $text
);
 return $text;
 case 'settings':
 $form['sitenews_filter'] = array(
 '#type' => 'fieldset',
 '#title' => t('Site News Filters'),
 '#collapsible' => true,
 '#collapsed' => false,
);
 $form['sitenews_filter']['sitenews_salutation'] = array(
 '#type' => 'textfield',
 '#description' => t('The greeting'),
 '#title' => t('Salutation'),
 '#default_value' => variable_get('sitenews_saluation',
 'Dear Community Member,'),
);
 $form['sitenews_filter']['sitenews_name'] = array(
 '#type' => 'textfield',
 '#description' => t('Title of the site news'),
 '#title' => t('Site News Name'),
 '#default_value' => variable_get('sitenews_name', 'Site

Chapter 8

[233]

 News'),
);
 return $form;
 }
 case 1:
 switch ($op) {
 case 'description':
 return t('Removes all tags (HTML or XML elements).');
 case 'prepare':
 return $text;
 case 'process':
 return strip_tags($text);
 } //end switch for $op

 } // end outer switch

}

A hook_filter() function receives four parameters: $op, $delta, $format, and
$text. $text contains the text to be filtered, and $format contains the integer ID of
the input format that called this filter. (We will return to input formats later in this
section.) For a moment, though, we will focus on the $op and $delta parameters.

The bulk of this code is nested inside switch statements—one for $delta, and then
each case has a switch statement for $op.

In this function, $delta and $op work the same way as they do in hook_block()
functions. The $op parameter indicates what operation is being requested. There are
six operations that an instance of hook_filter() may implement:

list: Returns the list of filters provided by this hook implementation.
no cache: If this operation returns TRUE, caching of the filter's output is
disabled. By default, filtered content is cached to reduce the rendering time
for nodes.
description: Should return a human-friendly description of what the
filter does.
prepare: Do any necessary preprocessing and escaping before the process
operation is performed.
process: Perform the actual filtering.
settings: Return a form for setting preferences for this filter.

The preceding example uses all of these except no cache.

•

•

•

•

•

•

Filters, Actions, and Hooks

[234]

The $delta parameter is easiest to understand if we first look at the handler for the
list operation:

if ($op == 'list') {
 $list = array(
 0 => t('News Brief Placeholders'),
 1 => t('Remove All HTML/XML Tags'),
);
 return $list;
}

A list operation should return an indexed array of filtering operations that this
hook provides. In our case, we are going to create two filters, so we return a
two-element index.

I've made the mapping explicit to draw attention to the numbering: Drupal will refer
to the News Brief Placeholders filter as delta 0, and the Remove All HTML/XML Tags
filter as delta 1.

While $delta doesn't ever impact the list operation, any hook_filter()
implementation with more than one filter should use $delta to find out what filters
should be run.

For the rest of the operations, we first create a switch statement to find out which
value of $delta was passed. Then, inside each $delta case, there is another switch
statement for handling the operations. So the overarching structure looks like this:

switch ($delta) {
 //Delta 0 is for replacing placeholders:
 case 0:
 switch ($op) {
 case 'description':
 //...
 case 'prepare':
 //...
 case 'process':
 //...
 case 'settings':
 //...
 }
 case 1:
 switch ($op) {
 case 'description':
 //...
 case 'prepare':
 //...

Chapter 8

[235]

 case 'process':
 //...
 } //end switch for $op

 } // end outer switch

Now we are ready to look at each of the two filters.

The First Filter: News Brief Placeholders
Let's take a look at the News Brief Placeholders case where $delta is 0. The first
operation in our function is the description:

case 'description':
 return t('Replaces {{salutation}} with the news brief'
 .'salutation, and {{brief name}} with the news brief '
 .'name.');

This operation simply returns some useful content that will be displayed on the
configuration screen for an input format (Administer | Site configuration |
Input formats):

Filters, Actions, and Hooks

[236]

Notice that in this list, both Remove All HTML/XML Tags and News Brief
Placeholders are present, and they can be set separately. Even though one hook
implementation provides both filters, Drupal will treat them as independent of
one another.

The preceding screenshot displays the input format for Filtered HTML.
By checking the News Brief Placeholders checkbox and saving this form,
we have added the new filter to the Filtered HTML input format.

Providing a description is highly recommended, since filters are configurable
by administrators.

The next two operations are closely related, and so we will cover them together.

case 'prepare':
 return $text;
case 'process':
 $text = str_replace(
 '{{salutation}}',
 variable_get('sitenews_salutation', 'Dear Community Member'),
 $text
);
 $text = str_replace(
 '{{brief name}}',
 variable_get('sitenews_name', 'Site News'),
 $text
);
 return $text;

The required prepare operation is used to perform any preprocessing on the $text
before the process operation is called. This is often used when certain HTML or
XML‑like tags need escaping before the filter is run. For our purposes, though, we
don't need to do any preprocessing, so we simply return $text unaltered.

The prepare operation is both required and must return some text.
Otherwise, neither process nor any other downstream code will receive
any text. The result will be missing content on the user's screen.

Once the prepare operation is complete, the filter handling code will invoke the
hook with the process operation, which is expected to do the actual filtering of
the $text.

Chapter 8

[237]

While the preceding example might initially look complex, it is in fact fairly basic.
First, $text is searched for any instance of the placeholder {{saluatation}}. If one
is found, it is replaced with the value of the site variable sitenews_salutation.

Site variables are stored in Drupal's variable table, and can often be set
using tools in the administration web interface.

To fetch the site variable, we use the variable_get() function:

variable_get('sitenews_salutation', 'Dear Community Member'),

This attempts to get the configured value for sitenews_salutation, but if none is
set, it uses the default value, Dear Community Member.

This same sort of substitution process is then run to replace {{brief name}} with the
value of sitenews_name. The default there is Site News.

So what would happen if we passed the following text to this filter?

{{saluatation}},

Welcome to {{brief name}}.

Assuming no administrator has set other values for 'sitenews_salutation' and
'sitenews_name', the text would be transformed into the following:

Dear Community Member,

Welcome to Site News.

This is the basic way that filtering works. The returned $text is then passed along
to the rest of the content rendering system, where it may be run through other filters
before it is eventually themed and sent to the client.

The last operation is the most complex. The settings operation is used to build
a form (using the Forms API, of course) for the administration section. We want
to allow site administrators to set values for the 'sitenews_salutation' and
'sitenews_name' variables, so we create a simple form for this:

case 'settings':
 $form['sitenews_filter'] = array(
 '#type' => 'fieldset',
 '#title' => t('Site News Filters'),
 '#collapsible' => true,
 '#collapsed' => false,
);
 $form['sitenews_filter']['sitenews_salutation'] = array(
 '#type' => 'textfield',
 '#description' => t('The greeting'),

Filters, Actions, and Hooks

[238]

 '#title' => t('Salutation'),
 '#default_value' => variable_get('sitenews_saluation',
 'Dear Community Member,'),
);
 $form['sitenews_filter']['sitenews_name'] = array(
 '#type' => 'textfield',
 '#description' => t('Title of the site news'),
 '#title' => t('Site News Name'),
 '#default_value' => variable_get('sitenews_name', 'Site News'),
);
 return $form;
}

This creates a form with a field set and two input text fields. The first text field is for
the salutation, and the second is for the site news name.

Drupal handles storing the values for these fields; so there is no need to write any
more form handling code. This form-generating operation is then invoked when
creating a "Configure Input Format" screen:

Notice that the field set that we created is rendered as one component in a larger
form. All of that is provided by Drupal, and there is no need for us to code it.

Chapter 8

[239]

The Second Filter: Remove All Tags
The second filter is similar to the first in structure, but it is considerably shorter. This
filter will remove all tags from the given text:

case 1:
 switch ($op) {
 case 'description':
 return t('Removes all tags (HTML or XML elements).');
 case 'prepare':
 return $text;
 case 'process':
 return strip_tags($text);
}

As we saw with the last filter, description returns a human-friendly message
indicating what the module does.

Since there is no preprocessing work to be done, prepare returns $text unaltered.

The processing operation does the filtering. PHP has a built‑in function for
removing tags, strip_tags(). Using that makes this filter quick and easy.

At this point, our filters are working. However, there is one more hook that we ought
to implement: hook_filter_info(). This hook provides content creators with some
help text to tell them how the filter impacts their content. Here's an implementation
for our filters:

/**
 * Provides formatting tips to users who are creating content.
 * Implements hook_format_info().
 */
function sitenews_filter_tips($delta, $format, $long) {
 switch ($delta) {
 case 0:
 $text = "Instances of {{brief name}} will be "
 ."replaced by the global name for site news."
 ." {{salutation}} will be replaced with the global "
 ."greeting message.";
 if ($long) {
 $text .= "Site News name and salutation text "
 ."can be configured from the administration "
 ."interface.";
 }
 return $text;
 case 1:
 return "HTML and XML tags will be removed from the "
 ."final output.";
 }
}

Filters, Actions, and Hooks

[240]

An implementation of hook_filter_info() is passed three arguments:

$delta: The delta of the filter. Using this, we can match help text to the filter
being used.
$format: The input format ID.
$long: A Boolean flag indicating whether to provide verbose help text
($long = TRUE) or brief help text ($long = FALSE).

As in the sitenews_filter() function, we use a switch statement to select the right
delta. That way, the applicable help text is returned.

If the longer version of help text is requested ($long == TRUE) and $delta is set
to 0, a longer help message is returned. However, if the delta is 1, the same text is
returned regardless of whether $long is set to true. The generated help text:

Clicking on the More information about formatting options link will display the
long version:

•

•

•

Chapter 8

[241]

While our long version is still only a few lines, more complex filters often have long
tips that span several paragraphs.

Now we've written our two hooks and implemented a pair of filters. How do we
make use of these filters?

One way is to use the administration web interface to assign the filters to an input
format. This is done on the Administer | Site configuration | Input formats
screen. There, we could create a new input type, or assign the filters to an existing
input format.

However, this method is not particularly friendly to the module installer. It would be
more convenient to automatically add a new input format when the module
is installed.

Adding an Input Format
We want to create a new input format—one especially for the site news that we will
be sending via email. Also, we want to configure this new input format to use the
two filters we have created.

While we could add this all by manual configuration through the web interface, it is
more convenient to have the module do this for us. This sort of task ought to be done
during module installation.

To install this, we need to create a sitenews.install file and implement
hook_install() inside that file.

In Chapter 7, we covered the module .install file and some of the
hooks used in that file.

Here are the contents of our sitenews.install file:

<?php
// Id

/**
 * Install the sitenews module.
 * @file
 */

/**
 * Implements hook_install().
 */
function sitenews_install() {
 $name = 'Tagless text';

Filters, Actions, and Hooks

[242]

 // Check to see if format already exists.
 $res = db_query(
 "SELECT name FROM {filter_formats} WHERE name = '%s'",
 $name
);
 $has_format = db_result($res);

 // Create format
 if (!$has_format) {
 db_query(
 "INSERT INTO {filter_formats} (name) VALUES ('%s')",
 $name
);
 }
 $res = db_query(
 "SELECT format FROM {filter_formats} WHERE name = '%s'",
 $name
);
 $format = db_fetch_object($res);

 $q = "INSERT INTO {filters} (format, module, delta, weight) "
 ."VALUES(%d, 'sitenews', %d, %d)";
 // First, insert the "News Brief Placeholders" filter:
 db_query($q, $format->format, 0, 10);
 // Second, insert the "Remove All HTML/XML Tags" filter:
 db_query($q, $format->format, 1, 0);
}

The .install file contains only one function, sitenews_install(), which
implements hook_install().

In the filter module, the term input format is sometimes abbreviated to
format. This is fine within the context of the filter module, but since the
term format is used elsewhere in Drupal and PHP, it is best to reduce the
ambiguity by referring to these as input formats, not just formats.

This function proceeds through four steps:

Check to see if the input format already exists.
If it does not, create it.
Get the format ID for this input format.
Add the two filters (created above) to this input format.

•

•

•

•

Chapter 8

[243]

Here's the first step:

$name = 'Tagless text';

// Check to see if format already exists.
$res = db_query(
 "SELECT name FROM {filter_formats} WHERE name = '%s'",
 $name
);
$has_format = db_result($res);

Here, we look in the filter_formats table—the filter module's table for storing
information about input formats. It is possible that there is already an input format
named Tagless text. So we check for its existence first.

The db_result() function returns the data from our query. Unlike db_fetch_
array() and db_fetch_object(), it assumes that there is only one row of content
returned. For our purposes, that is sufficient. Since it returns FALSE if no data is
found, we can use it in a Boolean context.

If the input format does not exist, we create it.

// Create format
if(!$has_format){
 db_query(
 "INSERT INTO {filter_formats} (name) VALUES ('%s')",
 $name
);
}

For the most part, we want to accept the defaults for the filter_formats table, but
we do need to set the name field to Tagless text.

Now that we have the new field inserted, we need to retrieve the format ID of this
new input type.

$res = db_query(
 "SELECT format FROM {filter_formats} WHERE name='%s'",
 $name
);
$format = db_fetch_object($res);

The format column in the filter_formats table contains the unique integer ID of
an input format. We want that ID for the input format we just created.

Since we want to keep the database API portable across multiple
databases, we do not use any special MySQL or PostgreSQL SQL to
retrieve the ID of the last inserted row.

Filters, Actions, and Hooks

[244]

Once we have that, we can perform another insert into another table. We can assign
filters to our new input format.

To do this, we insert rows into the filter module's filter table. To be specific, we
insert one row per filter. Since we are adding two filters, we will need to perform two
separate inserts:

$q = "INSERT INTO {filters} (format, module, delta, weight) "
 ."VALUES(%d, 'sitenews', %d, %d)";
 // First, insert the "News Brief Placeholders" filter:
 db_query($q, $format->format, 0, 10);
 // Second, insert the "Remove All HTML/XML Tags" filter:
 db_query($q, $format->format, 1, 0);

This code uses the same SQL query twice, substituting different values in each time.

There are four values that we need to set when adding a filter to an input method:

format: The ID for the input format. This is the format ID that we retrieved
from the database in the previous step. It is stored in the format property of
the $format object.
module: The name of the module that contains the filters. In our case, it will
be sitenews for both rows.
delta: The delta for the filter. This corresponds to the delta integer returned by
the list operation for hook_filter(). We looked at this in the last section.
weight: Filters are executed in order. As with other Drupal systems, filters
are ordered by weight. The heavier the weight, the later in the series of filters
this filter will be executed. We want News Brief Placeholder to be run late,
so we assign it a heavy weight, 10. But we want the tag removal filter to run
very early, so we assign it a weight of 0.

Why does filter ordering matter?
It is in our best interest to run our filters quickly and securely. The order
in which filters are executed can make a difference. For example, we want
to remove tags early because it will cut down on the amount of text that
other filters will have to process. And we want to run the substitution
filter (News Brief Placeholder) late because we don't want to perform
substitutions in text that is going to be removed by subsequent filters.

•

•

•

•

Chapter 8

[245]

When we first install our new sitenews module, these database operations will
be run. We should be able to see our new input format in the Administer | Site
configuration | Input formats page:

In the above screenshot, we can see the Tagless text input method included
along with the other two default input methods. Clicking the configure link would
show us a list of filters for this input method, and there would be only two filters
enabled—the two we just added in our code.

What if the input format isn't there?
If there is a problem with the .install file, the appropriate database
entries may not have been inserted. When developing installation hooks,
the best way to test and re-test .install file is with the Devel module's
Reinstall module tool.

Our input format is defined. Later, we will make direct use of this input format.
Right now, though, we will add one utility function.

Filters, Actions, and Hooks

[246]

While Drupal's filter module provides a handful of functions for working with input
formats, they all use the input format's ID. However, the ID will vary depending on
when it was inserted into the database. If there are already several formats defined,
our new one might have a higher ID than if only the few built‑in filters are defined.

Here is a quick function to get a format ID by the format's name:

/**
 * Get a format ID by name.
 * This returns an Input Format ID that can be passed to
 * check_markup() to filter content.
 *
 * If a format isn't found matching the given name, the
 * default format is returned.
 *
 * @param $name
 * String name of the format
 *
 * @return
 * The ID (an integer) of the format.
 */
function sitenews_get_format($name) {
 $res = db_query(
 "SELECT format FROM {filter_formats} WHERE name = '%s'",
 $name
);
 $format = db_fetch_object($res);
 if ($format) {
 return $format->format;
 } else {
 return FILTER_FORMAT_DEFAULT;
 }
}

This checks the filter_formats table to see if an input format named $name exists.
If it does, that format's ID is returned. Otherwise, the default input format ID is
returned. (FILTER_FORMAT_DEFAULT, the default format ID, is 0).

Later, we will use this function to invoke our special input format for outbound mail.

We have now finished defining our two filters and our new input format. We will
now move on to our next major topic: Defining an action.

Chapter 8

[247]

The Beginning of an Action
We have a content type (News Brief) that will be included in our site news mailing.
We also have an input format, complete with a pair of filters, which we will use to
prepare the site news for sending to our users' email accounts. Now we need to start
the processes of assembling the site news message.

To do this, we are going to create an action. In Drupal parlance, an action is a
particular task that can be executed in response to a particular event. Using the
Trigger module, administrators can tie particular events (such as a node being
published or a new user joining the system) to a particular action.

What we will be doing is defining a new action that will bring all the pieces of our
site news message together, and then send it to users. Later, we will create a trigger
to run the action whenever a news brief is published.

We will begin by registering the new action.

Implementing hook_action_info()
The first step in creating an action is to implement the hook_action_info() hook in
order to register the action or actions that our module will provide.

This hook works similarly to hook_menu(). The idea is to provide Drupal's action
subsytem with some information about the action, including what function should
be called when the action is executed. (Compare this to the menu function, where a
function is mapped to a path instead of an action name.)

For an introduction to hook_menu(), see Chapter 5.

Here's what sitenews_action_info() looks like:

/**
 * Implements hook_action_info().
 */
function sitenews_action_info() {
 watchdog('action',"Called sitenews_action_info");
 $actions['sitenews_send_action'] = array(
 'type' => 'node',
 'description' => t('Send site news as email to all users.'),
 'configurable' => FALSE,
 'hooks' => array(
 'nodeapi' => array('insert', 'update', 'presave'),

Filters, Actions, and Hooks

[248]

)
);
 return $actions;
}

A function implementing hook_action_info() must return an associative array
where the key is the name of the action, and the value is an associative array
of settings.

At the time of this writing, the API documentation for hook_action_
info() is nested inside the documentation for actions_list().
http://api.drupal.org/api/function/actions_list/6.

In the preceding code, we define an action named sitenews_send_action, and then
set properties for this new action. The action name doubles as a callback. That is, the
action subsystem will expect a function to exist named sitenews_send_action().
We will create that function shortly.

The associative array defined as the value to $action['sitenews_send_action']
contains settings for this action. There are four possible properties that can be
defined in this array:

type: The Drupal type that this action operates upon. The built-in types are
node, comment, user, taxonomy, and system. This setting is used for several
things, but most importantly, it is used to determine what sort of object
should be passed in as a parameter to the callback function. We will see
this shortly.
description: A human-readable description of what this action does. This is
used for display in the actions and triggers administration pages.
configurable: This takes a Boolean value to indicate whether administrators
can use this to create an advanced action.
hooks: This setting takes an associative array of modules and hooks that
this action can interact with. For example, an action intended to work with
user hooks might have a hooks section like this: 'user' => array('login',
'logout', 'view').

Drupal's core modules implement hook_hook_info() as a way
of providing information about type and hooks. The array returned
by a hook_hook_info() implementation is structured like this:
$info[$type][$hook_key][$hook_value]. Unfortunately, as of this
writing hook_hook_info() is not documented in the API.

•

•

•

•

Chapter 8

[249]

These settings in our module look as follows:

$actions['sitenews_send_action'] = array(
 'type' => 'node',
 'description' => t('Send site news as email to all users.'),
 'configurable' => FALSE,
 'hooks' => array(
 'nodeapi' => array('insert', 'update', 'presave'),
)
);

This action will be tied to a particular news brief node, so our type is node. Also
of note, the hooks array references only hooks implemented by nodeapi. This
array indicates to the actions subsystem that our module only deals with Node API
events—specifically, the insert, update, and presave events. (presave is an event
that is fired before either an insert or an update of a node).

At this point, the new action should be visible in the Drupal administration interface
(though it won't work without the callback). In Administer | Site configuration |
Action, the new action should appear at the end of the list:

The last item on the list above is a node action type named Send site news as email
to all users. That name should sound familiar. It's the value of the description field
we returned from sitenews_action_info().

Filters, Actions, and Hooks

[250]

The new action is also available in the drop-down boxes on the triggers
configuration screen at Administer | Site building | Triggers. Later in
the chapter we will look at that screen.

The action is registered. Now we need to create a function that will perform
the action.

The Action Callback
Now that we've provide the actions subsystem with a definition of what our action
will look like, we need to implement the sitenews_send_action() callback:

/**
 * Action: Send an email message to all users.
 */
function sitenews_send_action(&$object, $context) {
 // If not a published sitenews, skip.
 if (!$object->status || $object->type != 'newsbrief') {
 return;
 }

 // Get addresses
 $q = "SELECT mail, status FROM {users} "
 ."WHERE status != 0 AND uid > 0";
 $results = db_query($q);
 $addresses = array();
 while ($obj = db_fetch_object($results)) {
 $addresses[] = $obj->mail;
 }

 if (count($addresses) == 0) {
 watchdog(
 'sitenews',
 'No user email addresses were found',
 array(),
 WATCHDOG_ERROR
);
 return;
 }

 // Execute hook_sitenews()
 $content = module_invoke_all('sitenews');

 // Build params
 $params = array(
 'node' => $object,

Chapter 8

[251]

 'to' => implode(', ', $addresses),
 'subject' => $object->title,
 'context' => $context,
 'additional content' => $content,
);

 $message = _sitenews_do_message($object, $params);
 watchdog(
 'actions',
 'Site News "Send" action fired. Sending to !mail',
 array('!mail' => $params['to'])
);

}

This function is simpler than it looks.

An action callback is passed at least two parameters: &$object and $context. The
contents of both of these will vary based on what type is set to in the hook_action_
info() implementation.

For example, if 'type' => 'user', then when this callback is executed, &$object
will contain a user object, and the $context will contain information on the
hook and operation called, as well as some additional data (perhaps from a user
profile form).

In our case, &$object will be a node. The $context will contain information about
what was happening when this callback was called. It will also contain another copy
of the node. For our purposes, it is the node object that is important.

The first thing our callback function does is check to see if the passed‑in node is one
that we want:

// If not a published sitenews, skip.
if (!$object->status || $object->type != 'newsbrief') {
 return;
}

Our action should be performed only on published news brief nodes. We don't want
to accidentally send a site news email with a message that isn't ready. Nor do we
want every new node to be sent to our users. Therefore, if the node isn't published
(that is, if $object->status is 0) or if it isn't of the newsbrief content type, this
function returns immediately.

Filters, Actions, and Hooks

[252]

The next piece of code retrieves the email addresses of the users to whom we will
send our site news:

// Get addresses
$q = "SELECT mail, status FROM {users} "

 ."WHERE status != 0 AND uid > 0";

$results = db_query($q);

$addresses = array();

while ($obj = db_fetch_object($results)) {

 $addresses[] = $obj->mail;

}

if (count($addresses) == 0) {
 watchdog(
 'sitenews',
 'No user email addresses were found',
 array(),
 WATCHDOG_ERROR
);
 return;
}

In the highlighted portion above, we retrieve the email addresses for all of the users
that are currently active. Also, to avoid sending mail to the "anonymous" user, whose
uid is 0, we select only users with UIDs greater than 0.

In the second half of this function, we check to make sure we will be sending this
report to somebody. If we have no users, there is no point in trying to construct and
send a message. However, we do log the event with the watchdog() function.

Once all of this is done, we are ready to begin building the message.

We already have the news brief. It was passed in as &$object. But we also need to
get any additional content. To do that, we call this bit of code:

$content = module_invoke_all('sitenews');

This single line of code illustrates one of the most powerful features of Drupal. This
function invokes the hook_sitenews() hook in all installed modules. The content
returned from all of the implementing hooks is stored in $content.

We will return to this line of code in the next section. We've hit an
important concept, and it deserves a section of its own. But before we
cover hook definitions in detail, let's finish looking at this function.

Chapter 8

[253]

We have all of our content, now. The next thing to do is package it up, and then send
it to a function that can do the mailing:

// Build params
$params = array(
 'node' => $object,
 'to' => implode(', ', $addresses),
 'subject' => $object->title,
 'context' => $context,
 'additional content' => $content,
);

$message = _sitenews_do_message($object, $params);

The $params array will contain all of the parameters that are needed to build and
send the message.

The $addresses array is imploded and added to the $params['to']
field. This will allow us to send the message to all of the addresses at
once—a very important feature for performance reasons.

All the information in $params, along with the $object node itself, will be passed to
the _sitenews_do_message() function.

We will take a look at that function after we spend a little time looking more closely
at defining and using a hook.

Defining a Hook
We have been examining hooks since the first chapter of this book. Now we are
going to take an in-depth look at how a module can implement its own hook.

In this section, we will invoke a custom hook, implement that hook in other modules,
and look at the mechanics of using hooks.

The goal of defining this hook is to make it possible for other modules to earmark
content for inclusion in a site news message. This gives the module developers
the ability to specify what content should be included in a report, and how it
should appear.

We will start out by backtracking. Let's take another look at the hook invocation from
the last section.

Filters, Actions, and Hooks

[254]

Invoking a Custom Hook
In the last section, we took a look at this line of code (called in sitenews_send_
action()):

$content = module_invoke_all('sitenews');

The Drupal module_invoke_all() is one of the main hook functions. Its job is to
call all the hook implementations for a specific hook. It searches all of the enabled
modules looking for functions that match the correct pattern.

In our case, we pass the function the string sitenews. This tells module_
invoke_all() to look for hooks of the form <modulename>_sitenews(), where
<modulename> is replaced with the name of the module.

Naming hooks
In general, hook naming convention should follow module naming
convention: A hook should have the name of the module in its name.
There are two things to keep in mind. First, the hook name should
be different enough from existing hooks that it is not mistaken for an
implementation of another hook (check out http://api.drupal.
org/api/group/hooks/6 for a list of most of the hooks in the Drupal
core). Second, a hook name should give an idea of what the hook
implementation should do.

hook_sitenews() has no parameters. If it did, though, they would be passed in
as follows:

module_invoke_all('sitenews', $param1, $param2, $param3);

All parameters after the hook name are passed to the hook implementations.

There are a few other useful hook functions, as well. The module_hook() function,
which takes a module name and a hook name, returns TRUE if a module contains that
hook, and false, otherwise.

Sometimes a function more specific than module_invoke_all() is needed. That's
where module_invoke() comes in. It invokes the hook (if one exists) only in the given
module. The module_invoke() function takes a module name and a hook name as
parameters (and any additional parameters are passed on to hook implementations).

Finally, the function module_implements() takes a hook name, and returns a list of
names of modules that implement the hook.

All these functions are defined in the drupal/includes/module.inc file, and the
API documentation for that file covers all four functions: http://api.drupal.org/
api/file/includes/module.inc/6.

Chapter 8

[255]

So What Is a Hook?
It turns out that invoking a hook is as simple as running module_invoke() or
module_invoke_all(). So when it comes down to it, what is a hook?

A hook is really nothing more than a function that matches the pattern of a call
to the module functions we've just looked at. At bare minimum, all it takes to
define a hook in a module is a line like the one we used earlier—a line like
module_invoke_all('myhook') or module_invoke('some_module',
'anotherhook', $param1, $param2).

Technically speaking, then, defining a new hook is trivial.

But there's a problem, and the problem is more social than technical. How will other
developers know about your hook? (For that matter, how will you later remember
your own hook?) After all, we can't expect a developer to read through the code of
our modules searching for calls to any of the four hook functions.

The solution to this problem—Convention.

Creating a hook_sitenews() Function
Defining a new hook took one line of code. But now we need to make it easy for
developers to use this hook.

There are a few ways to make your hook user-friendly.

The first is by including details about the hook in the documentation block of the
code that invokes the hook.

The second way is to create a hook function in your code. This function is not called
anywhere. Instead, it serves an instructional role.

The Drupal API docs for hooks are compiled from a stand‑alone file
(which is not included in the standard release) that documents all of the
core hooks. This is an alternative to including an unused function in a
module.

So to illustrate how our hook works, we might add a function to our module that
looks as follows:

/**
 * Use this hook to build content for a sitenews message.
 *
 * This should return an array of items:
 * <code>array('item_name' => $item)</code>
 * An item is an associative array with the following

Filters, Actions, and Hooks

[256]

 * fields set:
 *
 * - #weight: An integer from -10 to 10
 * - #content: Text content
 * - #title: A title for the text content
 *
 * Weight and content are required. If #title
 * is set, then it will be added as a title.
 *
 * @return
 * A content array.
 */
function hook_sitenews() {
 $content['report'] = array(
 '#weight' => 0,
 '#title' => t('Sample Title'),
 '#body' => t('Sample content')
);
 $content['another report'] = array(
 '#weight' => 0,
 '#title' => t('Another Sample Title'),
 '#body' => t('More sample content')
);
 return $content;
}

The main point of this hook function is instruction. It should never actually be called.
(Neither module_invoke() nor module_invoke_all() will execute this function,
since it does not follow the pattern of <modulename>_<hookname>.)

The documentation is intended to be more thorough to give developers a clear idea
of what this function is for. The code is designed to give the developer an idea of
how she or he might create an implementation.

So examining the above example, we can see that an implementation of
hook_sitenews() is expected to return a data structure that looks something like a
Forms API form.

It should return an associative array of items. According to the documentation, each
item must have a weight (#weight) and a formatted body (#content). The #title
field is optional.

As we saw in the last section, our sitenews_send_action() action function
will execute these hooks, getting an array of content back. Later, we will see how
these content items are sorted by weight, and then inserted into the body of the
email message.

Chapter 8

[257]

Now that we have looked at a way to document how a hook functions and what it
should look like, we will move on. Let's implement this hook in a few modules that
we have already created.

Implementing hook_sitenews() in Other
Modules
Ready to start implementing our hook? Here, we will revisit some of our existing
modules and retrofit them to make use of hook_sitenews().

Let's begin with the module we created in Chapter 4. There, we created a random
quotes feature, which was displayed as a JavaScript-enhanced block.

In the philquotes Module
Here, we will implement hook_sitenews() to return a random quote that will
be included in our site news. We will need to edit drupal/sites/all/modules/
philquotes.module to add this new hook implementation:

/**
 * Implements hook_sitenews() from sitenews module.
 */
function philquotes_sitenews() {
 $node = _philquotes_get_quote();
 $quote = $node->body
 ."\n-- ". $node->title; //<-- Quote origin
 $content['randomquote'] = array(
 '#weight' => 8,
 '#title' => t('Quote of the Day'),
 '#body' => strip_tags($quote),
);
 return $content;
}

This function uses the _philquotes_get_quote() function that we created in
Chapter 4. That function returns a random quotation node from the database.

Recall that we used the title field of our quote to store information about the
quote's origin. The body field stores the text of the quote.

Once we have the quote $node, we do a little formatting so that the quote is
structured as follows:

The only principle that does not inhibit progress is: anything goes.
-- P. Feyerabend, Against Method

Filters, Actions, and Hooks

[258]

Now we have the pieces we need to build the $content array that will be returned
from the hook:

$content['randomquote'] = array(
 '#weight' => 8,
 '#title' => t('Quote of the Day'),
 '#body' => strip_tags($quote),
);

We set all the three fields. Since our quote is not particularly important, we assign it
a heavy weight so that it will sink toward the bottom of the site news message. The
title of our random quotes section will be Quote of the Day.

Finally, before we add the $quote to the body, we use the PHP strip_tags()
function to remove any HTML tags.

In the biography Module
In the last chapter, we created a biography content type. Here, we will extend that
module to implement the hook_sitenews() hook.

This implementation will return the three newest biographies from the database,
formatted for inclusion in our site news email.

/**
 * Implements hook_sitenews() in sitenews module.
 */
function biography_sitenews() {
 $q = "SELECT nid, created FROM {node} "
 ."WHERE status=1 AND type='biography' "
 ."ORDER BY created DESC";
 $results = db_query_range($q, 0, 3);

 $new_bios = array();
 while ($row = db_fetch_object($results)) {
 $node = node_load($row->nid);
 $new_bios[] = theme('biography_sitenews', $node);
 }

 $content['biography'] = array(
 '#weight' => 0,
 '#title' => t('Recent Biographies'),
 '#body' => implode("\n", $new_bios),
);
 return $content;
}

Chapter 8

[259]

At the beginning of this function, we query the database for the node IDs of the three
newest entries. For database portability and to incorporate paging functionality into
Drupal, the database API includes the db_query_range() function. Generally, this
should be used instead of the LIMIT SQL directive. (There are a couple of range-
based functions in the Drupal database API. See http://api.drupal.org/api/
group/database/6 for a description of each one.)

We don't do any checking to see if any of these biographies have been
sent in past site news mailings. As a result, if less than three new
biographies are created between mailings, the same biography or
biographies may be sent again. A more sophisticated module might
instead only select biographies out of the database whose creation date is
newer than the last News Brief node.

After the query, this function loops through the results. For each node ID, it first
loads the full biography node, and then passes this node on to a theming function.
We will glance that that function in a moment.

Since sitenews_send_action() expects the value of #content to be ready for
display, we use the theme engine here to prepare the content.

Once the content is all themed, the function creates the $content array, imploding
the three biography entries into a single body of content (where each entry is
separated by a blank line). The $content array is then returned.

In this module, the weight is lower (0). Biography content will be an important part
of our site news, so we want it to float to the top.

Now let's take a look at the theme function to see how this content gets formatted
before it is returned by the hook.

Theming Content before Returning It
Opposite, we called the biography_sitenews theme as follows:

theme('biography_sitenews', $node);

In order to provide this theme, we will have to do a little more retrofitting of the
biography module. First, we will need to register this theme (along with the existing
theme) in the biography module's hook_theme() implementation:

/**
 * implements hook_theme().
 */
function biography_theme() {
 return array(

Filters, Actions, and Hooks

[260]

 'biography_info' => array(
 'template' => 'biography_info',
 'arguments' => array(
 'dates' => NULL,
 'life' => NULL,
 'works' => NULL,
),
),
 // For Chapter 8
 'biography_sitenews' => array(

 'arguments' => array('node' => NULL),

),

);
}

The highlighted code above is all we added—a registration indicating that this
module provides a biography_sitenews theme.

Next, we create the theme function:

/**
 * Theme function for sitenews.
 */
function theme_biography_sitenews($node) {
 $options = array('absolute' => TRUE);
 $url = url('node/'. $node->nid, $options);
 $title = strip_tags($node->title);
 $body = strip_tags($node->teaser); // <-- Summary

 $text = implode("\n", array($title, $body, $url));
 $text .= "\n";

 return $text;
}

This simple theme function takes the $node object and turns it into three components:
an absolute URL pointing to the Drupal content, a title, and a body. The body of a
biography, as you may recall from Chapter 7, contains the biographical summary.

Title and body are stripped of tags, and the URL is constructed from the node ID.
Then, all three are concatenated together into one text string and returned.

There is nothing fancy here. Formatting is minimal since our target client application
is a mail program.

Chapter 8

[261]

At this point, we've created a new hook and implemented it in two other modules.
So when the sitenews_send_action() function executes module_invoke_
all('sitenews'), these two new hook implementations we just created will
be executed.

Let's return now to the sitenews_send_action() function to see how it makes use
of the hook's results..

Completing the Action: Theming and
Mailing
Returning to the sitenews_send_action() action we are defining in the sitenews
module, let's continue with the line after the hook processing:

 // Execute hook_sitenews()
 $content = module_invoke_all('sitenews');

 // Build params
 $params = array(
 'node' => $object,
 'to' => implode(', ', $addresses),
 'subject' => $object->title,
 'context' => $context,
 'additional content' => $content,
);

 $message = _sitenews_do_message($object, $params);
 watchdog(
 'actions',
 'Site News "Send" action fired. Sending to !mail',
 array('!mail' => $params['to'])
);

Our call to module_invoke_all('sitenews') returns an array of content. Assuming
that only the two hooks we created above were called, our returned array will contain
an entry for philquotes_sitenews() and an entry for biography_sitenews().

Of course, for the hook to be executed, the module containing the
hook must also be installed and enabled. In practical terms, both the
philquotes module and the biography module would need to be
enabled for us to get results from the hook invocations.

In sitenews_send_action() these results and other data are packed into the
$params array, and then passed into the _sitenews_do_message() function, which
we will see in just a moment.

Filters, Actions, and Hooks

[262]

Now we're getting toward the end of our action. The purpose of the sitenews action
was to assemble a site news message (complete with the content of our news brief),
format it, and then send it to all the users on our system.

So far, we have assembled the message and partially formatted it. The _sitenews_
do_message() function will pull things together, invoking the themes to finish
formatting, and then sending the mail message.

The function looks as follows:

/**
 * Internal function to prepare a message and pass it on
 * to the mailer.
 *
 * @param $node
 * The news brief node.
 * @param $params
 * An array of params.
 */
function _sitenews_do_message(&$node, $params) {
 $node = $params['node'];
 $content = $params['additional content'];

 // Theme the main node:
 $params['body'] = theme('sitenews_newsbrief', $node);

 // See common.inc (particularly element_sort() and
 // drupal_render())
 uasort($content, 'element_sort');

 // Render each block of content:
 foreach ($content as $item) {
 $params['body'] .= theme('sitenews_msgblock', $item);
 }

 // Send the mail:
 drupal_mail(
 'sitenews',
 'sendsitenews',
 $params['to'],
 language_default(),
 $params,
 variable_get('site_mail', NULL),
 TRUE
);
}

Chapter 8

[263]

This function is given the $node object (our newsbrief node) and the $params array,
which contains several items set in sitenews_send_action().

While the hook_sitenews() implementations have themed their content, the News
Brief node's content still hasn't been themed. So we hand it off to the theme engine:

 $params['body'] = theme('sitenews_newsbrief', $node);

In a moment, we will look at the theming function. The results of theming, though,
are stored in the $params array. Let's continue with this function before looking at
the theming.

Next, we have the array of content ($content) that was previously returned from
module_invoke_all('sitenews'). But we want the content array to be sorted
by weight, not by the order in which the module hooks were invoked. So we sort
by weight:

uasort($content, 'element_sort');

The uasort() function is built into PHP. It takes an array to sort, and a callback
comparator function. The function is responsible for comparing two items to
determine which is first.

One of the reasons our hook used a data structure similar to the Forms API is so
that we could take advantage of existing functions. The element_sort() function,
a comparator defined in drupal/includes/common.inc, sorts based on #weight
elements in an array. We can use that function and not have to write our own. So we
pass in that function name as the second argument to the uasort() PHP function.

Once the array is sorted, we still have to do a little more theming. The modules
have themed the content of each item, but we need to do some theming on the
entire $content array, turning the link, title, and formatted body into one block of
text. And as we go, we will add this to the $params['body'] field, which already
contains the formatted body of the news brief node.

foreach ($content as $item) {
 $params['body'] .= theme('sitenews_msgblock', $item);
}

The sitenews_msgblock theme is used to format each item returned from the
hook_sitenews() implementations.

Now we have the body of our message. Already in the $params array (from
sitenews_send_action()), we have a destination ($params['to'], which contains
all of our users' email addresses) and a subject ($params['subject']).

Filters, Actions, and Hooks

[264]

Why send in bulk?
Why email the same message to all users at the same time? The answer is:
performance. On a site with a thousand users, running this action for each
user would be like executing 1001 page requests (remember, someone
initiated the action). While Drupal can usually handle a load like that, it
might take a little while. The user would be left waiting for a page load
to complete.
For an even more scalable system, it would be preferable to send into
batches, and perhaps even queue them in Drupal. By using Drupal's cron
system, messages could be sent one batch at a time.
If personalization is important, this will require sending to one user at a
time. It can be done by turning off some of the caching so that the filters
do not cache their results, or implementing a waiting system that will
keep the user who initiated the action appraised of the sending status.
The result would be a module considerably more complex than the one
presented here.

We are ready to mail the message.

drupal_mail(
 'sitenews',
 'sendsitenews',
 $params['to'],
 language_default(),
 $params,
 variable_get('site_mail', NULL),
 TRUE
);

This function is very similar to the one we created in Chapter 6. The first parameter
is the module's name, and the second parameter is an identifier that will be
passed to a hook_mail() implementation. We will look at the sitenews_mail()
implementation in just a moment.

Next comes the to addresses, a comma-separated list of the email addresses of
our users.

After that comes the language setting. It would be unduly burdensome on the
system to try to translate the message to every user's language (which would
require sending messages to each user one at a time). Instead, we simply call the
language_default() function, which returns the site's default language.

Chapter 8

[265]

Next comes the $params array, which we will make use of in sitenews_mail(), the
mail hook implementation. The from address is set to the default site email address.
And the TRUE flag at the end indicates that Drupal should mail this as soon as the
mail hook completes execution.

By the end of _sitenews_do_message(), our message has been sent.

Before moving on to triggers, let's quickly look at the theme functions and the
mail hook.

Theme Functions
The _sitenews_do_message() function called two themes. We now need to register
and define these theme functions. Using hook_theme() to register the functions, we
can create a hook implementation like this:

/**
 * Implements hook_theme().
 */
function sitenews_theme() {
 return array(
 'sitenews_msgblock' => array(
 'arguments' => array('block' => NULL),
),
 'sitenews_newsbrief' => array(
 'arguments' => array('node' => NULL),
),
);
}

The theme_sitenews_msgblock() and theme_sitenews_newsbrief() functions
are now registered; they just need defining.

First, theme_sitenews_newsbrief() takes the node and formats it for emailing:

/**
 * Theme to display a news brief in a
 * sitenews message block.
 *
 * @param $node
 * The news brief node object.
 */
function theme_sitenews_newsbrief($node) {
 $format = sitenews_get_format('Tagless text');

 $text = strtoupper(check_markup($node->title, $format)) ."\n\n";
 $text .= check_markup($node->body, $format) ."\n\n";
 return $text;
}

Filters, Actions, and Hooks

[266]

This function transforms the $node content into a format suitable for mailing. The
most interesting lines in this function are highlighted.

Our $node could contain HTML, XML, custom tags, and whatnot. All this is useful
when displaying on the Web. But it is not good in a mail message. Also, when the
content was created, some of the special placeholders we defined may have been used.

What we want to do to prepare this $node's content is to run it through the input
format we defined at the beginning of this chapter.

To do this, we must first get the format ID of our input format (Tagless text) using
the sitenews_get_format() utility function we created earlier in this chapter.

Once we have that ID, we can use the Drupal check_markup() function to make
use of the input format. In the past, we've used check_markup(), but we've always
accepted the default input format. However, this function allows us to specify
(by format ID) which input format we want to use. So in order to use the Tagless
text input format, with it's two filters, we need to call check_markup() like this:
check_markup($node->title, $format). Using this format, the placeholders will
be replaced and tags will be removed from the content.

The content this function returns will be ready for sending.

The last theme function takes the list of semi-formatted items returned from
hook_sitenews() implementations and completes the formatting process.

/**
 * Theme for email messages.
 * @param $block
 * A block with #title and #body set.
 */
function theme_sitenews_msgblock($block) {
 $msg = array();
 if (!empty($block['#title'])) {
 $title = strtoupper($block['#title']);
 for ($i = 0; $i < strlen($title); ++$i) {
 $underline .= '=';
 }
 $msg[] = $title;
 $msg[] = $underline;
 }
 $msg[] = $block['#body'] ."\n"; // <-- extra newline
 return implode("\n", $msg);
}

Chapter 8

[267]

This last theme function takes each hook implementation's result and turns it into
a separate section of the newsletter. It returns a single string with all of the items'
formatted contents.

The hook_mail() Implementation
After the theming of content is done, the _sitenews_do_message() function sends a
message to drupal_mail(). But that function in turn invokes sitenews_mail(), an
implementation of hook_mail().

We've handled most of the formatting already, and this hook implementation is
nothing but boilerplate:

/**
 * Implementation of hook_mail().
 */
function sitenews_mail($key, &$message, $params) {
 switch ($key) {
 case 'sendsitenews':
 $message['to'] = $params['to'];
 $message['subject'] = $params['subject'];
 $message['body'] = $params['body'];
 }
}

After setting to, subject, and body fields, the message is automatically sent by the
Drupal mail subsystem.

Filters, Actions, and Hooks

[268]

So if we were to send a message now, what would it look like? It would look
something like the following screenshot:

Chapter 8

[269]

In the preceding screenshot, we can see the title of the News Brief at the very top.

Underneath that is the content of the News Brief node. The original document looked
like this:

{{salutation}},

Please enjoy your latest update from {{report name}}.

Its title was This Week's Update. But the call to check_markup() ran the placeholder
replacement filter, replacing {{salutation}} and {{report name}}.

After that, the results of biography_sitenews() were converted into a list of
entries, including links back to our site. Its low weight made this section appear
before the quotes.

The random quote generated by philquotes_sitenews() appears at the bottom,
formatted as its own section.

And what's that text at the bottom? It's the footer added by philquotes_
mail_alter(). We defined that in Chapter 6, where we talked about altering
functions. With that there, we don't have to implement any sort of footer in our
sitenews module.

Now we're done with the code. There's only one thing left to do. We need to wire
this action up so that it will be automatically called when a certain event (namely,
the publishing of a news brief node) occurs.

To do this, we will use the trigger module.

Adding a Trigger
The trigger module is included with the base distribution of Drupal. However, it is
not enabled by default. It must be enabled in Administer | Site building | Modules
before it can be used.

Triggers provide a way of linking Drupal events to actions. Much of this chapter has
been devoted to creating a new action. Now it is time to take this action and link it to
an event.

In this chapter we create the trigger through the administration interface.
In the next chapter we will create a trigger in code.

Filters, Actions, and Hooks

[270]

The first thing to do is go to Administer | Site building | Triggers. Under the
Content tab there should be drop-down boxes for every event that can be triggered:

For each available trigger, there is a drop-down list of actions that may be assigned
to that trigger. If there are no actions for that trigger (as is the case with After
deleting a post), then no drop-down list is displayed.

A trigger causes an action to be executed when an event occurs. The
above screen is used to create a trigger. That is, it provides an interface for
correlating an event with an action.

When we registered our action with sitenews_action_info(), we specified three
different node‑related events that our action can handle. Here's the snippet of code
from that function:

 $actions['sitenews_send_action'] = array(
 'type' => 'node',
 'description' => t('Send site news as email to all users.'),
 'configurable' => FALSE,
 'hooks' => array(
 'nodeapi' => array('insert', 'update', 'presave'),
)
);

The Content tab of the screen shows all of the Node API hooks. We defined
three—insert, update, and presave. These correspond to After saving new post
(insert), After saving an updated post (update), and When either saving a new
post or updating an existing post (presave). So we should expect to see our new
action in each of these three drop-down boxes.

Chapter 8

[271]

We could assign our action to any of these three events, but ideally we want the site
news message to be sent any time a news brief node is published. And we want to
check on this every time a new node is created or an existing post is updated. So we
want to create a trigger for the presave event.

Now, every time a pre-save event occurs, sitenews_send_action() will be called.
But it should only do something when the node type is newsbrief, and when the
node is published. How is that done? Actually, we coded that part at the beginning
of the sitenews_send_action() function:

/**
 * Action: Send an email message to all users.
 */
function sitenews_send_action(&$object, $context) {
 // If not a published sitenews, skip.
 if (!$object->status || $object->type != 'newsbrief') {
 return;
 }

With that taken care of, we are done. Now, any time a news brief is changed and
marked published, it will be sent out to all of our users.

A hair trigger?
The trigger we have created here will invoke an action any time a News
Brief is published. By default, editing a published module marks it as
published and would result in sending off a new Site News mailing.
There are other ways that we could have handled sending the message:
scheduling a cron task, extending the administration interface to provide
a message sending tool, and so on.

Filters, Actions, and Hooks

[272]

Summary
We have just finished the last module of the book, and it was a big one. In this
chapter, we covered several important Drupal APIs and subsystems. Notably, we
created filters, an input format, an action, and a new hook. We also revisited the mail
subsystem and used themes to create email-friendly content.

Five modules and two themes—that's what we've created so far. To close the book,
though, we are going to leave module development and look at another advanced
programming feature of Drupal: Installation Profiles. We will create our own
installer, which will install the Drupal core system and our theme and five modules.

An Installation Profile
In this last chapter, we will build an installation profile. We will take the base Drupal
distribution, add the modules and theme we created here, and build a custom
distribution of Drupal.

In this chapter, we will focus on the following topics:

Setting up a custom distribution
Creating an installation profile
Selecting the modules to be installed
Adding our custom content type from Chapter 4
Configuring a trigger in the installer
Adding additional steps to the installer
Using the Forms API in an installer
Specifying the default theme
Building a final installation package

This lengthy list might make the task sound difficult. In fact, creating a custom
installation profile is a straightforward process.

Introducing Installation Profiles
An installation profile is a special installer that includes prepackaged modules and
themes, and can configure Drupal for a specific purpose. For example, it can install
and configure custom modules and themes and even set system preferences—all
from the installer. So the first time you log in after installation your environment
is ready.

•

•

•

•

•

•

•

•

•

An Installation Profile

[274]

Building an installation profile is done on two levels:

The file system: Starting from the base Drupal system, we will have to move
some files around to get things configured for installation.
The .profile script: Just putting the files in the right place isn't enough. We will
need to build a special .profile script that will perform installation tasks.

We will perform both of these. In truth, though, the file system work is simple. Most
of our time will be spent generating a .profile.

Why Use Installation Profiles?
"Sure, that sounds nice," one might say, "but why would someone need these?" Let's
take a quick look at two scenarios that illustrate how a custom installation profile can
be used. We'll start with the most obvious case.

Consider this scenario:

Philosopher Bios has become a popular website (remember, this is hypothetical). But
requests have started pouring in for sister sites: Government Bios, Superhero Bios,
Ancient Mesopotamian Bios... the public is clamoring for specialty biography sites.

While we don't want to run all of these sites, we would be happy to help others
get started. In the spirit of Open Source, we would like to release our system as a
package. Sure, we could just release all of the modules individually and let others
figure out how to put them together.

But we could make life simpler by creating a single package that has it all.

That's one scenario where an installation profile can solve a problem. Circumstances
like this are the main reasons installation profiles were introduced. It is a powerful
ability to be able to package customized distributions of Drupal.

Here's another that's worth considering:

Our Philosopher Bios site is drawing lots of traffic, and our ancient hardware is
just not up to snuff. We need to move our entire site from an old server to some
shiny new metal.

But we don't want anything in the user interface to change. We want the same
modules, the same theme, the same data, and the same layout.

Migrating each piece is repetitious, boring, and just a plain old waste of time.
Things would go a lot faster (and more smoothly) if we could just move the whole
thing as one big package.

•

•

Chapter 9

[275]

This second case, too, can be addressed with installation profiles. While this isn't
the primary purpose for which installation profiles were created, there are
developers who use installation profiles as a migration tool. For an example, see
http://drupal.org/node/147720. The SQL installation profile (http://drupal.
org/project/sql) that is currently in development appears to be designed for such
data migrations.

More than one way to skin a cat... or migrate Drupal
There are several different ways to migrate Drupal. Installation profiles
provide one way—a way that might be particularly helpful in more
complex cases. In many cases, simpler methods may be preferable. In
the easiest case, simply copying the Drupal directory from one server to
another and then dumping and loading the database may be sufficient.
For an existing script to handle database dumping and loading on Linux
systems, see this page: http://drupal.org/node/59369.

In this chapter, we will look at a case similar to the first case mentioned opposite. We
will create a Philosopher Bios distribution of Drupal, complete with our five modules
and our Descartes theme.

We'll go a little beyond just installing the modules. We will also configure some of
the things that, during previous chapters, we did by hand.

We will add the Quote content type from Chapter 4—his time through the
Node API.
We will programmatically create the trigger that we created by hand in the
last chapter.
We will give the user the opportunity to let us set the default theme to
Descartes, instead of Garland.

These tasks will give us a chance to dive into some of the more esoteric features of
installation profiles. But fear not. Installation profiles are not a black art. In fact, the
profile (drupal/profiles/default/default.profile) that ships with Drupal has
only five short functions, and much of the file (which is just over 150 lines long) is
made up of comments.

However, first things first. We will begin with a pristine copy of Drupal and do a
little copying.

•

•

•

An Installation Profile

[276]

Setting up a Distribution
Our first bit of work doesn't involve any coding. We need to set up the directories for
our custom Drupal distribution.

Our goal is to create a distribution of Drupal that includes our modules and theme.
We are not migrating a site.

Thus, we want to start out with a pristine copy of Drupal—one that has not yet been
installed or configured. It's probably easiest to start with a fresh copy downloaded
from Drupal.org. This ensures that we have the most recent set of security patches
and so on.

Migrating tip: you've got it already!
If you are working on an installation for migration instead of one
intended for new sites, there is no need to start from a pristine
configuration. You will want to keep all the changes you have made
(including, probably, the settings files and the contents of the
drupal/files/ directory.

Once we have a pristine copy of Drupal, we need to unpack it. To distinguish our
distribution from the normal Drupal one, it is a good idea to rename the main
directory. Borrowing from the module versioning convention, we will rename
drupal-6.2/ to drupal-philbios-6.2-1.0/. The first group of digits (6.2) is the
Drupal version. The revision number (1.0) is the version number for our distribution.

Some installation profiles are released with versions like 6.x-1.x. This
is not particularly helpful. An installation profile is a specific version
of Drupal. There is no such release as 6.x, so this is not an accurate
version identifier.

Inside drupal-philbios-6.2-1.0/sites/all/, we need to create the modules/
and themes/ directories. Even though we are making a custom distribution, it is
still not a good idea to put our custom modules inside the drupal-philbios-6.2-
1.0/modules/ directory. It will lead to maintenance hassles, and it is too easy to
overwrite your modules while upgrading Drupal.

Chapter 9

[277]

Next, we need to copy all our modules and the Descartes theme into the modules/
and themes/ directories (respectively). The directory structure should look as follows:

In the above screenshot, the modules and the theme we just added are shaded
differently: biography, emailusers, goodreads, philquotes, and sitenews make
up the modules, and the descartes theme is in the themes/ folder.

Creating a Profile Directory
We have one more task to do before we change tracks and begin coding our
installation profile.

In the above screenshot, there is folder named profiles/. This is where installation
profiles belong. The default profile, which is responsible for performing a standard
Drupal installation, is the only profile there.

We will add a new profile directory called philosopherbios/:

An Installation Profile

[278]

Profiles borrow their architecture from modules. Here, the philosopherbios/
directory will serve as the holding place for files related to our installation profile.

Inside this directory, we need to create a philosopherbios.profile file. This will
contain our installation profile script.

We're done with our file system work. Now we can begin writing the code
for installation.

Programming Profiles
In some respects, installation profiles are similar to modules. Architecturally, for
example, the directory layouts are similar. Just as Drupal expects a module folder to
contain a .module file, a profile folder is expected to have a .profile file.

But there are some differences as well. Profiles don't have .info files. Profiles don't
need to be installed or activated (simply being in the right directory is enough).
Profiles aren't integrated into the help system, either. These are small differences. But
there is one big difference that a developer should be aware of.

The profile performs a substantial part of Drupal's installation. For coding, this has a
practical consequence. An installation profile runs before some pieces of the Drupal
infrastructure have been activated.

Hence, the hook framework that we are used to is not available. Instead, a series of
callbacks similar to the hook system is used.

The Forms API works, but has to be used with care. In other APIs such as menus,
nodes, and actions, some functions can be used while others will not function
properly. (The database API, in contrast, is fully functional.)

There is no list of functions that do or do not work in installation profiles.
The best guide is to look in Drupal's installer. Many of the important
utility libraries, like include/common.inc, are included and can
be used safely. But with modules, some functions may work while
others don't. It just depends upon what has been initialized before the
installation profile executes.

Mostly, this doesn't have much of an effect on a well‑constructed installation profile.
Installation tasks tend to create and insert, and many such functions (regardless of
API) work.

Chapter 9

[279]

Sometimes installation tasks require writing a little extra auxiliary code. It may take
a database query to accomplish what can usually be done with a function. For our
installation-related tasks, though, we have all the tools we need.

Let's start on the profile.

The .profile Script
The Drupal installation system expects profiles to have certain features. These are
implemented as functions that follow naming conventions like those of hooks. A
function signature begins with the profile name.

For example, Drupal expects a function named <profilename>_profile_
details() to exist, where <profilename> is replaced by the name of the profile. If
this is not defined, the profile will not be available.

A .profile file should have the following functions:

<profilename>_profile_details(): Provides basic information about the
profile. (This is required for the profile to function.)
<profilename>_profile_modules(): Lists the modules that should be
installed with this profile.
<profilename>_profile_tasks(): Handles the installation tasks.
<profilename>_profile_task_list(): Provides a list of tasks that this
profile will perform during an install.

While these four functions are used directly by the installer, a .profile file may
contain other functions as well.

Using hooks_form_alter()
One hook, hook_form_alter(), can be used within the installer. With
no module system in place, how is this possible? The installer has some
extra logic to reproduce calling this hook without actually using the
module system.

The Details Function
The beginning of our philosopherbios.profile script looks as follows:

<?php
// Id

require_once('profiles/default/default.profile');

/**

•

•

•

•

An Installation Profile

[280]

 * Provide an installer for our specific set of
 * modules, content types, and so on.
 * @file
 */

/**
 * Provide details about this profile.
 */
function philosopherbios_profile_details() {
 return array(
 'name' => 'Philosopher Bios Profile',
 'description' => 'Use this profile to install the '
 .'modules and theme for Philosopher Bios.',
);
}

One thing that should stand out is the use of a require_once directive at the very
beginning of the file. Strictly speaking, this is not required. However, we can use
a function or two from the default profile to perform parts of the basic Drupal
installation. If we did not do this, we would have to replicate sections of that file, and
then keep the code synchronized with each new release of Drupal.

The first function in this file is philosopherbios_profile_details(). The purpose
of this function is to provide information that will help the user decide whether this
profile is the right one. When installation begins, a user will be presented with a
choice of profiles:

The array returned by philosopherbios_profile_details() is used to present our
profile in this list. The name item becomes the profile title, and the description is
used to provide some help text.

That is all that there is to this function.

Chapter 9

[281]

The Modules List
Once an installation profile has been chosen, Drupal will step through a number
of basic installation tasks, including language selection, system verification, and
database configuration. Then it will begin installing the system.

Part of this task is module installation and configuration. It is the responsibility of the
installation profile to specify what modules should be installed. We will accomplish
this with philosopherbios_profile_modules():

/**
 * List the modules that should be installed.
 */
function philosopherbios_profile_modules() {
 return array(
 // Drupal modules enabled by default (but not required):
 'color', 'comment', 'help', 'menu', 'taxonomy', 'dblog',
 // Other Drupal core modules we need:
 'trigger',
 // Our modules:
 'biography', 'emailusers', 'goodreads', 'philquotes',
 'sitenews',
);
}

As with the previous function, this function simply returns an array. To be specific,
it returns an array of module names. Every module in this array will be installed
and activated.

Where are the required core modules?
All the required modules—action, node, system and so on—are
automatically installed. They are installed at an earlier stage of the
installation process. They should never be included in this list.

I have broken the list above into three sections. Most Drupal installations will want
to install these basic modules:

// Drupal modules enabled by default (but not required)
'color', 'comment', 'help', 'menu', 'taxonomy', 'dblog',

These modules—all part of the Drupal distribution—provide features that are used
widely, and they are also all enabled in the default profile.

An Installation Profile

[282]

Next, we added the Trigger module. While this module is not enabled by the
default Drupal installer, our installer enables it. Why? Because one of our modules,
sitenews, lists it as a dependency.

Finally, there is the list of our modules:

// Our modules:
'biography', 'emailusers', 'goodreads', 'philquotes', 'sitenews',

Does order matter? When it comes to dependencies, it does. Modules are installed in
the order they are listed. If Module A depends upon Module B, then make sure that
Module B is installed first by putting it earlier in the list.

Once all the modules have been installed, the administrator will be prompted to do
some configuring and create an account. All of this is handled by the installer, and is
generally not changed by the installation profile.

After the configuration screen, control will be passed to our profile script again. This
is where we will do the brunt of our work.

The Installation Task System
Most of Drupal's installation is done using a task system. In this system, Drupal
proceeds through a series of steps (tasks). Each task is responsible for directing the
installer to the next task, like a chain.

This is an important point: It is the responsibility of a task to redirect the
installer to the next task. So a task can logically determine what the next
task should be, based on its current state.
To get a detailed idea of how the task system works the best code to look
at is install.php, located in the root Drupal directory. The install_
tasks() function is particularly helpful for understanding tasks.

For example, Drupal performs the profile-install task, which is responsible
for preparing for the installation of modules listed in philosopherbios_profile_
modules(). Once this task is done, it directs the installer to the next task: profile-
install-batch. This task does the actual installation of modules. A few more
minor tasks are done before the configure task is run. This task displays the site
configuration form to the administrator, which begins as follows:

Chapter 9

[283]

Once this form is submitted, the configure task hands off control to the task we are
interested in: profile.

The Profile Task
The profile task is the entry point for the installation profile. Most of the boilerplate
installation work has been done. The database is configured, modules are installed,
locales have been chosen, and even the basic site information (such as the site's name
and the administrator's email address) has been stored in the database.

With the profile task, we will begin doing our own custom configuration.

A Basic Profile Task
When Drupal's installer hits the profile task (after running the configure task),
it attempts to execute the <profilename>_profile_tasks() function, handing it
two parameters: a reference to the task name (&$task), and the current URL for the
installer ($url). The $task variable will always be initially set to profile.

An Installation Profile

[284]

If the installation profile needs no additional information from the user, it can do its
installation and return without ever using either the $task or $url variables. In this
case, we could have a philosopherbios_profile_task() structured something like
as follows:

philosopherbios_profile_task(&$task, $url) {

 variable_set('my_variable', 'my_value');

}

In this example, the function does nothing more than adding a new variable to the
database—perhaps for use by a module or something else.

There is one problem with the function above—a problem that might cause some
confusion. The default Drupal installation profile uses default_profile_task() to
create some content types (page and story), initialize defaults for nodes, and make a
few tweaks for the theme system's display of node content.

If we don't include that functionality here, then we will miss a couple of expected
types. What do we do?

One solution is to copy the code from default_profile_task() and paste it into
our custom function. Besides being undrupalishly ugly, doing things this way can
turn into a maintenance nightmare. Every time the Drupal code is updated, the
profile maintainer will have to check the default profile and see if anything must be
updated in the custom profile.

I suggest an alternative that, while also being slightly undrupalish, is easy to
maintain and avoids gratuitous replication of code.

At the top of the profile file, we have the following line:

require_once('profiles/default/default.profile');

By importing the default profile, we can now use the default_profile_task()
function defined in that file from within our code. Rewriting our original function
to use Drupal's default_profile_task() function, we now have code that looks
as follows:

philosopherbios_profile_task(&$task, $url) {

 default_profile_task();

 variable_set('my_variable', 'my_value');
}

Now we have set our own variables and let the default profile take care of
default settings.

Chapter 9

[285]

The placement of the call to default_profile_task() is important. Since it changes
behavior of the node and theme systems, you may want to execute it first if you plan
on either making changes to default node behavior or making use of the page and
story content types.

Does this work with all *_profile_task() functions? Could I, for instance, use the
profile task from another installation profile?

Only very carefully. The reason the earlier example works as it does is because the
default_profile_task() is itself a simple task. Like the one we have created, it
does not require additional interaction from the user. Or, to state it more concisely,
it performs only one task.

But as we shall see shortly, profile tasks can be used to construct a complex
multi‑task series of events. In such a case, the results returned from the profile task
may require additional processing by the installer—processing that we cannot easily
provide or anticipate.

The bottom line? It is OK to use default_profile_task(). But using another profile
task can cause unpredictable results. Know the code before using the profile task.

Is it likely that the behavior of default_profile_task() might
suddenly become more complex and break our code? Not for Drupal 6,
and probably not for Drupal 7, either. Large changes would more likely
make their way into install.php.

The profile task we have created is basic, and should give a very simple idea of what
is expected by the installer. But it doesn't do much practical good.

Let's create a more sophisticated profile task—one that will actually do some good
for our phiosopherbios installation profile.

A Complex Profile Task
Already all of our custom modules have been installed. But at various places
throughout this book we have used the administration interface to configure
these modules.

With our installation profile, though, we want to automate that process. Specifically,
we want to do the following:

Create the quote content type we defined in Chapter 4.
Add a trigger to tie the sitenews_send_action action from Chapter 8 to the
Node API's presave event.
Give the user the option of setting the default theme to descartes instead of
to garland.

•
•

•

An Installation Profile

[286]

This last step will require interaction from the user, so we will be taking advantage
of the task system to design our own custom task.

As usual, we will start out by taking a glance at the function as a whole. Then we will
cover the first two points. Implementing our own task is a little more complicated,
and we'll cover that in more detail in a moment.

/**
 * Walk through final installation tasks
 */
function philosopherbios_profile_tasks(&$task, $url) {

 if ($task == 'profile') {
 // This is why we required default profile.
 default_profile_tasks(&$task, $url);

 // Quote content from chapter 4:
 $quote_type = array(
 'name' => st('Quote'), // <- st() is t() for installer
 'type' => 'quote',
 'description' => st('Quotations and witticisms'),
 'module' => 'node',
 'has_title' => TRUE,
 'title_label' => 'Origin',
 'body_label' => 'Text',
 'has_body' => TRUE,
 'custom' => FALSE,
 'modified' => TRUE,
 'locked' => FALSE,
 'is_new' => TRUE,
 'help' => '',
 'min_word_count' => 0,

);
 node_type_save((object)$quote_type);

 // Pre-configure our trigger from ch. 8:
 // (see trigger.admin.inc)
 $aid = 'sitenews_send_action';
 $hook = 'nodeapi';
 $op = 'presave';
 $sql = 'INSERT INTO {trigger_assignments} '
 ."VALUES ('%s', '%s', '%s', 1)";
 db_query($sql, $hook, $op, $aid);

 // Rebuild the menu
 menu_rebuild();

 // Do the form:

Chapter 9

[287]

 $task = 'philosopherbios_pick_theme';
 $form = drupal_get_form('philosopherbios_theme_form', $url);
 return $form;
 }

 // Because of this, we must create
 // the philosopherbios_profile_task_list() function
 if ($task == 'philosopherbios_pick_theme') {
 $form = drupal_get_form('philosopherbios_theme_form', $url);

 // See if the form was processed:
 if (variable_get('philosopherbios_theme', FALSE)) {
 variable_del('philosopherbios_theme');
 $task = 'profile-finished';
 }
 else {
 return $form; // try again.
 }
 }
}

This function handles two tasks: profile and philosopherbios_pick_theme. The
first is responsible for creating the quote type and the new trigger. It is handled by
the first if statement. That's what we will look at first.

If or switch?
When handling tasks, it is generally better to use if statements, rather
than switch statements. Why? Because we want the ability for an early
statement to change the value of $task and have other statements then
act on that task. We can accomplish this most succinctly with multiple
if statements.

Creating a Content Type
The first thing we do in the if ($task == 'profile') block is call the
default_profile_tasks() function from the default profile. The reason for this
was provided earlier.

Next, we define our quote node type:

// Quote content from chapter 4:
$quote_type = array(
 'name' => st('Quote'), // <- st() is t() for installer
 'type' => 'quote',
 'description' => st('Quotations and witticisms'),
 'module' => 'node',
 'has_title' => TRUE,

An Installation Profile

[288]

 'title_label' => 'Origin',
 'body_label' => 'Text',
 'has_body' => TRUE,
 'custom' => TRUE,
 'modified' => TRUE,
 'locked' => FALSE,
 'is_new' => TRUE,
 'help' => '',
 'min_word_count' => 0,

);
node_type_save((object)$quote_type);

Here we use yet another method for creating a new content type. Since we are not
using a module, we cannot make use of hook_node_info() to do the creation for us.

Instead, we use a method that is generally reserved for content types created through
user interaction. In fact, here we are using the same function to save the node type
as the one that Drupal used when we created the quote content type through the
administration interface in Chapter 4.

hook_node_info() vs. node_type_save()
How do you know which to use? Any time a module adds its own
content type, hook_node_info() should be used. Only when the
content type is not module specific should we need to use node_
type_save().

Since we are using the low-level node_type_save() function, we need to define all
the fields that will be stored in the database. Thus, our $quote_type array is a little
longer than normal.

If you would prefer not to worry about setting all of the defaults, you can
break Drupal protocol and use the "private" node function _node_type_
set_defaults(), passing it a sparser array. That function will assign
default values to any attribute that is not present in the array.

In the above code, we use a new function: st(). This function provides the same
behavior as the t() function. But during installation, the translation system may
not be completely initialized. For that reason, the st() function should be used in
place of t().

Rather than query user preferences to determine the language, st() uses
information from the installer to set the language. It should not be used outside the
installation context.

Chapter 9

[289]

Once the array is correctly set up, we must cast it to an object before handing it over
to node_type_save().

node_type_save((object)$quote_type);

But that is all there is to creating a new content type in an installation profile.

Creating a Trigger
In Chapter 8, we created a trigger using the administration interface. For our
installation profile, though, let's suppose that it is desirable to have this trigger
configured upon installation.

The trigger API does not include a function for inserting a trigger. In fact, a trigger is
essentially just a row in a database. So we will need to add our trigger by inserting a
record into the database:

// Pre-configure our trigger from ch. 8:
// (see trigger.admin.inc)
$aid = 'sitenews_send_action';
$hook = 'nodeapi';
$op = 'presave';
$sql = 'INSERT INTO {trigger_assignments} '
 ."VALUES ('%s', '%s', '%s', 1)";
db_query($sql, $hook, $op, $aid);

// Rebuild the menu
menu_rebuild();

To insert an entry into the trigger table, we need four pieces of information:

The Action ID (aid), which is the name of the callback function for the
desired action. In our case, it is sitenews_send_action.
The name of the hook to watch for events. In our case, we are looking for the
nodeapi hook to be called. trigger_nodeapi() is the hook implementation
that will watch for this event.
The name of the operation to watch for. This is the operation that will be
passed to trigger_nodeapi(). For us, it is the presave operation (or event)
that we want to catch.
The trigger's weight. If an event triggers more than one action, the trigger
module returns the actions ordered by weight, and then the actions are called
in order. We set it to 1, the default.

•

•

•

•

An Installation Profile

[290]

In the preceding code, these four parameters are inserted into the
trigger_assignments table. This is all that must be done to add a trigger.

At the end of the code, we rebuild the menus (menu_rebuild()), so that the changes
we made that effect menu generation can be accounted for before the user first logs
into the system.

Moving to the Next Task
Now we've created the content type and the trigger. Next, we want to get the user's
input on whether or not descartes should be set as the default theme.

Doing this will require a few things: First, we will need to use a different task.
Second, we will need to provide the user with a form for making the decision.

The end of the profile task is used to set up these two things:
// Do the form:
$task = 'philosopherbios_pick_theme';
$form = drupal_get_form('philosopherbios_theme_form', $url);
return $form;

The $task variable is set to philosopherbios_pick_theme. Then, a form callback
is used to generate a form for display (which we will see later), and that form is
returned. Sounds simple? Well, there's a little more.

The 'profile' Task is Special
If we did not change the $task from profile to philosopherbios_pick theme, if
we left off just that line—what would happen?

What we would expect to happen is that the form would be displayed, and when it
was submitted, philosopherbios_profile_tasks() would be called again with
$task still set to profile.

In fact, this is the way that other tasks work, but not profile.

What actually happens is that the installer will go on to the final installation page
without ever showing the form.

The installer watches the value of $task. It calls philosopherbios_profile_
tasks() and then checks the value of $task.

If the value of $task is unknown to the installer, the installer simply
calls philosopherbios_profile_tasks() again, leaving the value of
$task unchanged.
If the value of task is profile-finished, then the installer stops using the
profile and continues the installation process.

•

•

Chapter 9

[291]

If the value of $task is profile the installer assumes that the profile
task was a simple one (like the one we looked at early in this chapter),
and considers the profile task finished. Essentially, the installer treats
profile-finished and profile the same in this regard.

So it is imperative that we set $task to something other than profile
(or profile-finished) if we are going to do a multi-step process. Think of it as
chaining together a series of tasks, where each step requires its own task.

By assigning $task the value philosopherbios_pick_theme, we define a new task.
This means we need to register the new task.

Registering a New Task
Earlier, we set $task to philosopherbios_pick_theme. Now we need to let
the Drupal installer know that we have added another task. This is done using
philosopherbios_profile_task_list(), a callback that the installer will expect
to find:

/**
 * List of custom tasks. This is a callback that
 * the installer expects.
 */
function philosopherbios_profile_task_list() {
 return array(
 'philosopherbios_pick_theme' => st('Choose Theme'),
);
}

This function is simple. It returns an associative array with the task name as the key,
and a user-friendly short description as the value.

Since the actual mechanics of the callback to philosopherbios_profile_tasks()
do not make use of this task, what is the role of this function? Actually, it is mainly
used to display progress information to the user:

•

An Installation Profile

[292]

In the preceding screenshot we can see how the information was used. This list is
generated early in the installation process, and as the installer progresses through
procedures and tasks, this display is updated to show progress.

With our task registered, we can shift focus again—this time to the form that will be
presented to the user.

The Theme Selection Form
Once again, we will return to the Form API. This time, we will create a simple form
to give users the choice between the Descartes theme we developed in Chapter 3 and
Drupal's built‑in Garland theme. The administrator's choice will determine which
theme is used as the default. (Of course, this can still be changed later in Administer
| Site building | Themes.)

The last lines of the first if statement of our philosopherbios_profile_tasks()
function looked as follows:

// Do the form:
$task = 'philosopherbios_pick_theme';
$form = drupal_get_form('philosopherbios_theme_form', $url);

return $form;

The last two lines are what interest us now. We use the drupal_get_form() function
to get the form that we will display to the user, and then we return that form. Since
the task isn't profile or profile-finished, Drupal will display the form for the
user to complete.

The first argument to drupal_get_form() is the name of the callback function that
will create the form. All other arguments (in this case, only $url) are passed as
parameters into the callback.

So now we need to create the philosopherbios_theme_form() function. By way
of reminder, it is conventional for form-generating functions to end with _form. We
will name ours philosopherbios_theme_form().

Most of the Forms API works as expected, including the validation and submission
callbacks. So if we need to perform some form validation, all we would need to
do is define a function named philosopherbios_theme_form_validate(). To
handle form submissions, we need only name a function philosopherbios_theme_
form_submit().

Chapter 9

[293]

Here is the main form function:

/**
 * Form for selecting a theme.
 */
function philosopherbios_theme_form(&$form_state, $url) {

 drupal_set_title('Select a Theme');

 $form['text'] = array(
 '#value' =>
 st('Do you want to make Descartes your default theme?'),
 '#weight' => -1, // <- We want it on top!
);
 $form['choose_theme'] = array(
 '#type' => 'radios',
 '#title' => st('Default Theme'),
 '#default_value' => 0,
 '#options' => array(0 => st('Descartes'), 1 => st('Garland')),
 '#description' => st('Set the default site theme.'),
 '#weight' => 0,
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => st('Save and continue'),
 '#weight' => 10,
);
 $form['#action'] = $url;
 $form['#redirect'] = FALSE;

 return $form;
}

We've seen a few functions like this in the previous chapters.

The first thing this form does is sets the title of the page with drupal_set_title().
Often, we can rely on other parts of the infrastructure to create a page title. But here
in the installer, we will need to do so ourselves.

Next, we define the form, which is composed of the following:

An introductory piece of text asking: Do you want to make Descartes your
default theme?
A pair of radio buttons (both are done with one '#type' => 'radios' entry)
giving the user the choice between Descartes and Garland.
A submit button labeled Save and continue.

•

•

•

An Installation Profile

[294]

At the end of the form are two additional properties:

$form['#action'] = $url;
$form['#redirect'] = FALSE;

The first tells the form where to go (like the action attribute in an HTML <form>
tag). The second is normally used to tell Drupal where to redirect the user once the
form is processed. But we don't want to redirect the user anywhere—we want them
to finish the installation. So it must be set to FALSE.

When the form is rendered by drupal_get_form() and sent to the browser, it looks
as follows:

What happens when a user presses the Save and continue button?

The form is submitted to the URL specified in $url (which happens to be the same
URL used through most of the installer—the installer's state is not tied to the URL).
This causes the code in installer.php to be re-evaluated again. That means it will
check to find out what the current task is.

Returning to the philosopherbios_pick_theme
Task
When the installer checks its state, it will find that the current task is still
philosopherbios_pick_theme, and so it will call our philosopherbios_profile_
tasks() function again, this time with $task set to philosopherbios_pick_theme.

Let's return to the profile tasks function and look at the second if statement:

/**
 * Walk through final installation tasks
 */
function philosopherbios_profile_tasks(&$task, $url) {

Chapter 9

[295]

 if ($task == 'profile') {
 // ... Other stuff....

 // Do the form:
 $task = 'philosopherbios_pick_theme';
 $form = drupal_get_form('philosopherbios_theme_form', $url);
 return $form;
 }

 if ($task == 'philosopherbios_pick_theme') {

 $form = drupal_get_form('philosopherbios_theme_form', $url);

 // See if the form was processed:

 if (variable_get('philosopherbios_theme', false)) {

 variable_del('philosopherbios_theme');

 $task = 'profile-finished';

 }

 else {

 return $form; // try again.

 }

 }

}

Some of the code at which we looked earlier has been left out of this code snippet.
The main code that we are interested in is highlighted. This is the conditional that
will be executed when the $task variable is set to philosopherbios_pick_theme.

The first line retrieves the form. But this time, it will kick of the form submission
handler. Before moving on, we need to look at that function.

The Submission Handler
When drupal_get_form() is called this time, it retrieves the cached form and hands
it off to the submission handler. Following the Forms API callback procedure, our
handler is called philosopherbios_theme_form_submit().

Here is the function:

/**
 * Form submission callback.
 */
function philosopherbios_theme_form_submit($form, &$form_state) {
 // Save our state:
 variable_set('philosopherbios_theme', TRUE);

 if ($form_state['values']['choose_theme'] == 0) {
 // Enable Descartes theme

An Installation Profile

[296]

 $sql = "UPDATE {system} SET status = 1 "
 ."WHERE type = 'theme' AND name = 'descartes'";
 db_query($sql);

 // Initialize theme system:
 system_theme_data();
 system_initialize_theme_blocks('descartes');

 // Set theme as default
 variable_set('theme_default', 'descartes');
 }
 // Otherwise, leave it at Garland.
}

The first thing this submission handler does is store a variable in the database:

variable_set('philosopherbios_theme', TRUE);

Here, we use the database to store a token that indicates our state. With this variable
stored, we can later (from the profile tasks function) make sure that the form was
actually submitted.

Such state-related installer variables should always be removed from the
database when the installation profile is complete. We will do this shortly.

Once we have set this state token, we move on to the form.

We gave the user a choice of two themes. Glancing back at the form, the two themes
were Descartes and Garland, each of which was given a specific index in an array:

$form['choose_theme'] = array(
 '#type' => 'radios',
 '#title' => st('Default Theme'),
 '#default_value' => 0,
 '#options' => array(0 => st('Descartes'), 1 => st('Garland')),

 '#description' => st('Set the default site theme.'),
 '#weight' => 0,
);

So when we get the form back, we will check to see whether the value of the radios
was set to 0 (Descartes) or 1 (Garland).

Chapter 9

[297]

Actually, to be more precise, we only care if it is 0. If the user chooses the Garland
theme, which is already configured and set as the default, then we don't need to do
anything. There is work if the user chooses to set Descartes as the default. Thus, we
end up with a conditional like this:

if ($form_state['values']['choose_theme'] == 0) {
 // Enable Descartes theme
 $sql = "UPDATE {system} SET status = 1 "
 ."WHERE type = 'theme' and name = 'descartes'";
 db_query($sql);

 // Initialize theme system:
 system_theme_data();
 system_initialize_theme_blocks('descartes');

 // Set theme as default
 variable_set('theme_default','descartes');
}

If $form_state['values']['choose_theme'] is 0, we have work to do. In fact, we
have three specific tasks to perform:

Enable the theme
Initialize the theme
Set it to be the default

First, we need to enable the theme named descartes. Since there is no convenient
function that we can use for this, we do it with SQL:

$sql = "UPDATE {system} SET status = 1 "
 ."WHERE type = 'theme' AND name = 'descartes'";
db_query($sql);

Here we modify the {system} table. The system table is a big storage system for
tracking theme and module settings. Fortunately, it is rarely the case that module
code must directly manipulate this table. Here, however, we need to work on the
table directly.

Basically, we need to change the status flag for the theme named descartes. If
status is 0, a theme is disabled. We set it to 1 to enable the theme.

Now that the theme is enabled, we need to initialize the theme.

•

•

•

An Installation Profile

[298]

By default, a theme has no blocks set. But this isn't good. An administrator would
not have immediate access to the main menu. Instead, they'd get a screen that looked
something like the following screenshot:

Notice the missing menu on the left side?

Usually, the theme selection system in the Administer | Site building | Themes
page handles initializing a new theme and adding the default menu. We need to do
that initialization here in the installer, though.

Drupal makes this work easier. It has a built-in method for setting up a theme the
first time. But first we need to initialize the data for themes since the installer hasn't
already done this step. So we make two function calls:

system_theme_data();
system_initialize_theme_blocks('descartes');

The first initializes the theme data (basically processing the theme .info files).
The second function does the necessary theme initialization, including adding the
standard menu to the left-hand column of blocks.

Two steps are done. The third step is to set descartes as the default theme.

Chapter 9

[299]

Drupal determines which theme is default by using the theme_default variable
stored in the main variable table. And as we saw earlier in this chapter and in
the last chapter, the contents of the variable table can be manipulated with
variable_set(), variable_get(), and variable_del().

So setting descartes to the default is as easy as this:

variable_set('theme_default','descartes');

Now we have enabled and initialized the theme, and set it as default. When the user
makes his or her way through the installer, the first screen he or she will see will look
like the following screenshot:

But before we jump that far, we need to work a little on our installer. We need to
return to the profile tasks function, philosopherbios_profile_tasks(), to
finish up.

An Installation Profile

[300]

Finishing the Installation Profile
We're down to the last section of the philosopherbios_profile_tasks()
section. We have looked at how the submission handler set the default theme as
a result of the call to drupal_get_form() below. Let's continue looking at the
philosopherbios_profile_tasks() function to see what happens after the form
data has been processed:

if ($task == 'philosopherbios_pick_theme') {
 $form = drupal_get_form('philosopherbios_theme_form', $url);

 // See if the form was processed:
 if (variable_get('philosopherbios_theme', FALSE)) {
 variable_del('philosopherbios_theme');
 $task = 'profile-finished';
 } else {
 return $form; // try again.
 }
}

After the drupal_get_form() call, what we need to find out for sure is if the
submission handler was really called. In other words, we want to make sure that the
user really did progress through the theme-picking screen. We can tell by checking to
see whether or not the variable philosopherbios_theme is set in the variables table.

Recall that we used variable_set() at the beginning of philosopherbios_theme_
form_submit(). So here we can tell whether the submission handler was run based
on the presence of that variable.

If variable_get('philosopherbios_theme', FALSE) returns FALSE, then we know
that the submit function was not run. The else block is executed, sending the form
back to the user.

But if the call to variable_get('philosopherbios_theme', FALSE) returns TRUE,
we know the submission handler was run. We just need to clean up and return
control to the installer.

For our installation profile, cleaning up is pretty simple. We've only left one variable
in the variable table. We delete it with variable_del():

variable_del('philosopherbios_theme');

To return control to the installer, we need only inform it that the profile tasks are
all finished. That is done by setting $task to profile-finished and allowing the
function to return.

Chapter 9

[301]

Taking a look back at the installer, the user chooses a theme and then clicks Save
and continue.

The form is processed; the theme is enabled, initialized, and set as default; extra
data is removed; and control is returned to the installer. From here, the install will
proceed on to the final screen of the installation process:

That is all! If we were to go into the new site and look around, we would find all
our content types (Quote, Biography, News Brief) available in Create content.
The trigger would be activated for news brief publishing. The philquotes and
goodreads blocks would be available for configuration on the Administer | Site
building | Blocks page. Our user profiles will all have the option for administrators
to send an email, as provided by the emailusers module.

Want to preconfigure your blocks?
With a little more work, the installation profile could add our
philquotes and goodreads blocks to the default theme. This requires
doing some low-level work on the blocks tables. A good place to start
is in modules/block/block.admin.inc, specifically with the
block_admin_configure_submit() function.

Now we have configured our custom distribution. All we need to do is package it.

An Installation Profile

[302]

Packaging the Distribution
We began with a fresh Drupal package. We added our modules and theme into the
appropriate places, and then created an installation profile in the profiles/ directory.

The last step is to take that set of files and build a package.

Remove your changes
If you used this distribution directory to test out the installation profile,
make sure to get rid of any changes the installation might have made.
Specifically, you will need to make sure that the sites/default/
settings.php file is removed. (If you are using installation profiles to
move your own site, you can keep the settings.php file if you'd like.)

Typically, Drupal is distributed as a tarred and gzipped file. If you have a UNIX‑like
environment, you can change directories to the location of the drupal-philbios-
6.2-1.0/ folder and create the distribution file as follows:

$ tar -zcvf drupal-philbios-6.2-1.0.tgz drupal-philbios-6.2-1.0/

This will create the compressed archive file drupal-philbios-6.2-1.0.tgz.

That file can now be used just like the official Drupal releases. You won't even have
to modify the installation instructions!

Summary
The focus of this chapter was building a custom Drupal distribution. To accomplish
this, we began with a pristine Drupal archive, added our own modules and theme, and
then wrote an installation profile to automate several tasks. Finally, we packed it all
into a new archive file that can be used for installing a fresh copy of our distribution.

In the code we wrote, we focused on the callback functions used by the installer.
But we also took a look at another way of adding content types, as well as the
process of creating triggers from code. We used the Forms API to add an extra
screen to our installer.

During the course of our book, we have looked at Drupal's architecture, created
several modules and a theme, and now an installation module. We've looked at the
major Drupal APIs and subsystems. We've implemented dozens of hooks, and used
many key Drupal functions.

At this point, you should have the tools to develop sophisticated Drupal modules.
Go forth and produce drupalish code.

Index
Symbols
.info file, creating 24
.module file, creating 26
.profile script

details function 279
modules list 281, 282

A
action

hook_action_info(), implementing 247-250
sitenews_send_action() callback 250, 251,

252
administration page, registering

path, about 147
path, marking as administration page 147
path, registration parameters 148-151

AJAX 127
AJAX/JSON service

client side 137
server side 129
writing 127

alter hooks 172
Asynchronous JavaScript and XML. See

AJAX

B
block descriptor 30
blocks, Drupal 16, 17

C
CCK 182
client side, AJAX/JSON service

event handler, adding 140, 141

JSON content, retrieving 137-140
comments, Drupal 14-16
contact module 144
content

item, retrieving 100
Node content, getting 102, 103
Node ID, getting 100-102

content creation form
hook_form(), adding 199-202
hook_form(), overriding 198

Content Creation Kit. See CCK
content type

content 97
creating 92
creating, administration interface used

93-96
Node ID (NID) 97
nodes 97
page content type 92
story content type 92

custom content type, creating 92
custom theme, creating

PHPTemplate, adding 65
PHPTemplate theme 75
theme, creating 67
theme functions 85
themes, organizing 64, 65

D
database

content item, retrieving 100
Node content, getting 102, 103
Node ID, getting 100-102

database API, Drupal 18, 100
database hooks

database record, deleting 209, 210

[304]

database record, updating 209, 210
hook_insert() function 205

default theme
CSS, overriding 112, 113
layout, overriding with templates 113, 114
overriding 111

developer tools, Drupal
Coder module 19, 20
Devel module 19
developer module 19

distribution
packaging 302
profile directory, creating 277
setting up 276

Document Object Model. See DOM
DOM 117
Drupal

about 7
administration module 143
AJAX/JSON service, writing 127
architecture 7
blocks 16, 17
contact module 144
core libraries 8
core modules 9, 10
database API 18
developer tools 19
distribution, setting up 276
Forms API 18, 153
hook mechanism 11
Mail API 165
menus 17
module architecture 9
module roadmap 129
namespace 121, 122
nodes 13
overriding 65
PHP references 163
profile directory, creating 277, 278
schema API 18
theme inheritance 65
themes 12
theme system 57
users 16

Drupal architecture
about 7

module architecture 9
themes 12

Drupal Core Libraries 8
Drupal Core Modules 10
Drupal functions

check_markup() function 230
check_plain() function 50
check_url() function 51
default_profile_task() function 284, 285
Drupal.jsEnabled() function 122
Drupal.parseJson() function 139
drupal_add_css() function 110
drupal_add_js() function 125
drupal_get_form() function 154
drupal_get_path() function 110
drupal_install_schema() function 185
drupal_mail() function 165
drupal_mail_send() function 166
drupal_mail_wrapper() function 145
drupal_set_header() function 130
drupal_uninstall_schema() function 185
hook_action_info(), implementing 247-250
hook_filter_info() 241
hook_form() 229
hook_help 227
hook_insert() 206
hook_install() 184, 242
hook_link_alter() 172
hook_load() 212
hook_mail() function 165
hook_mail_alter() 172
hook_menu() function 131
hook_menu() function, implementing 146
hook_menu_alter() 172
hook_node_info() 228
hook_node_info() function 192
hook_nodeapi() 210
hook_uninstall() 185
hook_update() 209
hook_user() 176
hook_user(), implementing 177, 178
hook_view() 214, 215
install_tasks() function 282
l() function 51
mail() function 145
module_invoke_all() hook function 254
node_type_save() 289

[305]

PHP sprintf() function 51
t() function 32
variable_get() function 237
watchdog() function 43

Drupalish 20

E
emailusers module 143

F
FAPI. See Forms API, Drupal
filtered HTML 230
filter mode 230
filters

creating 231
format ID getting, by format name 246
hook_filter() 231-234
hook_filter_info() 239, 240
input format, adding 241-245
news brief placeholders 235-239
ordering, need for 244
prepare operation 236
process operation 237
remove all tags 239-241

form constructor
about 154

Forms API, Drupal
#value element 157
$form 156
$form_state variable 163, 164
$form array 158
_submit() callback 162
about 153
articles on websites 153
form, necessary features 154
form constructor 154-156
form loading, drupal_get_form() function

used 154
form results, handling 161
form submissions callback 162-164
using, in installer 278

forms API, Drupal 18
full HTML 230

G
goodreads sample 24

H
hook

about 255
custom hook, invoking 254
defining 253
hook_sitenews() function, creating 255, 256
hook_sitenews() function, implementing in

biography module 258, 259
hook_sitenews() function, implementing in

modules 257
hook_sitenews() function, implementing in

philquotes module 257
module_hook() function 254
module_implements() function 254
module_invoke() function 254
module_invoke_all() 254
naming hooks 254

hook_access()
implementing 203, 204

hook_action_info()
implementing 247-250

hook_block() function
$delta parameter 29
$edit parameter 30
$op parameter 29
case list 31
configure value, $op parameter 29
implementing 29
list value, $op parameter 29
modifying 39, 40
save value, $op parameter 29
t() function 32, 33
view operation 33
view value, $op parameter 29

hook_form()
implementing 196
overriding 198

hook_help() function
$arg parameter 54
$link parameter 55
$path parameter 54

[306]

$replace parameter 55
$txt parameter 54
implementing 54

hook_insert()
implementing 205

hook_install()
about 184
implementing 185

hook_load()
implementing 212

hook_mail()
implementing 167

hook_menu()
implementing 146, 147

hook_menu_alter()
messages, altering with 172

hook_node_info()
implementing 193

hook_node_info() vs. node_type_save() 288
hook_nodeapi()

implementing 210
hook_perm() 151

implementing 202
hook_schema() 185

implementing 187
hook_theme()

implementing 218
hook_uninstall()

implementing 185
hook_update()

implementing 209
hook_update_N()

about 184
hook_user()

content, constructing 178-180
user profile, modifying 176

hook_view()
implementing 214, 215

hooks
for object-oriented programmers 11
mechanism 11

I
input format 230

adding 241-244
creating 243

installation profile
about 273
building 274
finishing 300, 301
need for 274, 275

installation task system. See task system,
Drupal installation

J
JavaScript

Drupal.jsEnabled() function 122
Drupal namespace 121
getURL() function 121
including, from modules theme 124
jQuery code execution, delaying 123, 124
namespaces 121
support, checking with Drupal 121
toString() function 121

JavaScript Over the Network. See JSON
jQuery

about 117
after() function 119
before() function 120
DOM, querying 118
Drupal.jsEnabled() function 122
getter, about 120
HTML, modifying 118
JavaScript, including from modules theme

124
JavaScript execution, delaying 123, 124
ready() function 123, 124
setter, about 120

JSON 127
JSON format 127

K
keywords

@param 40-43
@return 40-43

L
l() function 51

[307]

M
mail alter hook 171
Mail API, Drupal

drupal_mail() function 165
hook_link_alter() 172
hook_mail(), implementing 167-171
hook_mail_alter() 172
hook_mail_alter(), implementing 173-175
hook_menu_alter() 172
hooks, altering 172
mail, sending 165, 166
mail footer, adding 173-175
mail formatting, hook_mail() used 167-171

menus, Drupal 17, 18
module, biography

about 181, 182
biography.info file 183
biography.install file 185
biography_access(), implementing 203, 204
biography_info.tpl.php 219-221
biography_install() 185
biography_schema(), implementing 187,

188
biography_uninstall() 185
hook_help(), implementing 183
hook_node_info(), implementing 193-196
module installation script 184

module, Drupal
.info file, creating 24-26
.module file, creating 26, 27
copying 35
default theme, overriding 112
drupal_install_schema() function 185
drupal_mail() function 165
drupal_uninstall_schema() function 185
foundations 97
hook_block() function, implementing 29
hook_help() function, implementing 54, 55
hook_install() 184
hook_mail() function 165
hook_menu() function, implementing 146
hook_schema() 185
hook_uninstall() 185
hook_user(), implementing 177, 178
hook_watchdog() function 43, 86
installing steps 34

t() function 32
theming 103, 104

module, drupal
hook_node_info() 192

module, emailusers
about 143
callback function, defining 151, 153
content, constructing 178-180
drupal_mail_send() function 166
emailusers.info file 144
emailusers.module file 144, 145
emailusers_compose() function 148-151
hook_link_alter() 172
hook_mail_alter() 172
hook_mail_alter(), implementing 174, 175
hook_menu() function, implementing 146
hook_menu_alter() 172
hook_user(), implementing 176-178
mail() function 145
mail configuration 145
supported features 144
user_load() function 152

module, goodreads sample
Id directive, goodreads.info 24
*/ directive, goodreads.module 28
/** directive, goodreads.module 27
// Id directive, goodreads.module 27
<?php directive, goodreads.module 27
@file identifier, goodreads.module 28
@see identifier, goodreads.module 28
_goodreads_block_content() function 46-53
core directive, goodreads.info 25
description directive, goodreads.info 25
goodreads.info, creating 24
goodreads.module, creating 27
goodreads_block() function 30, 31
goodreads_block() function, configuring

39, 40
hook_help() function, implementing 54, 55
HTTP result, processing 45
module content, displaying 38, 39
name directive, goodreads.info 25
php directive, goodreads.info 26
t() function 32
view operation 33
watchdog() function 44, 45

[308]

XML content retrieving, HTTP connection
used 40-43

module, installing
configuring 37, 38
copying 34
enabling 36, 37
modules/ directory 34
sites/<site name>/modules directory 34
sites/all/modules/ directory 34

module, philosophy quotes sample
!empty($item), using 100
$(119
$() function 119
$blocks variable 99
$op operation 99
_philquotes_get_quote() 100
about 91, 92
after() function 120
Drupal.jsEnabled() 122
drupal_add_js(‘philquotes.js’) 126
functions 116, 117
getURL() function 121
hook_block() function, implementing 99
hook_help() function, implementing 98
hook_menu(), implementing 132
hook_theme(), implementing 105
list operation 99
node_load(), using 102
philquotes.css, creating 109
Philquotes.getURL() function 121
philquotes.info, creating 98
philquotes.json 132
philquotes.module, creating 98
Philquotes.randQuote() function 138
Philquotes.toString() function 121
philquotes_block() function 103
philquotes_help() 98
philquotes_item() 129, 130
philquotes_quote.tpl.php 106
philquotes_theme() 105
philquotes module, extending 116
theme_philquotes_quote() 104
theme_philquotes_quote() function 110
toString() function 121

module, sitenews
_sitenews_do_message() function 262
creating 224, 225

sitenews.info file, creating 225, 226
sitenews.module file, creating 227
sitenews_action_info() 247, 248
sitenews_form() 229
sitenews_mail(), implementing 267
sitenews_name 238
sitenews_node_info, implementing 228
sitenews_salutation 237
sitenews_send_action() 261
sitenews_send_action() callback 250
sitenews_theme() function 265
theme function 260

module architecture, Drupal
about 9
core modules 9, 10
hook mechanism 11, 12

module theming
about 103, 104
stylesheet, adding 109-111
theme, registering 105-107
theme hook function, creating 108, 109

MySQL
nidvid index 191

N
nodes, Drupal

about 13, 14
comments are not nodes 14
content, creating 14
features 13
Node ID (NID) 97
page content type 14
quotes content type 14
story content type 14

O
overriding 65

P
PHP

about 7
theme_breadcrumb() function 83, 84
using, to override theme 82

PHP Hypertext Processor See PHP

[309]

PHPTemplate engine
need for 63

PHPTemplate theme
block.tpl.php 75
Bluemarine theme, templates 75
box.tpl.php 75
comment.tpl.php 75
content, region 76
footer, region 76
header, region 76
left, region 76
node.tpl.php 75
page.tpl.php 75
page template, for Descartes 77-81
regions 76
right, region 76
screenshot, creating 89
template.php Gotchas 88
template structure 75
using, to override theme behavior 82
variables 76

profile
.profile file, functions 279
.profile script 279
details function 279, 280
directory, creating 277
modules list 281, 282
programming 278

profile task
about 283
basic 284, 285
complex 285-287
content type, creating 287-289
need for 290, 291
philosopherbios_pick_theme task 294, 295
philosopherbios_profile_tasks() function

294, 300, 301
philosopherbios_theme_form_submit()

function 295-299
trigger, creating 289, 290

Q
quotes content type 14

R
registering, theme 105-107

S
Schema API, Drupal

database structure, defining 186
fields, defining 188-190
indexes, defining 191
keys, defining 190
overview 186
table, defining 187

schema API, Drupal 18
server side, AJAX/JSON service

function, mapping to URL 131-135
hook_menu() 131
JSON message, creating 129, 130
PHP settings, passing to JavaScript 135, 136

T
t() function, example

! placeholder 32
% placeholder 33
@ placeholder 32
arguments 32

table placeholder 102
tagless text 230
task system, Drupal installation

about 282, 283
new task, registering 291, 292
profile task 283
profile task, basic 283-285
profile task, complex 285-287
theme selection form 292-294

theme
biography content, theming 217
default theme’s CSS, overriding 112, 113
default theme, overriding 111
layout, overriding with templates 113, 114
registering 217

theme, creating
.info file, creating 68
CSS stylesheet, creating 69, 70
Descartes directory, creating 68
logo.png, adding 75
theme directory, creating 68

theme functions
theme_image() function 85
theme_item_list() function 86

[310]

theme_links() function 85
theme_progress_bar() function 85
theme_table() function 85
theme_username() function 85

theme inheritance 65
translation function 30
themes, Drupal 12
themes, organizing

Bluemarine theme 66
Chameleon theme 66
Garland theme 66
Marvin theme 66
Minelli theme 66
Pushbutton theme 67
sub-themes (derivative themes) 65, 66
themes, functioning 66

theme system
about 57
architecture 58
elements 58

theme system, architecture
Garland theme, example 60
template engines 62
theme engines 62
theme hooks 63, 64
theme hooks, need for 63
themes 59
theme template 59

trigger
adding 269-290

U
users, Drupal

about 16
permissions 16
role 16

V
view operation 33

W
watchdog() function

$link parameter 44
$msg parameter 44
$url parameter 44
$vars parameter 44
about 43
placeholders 44
WATCHDOG_ALERT constant 44
WATCHDOG_CRITICAL constant 44
WATCHDOG_DEBUG constant 44
WATCHDOG_EMERG constant 44
WATCHDOG_ERROR constant 44
WATCHDOG_INFO constant 44
WATCHDOG_NOTICE constant 44
WATCHDOG_WARNING constant 44

X
XHR 127
XMLHttpRequest. See XHR

Thank you for buying
Learning Drupal 6 Module
Development

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Learning Drupal 6 Module Development, Packt will have
given some of the money received to the Drupal project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution‑based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Building Powerful and Robust
Websites with Drupal 6
ISBN: 978-1-847192-97-4 Paperback: 330 pages

Build your own professional blog, forum, portal or
community website with Drupal 6

1. Set up, configure, and deploy Drupal 6

2. Harness Drupal’s world-class Content
Management System

3. Design and implement your website’s look
and feel

4. Easily add exciting and powerful features

5. Promote, manage, and maintain your
live website

Drupal 5 Themes
ISBN: 978-1-847191-82-3 Paperback: 250 pages

Create a new theme for your Drupal website with a
clean layout and powerful CSS styling

1. Learn to create new Drupal 5 Themes

2. No experience of Drupal 5 theming required

3. Set up and configure themes

4. Understand Drupal 5's themeable functions

Please check www.PacktPub.com for information on our titles

 Drupal
ISBN: 190-4811-80-9 Paperback: 268 pages

How to setup, configure and customise this powerful
PHP/MySQL based Open Source CMS

1. Install, configure, administer, maintain and
extend Drupal

2. Control access with users, roles and
permissions

3. Structure your content using Drupal’s powerful
CMS features

4. Includes coverage of release 4.7

Learning jQuery
ISBN: 978-1-847192-50-9 Paperback: 380 pages

jQuery: Better Interaction Design and Web
Development with Simple JavaScript Techniques

1. Create better, cross-platform JavaScript code

2. Detailed solutions to specific client‑side
problems

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Introduction to Drupal Modules
	Drupal's Architecture
	Module Architecture
	Core Modules
	Hooks

	Themes

	Crucial Drupal Concepts
	Nodes
	Comments Are Not Nodes

	Users
	Access and Security

	Blocks and Page Rendering
	Menus
	Forms
	Database and Schema APIs

	Developers' Tools
	Developer Module
	Coder Module

	A Word on Our Demonstration Site
	Summary

	Chapter 2: Creating Our First Module
	Starting Out
	A Place for the Module
	Creating a .info File

	A Basic .module File
	Our Goal: A Block Hook
	Starting the .module
	The hook_block() Implementation
	The t() Function
	A view Operation

	Installing a Module
	Step 1: Copying the Module
	Step 2: Enabling the Module
	Step 3: Displaying the Module's Content

	Using Goodreads Data
	Modifying the Block Hook
	Retrieving XML Content over HTTP
	The watchdog() Function

	Processing the HTTP Results
	Formatting the Block's Contents

	Finishing Touches: hook_help()
	Summary

	Chapter 3: The Theme System
	The Theme System's Architecture
	Theme Templates
	Theme Engines
	Theme Hooks

	Creating a Custom Theme
	Organization of Themes
	Sub-themes (Derivative Themes)
	How Each Theme Functions

	Creating a Theme
	Creating the Theme Directory
	A .info File
	A CSS Stylesheet

	A PHPTemplate Theme
	Template Structure
	A Page Template for Descartes
	Using PHP to Override Theme Behavior
	template.php Gotchas
	Creating a Screenshot

	From Here to a Full Theme

	Summary

	Chapter 4: Theming Modules
	Our Target Module: What We Want
	Creating a Custom Content Type
	Using the Administration Interface to Create a Content Type
	Content and Nodes

	The Foundations of the Module
	A Simple Database Lookup
	Getting the Node ID
	Getting the Node's Content

	Theming Inside a Module
	Registering a Theme
	Creating a Theme Hook Function
	Adding a Stylesheet

	Overriding the Default Theme from a Theme
	A Quick Clarification
	Overriding the Default Theme's CSS
	Overriding Layout with Templates

	Summary

	Chapter 5: Using JavaScript and AJAX/JSON in Modules
	Picking up Where We Left Off
	Introducing jQuery
	Modifying HTML with jQuery
	Checking for JavaScript Support with Drupal
	Namespaces in JavaScript
	Drupal's Namespace
	A Drupal Function: Drupal.jsEnabled()

	Delaying JavaScript Execution with jQuery
	Including JavaScript from the Module's Theme

	Writing a Drupal AJAX/JSON Service
	The JSON Format
	Our Module Roadmap
	Server Side: Defining a New Page
	Creating a JSON Message
	Mapping a Function to a URL
	Passing PHP Settings to JavaScript

	Client Side: AJAX Handlers
	A JavaScript Function to Get JSON Content
	Adding an Event Handler

	Summary

	Chapter 6: An Administration Module
	The emailusers Module
	The Beginning of the Module
	Mail Configuration

	Registering an Administration Page
	A Detailed Look at the Path
	Marking the Path as an Administration Page

	Path Registration Parameters
	Defining the Callback Function

	Handling Forms with the Forms API (FAPI)
	Loading a Form with drupal_get_form()
	A Form Constructor
	Handling Form Results
	The Form Submissions Callback

	Sending Mail with the Mail API
	Formatting Mail with hook_mail()
	Altering Messages with hook_mail_alter()
	Altering Hooks
	Adding a Mail Footer

	Incorporating the Module into Administration
	Modifying the User Profile with hook_user()
	Constructing the Content

	Summary

	Building a Content Type
	The biography Module
	The Content Creation Kit
	The Starting Point
	The Module Installation Script
	The Schema API: Defining Database Structures
	A First Look at the Table Definition
	Defining Fields (Columns)
	Defining Keys and Indexes

	Correlating the New Table with Nodes
	The Content Creation Form
	Overriding hook_form() Defaults
	Adding New hook_form() Form Elements

	Access Controls
	Database Hooks
	Database Inserts with hook_insert()
	Updating and Deleting Database Records

	Hooks for Getting Data
	Loading a Node with hook_load()
	Preparing the Node for Display with hook_view()

	Theming Biography Content
	Registering a Theme
	The biography_info.tpl.php Template
	The Results

	Summary

	Filters, Actions, and Hooks
	The sitenews Module
	Getting Started
	Citing Dependencies in the .info File
	The Beginning of the .module File

	A Simple Content Type, Defined in Code
	Creating Filters and an Input Format
	The Second Filter: Remove All Tags
	Adding an Input Format

	The Beginning of an Action
	Implementing hook_action_info()
	The Action Callback

	Defining a Hook
	Invoking a Custom Hook
	So What Is a Hook?

	Creating a hook_sitenews() Function
	Implementing hook_sitenews() in Other Modules
	In the philquotes Module
	In the biography Module

	Completing the Action: Theming and Mailing
	Theme Functions
	The hook_mail() Implementation

	Adding a Trigger
	Summary

	An Installation Profile
	Introducing Installation Profiles
	Why Use Installation Profiles?

	Setting up a Distribution
	Creating a Profile Directory

	Programming Profiles
	The .profile Script
	The Details Function
	The Modules List

	The Installation Task System
	The Profile Task
	A Basic Profile Task
	A Complex Profile Task
	Moving to the Next Task

	Registering a New Task
	The Theme Selection Form
	Returning to the philosopherbios_pick_theme Task
	The Submission Handler

	Finishing the Installation Profile

	Packaging the Distribution
	Summary

	Index

