

Flash with Drupal

Build dynamic, content-rich Flash CS3 and CS4
applications for Drupal 6

Travis Tidwell

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers or distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2009

Production Reference: 1200509

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-58-0

www.packtpub.com

Cover Image by Gabriela y la pintura (linaza100@hotmail.com)

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Credits

Author
Travis Tidwell

Reviewer
Steve Zeidner

Acquisition Editor

David Barnes

Development Editor
Swapna V. Verlekar

Technical Editor
Aditi Srivastava

Copy Editor
Ajay Shanker

Indexer
Hemangini Bari

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Laura Booth

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

About the author

Travis Tidwell is the founder and CTO for TMT Digital (http://www.
tmtdigital.com), a company that specializes in the development of Flash
applications for the Drupal Content Management System. He is also the sole
developer for the Dash Media Player (http://www.tmtdigital.com/project/
dash_player, http://www.drupal.org/project/dashplayer), which is a media
player built specifically for Drupal. As well as contributing to this media player,
Travis is also the author and co-maintainer for the FlashVideo module (http://www.
drupal.org/project/flashvideo), which is a complete video solution for Drupal.

Travis graduated with a degree of Bachelors of Science in Electrical and Computer
Engineering from Oklahoma State University and has worked as an Embedded
Systems Engineer for companies specializing in automotive and agricultural GPS
products. Travis then fell in love with web development and more specifically
with Drupal and Flash, where he has developed numerous sites including
http://www.delicioso.com for Food Networks, Ingrid Hoffmann.

In his spare time (which is rare these days), Travis enjoys the performing arts where
he sings, plays the guitar, and even tap dances (go to http://www.youtube.com and
search for "Soul Man Tap" to see him in action).

Travis currently lives in Des Moines, IA with his beautiful wife Erin, and is the
proud parent of a feisty one-year-old named Brycen.

I would like to thank my wife, Erin, who has stood by me and
supported me through the long evenings and weekends where I
pursued my passions, including writing this book. Without her
support, I would not be where I am today.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

About the reviewer

Steve Zeidner is a web developer who has been using Perl, PHP, ActionScript,
Flash, and other technologies to design and code web sites and web applications
since 1999. In the past, he has been involved in educational projects such as Moodle
and WeBWorK while pursuing his degree in Computer Science and Engineering at
The Ohio State University.

After completing his undergraduate Computer Science studies, Steve went on
to develop his SQL database, web programming, and IT administration skills at
the Ohio Farm Bureau Federation. In 2007, he became the lead web developer at
Guardian Enterprise Studios, where he broadened his knowledge and use of web
design elements with content management systems as well as PHP, Perl, and MySQL
database integration. He currently resides in Columbus, Ohio and has an interest in
social media and how the Web is changing the way people communicate.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents
Preface	 1
Chapter 1: Flash with Drupal	 7

Why Flash with Drupal?	 8
Who is this book for?	 8
Getting started with Drupal	 9

Installing Drupal	 9
Installing Apache-MySQL-PHP (AMP)	 9
Creating the Drupal database	 10
Creating a database user	 11
Increasing PHP memory	 12
Installing Drupal	 12

Adding content to Drupal	 16
Getting started with Flash	 17

Creating a new Flash project	 18
Setting up the workspace	 18
A: The Stage	 19
B: The Toolbar	 19
C: The Timeline	 20
D: The Properties panel	 20
E: The Color Palette 	 21
F: The Library	 21

Creating a Flash application	 21
Creating a background	 21

Rectangle properties	 22
Adding a gradient	 23

Adding text to a Flash application	 24
Text properties	 25

Compiling our Flash application (making a SWF)	 25
Publish Settings	 26

Adding Flash content to Drupal	 27
Installing a contributed Drupal module	 28
Adding Flash!	 30

Summary	 32

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents

[ii]

Chapter 2: Building a "Hello World" Application	 33
How Flash and Drupal communicate	 33

Understanding web services	 34
Synchronous versus asynchronous programming	 36

Setting up Drupal for web services	 38
Installing and configuring the Services module	 38
Servers and Services	 38
Installing AMFPHP	 39
Services configuration	 41
Creating a Services key	 41
Services settings	 43
Service Permissions	 43

Building a web service-driven "Hello World" application in Flash	 44
Step 1: Creating our Flash application	 45
Step 2: Creating a main.as ActionScript file	 45
Step 3: Connecting to Drupal	 46
Step 4: Session handling	 50
Connecting to Drupal using system.connect	 50
Step 5: Drupal says "Hello World"	 51
Loading a node in Flash	 52
Step 6: Hooking up the text	 55
Step 7: Passing the node ID using FlashVars	 57
Step 8: Adding it to Drupal	 58

Summary	 59
Chapter 3: Flash and CCK	 61

Overview of a typical recipe web site	 61
Using Drupal's Content Construction Kit	 62

Creating a new content type	 63
Adding custom fields to your Recipe content type	 65

Adding a new field	 66
Changing the default Body field	 69

Showing CCK fields in Flash	 70
Building a Recipe widget in Flash	 71
Adding dynamic TextFields for Drupal content	 72
Using ActionScript to show Drupal CCK fields	 74

Using the Services Administrator	 74
Showing CCK information in ActionScript	 76
Adding ScrollBars to our TextFields	 79

Creating a Drupal node template for Flash	 82
Using the Content Template module (Contemplate)	 82

Summary	 85
Chapter 4: Drupal Images in Flash	 87

Image handling in Drupal	 87
ImageField for CCK	 88

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents

[iii]

Installing the ImageField module	 88
Adding an Image field to our Recipe content type	 89
Adding an image to our Recipe node	 90
Verifying that the image is attached	 91

Adding an image to our Recipe Flash application	 92
Adding a MovieClip container for our image	 93
Using ActionScript to load the Recipe image	 95

Resizing an image	 100
Preserving the width and height ratio (scaling)	 102
Using Drupal's ImageCache with Flash	 104

Creating an ImageCache preset	 104
Adding an ImageCache image in Flash	 106

Adding the new Recipe Flash application to Drupal	 108
Summary	 109

Chapter 5: Drupal Audio in Flash	 111
Working with audio in Drupal	 111

Installing the getID3 library	 113
Setting up the Audio content type	 114
Creating an Audio node	 115
How our player will be different (and better)	 116

Building a custom audio player for Drupal	 117
Examining the Audio node using Services Administrator	 117
Referencing the audio file path	 118
Writing a custom AudioPlayer class	 119
Playing audio in Flash	 121
Using our AudioPlayer class to play audio	 122

Adding controls to your custom audio player	 123
Adding a play and pause button	 123

Creating a base button MovieClip	 124
Adding the PlayButton movie clip	 125

Creating a pause button from the play button	 127
Linking MovieClips to ActionScript	 128
Adding the AudioPlayer to the stage	 130
Modifying the AudioPlayer class to use play and pause	 131

Step 1: Adding the SoundChannel	 131
Step 2: Adding load, play, and pause functions	 132
Step 3: Reference the mcAudioPlayer MovieClip	 133
Step 4: Hooking up our buttons!	 133

Modifying our main.as file to use our new AudioPlayer	 136
Summary	 137

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents

[iv]

Chapter 6: Flash Video in Drupal	 139
Working with video in Drupal	 139

Creating a video content type	 141
Adding a video file field	 141

Installing and configuring the jQuery Media module	 143
Configuring the jQuery Media module	 143
Installing a media player	 145

Creating a video node	 146
Building a custom video player in Flash	 148

Creating a MediaPlayer base class	 148
Adding play and pause button instances to MediaPlayer	 149
Removing uncommon code from MediaPlayer	 150
Modifying the AudioPlayer class to derive from MediaPlayer	 152
Extending and overriding base (super) class functionality	 153
Creating a VideoPlayer class	 156
Working with Video, NetStream, and NetConnection	 157
Initializing our video variables	 158
Creating the video object	 159

Adding video functionality	 160
Adding video load	 160
Adding play and pause functionality	 162

Creating a new VideoPlayer MovieClip	 162
Linking the VideoPlayer to Drupal	 164

Loading and playing our Drupal video	 164
Adding our custom media player to Drupal	 168

Summary	 169
Chapter 7: The Hybrid Approach
Part 1: Componentization	 171

What is the hybrid approach?	 172
Creating a media player control bar	 174

Creating a ControlBar class	 174
Removing the ControlBar dependency from MediaPlayer	 176
Adding the ControlBar to the stage	 177
Communication between ControlBar and MediaPlayer	 179

Creating a communication gateway	 179
Using static functions	 180

Using the this pointer	 182
Making the connections	 184

Adding the ControlBar to our Flash project	 186
Removing the control bar from the MediaPlayer	 188

Summary	 189

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents

[�]

Chapter 8: The Hybrid Approach
Part 2: Remote Control	 191

Client-side Flash communication	 191
Flash to JavaScript communication	 193

Calling a JavaScript function from Flash	 193
Calling a Flash function from JavaScript	 194
Initializing the ExternalInterface	 194
Adding the MediaGateway initialization to main.as	 197
Adding outgoing messages to the MediaGateway	 198
Adding remote or local functionality	 201

Building a JavaScript Gateway	 202
Locating a Flash application using JavaScript	 202
Creating the gateway functions between two Flash applications	 203

Flash and JavaScript synchronization	 205
Step 1: Create an array of communicating Flash applications	 206
Step 2: Flash calls to see if the JavaScript Gateway is ready	 207
Step 3: Flash application registers with JavaScript	 209
Step 4: JavaScript initializes our Flash when all have registered	 211

Using our remote control within Drupal	 213
Adding the JavaScript Gateway to Drupal	 213
Adding our Media Player to Drupal	 215
Changing our Content Template	 215
Adding the Remote Control	 216
Creating a FlashNode template	 219

Summary	
Chapter 9: Flash with Drupal Views	 221

Using the Drupal Views module	 221
Views: Installation and Configuration	 222
Setting up a view	 222

Creating a new page view	 223
Adding fields to a view	 224
Adding a Filter to our view	 226

Using the Views Service	 227
Step 1: Install the Views Service 	 228
Step 2: Configure user permissions	 228
Step 3: Verify it works	 229

Building a Flash Playlist using Drupal	 230
Creating a node teaser	 233

Creating a teaser background	 234
Using the timeline to add different teaser states	 235
Adding a title to the teaser	 236

Creating a Teaser class	 238
Building a ListView class	 243

Adding our ListView to Flash	 247

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents

[vi]

Adding the ListView to our Media Player	 250
Creating a Media Region	 251
Populating the list view	 253

Summary	 256
Chapter 10: User Management	 257

Drupal user management	 258
Adding new user roles	 259
Adding permissions to a user role	 259
Creating new users and assigning them roles	 260

The User Service module	 261
Installing the User Service	 261
Configuring permissions	 261
Configuring the User Service module	 262

Building a Flash user login block	 264
Welcoming our logged-in users	 266
Creating a login button	 267
Adding some status text	 268
Creating a mcLogin movie clip	 269

User handling within Flash	 271
Hooking up our login button	 274
Checking for a username and password	 275

Logging into Drupal	 276
Adding a user responder	 276
Logging in	 277
Logging out	 278

Summary	 280
Chapter 11: Adding Content to Drupal	 281

Drupal Services security	 281
The API key	 282

API key configuration	 283
The allowed domain and crossdomain.xml	 284
How to use the API key	 285

Building a Drupal service in Flash	 286
The DrupalService class	 287

Adding the API key to our DrupalService	 289
Adding arguments to the service call	 291

Adding DrupalService functionality to main.as	 296
Building a node editor in Flash	 300

Creating view, edit, and add tabs	 300
Adding normal, hover, and selected states	 302
Duplicating the mcView for the edit and add tabs	 304

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Table of Contents

[vii]

Adding a background to our node	 306
Changing the node view	 307
Creating a node edit form	 309

Adding content to Drupal from Flash	 311
Adding tab functionality	 311
Saving a node from Flash	 313

Editing existing content in Drupal	 316
Summary	 319

Chapter 12: Build a Drupal Five-star Voter in Flash	 321
Building a custom Voting Service for Drupal	 322

The module info file	 322
Voting Service module	 324

Installing the Voting Service module	 325
Building a Custom Service	 325

Registering external web services using hook_service	 326
Defining web service callback functions	 327
Adding arguments and voting logic using Voting API	 329

Building a five-star voter in Flash	 335
Voter design	 337

Making some stars	 337
Adding different vote types	 340
Adding the vote layers to the mask layer	 342
Adding vote hit regions	 344

Creating a Voter class in ActionScript	 347
Initializing the voter	 347
Adding the event handlers	 349
Handling the voting hover events	 350
Getting a vote from Drupal	 351
Setting a vote in Drupal	 353
Adding the voters to main.as	 354

Summary	 356
Index	 357

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Preface
This book is an in-depth discussion and tutorial session on how to integrate Flash
applications with the Drupal CMS. It describes the best techniques and practices for
integrating Flash technology with the power and flexibility of Drupal—by building
real-life Flash applications.

In this book, you will learn how to build Flash applications that show text from
within Drupal and also present images, music, and video within a single Flash
application. You will also be able to take advantage of the expandable fields and
content filtering provided from the CCK and Views module to add flexibility
and power to your Flash applications. Finally, you will learn how to add your
own custom functionality to Drupal and then utilize that from within your Flash
applications, leaving you with a world of possibilities.

This book starts out as a simple introduction to Flash and Drupal technology, where
you will create a simple Flash application and then embed that within Drupal. From
there, each subsequent chapter will build onto the previous chapter and you will
tackle new and challenging tasks. For each new task, you will take a step-by-step
approach to building a real-life application that utilizes the features introduced
within that chapter. You will also explore alternative design approaches that
eliminate the current design challenges that developers face when building
Flash-driven Drupal sites; and all this while staying true to the object-oriented
principles that govern the foundation of the ActionScript 3 language. By the end
of this book, you will be able to apply all the lessons learned from this book to any
other use case you may encounter.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Preface

[�]

What this book covers
Chapter 1 sets the stage for the reader to learn how Flash and Drupal can combine to
create a dynamic, content-rich experience for our users. We will learn how to embed
Flash applications within Drupal, as well as learn about some important modules
that make it easier to work with Flash in Drupal.

Chapter 2 builds a "Hello World" application. We will say hello to the world in Flash
using Drupal-driven content. However, unlike any other "Hello World" tutorial,
we will learn the important concepts of asynchronous programming and how that
relates to working with Drupal content in Flash.

Chapter 3 covers how to add custom content to our Flash applications using the
popular Content Construction Kit (CCK). We will illustrate this concept by building
a hypothetical Recipe Flash application designed for a Drupal cooking web site.

Chapter 4 shows us how to use Drupal managed images to give our application a
little visual flare as a visually stunning Flash application would not be complete
without the integration of images. We will build on from the previous chapter by
adding an image to our Recipe Flash application.

Chapter 5 explores how to use Drupal to manage a list of audio nodes and also builds
a Flash application to play that music. When it comes to multimedia, Flash is the
portal of choice for playing audio on a web sites.

Chapter 6 expands our custom media player to not only play music, but also show
Flash videos managed from our Drupal web site, which is built onto the concept
from the previous chapter. In addition, we will learn some important concepts of
object-oriented practices while we reuse common components to build a media
player for Drupal.

Chapter 7 explains the basics of how to take an existing Flash application and break
apart the components for remote communication. We achieve this by first abstracting
out separate functionalities into two separate components, and then laying the
foundation for a communication gateway between the two different components.
This is an essential first step to create a robust and easily maintained system, where
Flash applications can be separated on a Drupal web site, thus implementing a
hybrid Flash integration approach.

Chapter 8 creates the necessary components required to implement the hybrid
approach. This chapter focuses on creating the bridge between two different Flash
applications. Once we create this bridge, we will have the ability to control our
media from a remote Flash application. In other words, we will be building a remote
control for our media player that can be placed anywhere on the page, separate from
the media player.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Preface

[�]

Chapter 9 builds a media player whose playlist is driven from the power of the
Drupal Views module. Arguably, the most important aspect of any content-rich web
site is its ability to build lists of each piece of content in a meaningful manner. The
Drupal Views module gives the administrator the ability to manage the contents of
their site in a meaningful list of content to present to the users. By combining this
power within Flash, we can learn how to create a playlist of video nodes for our
custom media player.

Chapter 10 shows how to utilize user management within a Flash application by
building a User Login Flash widget. One of the most important aspects of the Drupal
CMS is its ability to manage its users and protect the content of that site using a
permission-based role system.

Chapter 11 shows how to add content to our Drupal web site while at the same time
keep our data safe from malicious software. Not only can Flash be used to show
Drupal content, but it can also be utilized to add and manipulate Drupal content
from a remote Flash application.

Chapter 12 will sum up all lessons learned in this book by building a five-star voting
mechanism in Flash. We will learn how to build a custom Voting Service as well
as create our very own Flash driven five-star voter compatible with the popular
FiveStar module.

What you need for this book
We need to install Drupal version 6, Flash CS3 or CS4, and Apache-MySQL-PHP
(AMP) for this book.

Who this book is for
This book is written for developers who wish to build dynamic Flash applications.
Although, we will be using Drupal for our Content Management System, the lessons
learned within this book can easily be applied to other content management systems
such as Joomla or WordPress. Because of this, you are not required to be familiar
with Drupal. Any interaction with Drupal will be described in full detail so that
anyone can follow along. As for Flash, it is not necessary to be familiar with how to
use Flash since that too will be covered in this book. However, it is recommended
that you have some modest understanding of ActionScript and PHP since there are
many code examples in this book.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Preface

[�]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can start this off by opening up our
main.as file and then, shift our focus to the onNodeLoad function."

A block of code will be set as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";
var nodeId:Number = 5;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Preface

[�]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note via the SUGGEST A TITLE form on www.packtpub.com, or send an email to
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
Visit http://www.packtpub.com/files/code/7580_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately, so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of this book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal
It is no secret that the web sites that become the most popular on the Web are those
which possess a series of traits that appeal to the masses; most prominently, content
and beauty. Because of this trend, many web developers strive to produce sites
that are not only beautiful, but also rich in content. In order to satisfy the beauty
requirement, Flash has easily risen to the top as being an ideal portal to deliver
dynamic and beautiful web experiences to its users. At the same time, with the
explosion of content on the Internet, Drupal has stood out, among other content
management systems, as a powerful and expandable means to manage content. It
only seems natural, then, to combine these two incredible technologies together to
create the ultimate user experience.

In this book, we will learn how to integrate Flash with Drupal by taking a hands-on
approach to building real-life Flash applications for Drupal CMS. Each chapter will
introduce a different and more difficult challenge, where we will continually build
onto the skills learned from the previous chapters. It is my goal, that by the end of
this book, you should be able to venture off on your own and build your very own
Flash applications that integrate beautifully with Drupal. But before we get ahead of
ourselves, we need to take a step back and understand the motivation for this book.
We also need to touch base on some of the basics for integrating Flash with Drupal,
which include:

Why Flash with Drupal?
Who is this book for?
Getting started with Drupal
Adding content to Drupal
Getting started with Flash
Creating a Flash application
Adding Flash content to Drupal

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[�]

Why Flash with Drupal?
Within the past couple of years, there has been a major paradigm shift in the world
of product development. Everything from phones, web sites, and automobiles has
been affected from this movement, where the importance of functionality has seemed
to have been replaced with style and usability. No longer do the products that offer
maximum features sell more than their competitors. Instead, the products that offer
style and ease of use are the ones that rule the trade and are considered to be the
"next big thing".

Web development is no stranger to this trend. Just take a look at some of your
favorite web sites and you will realize how important style and usability are to
the world of web development. With this movement taking hold, it is easy to see
how Flash technology has risen to the top as being the portal of choice for many
web site user interfaces. Flash offers many tools that make it easy to create stylish
and easy-to-use applications, and because of this, many people know a Flash web
site when they see one (and usually, remember it). What is not so apparent about
Flash, though, is its lack of ability to effectively manage and deliver dynamic content.
Fortunately, this is where Drupal shines.

With the explosion of content on the Internet, Content Management Systems (CMS)
have become mainstream for any web site administrator, who wishes to manage
the onslaught of new content on his/her site. Although there are many different
flavors of CMS, Drupal is rapidly becoming the system of choice because it offers
a powerful and extensible framework that can mould to any application. However,
when it comes to style and usability, Drupal requires a lot of work to get the look
and feel in the way that you and your visitors would expect from any top-notch web
site. With that said, one can easily see how the combination of Flash and Drupal is
a match made in heaven between beauty and the brain.

Who is this book for?
This book is written for developers who wish to build dynamic Flash applications,
whose content is governed from a CMS. Although we will be using Drupal for our
CMS, the lessons learned within this book can easily be applied to other content
management systems such as Joomla or WordPress. Because of this, it is not assumed
that you are familiar with how to use Drupal, and any interaction with Drupal will
be described in full detail so that anyone can follow along. As for Flash, it is not
necessary to be familiar with how to use Flash since the basics will also be covered
in detail within this book. However, it is recommended that you have a modest
understanding of ActionScript 3.0 and PHP, since there will be many code samples
in this book. With that said, let's get started!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[�]

Getting started with Drupal
We will kick things off by first exploring Drupal and seeing how to utilize a few of its
many features for our Flash applications. Although this will not be a complete guide
to Drupal, it will give us a quick introduction, so that we can comfortably integrate
its power into the Flash applications that we will create in this book. And, it all
begins with the installation!

Installing Drupal
Since Drupal is a web-based application, our first goal is to install a server that will
be able to run and execute the PHP code that makes up this incredible CMS. The
most typical setup for running Drupal is to use an Apache web server along with
PHP and MySQL services enabled.

Installing Apache-MySQL-PHP (AMP)
There are many ways to install Apache, MySQL, and PHP, but I would highly
recommend installing a pre-built AMP package onto your computer, and then
running Drupal on your machine through a local server. Luckily, there are several
pre-built installers that make this step as simple as possible. Each operating system
has its own version, and they all can be found at the following locations:

Windows and Linux—XAMPP (http://www.apachefriends.org)
Mac—MAMP (http://www.mamp.info/en/index.php)

Each of these packages has an easy-to-follow installer that will install an AMP server
on your local machine, so that we can then install Drupal. After we are done with
the installation of these packages, we should be able to go to the following locations
within your web browser, to see a welcome page.

Windows and Linux—http://localhost

Mac—http://localhost:8888/MAMP

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[10]

If you are using MAMP, then I would highly recommend setting the default Apache
and MySQL ports by clicking on the Preferences button in the MAMP application.
Once you are in the Preferences section, we will then select the Ports tag and click
on Set to default Apache and MySQL ports.

This will make it such that you can type http://localhost within your browser
without the port (:8888), which is consistent with the rest of this book. Now, with a
web server installed, our next step is to install Drupal.

Creating the Drupal database
Once we have our AMP server running, our next task is to create a database that we
will use for our Drupal installation. This simply requires running phpMyAdmin
that comes with the AMP packages, and can usually be found by navigating to the
welcome screen at http://localhost (for XAMPP) and http://localhost/MAMP
(for MAMP), and then clicking on the link that says phpMyAdmin. Once we are
inside the phpMyAdmin front page, we can easily create a new database called
drupal6 using the Create new database input field and clicking on the Create button.

Now that we have a new database, we will need to create a new user who can use
our Drupal database.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[11]

Creating a database user
We will create a new user by first navigating back to the main phpMyAdmin screen,
and then clicking on the link that says Privileges. Once we are in the Privileges
section, we can create a new user by clicking on the Add a new user link. We will
then fill out the user information by providing the following information (of course,
you can use your own username):

Our next task is to make sure that we give our user the correct privileges to use
the database that we just created. Since we are just using this as a local server, it is
completely fine to give your new user global privileges by clicking on the Check
All link that is next to the Global privileges section.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[12]

We can now click on the Go button, at the bottom right of the Privileges section, to
create our new user. Our next step is to increase our PHP memory, so that Drupal
does not timeout when it is installing.

Increasing PHP memory
This next step is almost always overlooked when installing Drupal. By default, the
AMP packages do not allocate enough PHP memory required to install Drupal.
Because of this, we will need to edit the php.ini file and manually increase this
value. The php.ini file can be found within the conf/php5 directory of our AMP
package installation directory. Once we open the php.ini file, we will perform a
search for memory_limit and change it to 32M. While we are in this file, we should
also probably increase the execution and input time as follows:

max_execution_time = 1000
max_input_time = 1000
memory_limit = 32M

After we save our changes, it is very important that we reset Apache so that these
changes take effect. We can do this by opening up our AMP control application,
and choosing to reset the Apache server, or we can simply close and restart this
application to perform the required Apache restart. With this done, we are now
ready to install Drupal!

Installing Drupal
Moving right along, we can download the latest version of Drupal by going
to http://www.drupal.org and clicking on the download links found on the
homepage. For this book, we will be using Drupal 6, so select the latest version
of Drupal that begins with 6. At the time of writing, the release was version 6.10,
which can be downloaded at http://ftp.drupal.org/files/projects/
drupal-6.10.tar.gz.

Once we have downloaded this package, the next step is to extract the contents into
the document root of the web server. This is typically within the htdocs folder of the
XAMPP or MAMP installation. Whatever resides in this folder is now visible when
you navigate to http://localhost from your browser. For example, if we created
an HTML file called index.html inside the htdocs folder, and then navigated to
http://localhost, we would see that HTML file rendered within our browser as a
web page. In this book, we will simply create a new folder within our htdocs called
drupal6, and then extract the contents of the Drupal 6 package inside that new
folder. Since we have placed all of our contents inside the htdocs/drupal6 folder,
we can now open up our browser and type http://localhost/drupal6 to see
the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[13]

We can begin our installation by clicking on the link that says Install Drupal in
English, where we will then be greeted with the following page:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[14]

Don't let the red scare you. What this is telling us to do is find the default.settings.
php file within the sites/default folder of our extracted Drupal folder. Once we find
this file, we simply need to rename it as settings.php. After it has been renamed, we
need to change the permissions of the file so that it is writable. When we are done,
we can click on the try again link, and see the following:

From here, we will just enter all the database information that we set up in the
previous section, and then click on the Save and continue button. This should then
walk through the installation process. If it does not, then we can manually edit the
settings.php file and manually put in our database information by changing the
following line:

$db_url = 'mysql://travist:mypassword@localhost/drupal6';

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[15]

We can now navigate to http://localhost/drupal6/install.php and kick off the
installation. If all goes well, we should see the following page:

At this point, we can fill out all of the initial configurations for our Drupal web site,
including the site name, email, user name, password, and so on. When we are done,
we can click on the Save and Continue button at the bottom of the page, where we
should see the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[16]

When we click on the link that says your new site, we should then be greeted with
the most popular Drupal page (as shown in the following screenshot).

With Drupal installed, we will now add some content.

Adding content to Drupal
In order to build a Flash application that utilizes Drupal content, we will first need to
understand how to add content to Drupal. Fortunately, this step is very simple and
first requires us to click on the link that says Create content on the left navigation
menu. Once we click on this menu item, we should be given an option to either
create a Page or a Story. A page is simply a single page of content. An example of a
page would be if you were to create an "About" page for your web site that simply
describes the nature of your business. A Story is a collection of pages that, together,
combine and create a common piece of content. An example of a Story would be a
web site tutorial. We can now create some content on our web site by clicking on
the Page link. We can provide a Title and Body for our page, as follows:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[17]

We can then click on the Save button, at the bottom of the page, to create our
first page.

Now that we have created our first Drupal page, we are ready to move onto Flash.

Getting started with Flash
Adobe Flash is a multimedia platform that allows us to create animations and rich
Internet applications. Each of these applications, created with Flash, is pre-compiled
into the Shockwave Flash (SWF) file format. These applications can be embedded
within a webpage or used on the desktop for local functionality. These SWF files
are read and interpreted using the Flash Player, which must be installed as a
plug-in for the browser viewing the page. This is rarely an issue though, since Flash
is so widely used by so many web sites that it is rare to not have Flash installed on
your visitor's browser.

So, our first task is to install Adobe Flash CS4 onto our computer, so that we
are able to walk through the examples in this book. Although Flash CS4 is not a
free application, you can easily download the 30-day trial version by going to
http://www.adobe.com/go/tryflash and complete this book within that trial
period. Once you have Flash CS4 installed on your machine, we are ready to
move on.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[18]

If you are using Flash CS3, you will still be able to use all of the
tutorials in this book. Flash CS3 and CS4 are very similar, so there
should not be any discrepancies between the two when following
through the examples in this book.

Creating a new Flash project
With Flash CS4 installed on our computer, we can open up the application and create
a new project. When the application first comes up, you should see a welcome screen,
where we can Create a new project. For all of the examples in this book, we will be
using ActionScript 3.0 for our Flash applications. So, we will continue by clicking on
the link that says Flash File (ActionScript 3.0), which should then bring up an empty
project. Since there are differences in the way that Flash CS3 and Flash CS4 look, our
next task is to change the default workspace for Flash CS4 so that it looks like CS3.
This will make it easier for everyone to follow every lesson in this book and keep any
reference that I make regarding the location of certain tools consistent.

Setting up the workspace
In this step we will set the workspace layout so that it looks identical to the Flash CS3
default. In Flash CS4, we can accomplish this by clicking on the Window menu item.
Once this menu item opens up, we will select the Workspace menu item, and then
select Classic.

We should now have a workspace that resembles the following diagram. We will
take a look at each highlighted section within this workspace, so that we know what
they are when they are referenced in this book.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[19]

For each of the following sections, simply refer back to this diagram to see where to
find the item under discussion.

A: The Stage
With our workspace set up the way that we want, we can shift our focus to the white
square in the middle of the screen. This white square region is called the stage and
will be referenced quite a bit in this book. The stage is simply the visible window for
any object that is placed within our Flash application. By dragging an object off of the
stage, we are removing the object from the visible region of our Flash application.

B: The Toolbar
The toolbar presents many of the tools that can be used to create or edit objects on
the stage.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[20]

C: The Timeline
When you click on this tab, you should see the timeline for our Flash application.
The timeline is a very important aspect in Flash since it allows us to create objects
that can change in time. There are many elements within the timeline that will be
important for us in this book, and each of these items is described as follows:

Within the timeline, there are a series of white blocks that span the width of
the timeline. Each of these little white blocks are called frames. A frame is a
snapshot in time for our Flash application. We can combine a series of frames
to create an animation (where an object moves for each new frame), or define
different states for our objects, where each frame shows a different state for
our object.
Another important feature of the timeline is the ability to define multiple
layers. We will use this quite often in this book since it not only allows us to
control which objects are on top of other objects, but it also serves as a great
way to organize our Flash applications for ease of use.
Having each object within its own layer also gives us the power to hide or
lock each layer. This can be done by clicking on the dot within the column
(visibility) or the column (lock). This will help us to keep other objects
unaffected when we are working on a different layer.
We can also create new layers by clicking on the symbol. Once we have
created a new layer, it is best practice to name that layer by clicking on the
name until it turns into an edit box, where we can then provide any name
we would like.

D: The Properties panel
The properties panel is used to describe the object that is currently selected. We will
use this panel quite often in order to change the width and height, and to give names
to our object's instance.

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[21]

E: The Color Palette
We will use this tool to change the fill colors for the objects that we create. We will
also use this tool to create gradients to give our application depth and character.

F: The Library
This tool is used to keep track of all objects that we have created within our Flash
application. We will use this to edit existing objects as well as to create new objects
that will be used in our Flash application.

Now that we are familiar with the Flash Integrated Development Environment
(IDE), we can create something within Flash and then embed that within Drupal.

Creating a Flash application
For this example, our Flash application will be very basic. For the most part I would
just like us to walk through the process of creating a Flash application within Flash,
and then take that application and embed it within a page in Drupal. Once we have
conquered this, we will be geared up to create some really cool applications that will
surely wow your visitors. But keep in mind that your imagination is the key, so feel
free to go crazy and create something very cool, and not feel limited with what we
create in this section.

Before we begin, however, we will need to create a home for our Flash project. In
this book we will always start out each chapter by first creating a new directory
to hold the contents for that chapter. With that said, we first need to create a new
folder called chapter1 and then save our currently opened up Flash application
as chapter1.fla within this folder, by clicking on the File | Save As menu item.
Once we have saved our Flash application, we can now start by adding objects to
our stage.

Creating a background
Our first task will be to create a background for our Flash application so that it sticks
out when viewing through Drupal. We can do this by clicking on the tool within
our toolbar. This should then change our mouse to the cross-hair symbol when you
move the mouse over the stage. Before we begin to draw our rectangle, though, we
will need to make sure that all of our rectangle properties are set up just the way
we want them.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[22]

Rectangle properties
We will now shift our focus to the PROPERTIES panel, which should show some of
the options that we have for drawing a rectangle object.

The FILL AND STROKE region is used to describe how the rectangle will be drawn
and what colors can be used to either fill or stroke (border) the rectangle. For this
example we would like to have a rectangle that has a 3 pixel dark grey border, with
a dark blue center, which we can configure by setting the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[23]

Finally, we would like our rectangle to have rounded corners. We can do this by
adding a value within the RECTANGLE OPTIONS section that shows the
symbols. To have a 15 pixel radius for the rounded corners, we can provide
the following:

We can now move our cursor over the upper left-hand corner of our stage region
(where the white square begins), and draw our rectangle region as follows:

Adding a gradient
We will now give our background some character by adding a gradient as the
fill color. To do this, we will first click on the fill region of the rectangle using the
Selection tool (), and then open up the Color tool on the right side of the screen.

We can now give our background a linear gradient by clicking on the Type
drop-down menu and selecting Linear. Next, change the gradient colors by first
clicking on the right tab within the Gradient tool , and then changing
that color back to the dark blue color. Then, click on the left tab of the gradient tool
and give it a lighter blue color.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[24]

Finally, to make this background more interesting, we will orient the gradient so
that it is not completely horizontal. We can do this by first clicking and then holding
down our mouse over the Transform tool (). By clicking and holding down our
mouse over this tool, it should bring up a submenu, where we can then select the
Gradient Transform tool (). Once we have this tool selected, we will click on our
fill region, which will expose some handles where we can resize and change the
orientation of our gradient. The circle symbol (), over our fill region, will allow
us to change the orientation of our gradient, which we will use to change our fill
gradient to be oriented at approximately 45 degrees.

We are now done with our background, and ready to move onto adding some text.

Adding text to a Flash application
Before we begin adding text, we first need to create a new layer so that our text does
not collide with our newly created background. To do this, we will first click on our
TIMELINE tab, where we will first rename the default layer name to background,
and then lock this layer by clicking on the dot in the column.

After we have done this, we can create a new layer on top of the background layer
by clicking on the within the bottom layer tool menu , and then calling this
new layer as text.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[25]

Now that we have a blank layer to add our text, we can click on the Text tool ()
within our toolbar and, and shift our focus to the PROPERTIES panel.

Text properties
The text properties are most likely familiar to anyone who has used a Word
processor application. It allows you to change the color, size, style, and letter
spacing. In our example, we want a fairly large size and light color so that our text
will stand out against the dark background that we just created. For that reason,
we should provide the following information for our text field properties:

After we have our properties set up, we can add our text to our stage by clicking
anywhere on the stage we would like to show our text. When we are done, we
should see the following:

Compiling our Flash application
(making a SWF)
Now that we have created our Flash application, the next step is to run and compile
this into a SWF file, so that we can embed it within our Drupal web site. This will
first require us to take a look at the Publish Settings, so that we can make the
necessary changes to our published SWF file.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[26]

Publish Settings
Publish Settings can be found by clicking on the File | Publish Settings menu item,
where we will see the following page:

Since we are using Drupal to show our Flash applications, the first thing that we
need to do is uncheck HTML from the publish type column. After we have done
this, we can take a look at the Flash tab on the publish settings, which will show
the following screen:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[27]

Since our goal is to stay consistent with the Flash CS3 readers, we will probably
want to use Flash Player 9 to compile and run our SWF movies. We can do this by
clicking on the Player drop-down box and then selecting Flash Player 9. When we
are done, we can click on the OK button at the bottom of the settings page to accept
the changes.

Now that we have our settings in place, we can run and compile our Flash
application by pressing +Enter for Mac, or Ctrl+Enter for Windows. If you wish to
just compile your application, then you can alternatively select File | Publish from
the main menu. When we are done with this step, we should be able to navigate to
our chapter1 folder and see the following:

The SWF file is the compiled Flash file that we will now embed within our Drupal
web site.

Adding Flash content to Drupal
There are many ways to add Flash content to Drupal, but what I am going to cover
in this section is what I have found to be the easiest. Thanks to the wonderful
Drupal community, there is already a fantastic module that was built to easily add
Flash applications to Drupal. This module is called FlashNode and can be found at
http://www.drupal.org/project/flashnode. Within this project page, we need
to download the latest version for Drupal 6. We can determine a module's Drupal
version by taking a look at the first number in the package version, where 6.x means
it is for Drupal 6. After we have downloaded the version build for Drupal 6, which
was version 6.x-3.1 at the time of writing, we can install this module in our local host
Drupal installation.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[28]

Installing a contributed Drupal module
The first thing that we need to do to install a Drupal module is locate our Drupal
installation that we placed in our computer earlier in this chapter. Within this
directory, we should see the following files:

If we open up the sites folder, we should then see an all and a default folder.
These folders are used to separate the files, modules, and themes for any web site
that is sharing the single Drupal installation (called multisite). For example, if we
wish to install a module for all of our web sites, then we would place this new
module within the all folder. However, if we just wish to include this module in the
default site (which is the site we are using right now), then we will have to place the
module within the default folder. In a typical multisite configuration, there would
be a separate folder within the sites directory for each web site that is being run off
the single Drupal installation. But for our purposes, we will use the default folder
for any additional module that we install to our Drupal web site. So, within the
default folder, we will need to create a new folder called modules, and then place
the extracted contents of the flashnode module within this directory as follows:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[29]

Now that we have the flashnode module in the right location on our server, we can
navigate to our Drupal web site by going to http://localhost/drupal6. Once we
are there, we can go to our administrator section by clicking on the Administer link
on the left menu. Once we are within our Drupal administration section, we will
click on the Modules link. Throughout this book I will refer to this type of navigation
as saying "navigate to Administer | Modules".

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[30]

Once we are within the Modules section, we can scroll down to the bottom of the page
and enable the FlashNode module by clicking on the checkbox next to this module,
and then clicking on the Save Configuration button at the bottom of the page.

Adding Flash!
We are now ready to add our Flash application to Drupal. We will first click on the
Create Content link from the left navigation menu, and then select Flash from the
list of items.

We will then see the Create Flash page, where we will start by giving our new Flash
node a title.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

[31]

After this, we will select the Flash file that we just created by clicking on the Browse
button next to the Flash file input field, and then selecting our SWF file using the file
browser window.

Finally, we can scroll down to the bottom of the page, where we can click on the
Save button. Congratulations, you have added Flash to Drupal!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

[32]

Summary
We now have the foundation for building some dynamic applications for Drupal.
We can easily use the lessons learned in this chapter to build some very cool Flash
widgets to be used within Drupal. But these applications would be limited, since
they will be confined to only showing the content provided from within that Flash
application. In the following chapters we will dive into how to incorporate Drupal
content within our Flash applications. This will open up a whole new world of
functionality that we can utilize to create some very exciting Flash applications.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a "Hello World"
Application

We have built a static Flash application and integrated it within Drupal, now our
next step is to replace the static text with dynamic content extracted from Drupal. We
will accomplish this task by building a Flash application that is able to read a Drupal
"Hello World" page, and then displaying that text using Flash. Although this may
seem like a trivial task, surprisingly, there is much effort required to simply display
those two words using Flash and Drupal. In this chapter we will go over all the
necessary elements needed for communication between Flash and Drupal. Some of
the key topics that will be covered are as follows:

How Flash and Drupal communicate
Understanding Web Services
Setting up Drupal for Web Services using the Services module
Using Drupal's web services to say "Hello World" in Flash
Using FlashVars in our Flash applications

How Flash and Drupal communicate
In order to understand how Flash and Drupal communicate, it is important to note
how each one differs in where it is executed. When we build a Flash application
for Drupal, the loading and execution of our Flash application will be completely
different from the execution of our Drupal website. As with any Drupal website, the
execution of all the code within Drupal will be performed on the server in which it
resides. Once this code is executed on the server, data is sent in the form of HTML
to the machine that the visitor is using to view our website. Any Flash application
that we build on top of Drupal is sent along with this HTML, and then loaded and
executed on the visitor's remote machine. In web terminology, this association is
called Client and Server, where Drupal will be the server-side application and the
Flash application will be the client-side application.

•
•
•
•
•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[34]

The catch here is that there is no guarantee that the server and client machines are
near each other physically. They could be a couple of feet apart or thousands of
miles away from each other, as seen in the following illustration:

Because of this, communication between Drupal and Flash requires the use of a
standard protocol, commonly referred to as web services.

Understanding web services
The fundamentals of web services are structured around the concept of remote
function calling—or remoting. Using the power of XML, remoting allows one
application to remotely call a function within another remote application. What this
means is that one application that is running on a computer half way around the
globe can send a request to call a function on your home computer. This process is
commonly referred to as RPC (Remote Procedure Call). (To read more about RPC,
visit http://en.wikipedia.org/wiki/Remote_procedure_call.) There are many
different implementations of RPC, but all of them accomplish the same task, that is,
of breaking up the elements that define a function into a standardized XML format.
This XML is then transmitted to the remote location where it can be interpreted and
executed as if the two procedures were located on the same box or even within the
same application. The detailed inner workings of RPC are slightly out of the scope of
this book. Anyway, what is important is for you to understand is how two separate
applications can accomplish this technique of RPC—since this is exactly how Flash
and Drupal communicate.

Let me demonstrate this by giving you a very simple Flash application that prints
(you guessed it!) "Hello World". Let's go ahead and open up our Flash application
and start a new project. In this project, we will start by simply adding a trace
statement to print "Hello World" in our debug shell. The trace statement is used
within Flash to print out any string or variable in the Output window. This is a very
handy tool because it lets us visually see when pieces of code are executed, and the

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[35]

values of certain variables when that execution was made. Within the Actions panel,
we can now see how the trace statement works by placing the following command:

trace("Hello World!");

Once this code is in place, we can run our Flash application by pressing +Return
for Mac or by pressing Ctrl + Enter for Windows. This should then bring up a blank
screen where we will see the text "Hello World!" within the Output panel.

Now, let's take that simple line of code and turn it into a function that does the same
thing. It should look like the following:

function sayHello()
{
 trace("Hello World");
}

If we run the Flash application again, we should see that the code we wrote doesn't
do anything. The reason for this is that the simple declaration of a function really
doesn't do anything unless someone calls that function. We can do this by placing
the call just below the function declaration like the following:

function sayHello()
{
 trace("Hello World");
}

sayHello();

So, in the last example, we have the same application defining the routine and
making the call. In web services, these two will be separated between two completely
different applications. One application will define the function sayHello, and the
other application will be making the remote procedure call.

The previous example does a fair job of showing you the concept of how web
services work. But, it isn't very accurate in showing you how we plan to work with
Flash and Drupal. In this scenario, we will use Drupal as the source of the content
and Flash as the mechanism for displaying that content. Because of this, we need to
change our above code so that the text "Hello World" is retrieved instead of assumed.
Still working within a single application, this would look like the following:

function sayHello(hello:String)
{
 trace(hello);
}

function getHello() : String
{
 return "Hello World!";
}

sayHello(getHello());

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[36]

I know that this code seems very bloated for simply printing "Hello World", but we
are getting much closer to a real-life web service interaction between two remote
applications. In this example, Flash will call getHello, which will end up making
a remote function call into Drupal and then populate the sayHello argument with
whatever it returns, as shown:

"Hello World!"

But, there is still something wrong with this example. Upon closer observation, it is
clear that we are assuming that the getHello routine will instantly return the text
from its content source. In a web service scenario, this getHello routine will be
calling a remote location that will always take an unknown amount of time to return
something, if anything at all. This type of interaction is called "asynchronous" and
is usually the cause of much confusion for a programmer who is just learning
this process.

Synchronous versus asynchronous programming
In the previous example, you will notice that there are two functions. The sayHello
function is used to print whatever argument it receives, while the other function
is used to retrieve and return the text "Hello World". Now, combine these two
functions and you will get an overly complicated way to print "Hello World".
However, this over complication is necessary to understand how two independent
pieces of software interact. Of course, for the sake of simplicity, I have chosen to
keep these two functions in the same application, but soon we will separate the
two between Flash and Drupal. So, in this example, I would like to concentrate
our attention on the getHello function.

function getHello() : String
{
 return "Hello World";
}

This function, as it is designed right now, is very simple because it is programmed
synchronously. This means that the time taken by this function to retrieve the string
"Hello World" is deterministic. I am able to guarantee that after we execute this
function, we will end up with a string that says "Hello World". But this is not how it
works in the world of web services. In a web service, or remote procedure call, this
function will send a request to an external application to get this string. Also, what

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[37]

is even more important to realize is that we don't know if and when this external
application will return our string. Because of this, we need to design this function
asynchronously. Let me give you an analogy…

To best describe how an asynchronous software system works, I would
like to give you a real-life analogy: My wife asks me to take out the
garbage every now and then. If we talk in software terms, we could
say that my wife is an application, telling another application (me), to
perform its routine, that is, takeOutGarbage. Now, when my wife sends
out this command, there is really no telling if and when she will get the
results of me actually taking out the garbage. It could be hours, days, or
maybe never. But this does not mean that my wife just waits until I am
finished with my task—since she could be waiting for a really long time
and lose productivity in getting other things done. Instead, she goes about
doing other things, and when I finally do take out the garbage, she then
gets a notification from me that I have finished my work. This is exactly
how asynchronous software behaves.

So, let's change our getHello function into an asynchronous routine. In order to
accomplish this task, we need to utilize a callback function. A callback function is
just a way to tell any piece of code "Hey, do this, and then let me know when you are
finished". The callback function allows you to receive notification when something
has completed, which then allows any software process to perform other tasks while
it waits for notification. Here is an example of how to pass a callback function into
our getHello function:

function sayHello(hello:String)
{
 trace(hello);
}

function getHello(callback:Function)
{
 callback("Hello World");
}

getHello(sayHello);

When we execute this Flash application, we will see that the results are surprisingly
the same. The only difference is, this time, we are using a callback function that
works by passing the function sayHello into the getHello function as an argument
or (callback). When the getHello routine is finished doing what it needs to do, it
will call the callback function with the correct text. For us, this is just the
same thing as calling the sayHello function with the string "Hello World".

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[38]

The good news here is that the getHello function can now take all the time it needs.
In fact, we can now completely change the code within getHello to call an external
web service routine and not have to worry about our application hanging while it
waits for a response. This is the main benefit of using callback functions, as they
provide one of the main ingredients for asynchronous programming. So, let's put
this into action by setting up Drupal for web services.

Setting up Drupal for web services
In order to handle web services within Drupal, several contributors took an initiative
to develop a series of fantastic modules that'll accomplish the task of remote
communication. These modules are all subsets of the module Services, which can be
found at http://www.drupal.org/project/services. Utilizing the power of this
module, external applications are given the ability to make remote calls to Drupal
and extract the data that they need. So, our first task in making a Flash application
that says "Hello World" within Drupal will be to set up our Drupal installation so
that it is ready for external interaction. And we will do this using the Drupal
Services module.

Installing and configuring the Services module
The first task in getting web services connected for Drupal is to install the Services
module. You can find this module located at http://www.drupal.org/project/
services. Once you are there, you will be given the option to download a version
for either Drupal 5 or Drupal 6. This book assumes you are using Drupal 6, but since
the Services module works the same way on Drupal 5 as it does on 6, you should
be able to follow along, regardless of which version of Drupal you are using. Once
you have downloaded Services, you will need to extract the contents of this TAR file
in your sites/default/modules folder, which we created in the previous chapter.
After these files are in place, you will notice that there are two subfolders within the
main Services directory called Servers and Services.

Servers and Services
Services are the software elements that define the routines that can be executed by
outside applications. By enabling any of these modules, you are now exposing a
series of routines within their corresponding modules as "executable", so that any
outside application can use them to retrieve or set data within Drupal.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[39]

The Servers act as the translators that take the XML format of the service request
from an outside source, and then translate that XML into the execution of an internal
routine. They also handle the responses (or returns) from those routines, and
convert them back into the XML format to be sent back to the external application
that originally made the request. There are several different types of servers that
can be used for RPC communication, but the one that we will need to use for our
ActionScript 3 interaction is called AMFPHP (Action Message Format PHP).

Installing AMFPHP
AMFPHP is a remoting gateway to be used specifically for Flash and ActionScript,
and Drupal already has a module that creates an AMFPHP server plug-in for the
Services module. This can be found at http://www.drupal.org/project/amfphp.
Since this is a server that will be used with the Services module, we can place the
contents of this download within the servers folder in the services module directory.

But before we install this module, we will need to make sure that we download
the AMFPHP source files located at http://www.amfphp.org. Once we have
downloaded the AMFPHP server package, we will need to place the contents of
that package within an amfphp folder in our AMFPHP module folder as shown
in the following illustration:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[40]

After we have both the AMFPHP and Services modules in place, we can then
navigate to the Administer | Modules section of your website and take a look at
the services section, which includes the Services module, servers, and services.

Although we will explore and utilize most of these services in this book, in this
chapter we will only be concerned with enabling the System and Node Services.
These services will allow us to log in to Drupal and extract node information for
any given node ID in the Drupal system. With that said, let's go ahead and enable
the Services, AMFPHP, System Service, and Node Service modules. Once we
have these modules enabled, we can go to Administer | Services to learn how
to configure the Services module for external communication.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[41]

Services configuration
Once we navigate to Administer | Services, we should see three different tabs at the
top of the screen: Browse, Keys, and Settings.

Under the Browse tab, we should see a listing of all Servers installed as well as all
the Services available to outside applications. Since we have enabled the System
and Node Services, we should see just a system and node section followed by the
following routines associated with those services:

system.connect

system.mail

system.getVariable

system.setVariable

system.moduleExists

node.get (which is node.load in Drupal 5)
node.save

node.delete

By using these functions, outside applications can connect to your Drupal system
and read, write, or manipulate any node in your Drupal website. Although this may
raise a red flag of security, keep in mind that much effort has been contributed to the
security of the Services module, which is what brings us to the next couple of tabs:
Keys and Settings.

Creating a Services key
If we click on the Keys tab, we should be given two tabs at the top, where we
can either list the valid keys in our system, or create a new one. Only the service
routines that manipulate data in our Drupal system require the application using
that service to provide an API (Application Programming Interface) key before any
data manipulation can occur. The concept of a key is rather simple. When we create
a new key, the Services module will create a randomly generated string. Then, we
can provide this string within our external application to call certain routines that
manipulate data. This is just a way of protecting our site from malicious spam bots
bombarding our server with service calls and attempting to manipulate our node
data automatically. So, let's go ahead and create a new key by clicking on the Create
Key tab.

Once we click on this tab, we will be given the option to enter text in two different
fields: the Application title, and the Allowed domain.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[42]

The Application title can be anything, so we will enter something descriptive about
the application we are building, which will be Hello World for our example. The
next field is an important one.

The Allowed domain will be used to populate a cross-domain file on your server
that specifies the domains allowed to access the services on our server. Since we are
using a local server to test our application, we can provide the domain name of our
localhost plus any subdirectory where our Drupal root is located. For our example,
this will simply be localhost/drupal6.

When we are done with entering these values, we can click on the Create Key
button to create our key. After our key has been created, we should see our new
key added to the list of valid keys to be used by external applications as shown in
the following screenshot:

Now that we have an API key, we are ready to move on to the Settings tab.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[43]

Services settings
The Settings tab of the Services administrator is used to enable or disable certain
security measures as well as increase the timeout used when calling routines that
require an API key. The only thing that is important to note here is that you should
always have both the Use keys and the Use sessid (Session Handling) checked at
all times when dealing with Services. Otherwise, you run the risk of forgetting to
re-enable them later, which will introduce a security risk to your site. It also forces
you to write your applications properly so that they will never compromise with the
security of your data.

So, now that we have the Services configured, our next step is to explore the user
permissions used to control access of the web services to different user roles in
your Drupal system.

Service Permissions
Before we can start using our web service routines to build our Hello World
application in Flash, it is also very important to configure the permissions so that
we can access the data that we need from Drupal. We do this by first going to
the Administer | Permissions section within the User Settings section of the
Drupal Administrator.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[44]

Once we are there, we will need to find the following permissions and enable them
for all user roles:

For Drupal 5, these permissions are labelled different than they are for
Drupal 6. If you are using Drupal 5, then you will need to make sure you
enable the load raw node data and access services permissions.

This is a necessary step that will allow outside applications to make service
calls without having to log in to our Drupal system as a valid user (we will cover
this in later chapters). It is also important to remember to click the Save User
Permissions button at the bottom of the page when we are finished checking
all the necessary permissions.

We are now done with the boring setup and configuration of Drupal. Now, on to the
fun part…building the Flash application to say "Hello World!".

Building a web service-driven "Hello World"
application in Flash
As you may have guessed, there is a more-than-typical amount of effort required to
create a "Hello World" application that utilizes web services. Many books that teach
Flash techniques rarely, if at all, mention the necessary steps required to populate
a TextField or MovieClip with data from a remote location. But if you really think
about it, this type of architecture is ideal for any scalable or dynamic application.
This approach allows for a Model-View-Controller (MVC) architecture for our Flash
applications, which is considered ideal since it separates the User Interface (View)
from the Data Set (Model) and Business Logic (Component) of our application. Using
web services to populate all of our Flash fields, allows for the component abstraction
necessary for an MVC architecture, where Flash suddenly fulfils the role of the
View (User Interface) and Drupal fulfils the role as the Model and Component. This
enables us to have a truly scalable and manageable web solution.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[45]

So, let's take a step-by-step approach on how to accomplish this on the Flash side,
which as far as I am concerned, is the fun side!

Step 1: Creating our Flash application
Before we begin this section, we first need to create a new folder to hold all of our
changes within this chapter. We can do this by copying the chapter1 folder that
we created in the previous chapter, and then paste that new folder and its contents
within a new folder called chapter2. Once we have done that, we can rename the
chapter1.fla file to chapter2.fla, and then open up that project within our
Flash IDE.

With our chapter2 project open, we can shift our focus to the Actions panel
within the Flash IDE. Although working with the Actions panel is great for small
applications, we will eventually build onto this Flash application, which might make
it impractical to keep all of our ActionScript code within the Actions panel. Because
of this, we will first need to create a separate ActionScript file that will serve as our
main entry point for our Flash application. This will allow us to easily expand our
application and add to the functionality without modifying the Actions panel
for every addition we make.

Step 2: Creating a main.as ActionScript file
For this step, we will simply create an empty file next to our chapter2.fla
file called main.as. After you have created this new file, we will then need to
reference it within our Actions panel. To do this, we will use the include keyword
in ActionScript to include this file as the main entry point for our application. So,
shifting our focus back to the chapter2.fla file, we will then place the following
code within the Actions panel:

include "main.as";
stop();

Now that we are referencing the main.as file for any of the ActionScript functionality,
we will no longer need to worry about the Actions panel and add any new
functionality directly to the main.as file.

Now, for the following sections, we will use this main.as file to place all of our
ActionScript code that will connect and extract information from our Drupal system,
and then populate that information in a TextField that we will create later. So, let's
jump right in and write some code that connects us with our Drupal system.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[46]

Step 3: Connecting to Drupal
For this step, we will first need to open up our empty main.as file so that we can
add custom functionality to our Flash application. With this file open in our Flash
IDE, our first task will be to connect with Drupal. Connecting to Drupal will require
us to make a remote call to our Drupal installation, and then handle its response
correctly. This will require the use of asynchronous programming techniques
discussed earlier in this chapter, along with some standard remoting classes built
into the ActionScript 3 library. Since we have already discussed asynchronous
programming techniques, I will spend some time here discussing the class used by
ActionScript 3 to achieve remote communication. This class is called NetConnection.

Using the NetConnection class
The NetConnection class in ActionScript 3 is specifically used to achieve remote
procedure calls within a Flash application. Luckily, this class is pretty straight
forward and does not have a huge learning curve on understanding how to utilize
it for communicating with Drupal. Using this class requires that we first create an
instance of this class as an object, and then initialize that object with the proper
settings for our communication. But let's tackle the creation first, which will look
something like this in our main.as file:

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();

Now, you probably noticed that I decided to name my instance of this net connection
drupal. The reason for this is to make it very clear that any place in our Flash
application where we would like to interact with Drupal, we will do so by simply
using our drupal NetConnection object. But before we use this connection, we must
first specify what type of connection we will be using. In any NetConnection object,
we can do this by providing a value for the variable objectEncoding. This variable
lets the connection know how to structure the XML format when communicating
back and forth between Flash and Drupal. Currently, there are only two types of
encoding to choose from: AMF0 or AMF3. AMF0 is used for ActionScript versions
less than 3, while AMF3 is used for ActionScript 3. ActionScript 1 and 2 are much
less efficient than version 3, so it is highly recommended to use ActionScript 3 over 1
or 2. Since we are using ActionScript 3, we will need to use the AMF3 format, and we
can provide this as follows:

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

Now that we have an instance ready to go, our first task will be to connect to the
Drupal gateway that we set up in the previous section.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[47]

Connecting to a remote gateway
Connecting to a remote gateway can be performed using the connect command
on our drupal NetConnection object. But in order for us to connect, we must first
determine the correct gateway URL to pass to this function. We can find this by
going back to our Drupal installation and navigating to Administer | Services. In
the Browse section, you will see a link to the servers available for remote procedure
calls as shown in the following screenshot:

For every listed server, we can click on each link to verify that the server is ready
for communication. Let's do this by clicking on the link for AMFPHP, which should
then bring up a page to let us know that our AMFPHP gateway is installed properly.
We can also use this page to determine our AMFPHP gateway location, since it is
the URL of this page. By observing the path of this page, we can add our AMFPHP
server to our main.as file by combining the base URL of our site and then adding the
AMFPHP services gateway to that base.

// Declare our baseURL and gateway string.
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

It is important to note that the connect routine is synchronous, which means
that once this function is called, we can immediately start using that connection.
However, any remote procedure call that we make afterwards, will be asynchronous,
and will need to be handled as such. The function that can be used to make these
remote procedure calls to Drupal is called call.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[48]

Using the NetConnection call routine
If you look at the Adobe Help section about the NetConnection call function, you
will find the following arguments:

function call(command:String,
responder:Responder, … arguments);

The first argument, called command, is very easy to understand and use. It is the
command that you will send to your remote server to execute. In Drupal, this will be
the Service functions that are provided by the System and Node Services that we
installed on our server. Since our first task is to simply connect to Drupal, we will
first need to use the system.connect command to send to our System Service on
our Drupal installation.

The second argument is the responder. This is simply the object that holds the
callback functions that are used when the server returns from a remote function
call. One callback is used to handle the return value on a successful transfer, while
the other callback function is used to handle any error that might have occurred.
Since we are programming asynchronously here, we need to first create these two
callback functions and then create a new Responder object using both our success
and error callback functions. Within our main.as file, we can create the responder
with the callback functions as follows:

// Declare our baseURL and gateway
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

// Set up our responder with the callbacks.
var responder:Responder = new Responder(onConnect, onError);

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
	 trace("We are connected!!!");
}

// Called when an error occurs connecting to Drupal.
function onError(error:Object)
{
	 for each (var item in error) {
		 trace(item);
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[49]

The third argument to the call routine, and each subsequent argument afterwards,
is what will be passed as argument(s) to the remote function that we are calling. You
will notice in the function declaration that there are "…" in front of the arguments
variable. This is called a variable argument function, which means that it can accept
any number of arguments into this function. This allows us to provide any number
of arguments, which will then be sent as arguments to the remote function that we
are calling. In later chapters we will use several different Drupal services where this
comes into play.But for the system.connect service, there are not many required
arguments, so we can just omit this for now.

So, here is the ActionScript code that illustrates how to connect to Drupal using the
function call.

// Declare our baseURL and gateway
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

// Set up our responder with the callbacks.
var responder:Responder = new Responder(onConnect, onError);

// Connect to Drupal
drupal.call("system.connect", responder);

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 trace("We are connected!!!");
}

// Called when an error occurs connecting to Drupal.
function onError(error:Object)
{
 for each (var item in error) {
 trace(item);
 }
}

We can now test this out by running our application. Congratulations, we are now
connected! Let's move on.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[50]

Step 4: Session handling
Now that we are connected to Drupal, our next intuition is for us to dive in and start
extracting data from our Drupal site; but this cannot be accomplished without first
handling the session ID for our connection with Drupal. The session ID is simply a
unique identifier for every connection made with any web site. The session ID allows
a web site to keep a track of every single person navigating the site, and therefore,
give them certain permissions depending on whether that person is logged in as
a user who can perform certain tasks. Each browser then uses cookies to store the
session ID of that user so that the next time they open up their browser, their session
is restored by setting the session ID to the same value as what was saved in the
cookie. We will use this session ID in our application for every call that we make to
Drupal to validate our connection. By default, the Services module assumes that any
application making calls to the Drupal system is an "anonymous" application, and
therefore, does not allow that application to perform specific tasks. By utilizing the
session ID, we are allowing our Flash application to validate itself with our Drupal
installation so that the typical user management system that Drupal employs to
access content is utilized. With that said, let's modify our previous code to handle
the session ID for our connection with Drupal.

Connecting to Drupal using system.connect
Although session handling may sound complicated, the effort involved is minor
since the ID is returned to us after the Drupal connection has been made using the
system.connect call. And since we will be using this session ID for other routines,
we need to declare this variable in the global realm of our ActionScript code (that is,
not within a function). So, the modified code for session handling will look like
the following:

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

// Set up our responder with the callbacks.
var responder:Responder = new Responder(onConnect, onError);

// Connect to Drupal
drupal.call("system.connect", responder);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[51]

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;	

 trace("We are connected!!!");
 trace("Session Id: " + sessionId);	
}

// Called when an error occurs connecting to Drupal.
function onError(error:Object)
{
 for each (var item in error) {
 trace(item);
 }
}

We can now verify that this works by running our application. We should see, within
the output panel, our connection with Drupal followed with a valid session ID. We
are now ready to move on.

If you are not using a localhost for your server, you will most likely see a
Security dialog box when you run the application for the first time. If this
occurs, you will need to add the compiled SWF file to the Global Security
Panel by navigating to http://www.macromedia.com/support/
documentation/en/flashplayer/help/settings_manager04.
html. Once you are on this webpage, you can add the compiled SWF
file by clicking on the Edit Locations drop-down box, then select Add
Location. This will bring up a new dialog where you can click on Browse
for files button and choose the SWF file within our Chapter 2 directory.

Step 5: Drupal says "Hello World"
Now, we are getting to the fun part… loading Drupal data into our Flash application.
But before we can write the ActionScript to load node data from Drupal, we must
first revisit our Drupal web site and create a new node that we will use to say
"Hello". Moving back to our Drupal web site, let's create a new node by going to
Create Content | Page. The page title is what we will use to say hello, so where it
asks for a title, put in the text "Hello World!", and then go down to the very bottom
of the page and hit the Submit button. We should then see our new page created
that says, "Hello World!" for the title. It is very important for us to also remember
the node ID of the node that we just created. We can do this by simply looking at the
URL in our browser and writing down the number that comes after http://locahost/
drupal6/node/. We will use this number to load our node in Flash, so just make sure
you either remember it or write it down.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[52]

Loading a node in Flash
Now that our node is ready, we can write the code in ActionScript that loads this
node and then parses out the title. This is how we are going to build our "Hello
World" application using Flash and Drupal. So, let's move back to our Flash IDE
and take a look at the code that we have so far.

Picking up where we left off, we are finally at the point where we have successfully
connected to our Drupal web site and received the session ID. The next step in this
process is to get the node information from the node that we just created in our Drupal
site. To accomplish this, we will be using the Service method called node.get, which
takes two arguments: the session ID, and the node ID of the node we wish to load. This
is where our variable arguments come into play, since we have two arguments that we
need to provide.

At this point, it is considered best practice to create a separate function that combines
the functionality of creating our responder with the Drupal service call to load a
node. For the sake of simplicity, we will call this new function loadNode, where it
will take a single argument (the node ID), and then use that argument and pass it
along to the node.get service function. The Drupal node service will then return the
node object for the node that we are requesting by calling the callback function that
we provided within the responder. Within each node object, we will have access to
the Title, Body, and any other fields of data that are associated with a Drupal node.
Since we used the node title to say "Hello World", we can create an onNodeLoad
function to print out the title field for the node object returned from Drupal. Each of
these functions will look as follows:

// Connect to Drupal
drupal.call("system.connect", responder);

// Loads a Drupal node.
function loadNode(nid:Number)
{
 // Set up our responder with the callbacks.
 var nodeResponse:Responder = new Responder(onNodeLoad, onError);

 // Call Drupal to get the node.
	 drupal.call("node.get", nodeResponse, sessionId, nid);
}

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 trace(node.title);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[53]

We can now use the loadNode function to load any Drupal node by passing in the
node ID for the node we wish to load. For example, if we wish to load a node with
an ID of 2, we can simply call loadNode(2), and all the complex functionality is
now abstracted within that single function.

Now for the big question…where do we place the call to loadNode so that we can
load our "Hello World!" node that we just created? This seems simple enough,
but leads to a significant gotcha where asynchronous software becomes a little
confusing. To illustrate, let's take a look at the following code where I am attempting
to connect to Drupal and then make a simple call to loadNode directly afterwards.
Many developers who just start out using web services very often attempt to do the
following and get very frustrated when they discover that it just does not work.

// Connect to Drupal
drupal.call("system.connect", responder);

// Load our "Hello World" node (ID = 2)
loadNode(2);

If we were to run this application, we will quickly see an issue by looking at the
Output panel. This panel prints out the response returned from our Services module
after we make our call to load a node. Since an error occurred, our onError function
is called, and then the following error is printed out:

This error is the result of an elusive software bug called race condition.

Programming without race conditions
If we take another look at the previous code, we will see that we are making a
call to loadNode directly after the system.connect function call. In the world of
synchronous software, this would work just fine, but since we are dealing with web
service communication, our function calls to Drupal are not returned after each call is
made. Instead, each call that we make to Drupal can take any amount of time before
the result is returned using a callback function. To the trained eye, this is obvious,
but for the developers just learning asynchronous software behaviour, this can be
quite the head scratcher. Taking asynchronous software interaction into account, we
can now determine that our error occurred because we were making the call to get
the node information before we received any indication that we have successfully
connected, from the system.connect command. There is no guarantee that a

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[54]

response from the server will make it back in time before we end up making the call
to loadNode. In asynchronous programming, this is most commonly referred to as a
race condition, where you are betting that the return from system.connect will beat
the call to loadNode. Unfortunately, you will most likely lose this bet, and the result
will be a strange error that does nothing to expose the smoking gun.

When describing the concepts behind race conditions, I always like to
think of Drupal as having a bad case of selective hearing. Since I too have
selective hearing, I can always imagine the communication between Flash
and Drupal much like how my wife communicates with me.
Over the years, she has learned the hard way that in order to give me a
command successfully, such as takeOutGarbage, she must first get my
attention by calling my heyTravis! ������������������������������������ function first and then wait for my
yesDear? response. If she does not wait for my response before issuing
her command, I, almost always, misunderstand her and do something
completely different. For example, if she were to call my heyTravis!
function followed directly with two commands: changeBabyDiaper
and takeOutGarbage, there would be a good chance that I would end
up throwing the baby out with the garbage.
Taking this into account, we should always get Drupal's attention first
using the system.connect message, and then, we must wait to get a
response before issuing any additional commands.

Programming with race conditions is considered very poor programming practice,
and will most often lead to an extremely elusive software bug in your application.
In fact, I can easily say that with all my experience debugging software in complex
applications, it is always the race condition that is the hardest bug to find and
correct. So, let's take a moment and learn how to modify the previous code so that
it will never hit a race condition.

The trick is to simply move the call to loadNode after we receive notification from
Drupal that we are connected and have a valid session ID. After we look at the
following code, it will seem very obvious, but you would be surprised how often this
gotcha seems to crop up in complex software applications. The modified code should
look like the following (assuming the node ID you created was 2):

/������������������������������� / Connect to the Drupal gateway
drupal.connect(gateway);

// Set up our responder with the callbacks.
var responder:Responder = new Responder(onConnect, onError);

// Connect to Drupal
drupal.call("system.connect", responder);

...

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[55]

...

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;	

 trace("We are connected!!!");
 trace("Session Id: " + sessionId);	

 // Load our "Hello World" node (ID = 2)
 loadNode(2);	
}

So, after we run this application, we should get a very nice surprise… a "Hello
World" from Drupal! But we are still not done here; our next step is to hook up
the text in our Flash TextField to show this exciting text.

Step 6: Hooking up the text
In this next step, we will open up our chapter2.fla project file, where we will give
our TextField an instance name so that it can be referenced within ActionScript.
Fortunately, this step is very simple and only requires that we select the TextField,
and then give it an instance of title in the PROPERTIES panel as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[56]

Now that we have given our TextField an instance, the next step is to remove the text
"Hello Drupal" from this TextField so that we can determine if Drupal node data is
used instead.

We can now shift our focus back to the main.as file, where we will change our trace
statement within our onNodeLoad function so that it sets the text of this TextField
instead of just printing it to the Output panel. We can do this in ActionScript by
using the following code:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;
}

We can now run our application and see our TextField show the title for our Hello
World! node.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[57]

Now that our application is starting to look like a real Flash application, we need to
take some extra steps to make sure that it is flexible by allowing any node ID to be
used to say "Hello World".

Step 7: Passing the node ID using FlashVars
Since the goal of our Flash application is to dynamically load Drupal node
information, we will need a way to tell our Flash application which node to load.
We can easily hard code the node ID of our "Hello World" Drupal node, but this
approach does not give us much flexibility to apply it to any node within our Drupal
system. We can solve this issue by utilizing FlashVars to pass the node ID to our
Flash application.

Using FlashVars in a Flash application
Flash variables (or FlashVars) are special variables that are passed to a Flash
application that are used to provide a specific functionality for a common
application. They are passed to the Flash application when it is embedded within an
HTML page using the <object> element. For example, we can tell our Hello World
application to load the node data from node 2 using the following HTML code:

<object width="320" height="240">
 <param name="movie" value="helloworld.swf" />
 <param name="wmode" value="transparent" />
 <param name="allowfullscreen" value="true" />
 <param name="FlashVars" value="node=2" />
 <param name="quality" value="high" />
</object>

Within ActionScript, the node variable is then passed to the root structure and can
be referenced within our main.as file using the root.loaderInfo.parameters
construct. For example, we can determine the node ID passed to our Flash
application by using the following code within our main.as file:

root.loaderInfo.parameters.node

Using this information, we can now create a nodeID variable at the top of our
main.as file, where we will set it to the node ID passed to our Flash application.
We can then replace our hard-coded node value with this variable so that our Flash
application is no longer dependent on a specific node value.

// Declare our variables
var baseURL:String = "http://localhost/drupalbook";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

var nodeId:Number = root.loaderInfo.parameters.node;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Building a “Hello World” Application

[58]

...

...

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;	

 trace("We are connected!!!");
 trace("Session Id: " + sessionId);	

 // Load our node.
 loadNode(nodeId);	
}

We are now finished with our "Hello World" application. At this point, we can run
our Flash application so that it will create the chapter2.swf file, which we will then
use to add to our Drupal web site.

Step 8: Adding it to Drupal
In this step, we can go back to the lessons learned from the previous chapter where
we used the FlashNode module to add a SWF file to our Drupal website. To start, we
will create a new Flash node by navigating to Create Content | Flash, and then give
it a title of "Hello World Application". After we have done that, we can then do what
we did in the previous chapter and select our newly created SWF file using the Flash
file input field. The next step, however, will require us to pass in the FlashVar so that
we can tell our application which node to load. To do this, we will simply expand the
Advanced flash node options, and place node=2 within the FlashVars text field.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

[59]

We can now save our new node, and see our new dynamic Flash application
in action.

And congratulations, we have just said "Hello World" using both Flash and Drupal!

Summary
In this chapter we covered a lot of ground, learning all of the concepts that govern
web service interaction between Flash and Drupal. When dealing with web services,
it is very important to understand how two remote applications communicate and
how to develop our software to account for its asynchronous interaction. This is
typically always overlooked when developers create their first Flash applications
for Drupal, and can easily be avoided if the concepts of web service interaction are
understood and taken into account. Each key concept is highlighted as follows:

Flash and Drupal communicate asynchronously. This means that each function
call made to Drupal from Flash does not return the result immediately after the
call was made. Instead, we need to utilize a callback function that is triggered
when Drupal returns the result from our function call.
We need to wait until the Flash application has finished connecting to Drupal
before making any other calls. Otherwise, we will have a race condition
where our sessionID is invalid for our other calls.

In the next chapter, we will take the concepts learned within this chapter and take it
to the next level by using the popular CCK module to expand the amount of content
that we can utilize within our Flash applications.

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK
We have built a "Hello World" application, and understood how Flash extracts data
from our Drupal installation; our next task will be addition of content in our Flash
application using Drupal's Content Construction Kit, also known as CCK.

The CCK module allows you to add custom content types and data fields to your
Drupal web site, which can then be utilized to create a more customized Flash
application. In this chapter, we will go over all the technical aspects of Flash and
CCK by walking through a real-life example of building a Flash widget that shows
recipes for a cooking web site. Here is what we will cover in this chapter:

Overview of a typical recipe web site
Installing and understanding Drupal's Content Construction Kit
Creating a custom Recipe content type for your Flash application
Adding custom fields to the Recipe content type
Building a Flash application that uses data from CCK
Adding ScrollBars to Flash CCK TextFields
Creating a Drupal node template for Flash

Overview of a typical recipe web site
In this chapter our goal is to create a Flash widget that shows each recipe for a
cooking web site. Since the structure of most recipe web sites is fairly consistent, I
believe this example will easily illustrate how to create any form of custom content
and display it within a Flash application. I am confident that after you read this
chapter, you should be able to easily apply the lessons learned in this chapter to any
type of custom implementation that your web site requires. So, let's take a moment to
set up Drupal so that its data structure resembles that of a common recipe web site.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[62]

If you were to visit any popular recipe web site, you will most likely see a
categorized listing of recipes ranging from cake to pot roast. When you click on
one of these listings, you will see a new page that gives the information necessary
to make that recipe. In Drupal terms, this recipe page is a single node that is
categorized using a content type called Recipe.

It is important to note that in Drupal, the terms node type and content
type are used interchangeably. Although, I will almost always use the
term content type in this book, there are many online tutorials and
documentation that use the term node type to refer to different types of
content. Just keep in mind that node type and content type are both used
to refer to the same thing.

Our goal in this chapter will be to replace the HTML page for each Recipe node
with our own Flash application. We will set up a simple Recipe content type in
Drupal with some necessary fields, which will then be displayed in our Flash
application. Having said that, each recipe in our cooking web site should have
the following information:

Title
Description
Ingredients
Instructions

But before we can dive into Flash, our first task will be to use CCK to build this
structure from within the Drupal CMS.

Using Drupal's Content Construction Kit
The CCK module is one of Drupal's most popular, contributed modules, and for a
good reason. It gives the administrator the ability to create custom content types as
well as custom fields that are essential for creating a web site that manages specific
forms of content. We will use this module to create the structure required to enter
content for each recipe in our Drupal web site. But before we can start adding custom
content to our Drupal installation, it is important to first download and install the
Content Construction Kit from http://www.drupal.org/project/cck. Once we
have this module within our modules folder, we can then navigate to Administer |
Modules, where we will select all of the following modules within CCK:

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[63]

Once we have all of the CCK modules selected, we can then click on the Save
Configuration button at the bottom of the page to install CCK into our web site.
Now that we have CCK installed, let's create our Recipe content type.

Creating a new content type
Our first step in building the Drupal structure for a recipe web site will be to create
the content type that will hold each recipe. By default, Drupal comes equipped with
only two different types of content: Page and Story. Each one of these content types
is placed in the default installation, simply because they provide a very generic
method for adding content on our Drupal site. When we add a new Page and Story
to our web site, we are asked to provide a Title and Body for that piece of content.
These are then used to construct a web page, where the title of the web page is
provided from the Title field; and the content of that page is provided using the Body
field. A recipe, however, requires a specific set of data that will be used to describe
the "content" that makes up that recipe. For example, the Body field really does not
make much sense when related to recipes since this is very general. A better design
will be having several fields that relate specifically to a recipe. These fields could be:
Ingredients, Instructions, Description, and so on. CCK gives us the ability to create
a custom content type called Recipe, where we can then provide custom fields to
describe that piece of content.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[64]

First, let's create our custom Recipe content type by walking through the
following steps:

1.	 Navigate to the Drupal Administrator section by clicking on the navigation
link called Administer.

2.	 Once you are in the administrator section, you will need to click on the link
called Content Types in the Content Management section.

3.	 Now, click on the link that says Add content Type.
4.	 This should then bring up a page with open fields for you to enter

information about the content type that you wish to create. Each of these
fields are described as follows:

Name—This is the name of your content type that will be visible to
any visitor(s) of this site.
Type—This is the internal name for your content type. This name
should not contain any spaces or special characters, and it is also
considered best practice to make this name all lowercase.
Description—This is the text that is presented below the Name of
this content type when our visitors wish to create a new piece of
content. It is simply used to better describe what the Name means.

5.	 We can now fill out all the information for our new piece of content as shown
in the following screenshot:

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[65]

Let's save this new content type by clicking on the Save content Type
button at the bottom of the page.

We now have a new content type that will be used for each individual recipe on our
web site. We can test this out by clicking on the link in the Navigation menu that
says Create Content, and then clicking on the link that says Recipe. This should
bring up a new page that asks us to enter the Title and Body for that Recipe. If
our users were asked to do the same, they would most likely be very confused at
this point. The input for Title would most likely be understood, but as mentioned
before, the term Body does not mean anything when submitting a recipe and would
typically lead to inconsistent content, based on the assumptions of what the term
Body means to a recipe. The solution to this problem is to create specific fields that
describe each recipe in our system, and once again, CCK comes to the rescue.

Adding custom fields to your Recipe
content type
In this section you will understand that the true power of CCK does not come from
its ability to add new content types to your Drupal system, but in its ability to add
customized fields to each new content type. And the process of adding new fields
is surprisingly simple and intuitive.

To add a new field to the Recipe content type, we will need to revisit the Content
Types page by clicking on Administer | Content Types.

1.	 Once you are there, you will see a listing of all the content types in the system
along with the Recipe content type. Beside each content type are a set of links
where you can edit, delete, or manage the fields of each individual content
type. To add fields to each recipe, we will first click on the manage fields link
next to the Recipe content type.

2.	 This will bring up a listing of all the fields that are associated with our Recipe
content type, and also give us the ability to add, delete, reorder, or edit each
individual field. However, for our recipe, we want to add some new fields
that will be more descriptive of each recipe that is created.

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[66]

Adding a new field
Within the Add | New field section of the Manage fields page, we are given the
ability to add a new field to our Recipe content type. Each input box in this section
is described as follows:

Label—This is the human readable name for this field, such as Ingredients.
Field name—This is the machine name for this field. A machine name is used
for internal identification and will most likely not be seen by any common
user. However, this name is extremely important when writing software
that references this particular field; so, it is still important to give it an easily
distinguishable name. It must also be all lowercase and not include any
spaces, such as ingredients.
Type of data to store—This is the type of data for the new field, such as
decimal, integer, text, and so on.
Form element—This allows for each type of data to be entered in different
ways. For example, you can enter a number by either typing it into a text
field or by selecting if from a drop-down box. Both methods store a data
type of integer, but they are entered differently.

The first field that we will add to our Recipe content type is the Ingredients field.
Before we start adding the necessary data in the required fields, let's first think about
how we would like our users to input the ingredients for their recipe. Most likely,
they would need to enter the Ingredients inside of a large text area that allows for
more than one line. From a CCK perspective, this would simply be the equivalent
of us adding a Text field that allows for multiple rows of data entry. Using that
information, we can easily submit the correct data for our new field as shown:

Now, to add this field, we will simply click on the Save button at the bottom of the
Manage Fields page. This will then bring you to a separate page that allows you to
further refine the behavior of our new field.

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[67]

I won't go over all the elements on this page because it is very self-explanatory, but
we want to change the number of rows for our Text area to be more than 5, since
recipe ingredients will almost always take up more than 5 lines. To do this, simply
change the Rows text box to have 15 lines. We also want to make sure that the user
always enters the ingredients for every recipe that they submit. We can enforce that
by simply clicking on the Required checkbox. We also need to check the Filtered text
radio button since this will auto-format the input from the user. All of our settings
should now look like the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[68]

After we are done with setting up our field, we can save it by clicking on the button
that says Save field settings. Then, we should be taken back to the Manage fields
page, where our new field has been added to the Recipe content type.

After we have the Ingredients field set up for the Recipe content type, our next step
is to repeat the steps given previously to create an Instructions field for the Recipe
content type.

When we are finished walking through the steps above for the Instructions field, we
should then have the following fields within our Recipe content type:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[69]

We should now have a Recipe content type that has all the necessary elements
for any user to accurately submit a new recipe to our web site. So, let's go ahead
and test this out by going to Create Content | Recipe. Although, you will see the
Instructions and Ingredients fields in the recipe form, you will most likely also
notice that the Body field is still there. This is because the Body field is a default field
for every node in the Drupal system, but luckily, this can also be easily changed.

Changing the default Body field
The difference between default fields and custom fields for a content type may cause
some confusion for any Drupal beginner, simply because they are configured in two
different places. If you go back to the Content Types | Manage Fields section for
the Recipe node type, you will probably notice that there is no option to configure
the Body field like there is for the custom types that we created. To get around this,
Drupal has given the ability to customize these fields by editing content type using
the Edit link for that content type.

After we click on this link, we will expand the section that says Submission Form
Settings. In this section, we should see some options where we can edit the Title and
Body fields for the Recipe content type. Although we can completely remove the
Body field by simply deleting the text in the Body Field label, we can also change
this text so that it represents a recipe. Let's change this field to say Description,
which will prompt each user to give each submitted recipe a description, which
we can use later when we build a page that lists many different recipes.

We can save the content type by clicking on the Save content type button at the
bottom of the page.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[70]

Now, when we go back to Create Content | Recipe, we will finally see that our
recipe submission form resembles what any user would expect when they wish to
enter a new recipe. We can take this moment and create a sample recipe by filling
out the contents for the Title, Description, Ingredients, and Instructions for a new
recipe, and then Save that recipe when we are finished.

Our next step is to show this newly created node inside our Flash recipe application.

Showing CCK fields in Flash
We now shift our focus to Flash and pick up where we left off from the previous
chapter. We will not only show the node title, but also show the CCK fields that we
just created. We will start by first copying the chapter2 directory that we created in
the previous chapter, and then paste our copy as chapter3. We will then rename the
chapter2.fla project within this folder as chapter3.fla. Once we have our new
project for this chapter, we can open it up, where we can modify it to include the
new fields that we just created.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[71]

Building a Recipe widget in Flash
Now that we have our Chapter 3 project open, our first task will be to change the
layout of Flash application so that there is room for the Description, Ingredients, and
Instructions. We will start out by first increasing the size of our stage to 500 x 640.
Once we have done this, we will need to resize our background so that it fits to the
new stage. We will start this by first selecting the whole background region, and then
converting that into a new Movie Clip by selecting Modify | Convert to Symbol
from the Flash menu.

This will then bring up a new dialog, where we can give our new Movie Clip a
name, which we will call mcBackground. We then need to make sure that we check
the Enable guides for 9-slice scaling, which will allow us to resize the background
without affecting the rounded edges.

Once we create a new movie clip from our background, we will then enter this Movie
Clip and then adjust the 9-scale guides so that they only cover the rounded edges.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[72]

We can now exit the background movie clip, and then resize the movie clip to a new
height of 632 using the Properties panel.

Our next task is to move the current title field to the top-left of our Flash application,
and then create some background regions that will hold our new fields. The design
of how this will look is completely up to you, but here is an illustration of what I
just described:

Now that our layout is ready for new content, the next step is to add new TextFields
to hold our recipe content.

Adding dynamic TextFields for Drupal content
Since we have already added dynamic text fields in the previous chapters, we should
be able to breeze through this section pretty quickly. The important thing to note
here is that we will need to create a new layer for each text element within our Flash
application, so that we can keep track of each field separately. We will do this within
the timeline by creating three new layers for each of our new fields, and by then
labelling them so that we can easily determine what they contain.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[73]

Now that we have each one of these separated, we can add new text fields in each
layer, to be used for the description, ingredients, and the instructions. For each new
Text field that we create, we will need to make sure to give them an instance name so
that we can reference them within ActionScript. Each of these instance names should
reflect the names of the fields that we created for our Recipe content type, which will
be description, ingredients, and instructions respectively.

When we are done, we should have something that resembles the following:

We are now ready to hook up these TextFields to real Drupal content.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[74]

Using ActionScript to show Drupal CCK fields
Since we are picking up where we left off from Chapter 2, we can use most of the
ActionScript that was already written to show "Hello World". We can start this
off by opening up our main.as file, and then we will shift our focus to the
onNodeLoad function.

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;
}

This function gets called after our service call to Drupal's node.get service call and
returns with the contents of the node. In the last chapter, we were simply using the
node title to populate our title textbox that we had created within Flash. Now that
we have new TextFields for each custom recipe field, we can use the node object,
passed to the onNodeLoad function, to reference the data from these custom fields,
and populate our TextFields with that data. Since the contents of this node object are
somewhat a mystery, there is a fantastic tool that is provided with Drupal that will
allow us to examine how this node is structured. We will then be able to use that
information to fill out the contents of our onNodeLoad function to show our
complete recipe node.

Using the Services Administrator
We now need to shift our focus back to Drupal, where we will navigate to the
Service Administrator section by going to Administer | Services. The Services
module comes equipped with a fantastic tool for analyzing any service routine when
working with external applications. It allows for you to call any service routine, with
any specified argument, and then see the result of that routine call. This can be used
to easily analyze the data structure that our Flash application will receive after it
makes a call to any of the service routines available.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[75]

Since we are using the node.get service routine to load each recipe node, we should
be able to examine how the Description, Ingredients, and Instructions fields are
represented, and then easily apply that to our Flash application. Let's do this by
clicking on the link that says node.get in the node section. This will bring up the
following page:

The Services module automatically places a valid Session id in the session field, so
we can just keep this field as it is. Because of this, all we really need to provide is the
nid (node ID) of our Recipe node—since the fields field is optional.

In order to determine the node ID for any node within the Drupal
web site, simply navigate to Administer | Content, which will list all
the content within the Drupal web site. The node ID can be found by
hovering over any content link and then reading the last number in the
URL. For example, if we hover over our Recipe node, we should see a
URL similar to http://localhost/drupal6/node/5, which means
that our node ID for this node is 5.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[76]

After we have the entered the node ID in the nid field, we can now click on the
button that says Call Method. This will then show the results of that call within
the Results section just below the Call Method button. To the untrained eye, this
may look intimidating, but really what this is showing is the results for all the data
contained within the recipe node that we just created, including the Ingredients
and Instructions.

If we look within this data structure, we should see something that looks similar to
the following:

[field_ingredients] => Array
(
 [0] => Array
 (
 [value] => 1 skinless, boneless chicken breast half
 2 tablespoons minced green onion
 2 tablespoons minced red bell pepper
 3/4 cup shredded Monterey Jack cheese
 5 (6 inch) flour tortillas

 [format] => 1
)
)

Within our Flash application, we can now access the Ingredients field in the node
object (which is what is returned when you call node.get). The ActionScript code
to reference this field should look similar to the following:

node.field_ingredients[0]["value"]

Now, let's apply this concept to show the ingredients and instructions in our
Flash application.

Showing CCK information in ActionScript
Let's move back to your Flash application and open up the main.as file. Since we
now have an understanding of how the node data is structured, we can apply that
knowledge to display the correct information within our Flash application. And, we
will do this within the function onNodeLoad.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[77]

Showing the node description
Earlier in this chapter we changed our node type to represent the Body field as a
description. Because of this change, it may be confusing at first when we access the
Description field, simply because, the node object does not change the data structure
to say description, but keeps it as body. Because of this, we will need to use the code
node.body instead of node.description in order to access the description of our
recipe node.

It is also very important to note that the Body/Description field for the node will
be delivered as HTML text. If we set our description TextField with the contents
of the node description, then we will end up showing the HTML tags along with
the description contents. To solve this issue, Flash has added a new property to
the TextField object that allows you to provide HTML text and it will parse the
HTML and show that text accordingly. This property is called htmlText, and can
be provided like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Print out the description.
 description.htmlText = node.body;
}

Showing the ingredients and instructions CCK field
Since we have already examined the contents of the node object using the Drupal
Services Administrator, we can populate our ingredients and instructions
TextFields using the contents for each CCK field that we created. This will look
as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Print out the description.
 description.htmlText = node.body;

 // Show the ingredients and instructions.
 ingredients.text = node.field_ingredients[0]["value"];
 instructions.text = node.field_instructions[0]["value"];
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[78]

Now that we have all the fields parsed correctly in ActionScript, we are ready to run
our application to see it in action. But before we are able to test it, we will need to
temporarily hard code the node ID variable at the top of the file, so that it reflects the
recipe node ID that we just created in Drupal.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = 5;

We can now finally test our Flash application, where we should then see something
that looks like the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[79]

Although this is very cool, there is still a big question as to what we do when
the ingredients and instructions text does not fit within the TextField region that
we created. As it is right now, any text outside of this region will be clipped and
therefore unreadable. Since we do not want this to happen, we can easily add some
scroll bars to our text fields, so that it can hold any amount of text.

Adding ScrollBars to our TextFields
Surprisingly, thanks to the wonderful components that Flash provides out of the
box, adding scroll bars to our text fields is not that difficult. To add a scroll bar to any
text field, we will use the wonderful UIScrollBar component, which can be found in
the components section of our Flash application. So, moving back to our chapter3.
fla project, we will first open up the COMPONENTS section by clicking on the
button in our window toolbar on the right-side of the Flash IDE.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[80]

We can then easily add a scroll bar to our TextFields by simply dragging a
UIScrollBar component so that it overlaps with that TextField. Once we drop the
scroll bar over the text region, it will snap into place telling us that a connection has
been made. We will do this for both the Ingredients and Instructions TextFields
as shown:

After we have our scroll bars in place, the next step is to click on each one of them
and give them an instance name using the Properties panel. We will call each one
ingredientScroll and instructionScroll respectively.

Now that our scroll bars have instance names, we can add some simple code to our
onNodeLoad function so that each scroll bar will refresh as the text is populated
within them. We can do this by calling the update function on each UIScrollBar
component as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Print out the description.
 description.htmlText = node.body;

 // Show the ingredients and instructions.
 ingredients.text = node.field_ingredients[0]["value"];
 instructions.text = node.field_instructions[0]["value"];

 // Update the scroll bars.
 ingredientScroll.update();
 instructionScroll.update();
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[81]

When we run our application again, we should be happy to see that our scroll bars
show all the text for each CCK field within Drupal.

Now that our Flash application works as we would expect, the next step is to change
our nodeId variable back so that any node ID can be passed to our Flash application
to show the recipe content of that node.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

After we run the Flash application again, we are now ready to take our Recipe Flash
application and use it within Drupal.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[82]

Creating a Drupal node template for Flash
Moving back to Drupal, our next task is to take our compiled Recipe Flash
application and integrate it into our Drupal system. We will start out by doing the
same thing we did in the previous chapters, and add our Flash application to our
Drupal web site using the FlashNode module.

We can do this by simply going to Create Content | Flash, and then selecting our
new SWF file where it asks for the Flash file. We can then click on the Save button
to submit this Flash application to our Drupal system. It is very important, at this
point, that we remember the node ID that was created for our Flash node. We can
determine the node ID by looking at the URL and taking note of the number that
comes after http://locahost/drupal6/node/. With our Flash application in place,
we now run into a unique situation that differs from the previous chapters.

In order to get our Recipe application to work as expected, we need to show the Flash
application when anyone visits a recipe node. However, the FlashNode module
attaches our SWF file to a completely separate node type called Flash, and not Recipe.
In order to show that Flash application within a Recipe node type, we will need to
create a node template for our Recipe node, where we will then reference the Flash
application we just submitted using the FlashNode module. We can also utilize this
template to pass in the node ID of the recipe that they are viewing. To accomplish
this goal, we will use a very popular module for Drupal called Contemplate.

Using the Content Template module
(Contemplate)
The Content Template module (Contemplate for short) is a wonderful module that
will allow us to create a template for any content type in our system. A template is
simply a way to tell the system how to display each content type when it is viewed
by each visitor, and we can use this to tell Drupal to show our new Recipe Flash
application when anyone views a Recipe node. To begin, we will first need to
download and install this module by going to http://www.drupal.org/project/
contemplate. Once we have placed this module in the modules folder, we can then
install it by going to Administer | Modules and clicking on the Content Templates
module within the Content section.

After we click on the Save Configuration button at the bottom of the Modules
section, we can now navigate to Administer | Content Templates, where we will
then be given an option to create a template for our Recipe node.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[83]

When we click on the create template link next to the Recipe node type, we should
then be given a page that will let us customize how each recipe page will look. We
can change the body of the Recipe nodes by expanding the Body section and then
clicking on the checkbox that says Affect body output. At this point, we will get very
creative in how we retrieve our Recipe Flash application, which we submitted earlier
in this section. We can start by first loading the recipe Flash application node using
the node ID that was created when we submitted our Recipe Flash application to
Drupal. Assuming that our Flash node ID was 6, our code should then look like
the following:

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 6));
?>

Our next task is to add all the additional information to this Flash object by calling
the flashnode_load function.

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 6));

// Load the flash node.
flashnode_load($flash);
?>

We can now add our FlashVars to this object by providing the node ID of the node
that is being shown. The Contemplate module provides the $node object to each
template so we have access to this node ID by referencing $node->nid.

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 6));

// Load the flash node.
flashnode_load($flash);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

[84]

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] = 'node=' . $node->nid;
?>

Finally, we can show our Flash application using the theme function as follows:

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 6));

// Load the flash node.
flashnode_load($flash);

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] = 'node=' . $node->nid;

// Show the Flash application.
print theme('flashnode', $flash->flashnode, FALSE);
?>

We can now save our template by clicking on the Submit button and then navigate
to our Recipe node to see our Recipe Flash application in action!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

[85]

Summary
In this chapter we learned how to incorporate custom data within our Flash
applications by walking through a real Recipe web site example. By utilizing the
power of CCK in our Flash applications, we have opened the door to a number of
possibilities where Flash can be used to display dynamic content that is specific to
any use case. In addition, we learned how to build a node template that allows us to
use a Flash application as a direct replacement for the default HTML-driven content
for each content type. In this chapter, we learned the following:

Introduction to CCK and how to utilize its power within Flash
How to add custom fields to each content type within our Drupal system
How to change the default fields within Drupal
Using the Services Administrator to extract node contents to be used in Flash
Building a Flash application to use custom content
Using a scroll bar to handle long text entries
Adding a content template for our Flash applications

Although we covered much ground in this chapter with regard to text content, we
still have not even scratched the surface for what power Flash can really deliver to
our web site. In the following chapter, we will continue our journey by incorporating
Drupal images into our Flash applications.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash
Up to this point, we have learned how to build a Flash application using only
text-based content from the Drupal CMS. Although text-based content is vital for
any web application, it is the use of images that gets the attention of any person
who is using your application, and that sets it apart from other applications. In this
chapter we will learn how to build an image and content-rich Flash application by
discussing the following topics:

Image handling in Drupal
Adding images to the Recipe content type
Creating an image container in Flash
Using ActionScript to load a Drupal image
Resizing the image to fit inside our image container
Preserving the Image ratio (scaling)
Using ImageCache to dynamically resize images for Flash

Image handling in Drupal
I have heard from many Drupal beginners that image handling in Drupal can be
a frustrating process. Not because Drupal lacks the ability to handle images, but
simply because that person must pick between multiple contributed modules that
all claim to do the same thing. This can be intimidating to a person who is exposed
to Drupal for the first time. In this section, I will not go over all the possible ways to
handle images and let you decide which one to use. Instead, I would like to present
my opinion of a good image solution for Drupal, and then build our application from
that approach. Please keep in mind that this approach is subjective and that there are
other ways to do it, but for the sake of your sanity, I will stick with a single method
for image handling, which is using the ImageField plug-in for CCK.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[88]

ImageField for CCK
As far as I am concerned, CCK (Content Construction Kit) offers the most flexible
method for adding custom content to our Drupal web site. Although there are
dedicated modules that give us the ability to add custom content, I have found that
it is easier and more consistent to take a single approach to create custom content
through the use of CCK, and the ImageField module uses the power of CCK to
add images to any content type in our system. I believe this flexibility is what gives
ImageField an advantage over other popular image modules in Drupal. In this
section, we will use the ImageField module to build onto the previous chapter by
adding an image to the Recipe content type and then showing that image in our
recipe Flash application.

Installing the ImageField module
In order to successfully install the ImageField module, we will also need to install the
modules that the ImageField module is dependent on. Because of this, we will first
need to install a total of three modules in order to use the ImageField module. These
modules are as follows:

FileField—http://www.drupal.org/project/filefield

ImageAPI—http://www.drupal.org/project/imageapi

ImageField—http://www.drupal.org/project/imagefield

Once we place these three modules in our site's modules folder, we can navigate to
Administer | Modules, where we should see the following:

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[89]

Given this list of modules, we will select the FileField, ImageAPI, ImageAPI GD2,
and ImageField modules and then click on the Save Configuration button at the
bottom of the page. Once we have done this, we will be able to add images to any
content type in our Drupal system. Let's use this to add an image to our Recipe
content type from the previous chapter.

Adding an Image field to our Recipe content type
Now that we have the ImageField module installed, we can navigate to the Content
Types section in our Drupal administrator by going to Administer | Content Types
and then take the following steps to set up a new Image field for our Recipe
node type.

1.	 Click on the link that says Manage Fields, next to the Recipe content type.
2.	 In the Add section, let's provide the following information:

3.	 Now, click on the Save button to save our new field.

After we save this field, we will see a new page where we can configure our new
image field. To set up our image field, we don't really need to provide anything here,
except maybe the Help text as follows:

We can now save our new image field by clicking on the Save field settings button at
the bottom of the page.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[90]

Now, the only thing left to do is move this field higher up in the field list. This will
make it such that the image input from the user is not at the bottom of the form but
closer to the top as you would see in any average recipe web site. We can do this by
clicking on the symbol next to the recipe image field, and then dragging it below
the Title field as follows:

After we have moved our Recipe Image to where we want it in the node, we can
commit that change by clicking on the Save button at the bottom of the page. Now,
we can modify our recipe from Chapter 3 and add an image to our recipe.

Adding an image to our Recipe node
Since we will need to edit our recipe node from Chapter 2, we will need to first locate
and edit our recipe content that we had previously submitted. The easiest way to do
this is to examine all the content in our Drupal site and then select that recipe node
in the content list. We can do this by going to Administer | Content in our Drupal
administrator section.

This will then list all the content available in our site, where we should see the recipe
we submitted from the previous chapter. We can edit this node by clicking on the
Edit link, next to this listing:

Now that we are in the edit screen, we can add an image to our recipe by clicking
the Browse button and selecting the image we would like to use for our recipe. Once
the image is selected, we will need to attach this image to the node by clicking on the
button that says Upload. After our image uploads, we should see something similar
to the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[91]

Once our image is attached to the node, we can now save this node by clicking on the
button that says Save at the bottom of the page.

Don't be alarmed if you do not see your image on the screen after you save this node.
Just because the image is now shown in the theme of the Recipe content type, does
not necessarily mean that it is not attached to the node. We can verify if it is attached
by using the Services Administrator.

Verifying that the image is attached
Before we navigate to the Services Administrator, we will again need to make a note
of the node ID of the recipe that we attached our image to, which can be determined
by looking at the URL for that page. Once we have this number in our head, we can
then navigate to the Services Administrator by going to Administer | Services. As
discussed in the previous chapter, this section will allow us to use any services that
our system provides with the Services module. To verify that the image was attached
to our node, we will click on the link that says node.get, which will then bring up the
service page for the node.get routine. We can then place the node ID of the recipe
that we just attached the image to, in the box that says nid, and then click on the
Call method button to examine all the contents of the recipe node data structure.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[92]

Within the results of the method call, we should see the following:

This shows that the recipe image field is present in our node, and that it can be
accessed when the node object is provided to our onNodeLoad function. By looking
at the information above, we can then determine our path to the image file by using
the following code in ActionScript:

node.field_recipe_image[0]["filepath"];

We can now use this code in our Flash application to show the image of our recipe.

Adding an image to our Recipe
Flash application
Our next step is to show this image in the Recipe Flash application that we built
in the previous chapter. But before we begin, we will need to copy the chapter3
directory and its contents and then paste that directory as chapter4. Once we
have done this, we will then need to rename the chapter3.fla file within this new
directory to chapter4.fla, and then open that project up in Flash. We will now
expand our Recipe application to include an image from Drupal. Once we have this
project open, we will start by adding a MovieClip container where our image will
be shown.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[93]

Adding a MovieClip container for our image
The first step when adding any new element to a Flash application is to create a
new layer in the timeline to place the objects that will be used for that element. So,
shifting our focus up to the timeline, let's create a layer called image, and place it
just above the description layer as shown:

Before we can add the image to our stage, we must first make sure we provide room
for the image to be shown. Looking at the layout of our Recipe application, a good
place for an image will most likely be to the left of the description. So, let's unlock the
description layer and change the TextField and background sizes to make room for
an image as shown:

Once we are done with making room for our image, we can now lock all the layers
except for the image layer, and then add rectangle object where we would like to
show the image using the from the toolbar.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[94]

In order to reference this area within our ActionScript, we need to convert this
rectangle into a MovieClip. This can be done by selecting the rectangle object you
just created (using the from the toolbar) and clicking on the rectangle we just
created. Once it is selected, you can then go to the Modify menu item and select
Convert to Symbol.

This will bring up another window, where we can give our Movie Clip a name
as follows:

After you have finished converting our rectangle object into a Movie Clip, we
can then give it an instance name using the PROPERTIES section. Let's call our
instance, image.

Now that our image MovieClip has been added, our next task is to use ActionScript
to load the image from Drupal's ImageField into this movie clip object.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[95]

Using ActionScript to load the Recipe image
In order to load our image into the movie clip that we just created, we will need to
tap into the ActionScript code where the node has finished loading and passes the
node information to the onNodeLoad function. As it stands right now, this function
looks like the following within our main.as file:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Print out the description.
 description.htmlText = node.body;

 // Show the ingredients and instructions.
 ingredients.text = node.field_ingredients[0]["value"];
 instructions.text = node.field_instructions[0]["value"];

 // Update the scroll bars.
 ingredientScroll.update();
 instructionScroll.update();
}

We are now ready to add our code to this function to load an image provided from
Drupal. To do this, we will start with setting up the path to our image.

Working with the Image path
Since we have already validated that our image was attached to the recipe using the
Services Administrator, we now have access to this image path by referencing our
image field in the node object as follows:

node.field_recipe_image[0]["filepath"];

The only problem with this code is that the value of the filepath provided
from the image field is relative to the base installation of our Drupal web site. This
means that our image path may look like sites/default/files/image.jpg. In
order for Flash to consistently load an image from a remote source, it must first
have an absolute path to the image it wishes to load. Converting the relative path
given from the image field to an absolute path would then look something like
http://www.mysite.com/sites/default/files/image.jpg. In order to perform
this conversion from relative to absolute paths, we will need to modify the code
above so that we can provide the URL of our web site and then append the relative
path to that URL.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[96]

Given that we have already defined the baseURL variable at the top of the main.as
file, we can fix our path to include the absolute path using the following code within
the onNodeLoad function.

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;
 	// Print out the description.
 description.htmlText = node.body;
 	// Show the ingredients and instructions.
 ingredients.text = node.field_ingredients[0]["value"];
 instructions.text = node.field_instructions[0]["value"];

 	// Update the scroll bars.
 	ingredientScroll.update();
 	instructionScroll.update();

 	// Load the image
 	var imagePath:String = baseURL;
 	imagePath += "/";
 	imagePath += node.field_recipe_image[0]["filepath"];
 trace(imagePath);
}

At this point, we are doing nothing with this image path besides just displaying it
within our debugger using the trace function. Our next step here is to display the
image by replacing the trace function call with a new function that we will create
called loadImage, which will take the path of the image as an argument and then
load that image into our MovieClip container.

Creating a loadImage function
It is considered good code practice to break apart different elements of functionality
into their own functions. This makes the code more readable, reusable, and
maintainable. Loading an image is something that would definitely fit this criterion
and, therefore, should get its own function, which we will then call within our
onNodeLoad function. Our first task will be to create what is called a stub function,
which will simply be a placeholder to the ActionScript that will load the image into
our MovieClip. We can do this by simply replacing the trace statement, in the code
from the previous section, with our own custom function called loadImage, and
then defining a simple function below the onNodeLoad routine as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 ...
 ...

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[97]

 // Load the image
 var imagePath:String = baseURL;
 imagePath += "/";
 imagePath += node.field_recipe_image[0]["filepath"];
 loadImage(imagePath);
}
// Load an image into a movie clip.
function loadImage(filepath:String)
{
}

We are now ready to take this one step further and load the image of the path given
to this function into our image MovieClip.

Loading an Image
In order to load an image in ActionScript, we will need to utilize a standard
ActionScript 3 class called Loader. The Loader class is used to load files into our
Flash application including images. In order to use this class, we will first need to
declare an instance, which we will just call imageLoader. Since this variable will
eventually be needed within multiple places in our main.as file, it will need to
be a global variable, which means it will need to be accessible within the entire
ActionScript code. To create a global variable, we will need to place it at the top of
the main.as file, outside of any function. A good place for us to declare this variable
is below the nodeId variable that we have already defined.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

// Declare our imageLoader
var imageLoader:Loader;

Now that we have the imageLoader declared, we can place the instantiation of this
variable within our loadImage function. We can also add a check to make sure our
image path is valid before instantiating this loader variable.

// Load an image into a movie clip.
function loadImage(filepath:String)
{
 	// If the filepath exists...
 	if(filepath) {
 	 	

 	 	 // Instantiate our loader.
 	 	 imageLoader = new Loader();
 	}
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[98]

Now that we have this loader declared and instantiated, our next step is to add the
Event listeners, which will be used to handle the events when the image has finished
loading, and in the event that an error has occurred. To do this, we will need to
create a new function called onImageLoaded, which we can place directly below the
loadImage function. This new function will be a callback function that will be called
when the image has finished loading. As for handling error conditions, we have
already defined a callback function in the previous section called onError that
we can use for this image loader also.

// Load an image into a movie clip.
function loadImage(filepath:String)
{
 // If the filepath exists...
 if(filepath) {
 	

 // Instantiate our loader.
 imageLoader = new Loader();
 // Add our event listeners.
 imageLoader.contentLoaderInfo.addEventListener(Event.COMPLETE,
 onImageLoaded);
 imageLoader.contentLoaderInfo.addEventListener
 (IOErrorEvent.IO_ERROR, onError);
 imageLoader.addEventListener(IOErrorEvent.IO_ERROR, onError);	
 }
}

// Called when an image has finished loading.
function onImageLoaded(event:Event)
{
}

The last and final step to load an image is to add this loader to the MovieClip that
we created, which will hold the image followed by a simple call to load the image.
To add the loader to the MovieClip, we can use the standard Flash function called
addChild, which is used to add any Object to a MovieClip. As for loading the
image, we will use the load function on the imageLoader object, using another
standard class in Flash called URLRequest. The URLRequest class is used to handle
all communication between two remote locations, as well as enforce cross-domain
policies that Flash has introduced for security reasons. To use this class, we will just
pass the path of our image into the constructor of the URLRequest and then pass that
object to the load function of our imageLoader. Below, you will find the complete
loadImage function and onImageLoaded callback function:

// Load an image into a movie clip.
function loadImage(filepath:String)
{
 // If the filepath exists...
 if(filepath) {

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[99]

 // Instantiate our loader.
 imageLoader = new Loader();

 // Add our event listeners.
 imageLoader.contentLoaderInfo.addEventListener
 (Event.COMPLETE, onImageLoaded);
 imageLoader.contentLoaderInfo.addEventListener
 (IOErrorEvent.IO_ERROR, onError);
 imageLoader.addEventListener(IOErrorEvent.IO_ERROR, onError);

 // Add this loader to the image MovieClip.
 image.addChild(imageLoader);

 // Load the image.
 imageLoader.load(new URLRequest(filepath));
 }	
}

// Called when an image has finished loading.
function onImageLoaded(event:Event)
{
}

We are now ready to run this application to test its functionality, but we will first
need to hard code our nodeId variable back to the number value of our Recipe node
that we created in Drupal.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = 5;

We can now run this application and see our Drupal image load into our MovieClip.
However, once the application loads, you will most likely notice an obvious flaw in
that our image does not fit within the MovieClip container that we created for it.

Obviously, we still have some work to do here to resize this image to the
correct dimensions.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[100]

Resizing an image
One thing to note about our method for loading an image is that once the image has
been loaded into the image MovieClip, it will automatically resize the MovieClip
to hold that image. The approach we need to take here is to resize the MovieClip
back to its original size after the image has loaded. This will require us to keep a
global variable that stores the size of the image MovieClip before we even start to
load it. We can do this by declaring a rectangle variable that we will set within the
loadImage function, and then use again to resize the image in the onImageLoaded
function. Since this variable is needed within two different functions, it will also need
to be a global variable, which we can place below the imageLoader variable that we
have already defined.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = 5;

// Declare our imageLoader and imageSize
var imageLoader:Loader;
var imageSize:Rectangle;

Since this variable was declared as global, we can now use it within any function and
they will all reference the same variable. We can start this by storing the original size
of the image within the loadImage function:

// Load an image into a movie clip.
function loadImage(filepath:String)
{
 // If the filepath exists...
 if(filepath) {
 // Instantiate our loader.
 imageLoader = new Loader();
 // Add our event listeners.
 imageLoader.contentLoaderInfo.addEventListener
 (Event.COMPLETE, onImageLoaded);
 imageLoader.contentLoaderInfo.addEventListener
 (IOErrorEvent.IO_ERROR, onError);
 imageLoader.addEventListener(IOErrorEvent.IO_ERROR, onError);
 // Store the size of the image before loading.
 imageSize = new Rectangle
 (image.x, image.y, image.width, image.height);
 // Add this loader to the image MovieClip.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[101]

 image.addChild(imageLoader);		
 // Load the image.
 imageLoader.load(new URLRequest(filepath));	
 }
}

Now that we have stored the size of our MovieClip before we load the image, we can
now resize the MovieClip back to its original size after the image loads. We can do
this within the onImageLoaded function.

// Called when an image has finished loading.
function onImageLoaded(event:Event)
{
 // Resize our image back to its original size.
 imageLoader.width = imageSize.width;
 imageLoader.height = imageSize.height;	
}

When we run our application now, you will see that it looks much better than before!

Although this may look good, under close inspection we can see that there is a slight
horizontal distortion in our image. The reason for this distortion is because we are
not preserving the ratio (width/height) of the image when it is resized. From looking
at the code above, we are assuming that the ratio of the MovieClip that we created to
hold the image will have the exact same ratio as the image we are loading. To solve
this problem, we will need to revise our code above to account for the ratio of the
loaded image and use that to properly resize our MovieClip according to the loaded
image's width and height ratio.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[102]

Preserving the width and height ratio (scaling)
In order to preserve the image ratio when loading our recipe image, we will need
to apply the same width/height ratio to our MovieClip after the image has loaded.
Our first task will be to determine the image ratio of the loaded image. This can be
accomplished by examining the event object that was passed to the onImageLoaded
function by the event handler. This event object contains a property that points to
the object that triggered the event, which is called the target. This just so happens
to be a pointer to the image that was loaded in our MovieClip, and thus can be used
to determine the ratio by dividing the width by the height of the target. We will
first delete our previous code within the onImageLoaded function, and then replace it
with this functionality as follows:

// Called when an image has finished loading.
function onImageLoaded(event:Event)
{
 // Determine our image ratio.
 var imageRatio:Number = event.target.width / event.target.height;
}

Our next task is to use this ratio and apply that when resizing the MovieClip
container back to its original size. We can do this by calculating the ratio of our
MovieClip and then building a scaled rectangle that will represent the dimensions
of the image that will fit within our MovieClip. Our goal here is to pick the largest
image size possible, where its width and height can both fit within the confines of the
original MovieClip size. The code to do this might be intimidating, so I have tried my
best to comment the code to illustrate what each line is doing.

// Called when an image has finished loading.
function onImageLoaded(event:Event)
{
 // Determine our image ratio.
 var imageRatio:Number = event.target.width / event.target.height;

 // Set up our scaled rectangle by initializing it
 // to the MovieClip size.
 var scaledRect:Rectangle = new Rectangle
 (imageSize.x, imageSize.y, imageSize.width, imageSize.height);

 // Determine our MovieClip ratio.
 var mcRatio:Number = (imageSize.width / imageSize.height);

 // If the MovieClip ratio is greater than the image Ratio.
 if(mcRatio > imageRatio)
 {
 // Set the scaled rect to be the same as the MovieClip height.
 scaledRect.height = imageSize.height;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[103]

 // The width is the MovieClip height multiplied
 // by the image ratio.
 scaledRect.width = Math.floor(imageSize.height * imageRatio);
 }
 else
 {
 // The scaled rectangle is the MovieClip width divided
 // by the image ratio.
 scaledRect.height = Math.floor(imageSize.width / imageRatio);

 // The scaled rectangle is the same as the MovieClip width.
 scaledRect.width = imageSize.width;
 }

 // Resize and center our image.
 imageLoader.x += (imageSize.width - scaledRect.width) / 2;
 imageLoader.y += (imageSize.height - scaledRect.height) / 2;
 imageLoader.width = scaledRect.width;
 imageLoader.height = scaledRect.height;
}

Once we run our Flash application, we will see that the image has been resized
according to the correct image ratio. This will allow Drupal to load any size image
into your Flash application and then automatically resize those images, while at the
same time, maintain the original aspect ratio.

Using this method allows for our Flash application to handle larger images from
Drupal, but you can probably imagine how this is very inefficient since loading
large images can slow down any application. We can take this one step further by
dynamically resizing our images from within Drupal before they are even loaded
into our Flash application. This will clearly illustrate the power we get when
combining Flash with a Content Management System. The module that we will use
to achieve this dynamic image resizing is the fantastic ImageCache module.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[104]

Using Drupal's ImageCache with Flash
Before we begin with this section, we will first need to go to http://www.drupal.
org/project/imagecache and download and install the ImageCache module into
our Drupal installation.

The ImageCache module is basically a dynamic image manipulation module that we
will use with our Flash application to ensure that our recipe image is not too large
when we load it into our application. This is critical in making sure that bandwidth
is preserved and our Flash application is not loading any unnecessarily large images,
which will also improve the speed at which our images load into our Recipe node.
After we have this module installed by clicking on the Save Configuration button,
we will then need to navigate to the ImageCache administrator section found at
Administer | ImageCache, where we will create our recipe image preset.

Creating an ImageCache preset
Once we are in the ImageCache administrator section, we can create a preset for our
Recipe content type by clicking on the link that says Add new preset, which will
then take us to a new page where we can enter our preset name. Let's call our recipe
image preset recipe_image.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[105]

After we accept this name by clicking on the Create New Preset button, we will see a
new page where we can select different actions to perform on our recipe image. Since
we will want to scale our image to a certain width and height, while maintaining
aspect ratio, we can select the Add Scale action from the New Actions listing.

Within the width and height input boxes, we can either provide a percentage scale
(using the %), or we can provide a maximum dimension in pixels to scale the image.
Since we already know the maximum size of our image from our MovieClip, we can
provide those exact values into the ImageCache width and height settings on this
page. So, going back to our Flash application, we can determine the width and height
of our MovieClip by looking at the Properties section. We will now want to copy over
those values into the width and height boxes for our ImageCache settings as shown:

Now that we have provided the correct dimensions for our ImageCache scaling, we
will save this by clicking on the Add Action button on the ImageCache scaling page,
which will then show your field added to the Actions panel.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[106]

We now need to make sure that this change commits by clicking on the Update
Preset button. At this point, our configuration for the recipe image scaling is
complete. We can now shift our focus back to Flash, where we will modify our
code to load the ImageCache image instead of the original image provided from
the ImageField module.

Adding an ImageCache image in Flash
Adding an ImageCache image in Flash might be a little trickier than expected, simply
because the manipulated image path is not provided to us within the node object like
the ImageField image. Because of this, we will need to understand how ImageCache
stores all the converted images, and then modify our Flash application to use the
ImageCache version.

ImageCache uses directory hierarchy to categorize all dynamically manipulated
images. Fortunately, this can be used in our Flash application to point to the right
image. In the previous section, we created a preset called recipe_image, which we
used to add a resize action to all images submitted for the Recipe content type.
The ImageCache module uses this name as a sub directory within an imagecache
directory in the Drupal files directory as shown in the following directory tree:

Within this folder, it will then place the dynamically converted image using the same
file name as the original. This is a good thing, because we can now create a path
within ActionScript that can link to the ImageCache image, since we can determine
the filename from our node object.

Changing our ActionScript for ImageCache
Moving back to our main.as file, we can now construct the correct path needed
to reference the ImageCache version of our images by modifying our previous
imagePath variable. Instead of referencing the filepath for our image, we can now
include the new ImageCache base path and then append the filename onto that
path. This will then create the path we need to reference the dynamically resized
image from ImageCache.

// Load the image
var imagePath:String = baseURL;
imagePath += "/sites/default/files/imagecache/recipe_image/";
imagePath += node.field_recipe_image[0]["filename"];
loadImage(imagePath);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[107]

At this point, we can run our Flash application and should then see the ImageCache
image load instead of the full size image.

Although this may look like there is no difference using ImageCache and not using
ImageCache; the huge difference here is efficiency. By dynamically resizing our image
to fit the size of our Flash image area, we are not taking on any bandwidth overhead
of loading an image larger than the region needs to show. This can then be easily
translated into money saved since that bandwidth can be used to service other clients.

Our next step is to modify the nodeId variable, within the main.as file, back to the
FlashVar setting, so that we can place our new Recipe application within Drupal.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

After we run our application again, we are now ready to change our old Recipe
application to our new and improved one.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Images in Flash

[108]

Adding the new Recipe Flash application
to Drupal
Since we have already done all the hard work with the node templates, this step
simply involves us overwriting the old Recipe Flash application with our new one.
To do this, we will first navigate to the Administer | Content section, where we
will then locate our Flash node that we used to originally submit our Recipe Flash
application (this is not the same node as the Recipe node). Once we have found the
Flash node, we need to edit that node by clicking on the edit link next to this node.
We can then change our old Flash application by simply uploading the new one
using the Flash file input, and finally save our node when we have selected our
new application. After it has been saved, we can then navigate to our Recipe node
and see our new image in action!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

[109]

Summary
At this point, we have all the tools necessary to build some visually stunning Flash
applications, where the content is provided using Drupal CMS. But, this chapter
also illustrates another powerful aspect of combining Flash technology with a
Content Management System. Drupal can be used as a content delivery mechanism
to Flash. It can also be utilized as a manipulator of data, so that it can efficiently be
streamlined into our Flash applications. The perfect example of this power is our
use of the ImageCache module, where we built our Flash application to display
images that were dynamically resized to fit within the Flash image region. Without
a Content Management System, this functionality and integration would require a
significant amount of work, whereas with Drupal, it becomes easily managed and
tuned to whatever use case you may require. And the power is not in just resizing
images! We can take this same concept and apply any filter imaginable (provided
by ImageCache) and then show the result of those transformations within Flash to
deliver a truly breathtaking experience to our users.

In this chapter, we covered all the aspects of image handling within Flash and
Drupal by covering the following key topics:

Using ImageField to load images in Drupal
Loading those images in Flash
Resizing images in Flash
Retaining the aspect ratio when resizing
Using ImageCache to dynamically resize images for our Flash applications

In the following chapter, we will take our media handling adventure to a new level
by discussing how to handle audio within Flash and Drupal.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash
Within the past five years, there has been a major change in the type of content found
on the World Wide Web. In just a few short years, content has evolved from being
primarily text and images, into a multimedia experience! Drupal contributors have
put much effort in making this integration with multimedia as easy as possible.
However, one issue still remains: in order to present multimedia to your users, you
cannot rely on Drupal alone. You must have another application layer to present
that media. This is most typically a Flash application that allows the user to listen or
watch that media from within their web browser. In the following chapters, we will
cover all the necessary steps to integrate multimedia into our Drupal web site by
building a custom Flash application that works seamlessly with Drupal multimedia,
starting with audio content. Here is what we will learn in this chapter:

Working with audio in Drupal
Building a custom audio player for Drupal
Creating an audio-handling class using ActionScript 3.0
Loading and playing audio in Flash
Adding controls to your custom audio player

Working with audio in Drupal
Integrating audio in Drupal is surprisingly easy, thanks to the contribution of the
Audio module. This module allows you to upload audio tracks to your Drupal
website (typically in MP3 format), by creating an Audio node. It also comes with a
very basic audio player that will play those audio tracks in the node that was created.
To start, let's download and enable the Audio module along with the Token, Views,
and getID3 modules, which are required for the Audio module. The modules that
you will need to download and install are as follows:

Audio—http://www.drupal.org/project/audio

Views—http://www.drupal.org/project/views

•
•
•
•
•

•
•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[112]

Token—http://www.drupal.org/project/token

getID3—http://www.drupal.org/project/getid3

At the time of writing this book, the Audio module was still
considered "unstable". Because of this, I would recommend
downloading the development version until a stable release has
been made. It is also �������������������������������������� recommended��������������������������� to use the development or
"unstable" versions for testing purposes only.

Once we have downloaded these modules and placed them in our site's modules
folder, we can enable the Audio module by first navigating to the Administer |
Modules section, and then enabling the checkboxes in the Audio group as follows:

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[113]

After you have enabled these modules, you will probably notice an error at the top of
the Administrator section that says the following:

This error is shown because we have not yet installed the necessary PHP library to
extract the ID3 information from our audio files. The ID3 information is the track
information that is embedded within each audio file, and can save us a lot of time
from having to manually provide that information when attaching each audio file to
our Audio nodes. So, our next step will be to install the getID3 library so that we can
utilize this great feature.

Installing the getID3 library
The getID3 library is a very useful PHP library that will automatically extract audio
information (called ID3) from any given audio track. We can install this useful utility
by going to http://sourceforge.net/project/showfiles.php?group_id=55859,
which is the getID3 library URL at SourceForge.net. Once we have done this, we
should see the following:

We can download this library by clicking on the Download link on the first row,
which is the main release. This will then take us to a new page, where we can
download the ZIP package for the latest release. We can download this package
by clicking on the latest ZIP link, which at the time of writing this book was
getid3-1.7.9.zip.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[114]

Once this package has finished downloading, we then need to make sure that
we place the extracted library on the server where the getID3 module can use it.
The default location for the getID3 module, for this library, is within our site's
modules/getid3 directory. Within this directory, we will need to create another
directory called getid3, and then place the getid3 directory from the downloaded
package into this directory. To verify that we have installed the library correctly, we
should have the getid3.php at the following location:

Our next task is to remove the demos folder from within the getid3 library, so that
we do not present any unnecessary security holes in our system.

Once this library is in the correct spot, and the demos folder has been removed, we
can refresh our Drupal Administrator section and see that the error has disappeared.
If it hasn't, then verify that your getID3 library is in the correct location and try again.
Now that we have the getID3 library installed, we are ready to set up the Audio
content type.

Setting up the Audio content type
When we installed the Audio module, it automatically created an Audio content type
that we can now use to add audio to our Drupal web site. But before we add any
audio to our web site, let's take a few minutes to set up the Audio content type to the
way we want it. We will do so by navigating to Administer | Content Types, and
then clicking on the edit link, next to the Audio content type.

Our goal here is to set up the Audio content type so that the default fields make
sense to the Audio content type. Much like the Recipe node type that we created in
earlier chapters, Drupal adds the Body field to all new content types, which doesn't
make much sense when creating an Audio content. We can easily change this by
simply expanding the Submission form settings. We can then replace the Body label
with Description, since it is easily understood when adding new Audio tracks to
our system.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[115]

We will save this content type by clicking on the Save content type button at
the bottom of the page. Now, we are ready to start adding audio content to our
Drupal web site.

Creating an Audio node
We will add audio content by going to Create Content, and then clicking on Audio,
where we should then see the following on the page:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[116]

You will probably notice that the Title of this form has already been filled out with
some strange looking text (as shown in the previous screenshot). This text is a series
of tags, which are used to represent track information that is extracted using the
getID3 module that we installed earlier. Once this ID3 information is extracted, these
tags will be replaced with the Title and Artist of that track, and then combined to
form the title of this node. This will save a lot of time because we do not have to
manually provide this information when submitting a new audio track to our site.
We can now upload any audio track by clicking on the Browse button next to the
Add a new audio file field. After it adds the file to the field, we can submit this audio
track to Drupal by clicking on the Save button at the bottom of the page, which will
then show you something like the following screenshot:

After this node has been added, you will notice that there is a player already
provided to play the audio track. Although this player is really cool, there are some
key differences between the player provided by the Audio module and the player
that we will create later in this chapter.

How our player will be different (and better)
The main difference between the player that is provided by the Audio module and
the player that we are getting ready to build is how it determines which file to play.
In the default player, it uses flash variables passed to the player to determine which
file to play. This type of player-web site interaction places the burden on Drupal to
provide the file that needs to be played. In a way, the default player is passive,
where it does nothing unless someone tells it to do something.

The player that we will be building is different because instead of Drupal telling our
player what to play, we will take an active approach and query Drupal for the file we
wish to play. This has several benefits, such as that the file path does not have to be
exposed to the public in order for it to be played. So, let's create our custom player!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[117]

Building a custom audio player for Drupal
In this section we will expand the Flash project from Chapter 2, and use that to create
a custom audio player for Drupal. So, let's get started by copying the chapter2
directory, and then create a new directory called chapter5 that we will use to keep
track of all of our changes. After we have done that, we should then rename the
chapter2.fla project file to chapter5.fla. Once we have our new directory set
up, we will need to open up both the chapter5.fla and the main.as file within our
Flash IDE, where we will then direct our attention once again to the main.as file.

The first thing we will need to do is temporarily change the nodeId variable at the
top of this script to the node ID of the audio node that we just created as follows:

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = 8;

Now that this node ID is set to the correct node, our next task is to determine what
data we are looking for when we load the node. This will bring us back to our
Drupal web site, where we will take advantage of the Services Administrator to
investigate the data from our audio node.

Examining the Audio node using Services
Administrator
For this section, we will navigate back to our Services Administrator section by going
to Administer |Services in our Drupal web site. Once we are there, we will then
click on the node.get link, which will let us load any node in our system to examine
the data that will be passed to our Flash Application. We will then need to provide
the node ID for the audio node we created—where it says nid, and then click on the
button below that says Call method.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[118]

Looking at the results from this call, the data that we are looking for is all
contained within the audio tag in the node object, which should look similar
to the following screenshot:

From looking at this data structure, we determine that we can access the filepath of
our audio node within our onNodeLoad function. So, let's test this out by modifying
our "Hello World" code to replace the node title with the filepath to our audio file.

Referencing the audio file path
Using the knowledge that we gained from the Services Administrator, we should
be able to now reference the audio filepath for any given audio node within our
Drupal web site. If we observe the node object data returned from our Services
Administrator, we can determine how to access the file path to our song by using
the following code:

node.audio.file.filepath

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[119]

We can easily test this out by opening up our main.as file, and then placing a trace
statement to display this file path within the onNodeLoad function:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Trace the audio file path.
 trace(node.audio.file.filepath);
}

The output should then show the correct filepath to the node that we just loaded
(as shown in the following screenshot).

We have now successfully referenced the audio file path. Our next task will be to
create an audio class that will use this path to play some music!

Writing a custom AudioPlayer class
When working with ActionScript 3, it is highly recommended to use the
object-oriented features that are built into the language using the class construct.
By creating a class for our custom audio functionality, we will be encapsulating the
code, which makes our code more maintainable, expandable, and portable. This is
also referred to as componentization. This section assumes that you already have
some previous experience with object-oriented techniques, but in case you do not, I
will try my best to explain the concepts as we move forward. If you are just beginning
with object-oriented programming, then I would also highly recommend reading
the Wikipedia article at http://en.wikipedia.org/wiki/Object-oriented_
programming, which describes in great detail the concepts behind object-oriented
programming. With that said, let's begin building our AudioPlayer class.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[120]

In Flash, there is already a class called Sound that was built to play audio files, and
we can build our class to utilize this functionality to play audio. So, let's begin by
creating a blank file next to your chapter5.fla project file called AudioPlayer.as.
We will then open up this file and write the following:

package
{
 // Import all dependencies
 import flash.media.Sound;
 	// Declare our class
 public class AudioPlayer
 {
 // Constructor function.
 // Called when someone creates a new AudioPlayer
 public function AudioPlayer()
 {
 // Make sure to create our sound object
 sound = new Sound();
 // Let us know that we created this player.
 trace("AudioPlayer created!");
 }
 // Declare our sound variable.
 private var sound:Sound;
 }
}

Here we have created a new class that we will use to place all of our custom Audio
player functionality. Currently, this doesn't really do much, other than send a trace
to the output to notify us that the player has been created. To help track our progress,
we can test this out by going back to our main.as file, and within the onNodeLoad
function, we can place the following code to create our custom AudioPlayer:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 �������������������������� // Create our AudioPlayer.
 ��� var player:AudioPlayer = new AudioPlayer();
 // Trace the audio file path.
 trace(node.audio.file.filepath);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[121]

Now, when we run this application, we will get a very pleasant surprise when our
trace statement from within our custom AudioPlayer gets called to reveal that we
really did create our custom audio player!

Our next step will be to add functionality to our custom audio class to play any
audio track passed to our player.

Playing audio in Flash
In order to play an audio track, we will need to first create a public function within
our custom class, that will be used to play any given file passed to our routine.

This function will be used to play any given audio file path provided as the file string
passed as an argument to the play function. Since we have already included the
sound object in our custom class, we can now use that to load and play our file.

To do this, we will need to import the URLRequest class, because that class is used to
pass a URL string to the load routine of the sound object. After this, we can then call
the load routine on the sound object using this URLRequest object, and then play the
file after it has been loaded. This will look as follows:

package
{
 // Import all dependencies
 import flash.media.Sound;
 import flash.net.URLRequest;
 	// Declare our class
 public function AudioPlayer
 {
 // Constructor function.
 // Called when someone creates a new AudioPlayer
 public function AudioPlayer()
 {
 // Make sure to create our sound object
 sound = new Sound();
 // Let us know that we created this player.
 trace("AudioPlayer created!");
 }
 // Play an audio file

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[122]

 public function playFile(file:String)
 {
 // Print out what file is playing...
 trace("Playing file " + file);

 // Load our sound file.
 sound.load(new URLRequest(file));
 // Play our sound file.
 sound.play();
 }
 // Declare our sound variable.
 private var sound:Sound;
 }
}

We have finished setting up our audio class to play an audio file. We can now direct
our attention to the main.as file, where we will play the audio file from Drupal
using our new custom audio class.

Using our AudioPlayer class to play audio
Now that we have our main.as file opened, we can direct our attention once again
to the onNodeLoad function, where we will pass the correct file path from Drupal to
our custom AudioPlayer class. Since the path to our audio file, given to us from the
node object, is relative to the base URL of our Drupal web site, we will need to do the
same thing that we did in the previous chapter, where we added the base URL of our
web site to the front of this path before we send it to the play function of our custom
class. We can do this pretty easily by creating a variable called fileURL, which will
hold the baseURL to our web site, and then add that to the audio file path before
sending it to the play function of our custom class. The code to do this should look
like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Create our AudioPlayer.
 var player:AudioPlayer = new AudioPlayer();
 	// Declare our base URL.
 var fileURL:String = baseURL;	
 	// Add our file's relative path.
 fileURL += "/";
 fileURL += node.audio.file.filepath;

 // Play our audio file
 player.playFile(fileURL);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[123]

Now, when we run our application, we should be greeted with the sweet sound
of success!

We will now expand our audio player to include some controls, so that your site
visitors can start and stop the music while playing.

Adding controls to your custom
audio player
Playing music by itself is pretty cool, but is not very useful unless we give our users
a way to interact with the playback of that audio track. In this section we will create
some very basic controls that will allow our users to do just that. Although there are
a handful of controls that we can add to this custom audio player, this section will
demonstrate the concept by adding the most basic control for multimedia, which is
the play and pause buttons.

Adding a play and pause button
To begin, we will need to first move and resize our title field within our Flash
application, so that it can hold more text than "Hello World". We can then make
room for some new controls that will be used to control the playback of our
audio file. Again, the design of each of these components is subjective, but what
is important is the MovieClip instance hierarchy, which will be used within our
ActionScript code. Before we begin, we will need to create a new layer in our
TIMELINE that will be used to place all AudioPlayer objects. We will call this
new layer player:

We can now proceed to creating our play and pause buttons.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[124]

Creating a base button MovieClip
Our base button will simply be a rounded rectangle, which we will then add some
gradients to, so as to give it depth. We can do this by first creating a rounded
rectangle with a vertical linear gradient fill as follows:

We can now give it some very cool depth by adding a smaller rounded rectangle
within this one, and then orient the same gradient horizontally. An easy way to
do this is to copy the original shape and paste it as a new shape. Once we have a
new copy of our original rounded rectangle, we can navigate to Modify | Shape
| Expand fill, where we will then select Inset, change our Distance to 4px, and
then click on OK. After doing this, you will realize how such a simple contrast in
gradients can really bring out the shape.

After we have our new button shape, we will then need to create a new MovieClip,
so that we can reuse this button for both the play and pause buttons. To do this,
simply select both the rounded rectangle regions, and then choose Modify | Convert
to Symbol in the Flash menu. We are going to call this new movie clip mcButton.

Now that we have a base button MovieClip, we can now add the play and pause
symbols to complete the play and pause buttons.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[125]

Adding the PlayButton movie clip
The first button that we will create is the play button, which simply consists of a
sideways triangle (icon) with the button behind it. To do this, we will first create a
new movie clip that will hold the button we just created, and the play icon. We can
do this by first clicking on the mcButton movie clip, and then creating a new movie
clip from that by selecting Modify | Convert to Symbol. We will call our new
movie clip mcPlayButton.

What we are really doing here is creating a parent movie clip for our mcButton,
which will allow us to add new specific elements. For the play button, we simply
want to add a play symbol. To do this, we first want to make sure that we are
within the mcPlayButton movie clip by double-clicking on this symbol, so that
our breadcrumb at the top of the stage looks as follows:

Our next task is to modify our timeline within this movie clip so that we can separate
the icon from the button. We can do this by creating two new layers within our
timeline, called button (which will hold our button) and icon (which we will create
in the next section).

We are now ready to start drawing the play icon.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[126]

Drawing a play icon
To draw a Play icon, we will need to first select the PolyStar Tool by clicking and
holding on the tool until you can select the PolyStar Tool.

This tool will allow us to create a triangle, which we will use for the play icon in our
play button. But before we can start drawing, we need to first set up the PolyStar
Tool so that it will draw a triangle. We can do this by clicking on the Options button
within the Properties tab, which will then bring up a dialog, where we can tell it to
draw a polygon with three sides (triangle).

After we click on OK, we will then need to change the fill color of this triangle, so
that it is visible on our button. We will just change the fill color to Black.

We can then move our cursor onto the stage where the button is, and then draw our
triangle in the shape of a play button icon. Remember, if you do not like the shape of
what you made, you can always tweak it using the transform tool. When we are
done, we should have something that resembles a play button!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[127]

Our next task is to create a pause button. Since we have already created the play
button, which is similar to the pause button except for the icon, we can use a
handy tool in Flash that will let us duplicate our play button, and then modify
our duplication for the pause button icon.

Creating a pause button from the play button
In order to create our pause button, we will first need to duplicate our play button
into a new movie clip, where we can change the icon from play to pause. To do this,
we will first direct our attention to the library section of our Flash IDE, which should
show us all of the movie clips that we have created so far. We can find the LIBRARY
by clicking on the button on the right-hand side of our workspace.

To create a duplicate, we will now right-click on the mcPlayButton movie clip, and
then select the option Duplicate.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[128]

This will then bring up a dialog very similar to the dialog when we created new
symbols, but this time, we are defining a new movie clip name that will serve
as a duplicate for the original one. We will call our new movie clip duplicate
mcPauseButton.

Now that we have created our duplicate movie clip, the next task is to change the
icon within the pause button. We can do this by opening up our mcPauseButton
movie clip by double-clicking on that name within the Library. At this point, we can
now change the icon of our pause button without running any risk of also modifying
the play button (since we created a duplicate). When we are done, we should have a
complete pause button.

We now have play and pause buttons that we will use to link to our
AudioPlayer class.

Linking MovieClips to ActionScript
One overlooked feature within the Flash IDE is its ability to link MovieClips to
ActionScript code, which is used to add scripted functionality to movie clips. This is
an extremely powerful feature that we will use to create the play and pause buttons
automatically when we create the AudioPlayer object. To start, we will need to
combine both the mcPlayButton and the mcPauseButton into a single MovieClip
that will directly link to the AudioPlayer class, which we created earlier in this
chapter. This movie clip that we will create will be called mcAudioPlayer since

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[129]

it is directly representative of the class that will govern it. With that said, we will
now create a new MovieClip by first navigating back to our stage, and then clicking
on the Insert | New Symbol from our Flash IDE.

Now, before we do anything, I would like to point out a difference in how we will
create this MovieClip versus other MovieClips that we have created in the past. This
time, instead of just giving our MovieClip a name (mcAudioPlayer), we will also
check the box that says Export for ActionScript. What this is doing is linking this
movie clip to ActionScript code, and even cooler, we can provide a class that will link
its functionality to this MovieClip by filling out the class name where it says Class.
Before hitting OK, make sure that your MovieClip definition looks like the following:

After we have done this, it will open up our new movie clip for editing, where
we will add both the mcPlayButton and the mcPauseButton. Again, it is highly
recommended to place each of these MoveClips on their own separate layer within
the mcAudioPlayer movie clip. We will also need to make sure that both the X and
Y positions for both the mcPlayButton and mcPauseButton are 0. It is also important
to give each of our buttons an instance name using the Properties panel for each
movie clip. This is so that we can reference them within ActionScript. We will call
our play and pause buttons playButton and pauseButton respectively.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[130]

When we are done, our mcAudioPlayer MovieClip should look like the following
on your stage:

Our next and final task is to add our new mcAudioPlayer movie clip to our stage.

Adding the AudioPlayer to the stage
If we were to navigate back to the stage, we will see that the mcPlayButton movie
clip is currently being shown on the stage. Because of this, we will need to swap this
object out for the mcAudioPlayer movie clip, since it now contains both the play and
pause buttons. Luckily, there is a very handy operation in Flash that allows for us to
swap one symbol with another.

When we click on the mcPlayButton movie clip, and look over at the Properties
panel, we should see a button called Swap that will allow us to switch one movie
clip for another. This is perfect for our use case since we would like to swap the
mcPlayButton movie clip with the mcAudioPlayer movie clip that we just finished
creating. When we click on the Swap button, we are presented with a list of movie
clips that we would like to swap. In this list, we can select the mcAudioPlayer and
then click on OK to accept the swap.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[131]

We can now give our new mcAudioPlayer movie clip an instance so that it can be
referenced within our ActionScript code. We will call it player.

Once we do this, we will be ready to make some modifications to our AudioPlayer
class to reference the mcAudioPlayer movie clip that we just created.

Modifying the AudioPlayer class to use play
and pause
In this section, we will take our AudioPlayer class and modify it so that it will work
with the mcAudioPlayer movie clip that we just created, which incorporates the play
and pause buttons. We can accomplish this with a series of quick steps.

Step 1: Adding the SoundChannel
Before we begin, we will need to add the mechanism to our Sound class that allows
us to control the audio channel that is currently being played. In Flash, there is a
class that we will use to do this called SoundChannel. We can use the SoundChannel
as a member variable with sound that will keep track of the current track position.
Because of this, we will also need to add another variable called position to our
AudioPlayer class. These variables will live along with the sound variable that we
already created. We will also need to include the dependency for the SoundChannel
variable, which we can place at the top of the class.

// Import all dependencies
import flash.media.Sound;
import flash.media.SoundChannel;	
import flash.net.URLRequest;

...

...

...

// Declare our sound variable.
private var sound:Sound;
// Declare our sound channel
private var channel:SoundChannel;
// Variable to keep track of the audio position.
private var position:Number;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[132]

Step 2: Adding load, play, and pause functions
The next major change that we will need to make is to modify our class so that we
can load, play, and pause the file in three separate functions. This will require us to
completely change the current play function that we have, so that it matches this
new structure. The play function will set the audio channel and play the file at the
current position. The pause function will first save the channel position and then
stop the audio file. And finally, the load function will simply load the file passed to
our AudioPlayer class. These changes are as follows:

// Constructor function.
// Called when someone creates a new AudioPlayer
public function AudioPlayer()
{
 // Make sure to create our sound object
 sound = new Sound();
 // Initialize the position.
 position = 0;
 // Let us know that we created this player.
 trace("AudioPlayer created!");
}

// Play an audio file
public function playFile()
{
 // Play our sound file.
 channel = sound.play(position);
}

// Pause an audio file
public function pause()
{
 // Save the channel position.
 position = channel.position;
 // Stop our sound file.
 channel.stop();
}

// Load an audio file.
public function load(file:String)
{
 // Load our sound file.
 sound.load(new URLRequest(file));
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[133]

Step 3: Reference the mcAudioPlayer MovieClip
After we have done that, the next task will be to change our class so that it officially
references the mcAudioPlayer movie clip that we created. We can do this by simply
stating that our class derives from the MovieClip class. This can be done using the
extends keyword, when we declare our class as follows:

// Import all dependencies
import flash.display.MovieClip;
import flash.media.Sound;
import flash.media.SoundChannel;	
import flash.net.URLRequest;
// Declare our class
public class AudioPlayer extends MovieClip
{
 // Constructor function
 // Called when someone creates a new AudioPlayer
 public function AudioPlayer()
 // Make sure we call the MovieClip constructor
 super();
 	

 // Make sure to create our sound object
 sound = new Sound();
 // Initialize the position.
 position = 0;	
 	
 // Let us know that we created this player.
 trace("AudioPlayer created!");
}

Step 4: Hooking up our buttons!
The last and final step in creating our AudioPlayer class is to hook up the play and
pause buttons that we added to our mcAudioPlayer movie clip object. Since we
already told Flash to reference the AudioPlayer class when creating mcAudioPlayer
movie clip, the instance names for the play and pause buttons can now be used
within our class to manipulate their behavior during audio playback. These instance
names were playButton and pauseButton, and we will start out by declaring them
as buttons.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[134]

Declaring playButton and pauseButton as buttons
We will declare playButton and pauseButton as buttons using the buttonMode
parameter along with an event handler that will call any given function when that
button is clicked. The mouseChildren parameter is used to tell Flash to not let
any child movie clip within these buttons to get focus. This functionality will be
placed within the load function of our class, and then we will set their visibility
state according to which button should be shown (which we will default as the
play button).

// Import all dependencies
import flash.display.MovieClip;
import flash.media.Sound;
import flash.media.SoundChannel;	
import flash.net.URLRequest;
import flash.events.MouseEvent;

...

...

...

// Load an audio file.
public function load(file:String)
{
 // Setup the play button.
 playButton.buttonMode = true;
 playButton.mouseChildren = false;
 playButton.addEventListener(MouseEvent.MOUSE_UP,onPlay);

 // Setup the pause button.
 pauseButton.buttonMode = true;
 pauseButton.mouseChildren = false;
 pauseButton.addEventListener(MouseEvent.MOUSE_UP,onPause);

 // Set the state of the play and pause buttons.
 // We want to show the play button at first, so...
 playButton.visible = true;
 pauseButton.visible = false;

 // Load our sound file.
 sound.load(new URLRequest(file));
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[135]

Along with this, we need to create two handler functions that will handle the mouse
events and then make the correct function calls depending on which button the
user clicks.

// Load an audio file.
public function load(file:String)
{
 // Setup the play button.
 playButton.buttonMode = true;
 playButton.mouseChildren = false;
 playButton.addEventListener(MouseEvent.MOUSE_UP,onPlay);
 // Setup the pause button.
 pauseButton.buttonMode = true;
 pauseButton.mouseChildren = false;			
 pauseButton.addEventListener(MouseEvent.MOUSE_UP,onPause);	
 	

 // Set the state of the play and pause buttons.
 // We want to show the play button at first, so...
 playButton.visible = true;
 pauseButton.visible = false;

 // Load our sound file.
 sound.load(new URLRequest(file));
}
// Called when the play button has been pressed.
private function onPlay(event:MouseEvent)
{
 // Play the audio track.
 playFile();	
}
// Called when the user presses the pause button.
private function onPause(event:MouseEvent)
{
 // Pause the audio track.
 pause();
}

Now, all we need to do is make sure we change the state of these buttons as they are
clicked, by adding the following code to the play and pause functions:

// Play an audio file
public function playFile()
{
 // Play our sound file.
 channel = sound.play(position);
 // Show only the pause button.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

[136]

 playButton.visible = false;
 pauseButton.visible = true;
}

// Pause an audio file
public function pause()
{
 // Save the channel position.
 position = channel.position;
 // Stop our sound file.
 channel.stop();
 // Show only the pause button.
 playButton.visible = true;
 pauseButton.visible = false;			
}

We have now finished making modifications to our AudioPlayer class to allow the
play and pause buttons to work.

The last and final step is to make two very minor modifications to our main
audioplayer.fla project to account for the changes that we have made.

Modifying our main.as file to use our
new AudioPlayer
Now, moving back to the main.as file, we will make some very simple modifications
to our ActionScript code to allow the AudioPlayer to work the way we want it to.
The first change that we will need to make is to remove our call to create the new
player using new AudioPlayer(). The reason we can remove this is because Flash
has done this for us when we added the mcAudioPlayer movie clip to our stage
and then gave it an instance name of player. Because of this, we now have a valid
AudioPlayer on our stage when the Flash movie is created, and we can then use the
player instance to reference that AudioPlayer.

The last and final change that we will need to make is to change the play call from
the player to the load call, which will set up our AudioPlayer's buttons to allow the
user to control whether the audio should play or not. Our new onNodeLoad function
should look like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;	
 	// Declare our base URL.
 var fileURL:String = baseURL;	

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 5

[137]

 	// Add our file's relative path.
 fileURL += "/";
 fileURL += node.audio.file.filepath;

 // Load our audio file
 player.load(fileURL);
}

When we run this, we will now be happy to see that our play/pause button works
as expected, and we are now able to control the play or pause state of the audio
track being played!

A good exercise from here would be to take the lessons learned from the previous
chapters, and then build our audio player for a live site (by changing the nodeId
variable at the top of the page to use FlashVars). Once we are done with that, we can
then replace the default theme for the Audio node type and use our new player to
play the audio tracks attached to each audio node!

Summary
In this chapter we learned how audio is handled within Drupal and how to build a
custom application that can play and pause audio content created through Drupal.
There are several key points that I would like you to remember as you read through
to the next chapters:

The Audio module is a contributed module that allows Drupal to upload and
automatically tag audio content using the getID3 library.
We can determine how to reference that audio content in Flash using
Drupal's Services Administrator section.
We designed our custom audio player to take advantage of the
object-oriented techniques provided by ActionScript 3 using the class
construct. By doing this, we allowed for our implementation to be easily
maintained, portable, and expanded.
When creating the mcAudioPlayer movie clip, we were able to link the
ActionScript code to the MovieClip buttons that we created using the
Export to ActionScript checkbox.

In the next chapter we will take our implementation of Drupal multimedia one step
further by discussing how to handle Video content using Drupal and Flash.

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal
In recent years the amount of bandwidth available to the masses has resulted in a
surge of video content. As a result of this surge, the integration of video and Content
Management Systems has become a necessary step to help manage and deliver that
video content to millions of viewers every day. In this chapter we will learn how
Drupal handles video content, and how to build a custom video player to interface
with that content. We'll cover the following key topics:

Working with video in Drupal
Learning how to utilize object-oriented techniques in ActionScript 3.0
to build a common MediaPlayer class to be used for both audio and
video applications
Building a custom video player in Flash
Linking our custom video player to the Drupal content
Dynamically selecting which player to use depending on node media content
Adding our custom media player to Drupal

Working with video in Drupal
Before we dive into Flash, we will first explore the process of implementing video
into our Drupal web site. Much like audio and images, the Drupal contributors have
introduced numerous modules for integrating video into our web site. Consequently,
the process of finding the right solution for your needs can be somewhat confusing,
since each one was developed to handle specific video requirements. In this section,
we will briefly explore the different video solutions available for video integration,
and then choose one that best fits our needs in this chapter. It is important to note,
however, that the video solution we choose may not be the only or the best solution,
but simply a solution that fits the bill for what we need to get done.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[140]

Although it is not an exhaustive list, following are four different video modules
available for Drupal 6 at the time of writing this book. Each one of these modules
was designed with a different use case in mind.

Embedded Media Field (http://www.drupal.org/project/emfield)—
this is a fantastic module, written to integrate third-party videos into your
site such as YouTube, Brightcove, and many more. It works as a plug-in for
CCK to allow any content type to attach a third-party video to that node.
FlashVideo (http://www.drupal.org/project/flashvideo)—this
module is used as a standalone video module that gives Drupal the power
to host and maintain all of its own video content, without relying on
third-party video web sites. It does this by providing an upload and
conversion mechanism that gives Drupal the ability to host and maintain
its own user-generated Flash video content. This solution is ideal to site
owners wanting a user-generated video content system, without relying
on third-party web sites to host and maintain those videos.
Media Mover (http://www.drupal.org/project/media_mover)—this is a
fantastic video module geared more towards the administrative management
of video content on a Drupal web site. As far as the administrative abilities
for video management are concerned, this module is top of its class. It gives
the administrators the ability to specify where their videos are coming from
and where they are going, as well as any conversion that needs to be handled
in between.
FileField + jQuery Media (http://www.drupal.org/project/jquery_
media)—these two modules work as a great team to allow an individual to
upload a pre-converted video to use on their Drupal web site. This solution
is perfect for web sites where the users do not provide video content on the
site, but the videos are uploaded by the site administrators who have the
capability to convert the videos to Flash format before they upload them
to the site.

Given these four different video modules and their specific use case, we can now
select the one that is appropriate for this chapter. Since this chapter will mostly
involve us creating our very own video player, I think it is wise to choose the
solution that allows us to upload pre-converted videos that we will then show
in our custom player. For this reason, we will proceed with using the FileField +
jQuery Media video solution.

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[141]

But, before we begin installing the necessary modules for video functionality, we first
need to create a new content type that will be used to hold all of our video content.

Creating a video content type
In this section we will use the same methods from the previous chapters to create
a new content type called video. To do this, we will need to navigate to the
Administer | Content Types section of our Drupal Administrator, and then click on
the link that says Add Content Type. Following the steps from previous chapters,
we can now create a Video content type by providing the following information:

Name: Video
Type: video
Description: Adds a new video to this website

Once we have provided this information, we can now save this by clicking on the
Save content type button at the bottom of the page. After the Video content type
has been created, we can add our field that we will use to upload our videos
to our system.

Adding a video file field
To add our file field to the Video content type, we will start by clicking on the link
next to our newly created Video content type that says manage fields. Once the
manage fields page opens up, we will then want to add a new file field to our video
node type by providing the following information in the Add section:

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[142]

After you click on the Save button at the bottom of the page, you will be given a
new page where you can configure our video field. There are several things that we
need to do on this page. The first thing we need to do is provide a very good help
description that explains the steps involved in attaching a new video to the node.
After this, we need to provide the permitted file extensions. This will filter any
unwanted files, except for those that can be played as video in Flash.

The important thing to note here is the extensions allowed for our video
upload. The reason we are limited to mp4, mov, flv, and m4v is because
these are the video files that are compatible with Flash Player. If we wish
to allow our web site to accept any video type, then that will require us to
have some backend conversion utility such as FFmpeg. If this
is a requirement for your web site, then I would highly recommend using
either the FlashVideo or the Media Mover modules, which have support
for backend video conversions using FFmpeg.

After we enter the help text and the file formats, we need to make sure that this field
is required, since we do not want anyone submitting a video node without a video.
We can do this by checking the checkbox that says Required. Now that we are done,
we can click on the Save field settings button at the bottom of the page to save our
new field.

After the field has been added to our video node type, we will set this field as the top
most field, since the primary piece of content for our video nodes will be the video.
We can do this by clicking on the symbol and then dragging the Video Upload
field to the top of the list. After we do this, we need to make sure that we click on the
Save button at the bottom of the page to commit the change.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[143]

We have our Video content type ready to add videos to our site. Our next job is
to install and configure the jQuery Media module, which we will use to show the
submitted video content using our Video content type.

Installing and configuring the jQuery
Media module
Installing the jQuery module can be done by simply downloading the jQuery Media
module from http://www.drupal.org/project/jquery_media, and then placing
the contents of this package in your site's modules folder. Now that we have this
module in the right spot, we can enable it by navigating to the Administrator |
Modules section of our Drupal site and clicking the checkbox next to jQuery Media,
and then clicking on the Save Configuration button at the bottom of the page. Now
that this module has been enabled, we will need to configure this module to show
video on our web site.

Configuring the jQuery Media module
Conf﻿iguring the jQuery Media module is a snap, and only requires us to visit one
location within our Drupal administration. This location can be found by going to
Administer | jQuery Media. This page will allow us to configure the jQuery Media
module, so that we can view any video uploaded to our site.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[144]

To begin, we will need to enable this module for our Video content type, which we
can do by simply expanding the Node Types section, and then checking the Video
content type.

The next thing we will need to do is expand the Default settings, where we can
provide a default width and height to our player.

The last and final step will be to expand the Default players section, where we
should then see the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[145]

This section calls a Flash Player that will be used to play our media. Although we
will be building our own video player, we can install a commercially available media
player to view any videos that we submit.

Installing a media player
There are several media players available to show video and audio content on
our web site. Although each one of these players has their differences, all of them
are fundamentally the same in how they play media on the site they are loaded.
Following are the most popular media players that can be used with the jQuery
Media module to show videos:

Dash Media Player—http://www.tmtdigital.com/project/dash_player

JW FLV Player—http://www.longtailvideo.com/players/
jw-flv-player/

Flow Player—http://www.flowplayer.org

All of these players are great, so I suggest you read up on all of them and pick
whichever fits your needs. Regardless of which one you download, the following
still applies.

Within each media player download, you should see a SWF file located at the root
of the downloaded package. This file is used as the core player, and we need to
remember the name of this file since we will use it to change the Default player for
the jQuery Media module. Along with this file, there might be several additional files
and directories that serve to complement the player's function, look, and feel. All
we really need to do to install our player is create a folder at the root of our Drupal
installation called player, and then place the contents of our downloaded player
package inside that folder. For example, if we have downloaded the Dash Media
Player, our Drupal folder structure should look like the following:

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[146]

Now that we have our media player in the right spot, we will just need to change the
Default player settings in the jQuery Media administrator to reflect this path to our
media player.

After we have done this, we can now click on the Save Configuration button at the
bottom of the page to save our jQuery Media settings. Now that we have the jQuery
Media module configured, our next step is to create a video node that we will use
later to create our very own custom video player.

Creating a video node
To add a new video to our site, we will go to Create Content | Video. The first
section that we will direct our attention to is the Video Upload field, which we
created earlier in this chapter.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[147]

We can now add a new video file by clicking on the Browse button to search for a
video file with an extension of MP4, FLV, MOV, or M4V. If you do not have any
videos of this format, then you can easily download a sample video by going to
www.google.com and typing "Sample FLV video file". Once you have your video on
your local machine, and have selected it using the Browse functionality of the Video
Upload, we can then attach that video to this node by clicking on the Upload button.

Once the video is done attaching itself to the node, we can then give our node a Title,
and save our node by clicking on the Save button at the bottom of the page. Now,
let's take a moment to give ourselves a pat on the back: we have successfully added
video content to our Drupal web site.

Our next task will be to build our very own custom video player to replace the
commercial player used above.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[148]

Building a custom video player in Flash
For this section, we will now shift our focus to Flash, where we will build our very
own custom video player to interface with Drupal. So, let's start by making a copy
of the previous chapter's directory, and paste that copy as a new directory called
chapter6. Once the files have been copied to the new directory, we will rename the
chapter5.fla file to chapter6.fla, and then open up that project file along with
the main.as file in Flash. Because the audio and video players share some similar
functionalities, our first step will be to create a common class that can be used for
both the audio and video functionalities.

Creating a MediaPlayer base class
Before we start creating a class to hold the functionality of video, we need to examine
the contents of the AudioPlayer.as file that we created in the previous chapter.
Looking at the code, we can see how some of the functionalities for audio can also
be used for our video player functionality. As an example, in the load function of
our AudioPlayer.as file, we can see how the video player would also implement
the play and pause button functionality (since it can be played and paused), but the
call to the sound object might not be shared between video and audio. The following
highlighted code represents the code that can be shared between audio and video:

// Load an audio file.
public function load(file:String)
{
 // Setup the play button.
 playButton.buttonMode = true;
 playButton.mouseChildren = false;
 playButton.addEventListener(MouseEvent.MOUSE_UP,onPlay);
 // Setup the pause button.
 pauseButton.buttonMode = true;
 pauseButton.mouseChildren = false;
 pauseButton.addEventListener(MouseEvent.MOUSE_UP,onPause);
 // Set the state of the play and pause buttons.
 // We want to show the play button at first, so...
 playButton.visible = true;
 pauseButton.visible = false;
 // Load our sound file.
 sound.load(new URLRequest(file));
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[149]

Whenever this situation arises, it is always best to create a new base class that will
hold all the common functionalities between video and audio, and then have the
VideoPlayer and AudioPlayer classes derive from that common class. This is the core
concept behind object-oriented programming (OOP), which will allow our code to
be easily maintained, reused, and expanded with additional functionality.

Since we have already created an AudioPlayer class in the previous chapter, we can
create our common class by simply copying the file AudioPlayer.as, then creating a
new file called MediaPlayer.as, and finally opening up that file in Flash.

Our first task will be to rename the class and constructor for this class to
MediaPlayer, since that will be the name of our new base class.

 // Declare our class
 public class MediaPlayer extends MovieClip
 {
 // Constructor function.
 // Called when someone creates a new MediaPlayer
 public function MediaPlayer()
 {

Another thing to note is that since our MediaPlayer class is using the playButton
and pauseButton movie clips, we will need to add those variables to this file so
that Flash will not throw an error when it cannot make the association to those
movie clips.

Adding play and pause button instances to
MediaPlayer
As mentioned before, the reason we need to take this step is because there are
variables within our base class that represent objects within a subclass. Whenever
this situation crops up, it is important to define the variables within the base class,
so that Flash knows how to make that association to a subclass' child movie clips.
This step requires us to not only add the variables to the MediaPlayer class, but
also change a setting in the Publish Settings of our Flash project, so that Flash
understands exactly what we are trying to do.

The first task here is to add the variables playButton and pauseButton to the
MediaPlayer. This can be done pretty easily by adding the following variables
to the bottom of our MediaPlayer class:

// Add the play and pause button to the media player.
public var playButton:MovieClip;
public var pauseButton:MovieClip;

// Declare our sound variable.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[150]

private var sound:Sound;

// Declare our sound channel
private var channel:SoundChannel;

// Variable to keep track of the audio position.
private var position:Number;

After we add these variables, we need to make a change to our Flash project so that
it reflects this change. Now, shifting our focus back to the chapter6.fla project file,
we change the Publish Settings by navigating to File | Publish Settings in the Flash
top menu.

We make sure that we are in the Flash section of the settings by clicking on the Flash
link in the settings bar. Once we are there, we click on the Settings button next to the
ActionScript 3.0 to enter the ActionScript settings for this project.

Now that we are in the ActionScript settings for this project, we make sure that we
uncheck the Automatically declare stage instances checkbox.

What we are doing here is telling ActionScript to not declare the movie clip
instances, playButton and pauseButton, automatically in our classes, but that
we will declare them ourselves (which we just did in the MediaPlayer class).

Now that we are done setting up the play and pause buttons for the MediaPlayer,
we are ready to remove the rest of the uncommon code from the MediaPlayer class.

Removing uncommon code from MediaPlayer
Our final task will then be to go through the MediaPlayer.as file and remove
any functionality that would not be common between video and audio. This
will basically encompass any functionality that has to do with audio. One thing
to constantly ask yourself when you are going through this process is, "Is this
functionality something that both audio and video player would share?" If your
answer to that question is no, then delete that functionality. When all is said and
done, your base MediaPlayer class should look similar to the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[151]

package
{
 // Import all dependencies
 import flash.display.MovieClip;
 import flash.events.MouseEvent;

 // Declare our class
 public class MediaPlayer extends MovieClip
 {
 // Constructor function.
 // Called when someone creates a new MediaPlayer
 public function MediaPlayer()
 {
 // Make sure we call the MovieClip constructor
 super();
 // Let us know that we created this player.
 trace("MediaPlayer created!");
 }

 // Play a media file
 public function playFile()
 {
 // Show only the pause button.
 playButton.visible = false;
 pauseButton.visible = true;
 }

 // Pause a media file
 public function pause()
 {
 // Show only the pause button.
 playButton.visible = true;
 pauseButton.visible = false;
 }

 // Load a media file.
 public function load(file:String)
 {
 // Setup the play button.
 playButton.buttonMode = true;
 playButton.mouseChildren = false;
 playButton.addEventListener(MouseEvent.MOUSE_UP,onPlay);
 // Setup the pause button.
 pauseButton.buttonMode = true;
 pauseButton.mouseChildren = false;
 pauseButton.addEventListener(MouseEvent.MOUSE_UP,onPause);
 // Set the state of the play and pause buttons.
 // Set the state of the play and pause buttons.
 // We want to show the play button at first, so...
 playButton.visible = true;
 pauseButton.visible = false;
 }

 // Called when the play button has been pressed.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[152]

 private function onPlay(event:MouseEvent)
 {
 // Play the audio track.
 playFile();
 }

 // Called when the user presses the pause button.
 private function onPause(event:MouseEvent)
 {
 // Pause the audio track.
 pause();
 }

 // Add the play and pause button to the media player.
 public var playButton:MovieClip;
 public var pauseButton:MovieClip;
 }
}

Now that we have our common MediaPlayer class, we can modify our
AudioPlayer.as file, so that it derives this common functionality from the
MediaPlayer class.

Modifying the AudioPlayer class to derive from
MediaPlayer
To modify the AudioPlayer class, we will first need to open up the AudioPlayer.as
file that contains the original code from our previous chapter. The first thing we
need to do is make the AudioPlayer class derive from the MediaPlayer class that
we just created. This can be done by adding the MediaPlayer class after the
extends keyword:

// Declare our class
public class AudioPlayer extends MediaPlayer

By doing this, we are basically saying that the AudioPlayer class is inheriting
functionality from the MediaPlayer class, and we will do the same when we create
the VideoPlayer class. This creates a hierarchy of functionality most commonly
referred to as inheritance in object-oriented programming. Shown in a graphical
representation of the class structure, we can now represent the AudioPlayer,
VideoPlayer, and MediaPlayer classes as the following:

MovieClip

MediaPlayer

AudioPlayer VideoPlayer

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[153]

There is some terminology that is important for us to remember when working with
this hierarchical structure of class functionality. In ActionScript 3.0, the base class is
referred to as super class, and can be referenced in any of the subclasses by using the
keyword super. This is important to note since we will be using this keyword in the
following section, where we extend the functionality of the super class MediaPlayer
within the subclass AudioPlayer.

Since we have already inherited functionality from the MediaPlayer class, our next
task will be to walk through the AudioPlayer class and remove any functionality
that is provided from the MediaPlayer class. Our task also includes overriding
certain functions whose functionality will be extended with the AudioPlayer class.

Extending and overriding base (super) class
functionality
Our first task here will be to remove all the MediaPlayer class functionalities from
the AudioPlayer class. We can do this by simply deleting the play and pause button
functionality that we provided within the MediaPlayer class. After we have done
this, our AudioPlayer.as file should look as follows:

package
{
 // Import all dependencies
 import flash.media.Sound;
 import flash.media.SoundChannel;	
 import flash.net.URLRequest;
 	// Declare our class
 public class AudioPlayer extends MediaPlayer
 {
 // Constructor function.
 // Called when someone creates a new AudioPlayer
 public function AudioPlayer()
 {
 // Make sure we call the MediaPlayer constructor
 super();
 // Make sure to create our sound object
 sound = new Sound();
 // Initialize the position.
 position = 0;
 // Let us know that we created this player.
 trace("AudioPlayer created!");
 }
 // Play an audio file
 override public function playFile()
 {
 // Play our sound file.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[154]

 channel = sound.play(position);
 }

 // Pause an audio file
 override public function pause()
 {
 // Save the channel position.
 position = channel.position;

 // Stop our sound file.
 channel.stop();	
 }

 // Load an audio file.
 public function load(file:String)
 {
 // Load our sound file.
 sound.load(new URLRequest(file));
 }
 // Declare our sound variable.
 private var sound:Sound;
 // Declare our sound channel
 private var channel:SoundChannel;
 // Variable to keep track of the audio position.
 private var position:Number;
 }
}

After we have done that, we will need to override certain functions where the
AudioPlayer extends the functionality of the MediaPlayer. In ActionScript 3.0, we
can override any public or protected functions from the base class by using the
keyword override when declaring the function. For example, in the MediaPlayer
class, there is a function called playFile, which we will need to override in
our AudioPlayer class to actually play the file. But, since we want to keep the
functionality of the MediaPlayer class, which sets the play and pause button states,
we also want to make sure that we call the super.playFile in our overridden
function to make sure that we get the full functionality. By calling super.playFile,
we are telling ActionScript to call the playFile function of the super class
MediaPlayer. By following these rules, our playFile function in the AudioPlayer
class should look like the following:

// Play an audio file
override public function playFile()
{
 // Call the MediaPlayer playFile function.
 super.playFile();
 // Play our sound file.
 channel = sound.play(position);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[155]

It is also important to note that if we ever wish to completely override a function
from a super class, we would leave out the super function call (super.playFile).
But since we wish to extend functionality, as opposed to override functionality, we
will leave the super function call so that our super class MediaPlayer has a chance
to add its functionality to the playFile function.

Taking this into account, we now have enough knowledge to modify the pause
and load functions within our AudioPlayer class, so that it correctly extends
functionality from the MediaPlayer class.

// Play an audio file
override public function playFile()
{
 // Call the MediaPlayer playFile function.
 super.playFile();
 // Play our sound file.
 channel = sound.play(position);
}
 // Pause an audio file
 override public function pause()
{
 // Call the MediaPlayer pause function.
 super.pause();
 // Save the channel position.
 position = channel.position;
 // Stop our sound file.
 channel.stop();
}
 // Load an audio file.
override public function load(file:String)
{
 // Call the MediaPlayer load function.
 super.load(file);
 // Load our sound file.
 sound.load(new URLRequest(file));
}

We are now done modifying our AudioPlayer class to extend the MediaPlayer
functionality. Before we move onto the next section, it is very important for us to run
this code to make sure that it still functions as it did before we made our change to
class hierarchy. If all is well, we can move on to creating a new VideoPlayer class.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[156]

Creating a VideoPlayer class
The first step we will take to create a video player class is copy the AudioPlayer.as
file to a new file called VideoPlayer.as. After we open up this new file in Flash, we
can create a stub class, where we will remove any of the audio functionality (leaving
only the super class functionality). After removing all audio functionality, our
VideoPlayer class should look like the following:

package
{
 // Declare our class
 public class VideoPlayer extends MediaPlayer
 {
 // Constructor function.
 // Called when someone creates a new VideoPlayer
 public function VideoPlayer()
 {
 // Make sure we call the MediaPlayer constructor
 super();
 // Let us know that we created this player.
 trace("VideoPlayer created!");
 }
 // Play a video file
 override public function playFile()
 {
 // Call the MediaPlayer playFile function.
 super.playFile();
 }
 // Pause a video file
 override public function pause()
 {
 // Call the MediaPlayer pause function.
 super.pause();
 }
 // Load a video file.
 override public function load(file:String)
 {
 // Call the MediaPlayer load function.
 super.load(file);
 }
 }
}

Our next task will be to add the Flash video functionality that utilizes these functions
to play and pause video. There are three different classes that are used to show and
manipulate video in Flash, which are Video, NetStream, and NetConnection.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[157]

Working with Video, NetStream, and NetConnection
The first thing that we will need to do is make sure that we import the functionality
from these three classes as well as any dependent classes used by these classes. We
can do that by including the following code at the top of our VideoPlayer class
as follows:

package
{
 // Import all dependencies
 import flash.media.Video;
 import flash.net.NetStream;
 import flash.net.NetConnection;
 import flash.net.ObjectEncoding;
 import flash.events.*;

 // Declare our class
 public class VideoPlayer extends MediaPlayer
 {

After we import those classes, our next task will be to create variables within
this class that we will use to add video functionality. We can do this pretty easily
as follows:

// Load a video file.
override public function load(file:String)
{
 // Call the MediaPlayer load function.
 super.load(file);
}
// Add all of our video variables.
private var video:Video;
private var stream:NetStream;
private var connection:NetConnection;

After these variables have been added to your VideoPlayer class, we can now add
the video functionality that will show a video stream in our custom media player.
We will start with initializing all of our video variables.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[158]

Initializing our video variables
Our first task when adding video functionality is to make sure that all the variables
have been initialized to stream video. We can do this by adding some new functions
to our VideoPlayer class called connect and setupVideoStream, which we will
use to set up the connection and stream variables respectively. We can then call
those functions from within the constructor of our VideoPlayer. When initializing
the connection and stream variables, we will also need to create onError and
onStatus callback functions, to be called when the status changes or an error occurs.
Another thing to note when looking at this code is that we will need to include an
empty function called onMetaData. This is simply a stub function to keep Flash from
throwing errors when the client association tries to call this function. The additions
to our VideoPlayer class should look like the following:

// Constructor function.
// Called when someone creates a new VideoPlayer
public function VideoPlayer()
{
 // Make sure we call the MediaPlayer constructor
 super();
 // Let us know that we created this player.
 trace("VideoPlayer created!");
 // Connect to our NetConnection.
 connect();
 // Setup the video stream.
 setupVideoStream();
}
// Create a new NetConnection
private function connect()
{
 connection = new NetConnection();
 connection.addEventListener(NetStatusEvent.NET_STATUS,onStatus);
 connection.addEventListener(SecurityErrorEvent.SECURITY_ERROR,
 onError);
 connection.objectEncoding = ObjectEncoding.AMF0;
 connection.connect(null);
}
// Setup a new video stream.
private function setupVideoStream()
{
 stream = new NetStream(connection);
 stream.addEventListener(NetStatusEvent.NET_STATUS,onStatus);
 stream.addEventListener(AsyncErrorEvent.ASYNC_ERROR, onError);
 stream.client = this;
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[159]

// Stub function for the client association.
public function onMetaData(info:Object) {}

// Our video status handler.
private function onStatus(event:NetStatusEvent)
{
}

// Called when a video error occurs.
private function onError(event:Object):void
{
 trace("VideoPlayer Error: " + event);
}

Our final task in initializing all the variables is to create the video object that we will
use to show our video on the screen.

Creating the video object
In order to create the video object, we must first instantiate it with the width and the
height of the video area we wish to show. This is where it might get a little fuzzy since
we really do not want to hard code a width and height for our video. A better solution
is to design our software so that the size of the embedded player determines the size of
the video. This can be done by referencing the stage object within our VideoPlayer
class, and then setting the width and height of our video to the same size.

This, however, presents an unusual caveat since our VideoPlayer must first be
added to the stage in order to make the stage variable valid. Fortunately, we can
design our class to trigger an event when our class is added to the stage, and then set
the width and height of our video to the stage width and height within the handler
function of this event. Once we have the size of our video player, we can assign the
NetStream to our video object using the attachNetStream function.

Once we have declared our new video object, we will need to add it to the
VideoPlayer so that it is visible to our users. In order to do this properly, we will
need to place it behind the play and pause buttons, so that it will not cover them up
when the video is playing. This can be done using the addChildAt function, and
then providing an index of 0, which means to place it behind every object within
the VideoPlayer class.

// Constructor function.
// Called when someone creates a new VideoPlayer
public function VideoPlayer()
{
 // Make sure we call the MediaPlayer constructor
 super();

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[160]

 // Let us know that we created this player.
 trace("VideoPlayer created!");
 // Connect to our NetConnection.
 connect();
 // Setup the video stream.
 setupVideoStream();
 // Add a listener when the player is added to the stage.
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
}
// Called when the video player has been added to the stage.
private function onAdded(event:Event)
{
 // Create our video object the size of our stage.
 video = new Video(stage.width, stage.height);
 // Attach our net stream to the video object.
 video.attachNetStream(stream);
 // Add the video to the VideoPlayer.
 addChildAt(video, 0);
}

We are now done initializing all the variables for our VideoPlayer class. Our next
task will be to hook up the functionality.

Adding video functionality
To add video functionality, we will now shift our focus to the load, play, and pause
functions, where we will play with our video stream to perform this functionality.
We will start with the load functionality.

Adding video load
For the video load function, we will want to load the video file passed to the function
but not play it. Unfortunately, the video stream class does not support a load
function, but we can simulate it by playing the file and then pausing it once it starts
to play. This will trigger our VideoPlayer class to start loading the video file. To do
this, we will need to utilize two different functions where we play the video stream,
and then handle the play status in the onStatus function, where we will pause the
stream. In order to make this work correctly, we will need to create a class variable
that will keep track if the video file has been loaded, and only pause the video if it
has not been loaded. This functionality looks like the following:

// Constructor function.
// Called when someone creates a new VideoPlayer
// Constructor function.
// Called when someone creates a new VideoPlayer
public function VideoPlayer()

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[161]

{
 // Make sure we call the MediaPlayer constructor
 super();
 // Let us know that we created this player.
 trace("VideoPlayer created!");
 // Connect to our NetConnection.
 connect();
 // Setup the video stream.
 setupVideoStream();
 // Initialize to not loaded.
 loaded = false;
 // Add a listener when the player is added to the stage.
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
}

// Our video status handler.
private function onStatus(event:NetStatusEvent)
{
 // If the video is playing.
 if(event.info.code == "NetStream.Play.Start")
 {
 // Pause the stream if it is not loaded.
 if(!loaded) {
 loaded = true;
 stream.pause();
 }
 }
}

// Load an audio file.
override public function load(file:String)
{
// Call the MediaPlayer load function.
 super.load(file);
 // Reset the loaded flag.
 loaded = false;
 // stop the current stream.
 stream.close();
 // Start playing the new stream.
 stream.play(file);	
}
// Add all of our video variables.
private var video:Video;
private var stream:NetStream;
private var connection:NetConnection;
// Variable to keep track of loaded state.
private var loaded:Boolean;

Now that we have load functionality, our next task is to create the play and
pause functionality.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[162]

Adding play and pause functionality
Fortunately, adding the play and pause functionality to the VideoPlayer class is
very simple, and requires only a single function call using the stream variable like
the following:

// Play a video file.
override public function playFile()
{
 // Call the MediaPlayer playfile function.
 super.playFile();
 // Resume the stream.
 stream.resume();
}

// Pause a video file
override public function pause()
{
 // Call the MediaPlayer pause function.
 super.pause();
 	// Pause the stream.
 stream.pause();
}

Now that we are done adding the play and pause functionality, we can shift our
focus to our chapter6.fla file, where we will utilize this new class to show video.

Creating a new VideoPlayer MovieClip
We can start out this section by opening up the chapter6.fla file, where we will
then direct our attention to the Library section. This is where we will set up our
new custom video player.

The first thing that we would like to do is create a duplicate of the mcAudioPlayer
movie clip, and then change the properties so that it has a different functionality.
To do this, we will first right-click on the mcAudioPlayer movie clip and select the
option Duplicate.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[163]

This will then bring up a new window, where we can create a new movie clip for our
video player. We will also need to make sure to check the Export for ActionScript
and then provide VideoPlayer for the class.

As mentioned in the previous chapter, this will create a link between the movie clip
mcVideoPlayer and the class VideoPlayer that we just created. Now that we have
created our mcVideoPlayer movie clip, we need to navigate back to the root of our
Flash project and then delete the mcAudioPlayer instance from the stage. This is
done so that we can programmatically select which player to use depending on the
media within our Drupal node. When we are done with this step, we should be left
with only the Title region of our Flash application.

We are now ready to modify the onNodeLoad function within our main.as file to
use our new VideoPlayer, and to reference the video attached to our Drupal node,
but first, we need to take a look at the Services Administrator to determine the node
structure of a video node.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[164]

Linking the VideoPlayer to Drupal
Shifting our focus back to Drupal, we will first determine the node structure of the
video node that we created at the beginning of this chapter. Again, the Services
Administrator comes to our rescue, where we can use the node.get routine to
examine the video node that we created earlier in this chapter. Once we enter the
node ID in the nid input box and click on the Call Method button, we should see
the following results in the Results section. We can then examine the result, where
we will notice the field_video FileField that we created.

Looking at this information, we can determine that the node data that we are
interested in can be represented by the following code, given the node object:

node.field_video[0]["filepath"]

We can now take that information back to our main.as file, where we can modify the
onNodeLoad function to load this video.

Loading and playing our Drupal video
Moving our focus back to the main.as, we can now examine the onNodeLoad
function, which up to this point, should look like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[165]

 // Print out the node title.
 title.text = node.title;	
 // Declare our base URL.
 var fileURL:String = baseURL;	
 // Add our file's relative path.
 fileURL += "/";
 fileURL += node.audio.file.filepath;

 // Play our audio file
 player.load(fileURL);
}

Our first task will be to programmatically allow ourselves to either create an
AudioPlayer or a VideoPlayer, depending on the type of media that is attached
to our node. To start with, we will need to modify our existing code within the
onNodeLoad function so that our AudioPlayer is only created when the audio is
provided within the node. To do this, we will first declare a generic player variable,
and then set the value of that player when we know for sure what kind of player it
should be.

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;	
 	// Declare our base URL.
 var fileURL:String = baseURL;	
 // Add our file's relative path.
 fileURL += "/";
 // Declare a generic media player.
 var player = null;
 // If this node has audio.
 if(node.audio) {
 // Declare our player as an AudioPlayer.
 fileURL += node.audio.file.filepath;
 player = new AudioPlayer();
 }

 // Play our audio file
 player.load(fileURL);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[166]

After we have done this, we can now do the same for the VideoPlayer if we find the
field_video within the node object.

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;	
 // Declare our base URL.
 var fileURL:String = baseURL;	
 // Add our file's relative path.
 fileURL += "/";
 // Declare a generic media player.
 var player = null;
 // If this node has audio.
 if(node.audio) {
 // Declare our player as an AudioPlayer.
 fileURL += node.audio.file.filepath;
 player = new AudioPlayer();
 }
 else if(node.field_video) {
 // Declare our player as a VideoPlayer.
 fileURL += node.field_video[0]["filepath"];
 player = new VideoPlayer();
 }

 // Play our audio file
 player.load(fileURL);
}

Finally, we need to make sure to add our player as a child to stage. We can do this
by using the addChild function, which will trigger the onAdded function to trigger
within our VideoPlayer class.

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;	
 // Declare our base URL.
 var fileURL:String = baseURL;	
 // Add our file's relative path.
 fileURL += "/";
 // Declare a generic media player.
 var player = null;
 // If this node has audio.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[167]

 if(node.audio) {
 // Declare our player as an AudioPlayer.
 fileURL += node.audio.file.filepath;
 player = new AudioPlayer();
 }
 else if(node.field_video) {
 // Declare our player as a VideoPlayer.
 fileURL += node.field_video[0]["filepath"];
 player = new VideoPlayer();
 }

 // Add the player to the stage.
 addChild(player);

 // Play our audio file
 player.load(fileURL);
}

We can now temporarily provide the nodeID for our video node at the top of the
main.as file so that we can try out our new video player.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";
var nodeId:Number = 9;

Now, when we run our project, we should see a working video with play and
pause functionality!

We are now ready to take this application back to Drupal.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[168]

Adding our custom media player to Drupal
The first step we will need to take is to change our nodeId variable back to the
FlashVars format so that we can compile our new media player for Drupal.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

After we run our media player with these changes (which compiles the SWF file), we
can follow the steps from Chapter 4 and upload our new media player by navigating
to Create Content | Flash. Once we have our Flash application submitted to Drupal,
we can create a template for both the audio and video nodes using the Content
Templates within the Drupal Administrator. Assuming that the node ID for our
flash node application is 11, our body templates should look like the following for
both the video and audio nodes:

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 11));

// Load the flash node.
flashnode_load($flash);

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] = 'node=' . $node->nid;

// Show the Flash application.
print theme('flashnode', $flash->flashnode, FALSE);
?>

Once we have our templates in place, we can navigate to any audio and video node
within our Drupal website and see our new media player in action!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 6

[169]

Summary
This chapter covered a lot of material. The following is a list of the key topics covered:

We started out with a brief overview of four different video solutions for
Drupal, and decided to implement the FileField + jQuery Media for our
use case
We successfully set up a working video solution for our Drupal web site by
combining a commercially available media player with the FileField and
jQuery Media module
We created a base class called MediaPlayer to hold the common
functionality between video and audio

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash Video in Drupal

[170]

We discussed some key object-oriented features in ActionScript 3.0 such as
extends, override, and super keywords as well as the meaning of inheritance
We redesigned our AudioPlayer class to use our new object-oriented structure
We built a VideoPlayer class that utilizes Flash classes to display video
We created some functionality to dynamically select which media player to
declare, depending on the type of media attached to our Drupal node
We added our new media player to Drupal

In the next chapter we will discuss how external components can interact with our
Flash applications in Drupal (including other Flash components) by building a
remote control for our new custom media player.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach
Part 1: Componentization

When integrating Flash with Drupal, one common obstacle that most people face is
creating architecture that delivers the Flash content while, at the same time, utilizes
the advantages of Drupal content management. This creates a problem because
Drupal was designed and implemented with an HTML/JavaScript user interface,
which tends to have a tightly woven bond to the server-side business logic that
controls the function of the site. Because of this, many Flash implementations for a
Drupal web site tend to have an all-or-nothing approach when integrating Flash as
the user interface. What many people do not realize is that another approach exists.
In this approach, the Flash integration takes the form of a collection of widgets, each
with their own specific functions that are able to communicate to one another as if
they were built into a single Flash application. In my opinion, this hybrid approach is
ideal because it allows us to pick and choose the components that we wish to have as
Flash on our Drupal site and the ones that we would like to keep as HTML, giving us
the best of both worlds.

In the next two chapters we will discuss how to build a Drupal site where the Flash
integration is componentized. We will also discuss how each of these Flash widgets
can communicate with one another as if they were combined into one application by
creating a Remote Control for the media player we built in the previous chapter.
This example will easily illustrate the power of this technique when developing a
Flash-integrated Drupal web site. We will cover the following topics in this chapter:

What is the hybrid approach?
Creating a media player control bar
Creating a communication gateway
Static functions and the this pointer
Adding the ControlBar to our Flash project

•
•
•
•
•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[172]

What is the hybrid approach?
Many Flash web sites today are constructed as a single Flash application (SWF)
that is built to behave like a web site. Although this approach is great for many use
cases, it does not work well with content management systems. This is because the
content in content management systems is constantly changing, or there are many
different forms of content such as comments, user profiles, and so on. For these web
sites, an approach is needed where Flash and HTML are inter-mixed to give the best
user interface for each component on the web site. This approach is called a hybrid
approach, where we integrate Flash into Drupal.

To illustrate this, let us take an example of a typical all-or-nothing Flash
implementation for a Drupal web site, where the entire user interface is provided
through Flash. In the following illustration we can see a block diagram showing how
a Flash application would look if it was embedded to take up the entire page.

HTML Body

Flash Application

Primary Links

Menu Content

This diagram may look very familiar since it is typical for most Flash-driven Drupal
web sites. However, there are several problems in using this type of architecture.
These problems can be explained with the help of the following points:

1.	 Static layout—A static layout is one that does not resize when the browser
viewing the page resizes. This is a very common issue with Flash web sites,
where the web developer must pick a common browser size and then design
the layout of the whole Flash application to fit that size. A fluid layout will
automatically resize with the browser and is usually preferred for most use
cases. Standard HTML allows fluid layouts.

2.	 All-or-nothing development—Integrating Flash into your Drupal web site is
usually a very frustrating process because it has a tendency to spider web its
way through your entire site, until it completely takes over. In most cases this
makes the development time much longer than if the site were designed and
deployed using only HTML.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[173]

3.	 Large and cumbersome application—When a single Flash application is used
to deploy your entire user interface for Drupal, the end product is almost
always large and cumbersome. This makes your bandwidth usage greater
when your site is deployed to a large audience and it will slow down the
speed of your site.

4.	 Not search engine friendly—Although much improvement has been made
with Flash content being indexed with popular search engines, it still is no
comparison to HTML-driven web content.

The hybrid approach, however, breaks apart this massive Flash application into
separate components (or widgets), where each widget is in charge of a single piece
of functionality, and then communicates to the other widgets using a JavaScript
gateway. This approach is illustrated as follows:

HTML Body

Flash Primary Links

Content

Header

Flash Content
Flash
Menu

Sidebar

JavaScript

By using this architecture we can use the facilities that Drupal provides when placing
content on the page, such as using Blocks and Panels—which we will cover in the
next chapter. It also forces us to break our Flash widgets into smaller applications,
where each widget performs a specific task. In software development this is
commonly referred to as componentization. Componentization makes our Flash
implementation expandable and easier to maintain. Although this architecture may
be more flexible, it does require a communication protocol between each widget on
the page, which we will simulate by creating a remote control for our media player
from the previous chapter. But first, we must abstract out all the functionality
that we would like to use as the separate remote control application, namely the
control bar.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[174]

Creating a media player control bar
Before we begin this section, we will first need to copy all the files used for Chapter
6 and create a new folder to hold all of our changes made for this chapter. Once
we are done doing this, our first task will be to change the architecture of our
current MediaPlayer so that it will support the separation between the media and
control bar functionality. In order to do this, we will need to create an abstraction
between the media and controls so that their functionality may be within the
same Flash application or in two separate Flash applications connected together
with a JavaScript gateway. By performing this abstraction we will understand
the importance and benefits of object-oriented practices which allows this type
of abstraction. To start, we will first extract all of the play and pause button
functionality into a new class that we will call ControlBar. The main purpose
of this class will be to hold all the user interaction for the media player.

Creating a ControlBar class
Let's start this section by copying the MediaPlayer.as file, and then creating a new
file from that copy called ControlBar.as in the same directory. The reason we are
copying the MediaPlayer.as file is simply because the MediaPlayer class currently
holds the functionality that we will use for our new ControlBar class.

Once we have done this, we are ready to open up the ControlBar.as file and
modify it so that it represents the correct class name, and change the constructor
function given as follows. When we are done, our class definition should look
something similar to the following, where the changes have been highlighted:

package
{
 // Import all dependencies
 import flash.display.MovieClip;
 import flash.events.MouseEvent;

 // Declare our class
 public class ControlBar extends MovieClip
 {
 // Constructor function.
 // Called when someone creates a new ControlBar
 public function ControlBar()
 {
 // Make sure we call the MovieClip constructor
 super();
 // Let us know that we created the ControlBar.
 trace("ControlBar created!");
 }
...
...

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[175]

We will also need to move the playButton and pauseButton initialization into the
constructor of this class, since we do not want any dependency on loaded media in
order to instantiate our buttons. We can do this by first copying all the contents of
the load function and moving that code into the constructor, and then completely
deleting the load function. When we are done, our ControlBar class should look
like the following:

package
{
 // Import all dependencies
 import flash.display.MovieClip;
 import flash.events.MouseEvent;

 // Declare our class
 public class ControlBar extends MovieClip
 {
 // Constructor function.
 // Called when someone creates a new ControlBar
 public function ControlBar()
 {
 // Make sure we call the MovieClip constructor
 super();
 // Let us know that we created the ControlBar.
 trace("ControlBar created!");
 // Setup the play button.
 playButton.buttonMode = true;
 playButton.mouseChildren = false;
 playButton.addEventListener(MouseEvent.MOUSE_UP,onPlay);
 // Setup the pause button.
 pauseButton.buttonMode = true;
 pauseButton.mouseChildren = false;
 pauseButton.addEventListener(MouseEvent.MOUSE_UP,onPause);
 // Set the state of the play and pause buttons.
 // We want to show the play button at first, so...
 playButton.visible = true;
 pauseButton.visible = false;
 }

 // Play a media file
 public function playFile()
 {
 // Show only the pause button.
 playButton.visible = false;
 pauseButton.visible = true;
 }

 // Pause a media file
 public function pause()
 {
 // Show only the pause button.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[176]

 playButton.visible = true;
 pauseButton.visible = false;
 }

 // Called when the play button has been pressed.
 private function onPlay(event:MouseEvent)
 {
 // Play the audio track.
 playFile();
 }

 // Called when the user presses the pause button.
 private function onPause(event:MouseEvent)
 {
 // Pause the audio track.
 pause();
 }

 // Add the play and pause button to the media player.
 public var playButton:MovieClip;
 public var pauseButton:MovieClip;
 }
}

Our next task is to modify the MediaPlayer.as file so that it no longer has a
dependency on the ControlBar class. Let's now open up the MediaPlayer.as
file so that we can make all the appropriate changes.

Removing the ControlBar dependency from
MediaPlayer
In this section we will start by opening up the MediaPlayer.as file and removing
any dependencies that this file has on the ControlBar object. Although we will
temporarily break this class, we will make the connection again when we build a
communication gateway later in this chapter. For now, we simply want to remove
any trace of a control bar until our MediaPlayer.as file looks like the following:

package
{
 // Import all dependencies
 import flash.display.MovieClip;
 import flash.events.MouseEvent;

 // Declare our class
 public class MediaPlayer extends MovieClip
 {
 // Constructor function.
 // Called when someone creates a new MediaPlayer
 public function MediaPlayer()
 {

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[177]

 // Make sure we call the MovieClip constructor
 super();
 // Let us know that we created this player.
 trace("MediaPlayer created!");
 }

 // Play the media file
 public function playFile()
 {
 }

 // Pause the media file
 public function pause()
 {
 }

 // Load a media file.
 public function load(file:String)
 {
 }
 }
}

Now that the control bar has been removed from the MediaPlayer class, our next
step is to re-add the ControlBar to the stage when the player runs.

Adding the ControlBar to the stage
In order to add our new ControlBar to the stage, we will need to make a few
modifications to our main.as file. Our goal here is to allow our Flash application to
run as a remote control application, a media player, or both. Because of this, we will
need to design our Flash application so that it can handle situations where we would
like it to behave only as a control bar. For this use case, we will need the ability to
resize our Flash application so that it only shows the control bar section and not the
media region. However, by default, Flash will scale the size of our application to
fit any embedded width and height that we provide, which is not what we want.
Instead, we would like the Flash application to mask off any region outside of the
width and height region provided to our HTML object code. To do this, we will need
to add the following code to our main.as file, to tell our stage to not scale when the
player is being resized:

// Set up our responder with the callbacks.
var responder:Responder = new Responder(onConnect, onError);

// We do not want to scale the stage.
stage.scaleMode = StageScaleMode.NO_SCALE;
stage.align = StageAlign.TOP_LEFT;

// Connect to Drupal
drupal.call("system.connect", responder);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[178]

Our next task is to add our ControlBar to the stage. Again, we need to be able to
handle the use case where our player will be used as a remote control only. For this
case we do not really require the nodeId variable to be valid, since we can connect to
any remote media player and let them worry about the nodeId of the media to play.
For this reason, we will need to add our ControlBar in two different places. The first
place will be within the onNodeLoad function, when a node has successfully been
added to the player; and the second place is when a nodeId is not provided. These
changes look like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;	
 // Declare our base URL.
 var fileURL:String = baseURL;	
 // Add our file's relative path.
 fileURL += "/";
 // Declare a generic media player.
 var player = null;
 // If this node has audio.
 if(node.audio) {
 // Declare our player as an AudioPlayer.
 fileURL += node.audio.file.filepath;
 player = new AudioPlayer();
 }
 else if(node.field_video) {
 // Declare our player as a VideoPlayer.
 fileURL += node.field_video[0]["filepath"];
 player = new VideoPlayer();		
 }

 // Add the player to the stage.
 addChild(player);

 // Add a control bar.
 addControlBar();

 // Play our audio file
 player.load(fileURL);
}

// Add the control bar to the stage.
function addControlBar()
{
 var controlBar:ControlBar = new ControlBar();
 addChild(controlBar);
}

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[179]

 // Set our sessionId variable.
 sessionId = result.sessid;	
 trace("We are connected!!!");
 trace("Session Id: " + sessionId);	

 // If the node Id is valid...
 if(nodeId) {
 	// Load our node.
 	loadNode(nodeId);	
 }
 else {
 	// Add a control bar.
 	addControlBar();
 }
}

Now that we have removed the control bar dependency from the media player, we
must recreate the communication channels between ControlBar and MediaPlayer
by building a new communication mechanism that will support both local and
remote connections.

Communication between ControlBar and
MediaPlayer
In a typical Flash architecture, communication between two different components
would use ActionScript's event model to dispatch events from one component
to the next. But, for our implementation, we will need to take an unconventional
approach with our architecture, since the communication between these two
different components can be performed, either locally or remotely, between two
separate Flash applications. Because of this, we will need to construct a gateway class
whose sole purpose is to link the ControlBar to the MediaPlayer either directly or
remotely. Although this method is not the only way to do this type of interaction, it
can be argued that it gives maximum flexibility, and allows us to have the same code
to control a remote or a local connection between the two components. We can see an
illustration of this by constructing the gateway class.

Creating a communication gateway
Our gateway class will simply be a new class that serves as a communication
gateway between the ControlBar and the MediaPlayer. To start with, we will create
a new file called MediaGateway.as and open up that file within our Flash IDE. One
major difference between this class and the other classes we have implemented in
this book is that this gateway should be declared and used statically.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[180]

Using static functions
A static function is a special type of function, within a class, which can be called
without the requirement for an instantiated object. What this means is that any
object can access each function declared within our MediaGateway class by calling
the function directly, instead of calling through a declared object. For example, if
we wish to use the MediaPlayer class to play a media track, we must first declare a
MediaPlayer object and then load that media file by calling a non-static function on
that media object as follows:

var media:MediaPlayer = new MediaPlayer();
media.load("mymusic.mp3");

By declaring a function as static, we are saying that the functionality, within that
function, is common for all instances of any declared object. We could call that
function as if it were a global function by simply calling the function within the
class, without declaring an instance of that class as follows:

MediaPlayer.load("mymusic.mp3");

The main drawback of having statically defined functions is that only one instance
of that functionality can exist. What this means is, for this example, we would not
be able to declare two separate instances of MediaPlayer and have them behave
independently of each other. For our gateway, however, this is not an issue since
its objective is to only serve as a message router between the ControlBar and
MediaPlayer classes. With that said, we can now create a new class that has
four static functions, which will trigger the play and pause events for both the
ControlBar and MediaPlayer classes. The shell for this class should look
something similar to the following:

package
{
 // Declare our class
 public class MediaGateway
 {
 // Add a static play function
 public static function playMedia()
 {
 // TO-DO: Play the media
 }

 // Add a static pause function
 public static function pauseMedia()
 {
 // TO-DO: Pause the media
 }

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[181]

 // Add a static control play function
 public static function playControl()
 {
 // TO-DO: Play the control
 }

 // Add a static control pause function
 public static function pauseControl()
 {
 // TO-DO: Pause the control
 }
 }
}

Now that we have our gateway functions defined, our next task is to find a way
to trigger the non-static functions of the MediaPlayer and ControlBar instances.
When devising a plan to incorporate both the MediaPlayer and ControlBar
instances, within our static gateway, we run into a unique obstacle in that non-static
objects and variables (like the MediaPlayer and ControlBar) cannot be referenced
within a static function. The good news is that there is a workaround, where we can
declare two static variables within the MediaGateway class that references both the
ControlBar and MediaPlayer instances, since there should be only one of each per
Flash application. We can start this association by first declaring the static variables
within our MediaGateway class that will be used to reference the ControlBar and
MediaPlayer objects.

package
{
 // Declare our class
 public class MediaGateway
 {
 // Add a static play function
 public static function playMedia()
 {
 // TO-DO: Play the media
 }

 // Add a static pause function
 public static function pauseMedia()
 {
 // TO-DO: Pause the media
 }

 // Add a static control play function
 public static function playControl()
 {
 // TO-DO: Play the control
 }

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[182]

 // Add a static control pause function
 public static function pauseControl()
 {
 // TO-DO: Pause the control
 }

 // Declare our obect references.
 public static var controlBar:ControlBar;
 public static var mediaPlayer:MediaPlayer;
 }
}

To complete this association, we need to set these static references to the non-static
objects they represent. We can do this, within each class, by assigning the correct
static object to the this pointer of the MediaPlayer and ControlBar instances.

Using the this pointer
The this pointer is a special pointer that is used, within any class, as a reference
to itself. We can use the this pointer to make the association between the static
variables within our MediaGateway and the actual ControlBar and MediaPlayer
objects. The only problem here is that we need to find a good spot to make this
association. We cannot do it within the constructor of each class since the this
pointer has not been instantiated at the point of object construction. We can,
however, trigger when the object has been added to the stage, as and when someone
uses the addChild method to add that object to the stage, and then make that
association within the handler function. We can do this by triggering on the
ADDED_TO_STAGE event, and then assigning the static objects to the this pointer
once that object has been added to the stage. We are guaranteed, at that point, to
have a valid this pointer to make the correct association. Our MediaPlayer and
ControlBar classes should now look like the following:

MediaPlayer.as

// Import all dependencies
import flash.events.Event;
import flash.display.MovieClip;
import flash.events.MouseEvent;

// Declare our class
public class MediaPlayer extends MovieClip
{
 // Constructor function.
 // Called when someone creates a new MediaPlayer
 public function MediaPlayer()
 {

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[183]

 // Make sure we call the MovieClip constructor
 super();
 // Let us know that we created this player.
 trace("MeidaPlayer created!");
 // Trigger when this object is added.
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 // Assign this object as the active media player.
 MediaGateway.mediaPlayer = this;
 }
...
...

ControlBar.as

// Import all dependencies
import flash.events.Event;
import flash.display.MovieClip;
import flash.events.MouseEvent;

// Declare our class
public class ControlBar extends MovieClip
{
 // Constructor function.
 // Called when someone creates a new ControlBar
 public function ControlBar()
 {
 // Make sure we call the MovieClip constructor
 super();
 // Let us know that we created the ControlBar.
 trace("ControlBar created!");
 // Setup the play button.
 playButton.buttonMode = true;
 playButton.mouseChildren = false;
 playButton.addEventListener(MouseEvent.MOUSE_UP,onPlay);
 // Setup the pause button.
 pauseButton.buttonMode = true;
 pauseButton.mouseChildren = false;
 pauseButton.addEventListener(MouseEvent.MOUSE_UP,onPause);
 // Set the state of the play and pause buttons.
 // We want to show the play button at first, so...
 playButton.visible = true;
 pauseButton.visible = false;
 // Trigger when this object is added.
 addEventListener(Event.ADDED_TO_STAGE, onAdded);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[184]

 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 // Assign this object as the active control bar.
 MediaGateway.controlBar = this;
 }
...
...

Making the connections
After we are done with this crucial step, we can now complete our MediaGateway
class to call the playFile and pause functions on our mediaPlayer and
controlBar objects.

package
{
 // Declare our class
 public class MediaGateway
 {
 // Add a static play function
 public static function playMedia()
 {
 // Play the media
 mediaPlayer.playFile();
 }

 // Add a static pause function
 public static function pauseMedia()
 {
 // Pause the media
 mediaPlayer.pause();
 }

 // Add a static control play function
 public static function playControl()
 {
 // Play the control
 controlBar.playFile();
 }

 // Add a static control pause function
 public static function pauseControl()
 {
 // Pause the control
 controlBar.pause();
 }

 // Declare our obect references.
 public static var controlBar:ControlBar;
 public static var mediaPlayer:MediaPlayer;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[185]

 }
}

After we are done with this, our final step is to change the onPlay and onPause
functions within our ControlBar.as file, to use the MediaGateway calls to play
and pause the media.

// Called when the play button is pressed.
private function onPlay(event:MouseEvent)
{
 // Tell the player to play
 MediaGateway.playMedia();
}
// Called when the pause button is pressed
private function onPause(event:MouseEvent)
{
 // Tell the player to pause
 MediaGateway.pauseMedia();	
}

We can now also change the playFile and pause functions, within the
MediaPlayer.as file, to make a call to the MediaGateway's playControl
and pauseControl to set the correct state of our ControlBar.

// Play a media file.
public function playFile()
{
 // Tells the media gateway to play the controls.
 MediaGateway.playControl();
}
// Pause a media file
public function pause()
{
 // Tells the media gateway to pause the controls.
 MediaGateway.pauseControl();	
}

To help illustrate this unique messaging system, the following diagram shows how
the ControlBar is now able to call the playFile routine of the MediaPlayer object
through the use of the static MediaGateway playMedia function.

onPlay

ControlBar

playFile

MediaPlayer

playMedia

MediaGateway

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[186]

I know that this may seem like a lot of work to simply call a function on another
object, but what we are doing here is setting up the foundation to create a remote
connection between the ControlBar and the MediaPlayer by using a common
gateway class that governs the communication between the two. In the next chapter
we will expand this and introduce a remote communication, but for now we need to
make sure the local communication works as expected. To do this, we will need to
change our media player project so that it reflects the new object structure to include
the ControlBar.

Adding the ControlBar to our Flash project
For this step, we will now open up the chapter7.fla file in our Flash IDE, where
we will extract the ControlBar objects from the MediaPlayer movie clips. There are
several ways to accomplish this step, but I will try to take the path of least resistance
by first creating a new MovieClip that will be called mcControlBar. We can do this
by clicking on the menu item Insert | Create Symbol.

Once you click on OK, our next step will be to replicate the play and pause button
functionality from either the mcAudioPlayer or the mcVideoPlayer and put
that inside the mcControlBar movie clip. We can do this by first opening up the
mcAudioPlayer movie clip within our Library. Once this movie clip is open, we need
to make sure we unlock both the play and pause layers and then select the first key
frames for the play and pause layers (by selecting one and then pressing the Shift
key and selecting the other), and then right-click on the selection within the first key
frame, and select Copy Frames.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[187]

With these frames copied, we will double-click on our mcControlBar movie clip
from our Library, select the first key frame on the default layer, right-click, and then
select Paste Frames (as shown in the following screenshot).

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 1: Componentization

[188]

After doing this, we will see that the layers, frames, and all the content have been
copied to the mcControlBar movie clip.

Now that we have a complete control bar movie clip, we need to make sure that this
movie clip will reference the ControlBar class that we just created in ActionScript.
We can do this by shifting our focus to our Flash Library, right-clicking on the
mcControlBar movie clip, and then selecting Properties.

Much like what we did with the mcAudioPlayer and the mcVideoPlayer, we need
to make sure we check the Export for ActionScript checkbox, and then provide
ControlBar for the class as shown:

After clicking on OK, we are ready to modify our mcAudioPlayer and
mcVideoPlayer movie clips so that they do not contain any control bar functionality.

Removing the control bar from the MediaPlayer
Our next task is to open up both the mcAudioPlayer and mcVideoPlayer movie
clips and remove the control bar functionality from them. This can easily be done by
removing the play and pause layers within each one of these movie clips. We will
start by opening up the mcAudioPlayer movie clip, where we will then delete the
play layer leaving only the pause layer.

Since the pause layer is the only layer left, Flash will not let us delete that layer. We
can, however, select the contents of the first key frame of this layer and delete the
contents. We can do this by clicking on the pause layer and then pressing the Delete
key on our keyboard. Now that we have cleaned out the Audio Player, we can do the
same to the mcVideoPlayer, so that there are no more remnants of the control bar in
either of these movie clips.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

[189]

At this point, we should be able to run our application and see that it functions as it
did at the end of the previous chapter, but this time using an abstracted ControlBar
with the foundations of a MediaGateway in place.

In the next chapter, our task will be to separate the ControlBar and MediaPlayer
functionalities between two separate Flash applications, essentially creating a
Remote Control application, and then integrate those two applications into our
Drupal web site.

Summary
In this chapter we learned the basics of how to take an existing Flash application
and break apart the components for remote communication. We achieved this by
first abstracting out separate functionalites into two separate components, and then
laying the foundation for a communication gateway between the two different
components. This is an essential first step to create a robust and easily maintained
system, where Flash applications can be separated on a Drupal web site, thus
implementing a hybrid Flash integration approach.

In the next chapter, we will pick up right where we left off with this chapter by
taking our abstracted ControlBar and MediaPlayer and implementing the remote
communication needed to separate the two Flash applications on our Drupal web site.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach
Part 2: Remote Control

We have already extracted all of our control functionality from our media player,
and in this chapter we will focus on creating the bridge between two different Flash
applications. Once we create this bridge, we will have the ability to control
our media from a remote Flash application. In other words, we will be building
a remote control for our media player that can be placed anywhere on the page,
separate from the media player. We will achieve this separation by walking
through the following steps:

Client-side Flash communication
Flash to JavaScript communication
Creating a JavaScript gateway
Flash and JavaScript synchronization
Using our remote control within Drupal

Client-side Flash communication
In the previous chapters we learned how Flash communicates with Drupal using
a client-server communication called web services. This type of communication
allowed for our Flash applications to extract Drupal content to be used in our
Flash applications by calling routines located on the server. In this chapter, we
will shift our focus away from the server-side and concentrate on client-to-client
communication. We will build the communication gateway between Flash and
JavaScript that will allow us to interconnect separate Flash applications on a single
page. By connecting Flash applications together using JavaScript, we will have a
componentized architecture, where each Flash "widget" on our web site has a specific
function, while at the same time, works with other widgets to achieve a unified
user interface. This will give us much flexibility while developing our Flash user
interfaces for Drupal. Let me illustrate how this works.

•
•
•
•
•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[192]

Picking up where we left off from the previous chapter, we abstracted out a
ControlBar class that receives the button pressed from the user, and then calls the
MediaGateway playMedia function, which would then just call the MediaPlayer
playFile function. All of the communication between the ControlBar to the
MediaPlayer classes are performed locally, since this path of communication
is handled within a single Flash application as follows:

Flash Application A

ControlBar

onPlay

playMedia

MediaGateway

MediaPlayer

playFile

21

Let's now illustrate the architecture if we were to break apart this functionality
into two different Flash applications. One application is responsible for controlling
the media (the remote control), while the other application is responsible for
playing the media (the player). This is where the MediaGateway becomes useful.
Since we created a separate component to handle the communication between the
ControlBar and the MediaPlayer, we can now add to the functionality of this
gateway to allow remote communication. What is even more important to note is
that this MediaGateway can also be configured to call the function directly within
the same Flash application as we did in the previous chapter. By designing our Flash
application such that it can have either remote or local communication, we are giving
it maximum flexibility so that the functional components within our application can
be either combined or separated on our web site.

Flash Application A Flash Application B

ControlBar ControlBar

onPlay onPlay

playMedia playMedia

MediaGateway MediaGateway

MediaPlayer MediaPlayer

playFile playFile

1

JavaScript
Gateway

4

32

Our goal for this chapter will be to take our media player project from the previous
chapter and create this type of architecture. But first, we will need to modify our
MediaGateway.as file so that it can communicate to an external JavaScript gateway.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[193]

Flash to JavaScript communication
Before we begin this section, let's copy the project and source files from the previous
chapter into a new folder. We will use this folder to build the project for this chapter.
After we have done that, we can now modify our MediaGateway.as file so that
it can communicate with an external JavaScript gateway. In order to allow Flash
to communicate with JavaScript, we will use a standard Flash component called
ExternalInterface.

Calling a JavaScript function from Flash
The ExternalInterface component allows us to register functions that can be
called from JavaScript as well as gives us the ability to call any JavaScript function
directly from within Flash. This Flash to JavaScript communication can be achieved
by using the ExternalInterface.call function. This function takes several
different arguments, where the first argument is the name of the function you would
like to call in JavaScript, and any arguments following that are then passed along to
that JavaScript function as its arguments. For example, let us suppose that we wish
to call a JavaScript function called printAlert, which has only a single argument
that will be passed to an alert function. In JavaScript, this function will look like
the following:

function printAlert(alertText)
{
 alert(alertText);
}

We can use ExternalInterface from our Flash application to call this external
JavaScript function by making the following call within Flash:

ExternalInterface.call("printAlert", "Hello World!");

If we were to build this Flash application and place it on a web site next to the
JavaScript shown above, we would see a message window with the text Hello
World! shown within that window.

Not only can the ExternalInterface component be used to communicate from
Flash to JavaScript, it also allows communication in the other direction, where
JavaScript can communicate to Flash.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[194]

Calling a Flash function from JavaScript
We will now explore the reverse functionality, from the previous section, by
using the ExternalInterface component to accept incoming function calls from
JavaScript. The process for allowing incoming messages requires an extra step in
which Flash should first register each externally public function as "callable". This
can be done using the ExternalInterface.addCallback function, where the
first argument is the name of the function that JavaScript will call to instantiate the
function, and the second argument is the actual Flash function that gets called with
that callback. As an example of this, let's suppose that we want JavaScript to trigger
a trace statement in Flash with some specified text. On the Flash side, we will first
need to register a callTrace function by using ExternalInterface.addCallback
followed by the declaration of the function being called. Also, note that these are
only examples and should not be placed in the MediaGateway file.

ExternalInterface.addCallback("callTrace", callTrace);

public static function callTrace(traceText:String)
{
 trace(traceText);
}

By adding the callback to our ExternalInterface, we are now allowing JavaScript
to call the callTrace function on the Flash object embedded in our HTML page.
Although the JavaScript side of this communication is still unclear, we will need to
put that off for a later section in this chapter. For now, we will concentrate on the
Flash side so that we can modify our MediaGateway for external communication, and
then complete the puzzle when we build our JavaScript gateway later in this chapter.

So, let's move on to the implementation of the ExternalInterface into our
MediaGateway component. Our first task, in this endeavor, will be to initialize
ExternalInterface before it is used in our Flash application.

Initializing the ExternalInterface
For this section we will start out by opening up the MediaGateway.as file that we
created in the previous chapter. At the point where we left off, this file should look
like the following:

package
{
 // Declare our class
 public class MediaGateway
 {
 // Add a static play function
 public static function playMedia()

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[195]

 {
 // Play the media
 mediaPlayer.playFile();
 }
 // Add a static pause function
 public static function pauseMedia()
 {
 // Pause the media
 mediaPlayer.pause();
 }
 // Add a static control play function
 public static function playControl()
 {
 // Play the control
 controlBar.playFile();
 }
 // Add a static control pause function
 public static function pauseControl()
 {
 // Pause the control
 controlBar.pause();
 }
 // Declare our obect references.
 public static var controlBar:ControlBar;
 public static var mediaPlayer:MediaPlayer;
 }
}

Our first goal will be to create an initialize function that will be used to register
any external functions that will be used by our JavaScript gateway. For this chapter,
the only required external functions will be the four static functions that we defined
in our MediaGateway. After this has been done, we can then trigger a callback
telling whoever called this initialize function that they can continue with their
initializing process.

We will also need to make sure that we handle the ID of the Flash application that
we would like to connect to for external communication. What this implies is that
each time we declare an HTML <object> for a Flash application, we will need to
give it an ID so that the JavaScript Gateway can locate the Flash application that
will be receiving messages.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[196]

The changes to add to our initialize routine should look as follows:

package
{
 // Import all necessary components.
 import flash.external.ExternalInterface;
 // Declare our class
 public class MediaGateway
 // Used to initialize the MediaGateway.
 public static function initialize(_id:String, _connect:String,
 onLoaded:Function)
 {
 // Setup our gateway variables.
 id = _id;
 connect = _connect;
 onLoaded = _onLoaded;
 // See if the ExternalInterface is available.
 if (connect && ExternalInterface.available) {
 ready = true;
 // Register for all our JavaScript callbacks.
 ExternalInterface.addCallback("playMedia", playMedia);	
 ExternalInterface.addCallback("pauseMedia", pauseMedia);
 ExternalInterface.addCallback("playControl",playControl);
 ExternalInterface.addCallback("pauseControl",
 pauseControl);
 // Call our callback function.
 onLoaded();
 }
 else {
 ready = false;
 onLoaded();
 }
 }
 // Add a static play function
 public static function playMedia()
 {
 // Play the media
 mediaPlayer.playFile();
 }
 // Add a static pause function
 public static function pauseMedia()
 {
 // Pause the media
 mediaPlayer.pause();
 }
 // Add a static control play function
 public static function playControl()
 {
 // Play the control

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[197]

 controlBar.playFile();
 }
 // Add a static control pause function
 public static function pauseControl()
 {
 // Pause the control
 controlBar.pause();
 }

 // Declare our obect references.
 public static var controlBar:ControlBar;
 public static var mediaPlayer:MediaPlayer;

 // Declare our private variables.
 private static var id:String;
 private static var connect:String;
 private static var onLoaded:Function;	
 private static var ready:Boolean;
 }
}

Now that we have this initialize routine, we can plug this into our normal
initialization process within our core main.as file.

Adding the MediaGateway initialization to main.as
Our next task will be to open up the main.as file, where we will include the
initialization of the MediaGateway in our boot up sequence. Here, our goal will be
to find the right spot to include this initialization, while at the same time, keep a
synchronous boot up process. By synchronous, I mean that we should not start a
new boot up process unless the previous process has finished. For the MediaGateway
initialize routine, this will require us to take advantage of the callback function to
let us know when our gateway has finished initializing.

Through observation of the main.as file, we can determine that a logical place
for the MediaGateway initialization should probably occur before the connection
with Drupal has started. Because of this, we should make a change to call system.
connect after the media gateway has finished initializing. This change can be
realized by simply placing the system.connect call within its own function, and
then using that function as the callback pointer to our MediaGateway.initialize
routine. Then, we can use FlashVars to pass in the correct value for the id and the
connect parameters needed to make our Gateway connection.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[198]

var id:String = root.loaderInfo.parameters.id;
var connect:String = root.loaderInfo.parameters.connect;

...

...

// Connect to Drupal
function connectToDrupal()
{
 drupal.call("system.connect", responder);
}

// Initialize the MediaGateway
MediaGateway.initialize(id, connect, connectToDrupal);

Although this change may seem trivial, we can see that the boot order has
completely been changed by simply moving the Drupal system.connect call
within a function, and then adding that function as the callback function for our
MediaGateway initialize routine. Now, the system.connect will only occur when
the MediaGateway has finished initializing.

Now that we have all the information we need to connect to another application,
we can shift our focus back to the MediaGatway, where we will create the outgoing
messages to JavaScript.

Adding outgoing messages to the MediaGateway
One important thing to note about the MediaGateway is that it is responsible
for all incoming and outgoing messages for our Flash application. We covered
any incoming messages by registering for the callback functions using the
ExternalInterface, but one thing we have not covered yet is the outgoing
messages. If we focus solely on the MediaGateway, we can now see how it behaves
as a message router for our Flash application. It should be responsible for internal
and external interaction by handling messages from JavaScript as well as internal
function calls. Fortunately, the amount of code needed to realize this is minimal,
since we can expand our current static gateway functions to also include the
external interaction needed to complete this communication cycle.

Since we will be calling these functions internally, we need a way to call them
differently—whether they are called from a remote location or internally. We can do
this by utilizing default arguments for all of our static gateway functions as follows:

// Add a static play function
public static function playMedia(external:Boolean = false)
{
 // Play the media
 mediaPlayer.playFile();

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[199]

}

// Add a static pause function
public static function pauseMedia(external:Boolean = false)
{
 // Pause the media
 mediaPlayer.pause();
}

// Add a static control play function
public static function playControl(external:Boolean = false)
{
 // Play the control
 controlBar.playFile();
}
 // Add a static control pause function
public static function pauseControl(external:Boolean = false)
{
 // Pause the control
 controlBar.pause();
}

This will work because when our JavaScript gateway makes any call to one of our
gateway functions, it will not provide any argument with that call. Since any call
from an external location will always need to be routed to an internal location, we
are forcing the local function to be called when the message comes from an external
source. Although the outgoing messages have not been implemented, we can see
how we can control which messages are external and which ones will be internal by
simply providing the correct Boolean value to these gateway functions.

We can now modify our static gateway functions so that they will call the
ExternalInterface if the variable external is set to true, and make an internal call if
the variable external is set to false. We also need to verify that both the connect and
ready flags are set to true before making any ExternalInterface calls. This change
will make our four gateway functions look like the following:

// Add a static play function
public static function playMedia(external:Boolean = false)
{
 // Check to see if an external call should be made.
 if(external && connect && ready) {
 // Call the JavaScript playMedia function.
 ExternalInterface.call("playMedia", connect);
 }
 else {
 // Play the media

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[200]

 mediaPlayer.playFile();
 }
}
 // Add a static pause function
public static function pauseMedia(external:Boolean = false)
{
 // Check to see if an external call should be made.
 if(external && connect && ready) {
 	// Call the JavaScript pauseMedia function.
 	ExternalInterface.call("pauseMedia", connect);
 }
 else {
 // Pause the media
 mediaPlayer.pause();
 }
}

// Add a static control play function
public static function playControl(external:Boolean = false)
{
 // Check to see if an external call should be made.
 if(external && connect && ready) {
 // Call the JavaScript playControl function.
 ExternalInterface.call("playControl", connect);	
 }
 else {	
 // Play the control
 controlBar.playFile();
 }
}
// Add a static control pause function
public static function pauseControl(external:Boolean = false)
{
 // Check to see if an external call should be made.
 if(external && connect && ready) {
 // Call the JavaScript pauseControl function.
 ExternalInterface.call("pauseControl", connect);
 }
 else {
 // Pause the control
 controlBar.pause();
 }
}

The last step in this process will be to modify our ControlBar.as and
MediaPlayer.as files so that they will always attempt remote communication.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[201]

Adding remote or local functionality
Since the ControlBar and MediaPlayer components are responsible for calling the
MediaGateway routines, we will need to modify them so that they will provide the
Boolean flags necessary to tell the MediaGateway that this call was made locally. We
can easily achieve our goals by always passing true for the external parameter, and
then letting our MediaGateway decide if a remote call should really be made. Within
the ControlBar.as and MediaPlayer.as files, these changes will look as follows:

ControlBar.as

// Called when the play button has been pressed.
private function onPlay(event:MouseEvent)
{
 // Tell the player to play.
 MediaGateway.playMedia(true);	
}
// Called when the user presses the pause button.
private function onPause(event:MouseEvent)
{
 // Tell the player to pause.
 MediaGateway.pauseMedia(true);
}

MediaPlayer.as

// Play a media file
public function playFile()
{
 // Tells the media gateway to play the controls.
 MediaGateway.playControl(true);
}
// Pause a media file
public function pause()
{
 // Tells the media gateway to pause the controls.
 MediaGateway.pauseControl(true);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[202]

At this point, our code can be used by both internal and external components and
will route them accordingly.

Flash Application A Flash Application B

ControlBar ControlBar

onPlay onPlay

playMedia playMedia

MediaGateway MediaGateway

MediaPlayer MediaPlayer

playFile playFile

1

JavaScript
Gateway

4

32

From looking at this diagram, we can see that the missing piece in this puzzle is the
JavaScript Gateway to transfer the messages to and from each Flash application.

Building a JavaScript Gateway
For this section, we will now concentrate our attention on JavaScript, where we
will create the gateway needed to complete the message transfer between each
Flash application. We will begin by creating a new empty file, within our chapter8
directory, called gateway.js and then opening that file in your favorite text
editor. Our goal here will be to receive the messages from any Flash application,
and then locate the other Flash application using the connect ID, and then call the
same function within that application. We will start this process by locating a Flash
application using JavaScript.

Locating a Flash application using JavaScript
For this section we will construct a function that will be used to locate any Flash
application given the ID of the object used to embed that application. This can be
done using the document element within JavaScript, and then indexing the Flash
application using the ID passed to our new function. Unfortunately, we will also
need to add compatibility for other browsers, ahem… Internet Explorer! This
function should look like the following within our gateway.js file:

/**
 * Returns a Flash Object given an ID
 *
 * @param - The ID of the player.
 */
function getFlashObject(id)
{

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[203]

 var flashObj = null;

 // Check for Internet Explorer
 if(navigator.appName.indexOf("Microsoft") != -1) {
 flashObj = window[id];
 }
 else {
 // Index our ID within the document object
 if(document[id].length != undefined) {
 flashObj = document[id][1];
 }
 else {
 flashObj = document[id];
 }
 }

 // We want to alert them if the object was not found.
 if(!flashObj) {
 alert(id + " not found!");
 }

 return flashObj;
}

Our next task will be to create the gateway functions that will utilize this function to
tie two Flash applications together.

Creating the gateway functions between two Flash
applications
Now that we have a function that can locate any Flash object embedded on our page,
we can construct our gateway functions. These gateway functions will be responsible
for accepting a function call from one Flash application, and then locating and calling
the same function on another Flash application. These gateway functions should
be labeled the same as they are within our MediaGateway, and are implemented as
follows in our gateway.js file.

/**
 * Plays the media a player.
 *
 * @param - The id of the Flash object.
 */

function playMedia(id)
{
 // Find the Flash Object.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[204]

 var flashObj = getFlashObject(id);

 // Play the flash object.
 if(flashObj) {
 flashObj.playMedia();
 }
}

/**
 * Pauses the media a player.
 *
 * @param - The id of the Flash object.
 */

function pauseMedia(id)
{
 // Find the Flash Object.
 var flashObj = getFlashObject(id);

 // Pause the flash object.
 if(flashObj) {
 flashObj.pauseMedia();
 }
}

/**
 * Plays the control of a player.
 *
 * @param - The id of the Flash object.
 */

function playControl(id)
{
 // Find the Flash Object.
 var flashObj = getFlashObject(id);

 // Play the flash object.
 if(flashObj) {
 flashObj.playControl();
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[205]

/**
 * Pauses the control of a player.
 *
 * @param - The id of the Flash object.
 */

function pauseControl(id)
{
 // Find the Flash Object.
 var flashObj = getFlashObject(id);

 // Pause the flash object.
 if(flashObj) {
 flashObj.pauseControl();
 }
}

At this point, it could be argued that we have a completely functional JavaScript
Gateway, since we now have a complete messaging system between two Flash
applications. However, there is still a use case that will come back to bite us when
implementing this gateway on a live site.

When our web page loads, there is no guarantee that one Flash application will
have completed its load process before this JavaScript gateway is used from the
other Flash application. This is another situation where a race condition can occur,
where one Flash application loads and attempts to use the gateway before the other
Flash application is ready to accept messages. It is also possible that JavaScript
will not even be ready by the time that each Flash application tries to register their
ExternalInterface functions. Because of this, we will need to modify our design
to synchronize each component before they are used.

Flash and JavaScript synchronization
In order to synchronize Flash with JavaScript, we will need to modify both our
MediaGateway.as and gateway.js files, so that they work together to synchronize
all the components in the communication cycle. To create this synchronization, we
will use some handshaking methods, where the MediaGateway will communicate to
our JavaScript Gateway to make sure that the other Flash application is ready to go
before continuing with the initialization process.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[206]

To help illustrate this communication, it is beneficial to show a time graph of how
both Flash applications and JavaScript communicate shortly after a page has loaded.
Hopefully, this will illustrate the chain of events that need to occur in order for
our Flash application to guarantee that the other Flash application is "present and
accounted for".

Page loaded...

Initialize
MediaGateway Flash A Continue

Initialization

Is JavaScript
Ready?

Is JavaScript
Ready?

Ready!

Ready!

Register ID

Register ID

Go!

Go!

Create array of
both Flash apps JavaScript

Wait for both
apps to

register...

Initialize
MediaGateway

Continue
Initialization

Flash B

time

This diagram illustrates the necessary steps needed to make sure that each Flash
application has initialized before they continue with their load process. We can also
break this process up into a series of steps that we will implement separately to
clarify this load process a little better. These steps are as follows:

Step 1: Create an array of communicating Flash
applications
For this step, we will need to open up our gateway.js file, where we will create an
array that will be used to store all the communicating Flash applications. We can
accomplish this by adding the following code to the top of our gateway.js file.

// Variable to store our Flash objects.
var flashObjects = new Object;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[207]

We will also need to make sure that we create an easy-to-use function that we will
use to add each Flash object. We can use the ID of the player as the index for the
flashObjects array to allow for easy access when it is registered. Because of this,
we will also need to provide a ready variable that will be used to indicate if the
player has registered. This function can be defined as follows:

/**
 * Adds a Flash object to the list
 *
 * @param - The id of the Flash object.
 */

function addFlashObject(id) {
 flashObjects[id] = new Object;
 flashObjects[id].ready = false;
}

This function will now be used, within the HTML of each page, to register the Flash
applications that will communicate. For example, we can define a remote control and
player by adding them within the HTML code as follows (we will actually do this in
Drupal later in this chapter).

<script type="text/javascript">
 addFlashObject ('remote');
 addFlashObject ('player');
</script>

Step 2: Flash calls to see if the JavaScript Gateway
is ready
Our next task is to make sure that Flash calls the JavaScript Gateway to make sure it
is ready to go. We can start this by creating some functionality within our gateway
to allow this interaction. To start, we will simply add a new variable to the top of
our gateway.js file called gatewayReady, and then set it to true when the document
has finished loading. Since we will be implementing this in Drupal, we can use the
jQuery method to perform this check.

// Variable to store our Flash objects.
var flashObjects = new Object;
var gatewayReady = false;

/**
 * Checks to make sure the document is ready
 * and then sets our gateway as ready.
 */

$(document).ready(function() {
 gatewayReady = true;
});

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[208]

Our next step, after this, will be to create a gateway function that Flash will use to see
if the gateway is ready, which will simply return if the gatewayReady variable is true
or not.

/**
 * Checks to make sure the document is ready
 * and then sets our gateway as ready.
 */

$(document).ready(function() {
 gatewayReady = true;
});

/**
 * Checks to see if the gateway is ready.
 */

function isGatewayReady() {
 return gatewayReady;
}

At this point, we can shift our focus to Flash, where we will modify our
MediaGateway.as file to check and see if the JavaScript Gateway is ready. Since we
cannot guarantee that this function will pass on the first call, we will need to set up
some type of mechanism to re-check a given interval for each time it fails. We can
use the Timer component to add this interval functionality, and even add a fail safe
by adding a retry counter to continue initialization if the number of retries reaches a
certain value.

All of our changes should look like the following;

// Import all necessary components.
import flash.external.ExternalInterface;
import flash.utils.Timer;
import flash.events.TimerEvent;

...

...

// Register for all our JavaScript callbacks.
ExternalInterface.addCallback("playMedia", playMedia);
ExternalInterface.addCallback("pauseMedia", pauseMedia);
ExternalInterface.addCallback("playControl", playControl);
ExternalInterface.addCallback("pauseControl", pauseControl);

// Is our gateway ready.
if(ExternalInterface.call("isGatewayReady")) {
 // Continue the load process.
 onLoaded();

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[209]

}
else {
 retries = 0;

 // Recheck every 100 ms.
 readyTimer = new Timer(100);
 readyTimer.addEventListener(TimerEvent.TIMER, checkGateway);
 readyTimer.start();	
}

...

...

// Function to check for the gateway at a given interval.
private static function checkGateway(event:TimerEvent):void
{
 // Is our gateway ready.
 if(ExternalInterface.call("isGatewayReady") && (retries++ < 5)) {
 onLoaded();
 }
}

...

...

// Declare our private variables.
private static var connect:String;
private static var onLoaded:Function;
private static var ready:Boolean;
private static var retries:uint;
private static var readyTimer:Timer;

We are now done with this step and ready to move on.

Step 3: Flash application registers with JavaScript
Walking down our synchronization diagram, we can see that the next step in this
process for Flash is to register its ID with JavaScript. Since the other application
will be doing the same, we can now see how the Gateway will know when both
applications are ready for communication and then send notification to both
applications when this has occurred. Since we are already in our MediaGateway, we
will make all the necessary changes on the Flash side, and then fill in the missing
pieces in JavaScript shortly afterwards.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[210]

For starters, we will need to replace any call to the onLoaded callback function with
another function that will be used to register the ID of the Flash application. Then,
we will simply need to wait until we receive notification from JavaScript that we are
ready to go, which will then trigger the onLoaded callback function. We can do this
by creating the following new functions within our MediaGateway.as file.

// Function to register the "connect" Flash application.
private static function register() : void
{
 // Register with the JavaScript Gateway.
 ExternalInterface.call("registerFlashObject", id);
}

// Function called from JavaScript when all systems are go!
public static function allSystemsGo()
{
 // Call our callback function to continue loading.
 onLoaded();
}

And we can now replace any of our previous onLoaded calls with the new
register function.

// Is our gateway ready.
if(ExternalInterface.call("isGatewayReady")) {
 // Register with the gateway.
 register();
}
else {
 // Recheck every 100 ms.
 retries = 0;
 readyTimer = new Timer(100);
 readyTimer.addEventListener(TimerEvent.TIMER, checkGateway);
 readyTimer.start();}

// Function to check for the gateway at a given interval.
private static function checkGateway(event:TimerEvent):void
{
 // Is our gateway ready.
 if(ExternalInterface.call("isGatewayReady") && (retries++ < 5)) {
 // Register with the gateway.
 	 register();
 }
}	

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[211]

And finally, we cannot forget to register the allSystemsGo function, so that it can be
called from JavaScript when all Flash applications have registered.

// Register for all our JavaScript callbacks.
ExternalInterface.addCallback("playMedia", playMedia);
ExternalInterface.addCallback("pauseMedia", pauseMedia);
ExternalInterface.addCallback("playControl", playControl);
ExternalInterface.addCallback("pauseControl", pauseControl);
ExternalInterface.addCallback("allSystemsGo", allSystemsGo);

Now that we have this in place, we can shift our focus to our JavaScript gateway,
where we will fill in the missing pieces to implement this functionality.

Step 4: JavaScript initializes our Flash when all
have registered
We can now open up our gateway.js file, and first, implement the function used to
register each Flash application as they "check in". This can be done by checking if the
object exists in our array, and then setting the ready flag to true if it does. This can
be written as follows:

function addFlashObject(id) {
 flashObjects[id] = new Object;
 flashObjects[id].ready = false;
}

/**
 * Registers a flash player object.
 */

function registerFlashObject(id) {
 // Check if this object exists...
 if(!flashObjects[id]) {
 addFlashObject(id);
 }

 // Set this object as ready.
 flashObjects[id].ready = true;
}

Our next task is to check if all Flash objects within our array have registered. We can
place this functionality within its own function as follows:

/**
 * Checks to see if all the players have registered.
 */

function allPlayersRegistered() {
 // Initialize our registered variable.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[212]

 var registered = true;

 // Iterate through all flash objects.
 for(id in flashObjects) {
 // AND the ready flags together.
 registered = (registered && flashObjects[id].ready);
 }

 // Return if they all have registered.
 return registered;
}

We can now perform this check after each time that a Flash application registers
to see if all of them are "present and accounted for". If they have been, then we can
iterate through all the objects and then call the allSystemsGo function on each Flash
application. This functionality looks like the following:

/**
 * Checks all Flash objects for registration
 * and calls their allSystemsGo functions on
 * them if they are all ready.
 */

function checkAllObjects()
{
 // Check to see if they all registered.
 if(allPlayersRegistered()) {
 // If so, then iterate through them and...
 for (id in flashObjects) {
 // Find the Flash Object.
 var flashObj = getFlashObject(id);

 // Call the allSystemsGo function.
 if(flashObj) {
 flashObj.allSystemsGo();
 }
 }
 }
}

And then, our last step is to add this check every time that a player registers.

/**
 * Registers a flash player object.
 */

function registerFlashObject(id) {
 // Check if this object exists...
 if(!flashObjects[id]) {
 addFlashObject(id);
 }

 // Set this object as ready.
 flashObjects[id].ready = true;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[213]

 // Check to see if this was the last...
 checkAllObjects();
}

We can now pat ourselves on the back because we should have a fully functioning
gateway between two Flash applications! At this point, we will need to compile our
media player application so that it is ready for Drupal. To do this, we will just need
to make sure that our variables have been initialized to use FlashVars when it is
embedded within Drupal.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;
var id:String = root.loaderInfo.parameters.id;
var connect:String = root.loaderInfo.parameters.connect;

After we compile our media player, we are now ready to move on to our last task,
where we will implement a remote control within our Drupal web site.

Using our remote control within Drupal
The last and final task to show off the hybrid approach is to implement our Flash
player along with our JavaScript Gateway in Drupal and demonstrate how all the
pieces come together. We will start by adding the JavaScript gateway to Drupal.

Adding the JavaScript Gateway to Drupal
Finally, shifting our attention back to Drupal, we will start this process by adding the
JavaScript gateway to Drupal. Our first step, here, is to utilize our gateway.js file
within our site by first copying the gateway.js file and then placing it in our site's
template folder. For example, if you are using the Garland theme, then you should
copy the gateway.js file to the themes/garland folder. Once the file is in place, we
can now change our template so that it includes our new gateway.js file.

Although there are several ways to do this next step, I would highly recommend
using a new approach introduced with Drupal 6 that allows any template to include
JavaScript files by adding them to the *.info file included with that template. For
our example, since we are using the Garland template that comes with Drupal 6, we
can open up the garland.info file within our site's /themes/garland folder, and
then add the following line of code to include our gateway.js file.

stylesheets[all][] = style.css
stylesheets[print][] = print.css
scripts[] = gateway.js

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[214]

Now that we have successfully integrated our gateway.js file, our next
step is to embed the player that we just built, so that it can demonstrate the
remote functionality.

Adding our Media Player to Drupal
Moving our way back to Drupal, we will start this section by overwriting our
previous media player with our new one using the FlashNode module. We can do
this by going to Administer | Content, and then editing the Media Player Flash
node that is used to hold our media player application. After we have replaced our
Media Player Flash node with the new Flash application, our next step is to modify
our Video template so that we can include the id and connect parameters needed
for remote communication.

Changing our Content Template
In this step, we will start out by navigating to Administer | Content Templates and
will then click on the edit template link next to the Video node type. Once we are
within the content template for our video node type, we will start by adding the id
and the connect variables to the list of FlashVars passed to the player.

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 11));

// Load the flash node.
flashnode_load($flash);

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] = 'node=' . $node->nid;
$flash->flashnode["flashvars"] .= '&id=player';
$flash->flashnode["flashvars"] .= '&connect=remote';

// Add the Id of our player to the flashnode object.
$flash->flashnode["id"] = 'player';

// Show the Flash application.
print theme('flashnode', $flash->flashnode, FALSE);
?>

Our next task is to add the Flash Media Player to the JavaScript Gateway using
the addFlashObject command. In Drupal, we can simply use the drupal_add_js
routine to accomplish this, where we will provide the JavaScript code we wish
to add to the header.

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[215]

$flash = db_fetch_object(db_query($sql, 11));

// Load the flash node.
flashnode_load($flash);

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] = 'node=' . $node->nid;
$flash->flashnode["flashvars"] .= '&id=player';
$flash->flashnode["flashvars"] .= '&connect=remote';

// Add the Id of our player to the flashnode object.
$flash->flashnode["id"] = 'player';

// Add the player to the header.
drupal_add_js('addFlashObject (\'player\');', 'inline', 'header');

// Show the Flash application.
print theme('flashnode', $flash->flashnode, FALSE);
?>

When we are done making these changes, we can then save our new video template
and do the same thing for the audio node template. We are now ready to add our
Remote Control, within the block regions of Drupal, to control the playback of the
media connected to this node.

Adding the Remote Control
To add the Remote Control, we can either place the code within the same template
that we just created, or we can use the Blocks section of our Drupal site. I prefer
to use the Blocks section, since it really illustrates the separation between the two
Flash applications. We can add a new block for our remote control by navigating to
Administer | Blocks, where we will then click on the Add Block button.

For our remote control block, we can start off by giving our block a description of
Remote Control, and then just leave the Block title blank.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[216]

For the Block body, we will start off with the same code as our video template, and
then modify our FlashVars so that the id and connect variables are swapped. We
can also remove the node FlashVar since the node information is not required for
our ControlBar to control the media of a remote Flash application.

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";
$flash = db_fetch_object(db_query($sql, 11));

// Load the flash node.
flashnode_load($flash);

// Set the flashvars.
$flash->flashnode["flashvars"] = 'id=remote';
$flash->flashnode["flashvars"] .= '&connect=player';

// Add the Id of our player to the flashnode object.
$flash->flashnode["id"] = 'remote';

// Add the player to the header.
drupal_add_js('addFlashObject (\'remote\');', 'inline', 'header');

// Show the Flash application.
print theme('flashnode', $flash->flashnode, FALSE);
?>

We also need to make sure that we specify the new width and height of our remote
control application. Since we really only wish to show the Play/Pause button, we
can simply provide the dimensions of this button as follows:

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] .= 'id=remote';
$flash->flashnode["flashvars"] .= '&connect=player';

// Set the width and height of our Flash application.
$flash->flashnode["width"] = 44;
$flash->flashnode["height"] = 33;

When we are done filling out our block body, we will now need to make sure that
the Input Format for the block body is set to PHP Code, so that it will parse out our
PHP code that we just provided.

After we are done with this, our next task is to make sure that this block is only
visible for the video and audio content types.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[217]

Adding block visibility for video and audio node types
Adding block visibility for specific node types can be a little tricky, since we do not
have access to the visible node from within our block region. Since we do not have
this information, we will need to use the path arguments to determine if we are
viewing a node, and then get the node ID if we are. We can use the function arg
within Drupal to determine the arguments for any page that is being viewed. Once
we have the node ID, we can then perform a simple query to get the node type and
then set our block as visible if the node type is either a video or audio node. We can
do this by scrolling to the Page Visibility Settings and then placing the following
code in the Pages text region.

<?php
// If we are viewing a node.
if((arg(0) == 'node') && is_numeric(arg(1))) {

 // Get the node type.
 $sql = "SELECT type FROM {node} WHERE nid=%d";
 $type = db_result(db_query($sql, arg(1)));

 if(($type == 'video') || ($type == 'audio')) {
 return TRUE;
 }
}

// Otherwise do not show the remote control.
return FALSE;
?>

We then need to make sure that we check the PHP radio button, so that it uses our
code to display our block or not.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[218]

Once we save our new Block, we should then be taken to the list of all available
blocks, where we will see our new Remote Control block in the list of disabled
blocks. We can enable it by clicking on the Region drop-down box and selecting
Left Sidebar as follows:

After we do this, it should then add the Remote Control to the left region, where
we can then click on the Save blocks button at the bottom of the page to save
our changes.

After we save the blocks, we can then visit any of our media nodes, where we
should then see our new remote control application show up in the left sidebar. But
you may have also noticed that our Play/Pause button does not show up on either
the remote control or the media player. The reason this is occurring is because the
FlashNode default template does not allow us to provide the ID for our objects that
are embedded within the page. Since the object IDs are required to make the remote
connections between the remote control and the media player, each player is stuck
waiting for its corresponding player to register. Although this may seem like quite
a roadblock, we can still fix this fairly easily by overriding the default FlashNode
template so that we can provide our own custom IDs for our Flash objects.

Creating a FlashNode template
In order to override the FlashNode template, we will first need to locate the
template.php file within our Drupal theme. If we are sticking with the defaults,
then this file can be found within the Garland theme located in the themes folder.
When we open up this file, we can then override any theme call, made by any
module, and replace it with our own custom functionality. This is a very handy trick
if you ever wish to override any visible component within Drupal with your own
customized version of that component.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 8

[219]

For our case, we will need to override the theme_flashnode_markup function since
it is responsible for drawing the object code for each Flash application that we submit
using the FlashNode module. Within the template.php file, we can then override
this function by declaring a new function that will override the theme_flashnode_
markup function by replacing the theme with phptemplate. We can then provide
our very own object code and use the variables passed to our FlashNode theme to
populate a new theme for any FlashNode object submitted to our site. So, at the
bottom of our template.php file, we can place the following code to override the
FlashNode theme.

/**
 * Override the Flash node template
 */

function phptemplate_flashnode_markup($flashnode, $options = array()
) {
 // Create path to the swf file
 $filepath = file_create_url($flashnode['filepath']);

 // Create our Flash object.
 $output = '<object ';
 $output .= 'width="'. $flashnode['width'] .'" ';
 $output .= 'height="'. $flashnode['height'] .'" ';
 $output .= 'id="'. $flashnode['id'] .'">';
 $output .= '<param name="movie" value="'. $filepath .'" />';
 $output .= '<param name="flashvars" value="'.
 $flashnode['flashvars'] .'" />';
 $output .= '<embed src="'. $filepath .'" ';
 $output .= 'width="'. $flashnode['width'] .'" ';
 $output .= 'height="'. $flashnode['height'] .'" ';
 $output .= 'flashvars="'. $flashnode['flashvars'] .'" ';
 $output .= 'name="'. $flashnode['id'] .'" />';
 $output .= '</object>';
 return $output;
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

The Hybrid Approach Part 2: Remote Control

[220]

After we have done this, we should now be able to navigate to any audio or video
node, where we will be met with a media player with a completely separate
remote control!

Summary
We covered a lot of ground in this chapter, by picking up where we left off in the
previous chapter, and by creating the necessary components required to implement
the hybrid approach. This was achieved by walking through the following steps:

1.	 We first abstracted out all component functionality into separate classes,
where the ControlBar was a separate class from the MediaPlayer.

2.	 We built a static communication gateway between those classes. For our
example, this was the MediaGateway component.

3.	 We built a JavaScript gateway to connect two separate Flash applications.
4.	 We synchronized each Flash application using the JavaScript gateway.

In the next chapter, we will continue our exploration into other ways to extract data
from Drupal by creating lists of content using the very popular Views module.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views
Up until this point, we have only been dealing with single pieces of content within
Drupal called nodes. Within each node, we have learned how to manage any form
of data that Drupal can throw our way. Our next step is to learn how to handle lists
of nodes within Flash using the extremely popular Views module. Using the Views
module within Flash can be extremely powerful, since it gives us complete control
over how we would like to filter our content within our Flash application and then
deliver that content in list form. In this chapter we will explore how to build a
Flash application that displays lists of nodes, using the Views module, by creating a
playlist for the media player that we have been building throughout this book. We
will accomplish this by taking the following steps:

Using the Drupal Views module
Using the Views Service
Building a Flash Playlist using Drupal
Creating a node teaser
Building a ListView class

Using the Drupal Views module
The Views module is one of the most popular, contributed modules for Drupal,
and is so for a very good reason. It is a fantastic module that allows Drupal site
administrators to create lists of nodes using custom filter criteria. The best way to
describe how this module is used is to give the example of a recipe web site, which
has many Recipe nodes. The first thing we can expect to see, when visiting any recipe
web site, will be a list of recipes that link to their individual recipe nodes. The Views
module gives the Drupal administrator the ability to create these lists of recipes that
match any type of filter criteria imaginable. This concept can then be easily applied
to our media player, where a view could be used to list all of our Drupal media
nodes within our Flash application. But to really understand how this module works,
we will first install this module in our site, where we will then experience first hand
the power of this incredible module.

•
•
•
•
•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[222]

Views: Installation and Configuration
We will start this section by first downloading the Drupal Views module by visiting
http://www.drupal.org/project/views, and then placing the contents of this
package within your site's modules folder. Once you have the views package on
your server, we can then navigate the Modules section of our Drupal Administrator.
Scrolling down to the Views section, we can enable the Views module by checking
the Views and Views UI as shown:

Now, we just need to click on the Save Configuration button at the bottom of the
page to commit this change. After we have enabled the Views module, we can set
it up to show a listing of all media nodes in our Drupal system.

Setting up a view
Our next task is to set up a view to display a list of nodes in our Drupal system.
Since we have already set up the Audio and Video node types, we can now easily
add a view to filter all of our Drupal content based on the node type of each piece of
content. To keep this chapter as simple as possible, we will only concentrate on the
Video node type when building and showing our view within Flash. However, it is
important to note that these same steps can also be applied for the Audio node type
that we created in a previous chapter. So, let's begin by first creating a new view to
show all of our Video nodes in our Drupal web site by navigating to the Administer
| Views section.

Once we are in the Views administrator section, we will create a new view by
clicking on the Add button at the top of the screen. This will then bring up a new
page, where it asks for us to provide a view name and other information regarding
the view that we are creating. We can now provide the following information, and
then click on the Next button at the bottom of the page when we are done.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[223]

After we click on the Next button, we should then see a new page where we can
set up our new view. The views module gives us complete control over what
information we want to show in our view as well as how we want to show it.
Although providing many different parameters to configure our view is extremely
powerful, this may also seem very intimidating to a person who is not familiar with
this module. To help make this section as simple as possible, we will walk through
the process of setting up a view by tackling each piece individually, starting with
creating a new page view.

Creating a new page view
In this section, we will create a page view, which is essentially a new page that will
show the result of our filtered content. This is a good first step so that we can have
the option to view our content lists using either HTML or Flash (which we will create
later). In order to create a page view, our first task will be to click on the Add display
button with the Page selected in the drop-down box.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[224]

Now that we have created a page, our next step will be to provide a path so that we
can view the page that we created. We can do this by clicking on the None link in the
Path Settings. This will then bring up a new section, where we can provide a new
path, which we will call videos. After that, we can then click on the Update button
to commit the change.

Now that we have a page view defined, our next task is to add some fields that will
be shown when the user navigates to this path in their browser.

Adding fields to a view
The fields for a view are used to display specific node information when the user
navigates to the path that we defined in the previous section. We can set up our fields
by clicking on the symbol, next to the Fields section, of our view setup screen.

This should bring up a new section of the screen that will allow us to select which
fields we would like to display in our view. Since we are really only concerned with
node information, we can filter these fields by first selecting Node in the Groups
drop-down box. We can then select the checkbox next to the Node : Title and click
on the Add button.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[225]

After clicking on the Add button, we will be given another section that will allow us
to provide specific configurations for the field that we just added. Since we will want
each title to link to the node, we will click on the checkbox where it says Link this field
to its node, and then click on the Update default display button.

Our last step in setting up our view will be to filter the content by using the Filter
section of our view configuration.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[226]

Adding a Filter to our view
For this last section, we want to tell our view that we are only concerned with Video
nodes that are published. From that statement, we can determine that we will need
some mechanism to filter our view based on the node type of that content. This can
be accomplished by clicking on the next to the Filters section.

This will then bring up a new section, where we can provide the node type as a filter.
We can do this by first clicking on the Groups drop-down box and selecting the
Node group. We will then click on the checkbox next to Node : Type, and click on
the Add button.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[227]

This will then bring up a new section, where we can select which node types we
would like to use to filter our content. We will then select the Video node type and
click on the Update default display button to add it to our filter list.

Now that we have completed setting up our view, it is extremely important to save
all of our changes by clicking on the Save button at the bottom of the page. After
we have saved our view, we can visit this view to see a listing of all videos on our
Drupal site by navigating to http://localhost/drupal6/videos in our browser. If
you do not have anything showing, then this would probably be a good time to add
5-10 videos on your site to help test the Views integration with Flash. For a reference
on how to add new videos to our site, we can easily refer back to Chapter 6, where
we built a Video player and added a test video node to Drupal.

After we have several videos on our site, we will explore the Views Service module,
which provides us with a mechanism for extracting view information within Flash.

Using the Views Service
The Views Service is a Service Module that utilizes the Views module to expose lists
of nodes to outside applications. Now that we have the Views module enabled and
configured, we can use this service to provide the lists of nodes that we will use to
construct our media playlist within Flash. In order to effectively use this module,
it is important to walk through a few steps to make sure that it is installed and
configured correctly.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[228]

Step 1: Install the Views Service
We will install the Views service the same way that we installed all other modules
within Drupal. Fortunately, however, we will not need to download a separate
module from Drupal since the Views service module comes pre-packaged with the
Services module download. Because of this, we can simply navigate to our Modules
section in the Drupal administrator and scroll down to the Services section and
enable the Views Service.

Now that the Views service is enabled, our next step is to ensure that the user
permissions are set correctly to allow us to extract view information.

Step 2: Configure user permissions
In order to use the Views service to extract view data, we will first need to navigate
to the User Permissions section by going to Administer | Permissions. Here, we
will need to enable the access all views permission within the Views section for all
user groups.

If you have any views that you do not wish to be made public, you will
need to modify this permission to only enable the authorized user groups.
However, by doing this, you will keep the remote debugging from
functioning since the remote debugging basically acts as an anonymous
user. If your web site contains sensitive data, within your view, then I
highly recommend enabling these permissions for debugging purposes
only, but then unchecking them when the Flash application is placed on
your server. By having the Flash application reside on the server, it will
also use the same session ID associated with a certain user group and
therefore, make these permissions function as intended.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[229]

Step 3: Verify it works
Our final step is to make sure that the Views service that we just implemented
does indeed serve a list of nodes. We can test this out by navigating to the Services
Administrator at Administer | Services. Once we are there, we should see a new
service in the Services list called views.get. By clicking on this link, we can now use
the Services Administrator to test and make sure that the Views Service really works
as expected. Once we click on the views.get link, we should see a page that shows
the function arguments required to execute this function from a remote location. It
also gives us the ability to provide our own data, call the method as if any external
application was making the call, and then observe the response. To do this, we will
just provide the only required argument for this method, which is the name of the
view that we would like to call. We can test out this service by placing the videos
view name in this text box, and then clicking the Call method button. Also, keep
in mind that the Session ID is a randomly generated value, so we will not need to
change that value from what is provided.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[230]

After we call this method, we should see something similar to the following:

Our next task is to take this data and incorporate it into a playlist for our Flash
media player.

Building a Flash Playlist using Drupal
Before we begin this section, we will first need to copy the chapter8 folder, and then
paste it as a new folder called chapter9 so that we can keep all changes made to our
media player separate from the previous chapter. After we have done this, we will
start out by opening up the main.as file, where we will add some functionality to
load a Drupal view. The first task will be to create a new function called loadView
that we will use to encapsulate the responder and service call to Drupal. We can
place this function below our loadNode function as follows:

// Loads a Drupal node.
function loadNode(nid:Number)
{
 // Set up our responder with the callbacks.
 var nodeResponse:Responder = new Responder(onNodeLoad, onError);

 // Call Drupal to get the node.
 drupal.call("node.get", nodeResponse, sessionId, nid);
}

// Loads a Drupal view.
function loadView(_viewName:String)
{
 // Set up the responder with the callbacks.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[231]

 var viewResponse:Responder = new Responder(onViewLoad,onError);

 // Call Drupal to load the view.
 drupal.call("views.get", viewResponse, sessionId, _viewName);
}

Our next task will be to create the handler function that will handle the contents of
the view that we get from Drupal. We can do this by simply adding the following
function after the onNodeLoad function.

// Called when Drupal returns with our node information.
function onNodeLoad(node:Object)
{
 ...
 ...
}

// Called when a view gets loaded.
function onViewLoad(_view:Object)
{
 trace("View loaded");
}

After we have done this, we can create our global view name variable that will be
used to handle the view name passed to our player using FlashVars. We can do the
same thing that we did for the nodeId variable by declaring this new global variable
as follows. And since we will want to test this new view, we can temporarily hard
code the value of this variable with the name of the view that we created in the
previous section.

// Declare our variables
var baseURL:String = "http://localhost/drupal6";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;
var viewName:String = "videos";
var id:String = root.loaderInfo.parameters.id;
var connect:String = root.loaderInfo.parameters.connect;

Now that we have our view variable in place, we can test to make sure that this
works by modifying the onConnect function, so that it will load the view if a name
was provided.

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[232]

 trace("We are connected!!!");
 trace("Session Id: " + sessionId);

 // If the node Id is valid...
 if(nodeId) {
 // Load our node.
 loadNode(nodeId);
 }
 else {
 // Add a control bar.
 addControlBar();
 }

 // If they provided a view name.
 if(viewName) {
 // Load the view.
 loadView(viewName);
 }
}

We should now be able to open up our chapter9.fla project, and then run our
media player in Flash to see that the view gets loaded by looking at the output panel
in our Flash application.

Our next task is to iterate through all of our nodes, within the view, and parse
out the data that we need. We can do this by adding the following code to our
onViewLoad function.

// Called when a view gets loaded.
function onViewLoad(_view:Object)
{
 // Iterate through all of the nodes.
 for each(var node:Object in _view)
 {
 trace(node.nid);
 }
}

If we were to run our application again, we would see all of the nodes in our view
print out in the debug window. We are now ready to construct a new movie clip along
with a new ActionScript class that we will use to display each teaser in our view.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[233]

Creating a node teaser
Our first task in this section will be to create a new Teaser movie clip that will be
used to contain all the node information provided with the Views module. We can
start this process by first selecting the menu item Insert | New Symbol in our Flash
IDE and creating a new movie clip called mcTeaser. We will also want to make sure
that we link that new movie clip to an ActionScript class (which we will create later)
called Teaser.

After we accept the warning for creating a class that is not yet found, we should
be given a blank stage, where we can then build our teaser the way we want it to
look. At this point, we will want to step back and decide how we want our teasers
to behave when the mouse moves over them, clicks them, and selects them. Given
most typical list applications, we can determine that we will need a hover, selected,
and normal state for our teasers. For each one of these states, we can simply just
change the color of the background of the teaser to make these states noticeable.
So, we will first focus our attention on creating a background that allows for three
different states.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[234]

Creating a teaser background
To create a teaser background, we will first want to add a rectangle region that will
be used to indicate the normal state of our background by first clicking on the
symbol in our toolbar. This will require us to decide what color we would like our
background to be. We can do this by opening up the Color window, which should
look similar to the following:

Typically, we would not want any border around a teaser, so we can disable the
border of the rectangle by clicking on the symbol within the Color window,
and then selecting from the color toolbar. For the fill color, we will first click on
the symbol, and then select Linear for the fill type as follows. This
will give us a linear gradient fill that will give our teasers some depth.

With the Linear fill type selected, we can now choose our colors for each gradient
pole using the tool. Since we have already done this in previous
chapters, we can choose a color of 0x333333 at one pole, and 0x666666 at the other.
We can now draw a 200 pixel wide and 50 pixel tall rectangle, and then move the
orientation of the gradient so that it looks like the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[235]

Once this background has been made, we will need to turn it into a movie clip by
selecting the rectangle, and then clicking on Modify | Convert to Symbol and give
it a name of mcTeaserBackground.

Once our movie clip has been added, we need to click on the new movie clip and
give it an instance name of back.

Now that our background has an instance name, we can enter this movie clip, where
we will add three different states for our background.

Using the timeline to add different teaser states
Now that we are inside of our background movie clip, we can utilize the timeline
to add our three background states of normal, hover, and selected. We will start
this out by first adding two new frames to our timeline by clicking on the Timeline
window, and then pressing the F6 key twice while the cursor is in the first frame
of the first layer. When we are done, we should have something that looks like
the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[236]

Our next task is to label each of these frames so that they can be referenced within
ActionScript. To label a frame, all we have to do is click on the frame that we would
like to label, and then in the Properties tab, we can provide a label for that frame.
For the first frame, we will call it normal.

We will now do the same thing for the other two key frames, but this time we'll
give them the labels of hover and selected respectively. Our last and final task is
to change the background for the hover and selected frames so that they look
different from the normal frame. We can do this by simply changing the fill gradient
colors for each of these frames. For the hover frame, we will change the gradients
to 0x666666-0x999999, and for the selected frame, we will change the gradients
to 0x000000-0x333333. When we are done, we should then have a new teaser
background that will handle all three of the teaser states.

We can now exit this movie clip, where we will set up the title text for this teaser.

Adding a title to the teaser
The first thing that we will do in this section is make sure that we are back in the
mcTeaser movie clip by looking at the breadcrumb at the top of the stage.

Once we are within our mcTeaser movie clip, we will first want to separate out the
background from the title using the layers. So, we will start by labeling the layer that
contains our background, will then add a new layer that we will call title, and will
finally then lock the background layer since we are done with it.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[237]

With our title layer selected, we now need to add a new Dynamic text field using
the symbol from the toolbar, and then draw a text region at approximately the
same size as the background, and type some default text using a white color for
the characters.

Once we have our new TextField in place, we will then need to give our new
TextField an instance name using the properties windows. We will call our Dynamic
TextField title since we will use it to show the title of each node in our view list.

Finally, we will need to make sure that the characters that we are using for this
Dynamic TextBox will be embedded within the application. We can do this by
clicking on the button within the Properties section called Character Embedding.
When the character window shows up, we can select the following character sets
to embed into our Flash application.

After you click on OK, we are now done setting up our teaser movie clip. Our
next task is to write the ActionScript class that will be used to give our teaser
some functionality.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[238]

Creating a Teaser class
Since we linked our teaser movie clip to a Teaser class within the movie clip
properties, we can now build a new class that will govern the behavior of the movie
clip elements that we just created. We will start this by creating a Teaser.as file,
within our chapter9 directory, and then writing a stub class called Teaser. Our
stub class should look something similar to the following:

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.display.MovieClip;
 import flash.text.TextField;

 // Declare our class
 public class Teaser extends MovieClip
 {
 // Constructor function.
 public function Teaser()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 }

 public var back:MovieClip;
 public var title:TextField;
 }
}

Now that we have our stub class, we can start out by setting up the correct
behavior for our background region. Basically, what we are after is initializing our
background to the normal state when the teaser is added to the stage, and then
switching the background to use the hover state when the mouse hovers over the
teaser. We will also need to make sure that the background goes back to the normal
state when the mouse moves out of the teaser region. All of these changes will look
like the following:

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.display.MovieClip;
 import flash.text.TextField;

 // Declare our class

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[239]

 public class Teaser extends MovieClip
 {
 // Constructor function.
 public function Teaser()
 {
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 addEventListener(MouseEvent.MOUSE_OVER, setHover);
 addEventListener(MouseEvent.MOUSE_OUT, setNormal);
 addEventListener(MouseEvent.MOUSE_DOWN, setNormal);
 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 // Declare this teaser as a button.
 buttonMode = true;
 mouseChildren = false;

 // Go to the normal state.
 back.gotoAndStop("normal");
 }

 // Called when the teaser is hovered over.
 private function setHover(e:MouseEvent)
 {
 back.gotoAndStop("hover");
 }

 // Called when the mouse moves out of the teaser.
 private function setNormal(e:MouseEvent)
 {
 back.gotoAndStop("normal");
 }

 public var back:MovieClip;
 public var title:TextField;
 }
}

Our next task is to keep track of the selected state. Basically, how this will work is
we will create a public function that will be called to set our teaser as selected or
not. Also, we do not want to trigger the normal and hover states when this variable
is set to true. The reason for this is we do not want our teaser to appear as if it has
reset back to a normal state when it is really still selected. Following are the changes
needed to incorporate the selected state of our teaser:

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.events.MouseEvent;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[240]

 import flash.display.MovieClip;
 import flash.text.TextField;

 // Declare our class
 public class Teaser extends MovieClip
 {
 // Constructor function.
 public function Teaser()
 {
 // Default to not selected.
 selected = false;

 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 addEventListener(MouseEvent.MOUSE_OVER, setHover);
 addEventListener(MouseEvent.MOUSE_OUT, setNormal);
 addEventListener(MouseEvent.MOUSE_DOWN, setNormal);
 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 // Declare this teaser as a button.
 buttonMode = true;
 mouseChildren = false;

 // Go to the normal state.
 back.gotoAndStop("normal");
 }

 // Used to select a teaser.
 public function setSelected(_selected:Boolean)
 {
 selected = _selected;
 back.gotoAndStop(selected ? "selected" : "normal");
 }

 // Called when the teaser is hovered over.
 private function setHover(e:MouseEvent)
 {
 if(!selected) {
 back.gotoAndStop("hover");
 }
 }

 // Called when the mouse moves out of the teaser.
 private function setNormal(e:MouseEvent)
 {
 if(!selected) {
 back.gotoAndStop("normal");
 }

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[241]

 }

 public var back:MovieClip;
 public var title:TextField;
 public var selected:Boolean;
 }
}

The last and final change that we will need to make is to incorporate the node
information from Drupal into our Teaser class. However, we run into a slight
problem since the views service does not give us the full node information for each
teaser, but rather just the node ID for each node within the list. Because of this,
each teaser will need to have its very own onNodeLoad function that loads its own
node information and then stores it within its own data structure. In order to fulfill
this requirement, each node will need to have its own Responder to link to the
onNodeLoad function for each instance of a Teaser that is created. Once the node has
been loaded, we can then trigger a simple event that indicates to our main.as file
that the node information for that teaser has been loaded. These changes will look
as follows:

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.display.MovieClip;
 import flash.text.TextField;
 import flash.net.Responder;

 // Declare our class
 public class Teaser extends MovieClip
 {
 // Constructor function.
 public function Teaser()
 {
 // Default to not selected.
 selected = false;

 // Setup our onNodeLoad responder.
 responder = new Responder(onNodeLoad, onError);

 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 addEventListener(MouseEvent.MOUSE_OVER, setHover);
 addEventListener(MouseEvent.MOUSE_OUT, setNormal);
 addEventListener(MouseEvent.MOUSE_DOWN, setNormal);
 }

 // Called when this object has been added to the stage.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[242]

 private function onAdded(event:Event)
 {
 // Declare this teaser as a button.
 buttonMode = true;
 mouseChildren = false;

 // Go to the normal state.
 back.gotoAndStop("normal");
 }

 // Called when an error occurs.
 function onError(error:Object)
 {
 trace("An error has occurred!");
 }

 // Called when the node has been loaded.
 public function onNodeLoad(_node:Object)
 {
 node = _node;

 // Set the title.
 if(title) {
 title.wordWrap = true;
 title.text = node.title;
 }

 dispatchEvent(new Event(Event.COMPLETE));
 }

 // Used to select a teaser.
 public function setSelected(_selected:Boolean)
 {
 selected = _selected;
 back.gotoAndStop(selected ? "selected" : "normal");
 }

 // Called when the teaser is hovered over.
 private function setHover(e:MouseEvent)
 {
 if(!selected) {
 back.gotoAndStop("hover");
 }
 }

 // Called when the mouse moves out of the teaser.
 private function setNormal(e:MouseEvent)
 {
 if(!selected) {
 back.gotoAndStop("normal");
 }

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[243]

 }

 public var back:MovieClip;
 public var title:TextField;
 public var selected:Boolean;
 public var responder:Responder;
 public var node:Object;
 }
}

Now that we have a complete Teaser class, our next step is to build a mechanism to
add these teasers to our application in List form.

Building a ListView class
Although there are many ways to present data in the form of lists within Flash, I
have learned the hard way that making them work the way you want is something
of a challenging task. Not to mention that the standard List component within
Flash separates out all of the UI from the data, making the process of simply adding
custom movie clips to that list extremely complicated. Because of this, we will do
what any other programmer does when they can't find exactly what they are looking
for…. build our own!

We will start this section by first creating a new ActionScript file called ListView.as,
within our chapter9 directory, and then start it out like any other class by creating
a simple stub class that will simply contain the movie clips that will be contained
within a ListView movie clip. These movie clips will be the list (which will act as the
parent movie clip to all of our teasers), and the listMask (which will be used to only
show a certain window of our list of teasers).

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.display.Sprite;

 // Declare our class
 public class ListView extends Sprite
 {
 // Constructor function.
 // Called when someone creates a new ListView
 public function ListView()
 {
 // Set up our events..
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[244]

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 }

 // Delcare our child movie clips.
 public var list:Sprite;
 public var listMask:Sprite;
 }
}

We now need a mechanism to add our teasers to the ListView using an addItem
function. Within this function, we will keep track of the previously added teaser
position, and then position the new teaser directly below the previously added
teaser. This functionality will look like the following:

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.display.Sprite;
 import flash.geom.Rectangle;

 // Declare our class
 public class ListView extends Sprite
 {
 // Constructor function.
 // Called when someone creates a new ListView
 public function ListView()
 {
 // Instanciate our variables.
 lastRect = new Rectangle(0,0,0,0);

 // Set up our events..
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 // Remove the default teaser.
 list.removeChildAt(0);
 }

 // Used to add an item to our list view.
 public function addItem(item:*)
 {
 // Set the items position in the list.
 item.y = lastRect.y = lastRect.y + lastRect.height;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[245]

 item.x = lastRect.x;
 lastRect.width = item.width;
 lastRect.height = item.height;

 // Add the item to the list.
 list.addChild(item);
 }

 // Delcare our child movie clips.
 public var list:Sprite;
 public var listMask:Sprite;

 // The previously added teasers rectangle region.
 private var lastRect:Rectangle;
 }
}

And now, our final task is to add the scroll functionality to this list view. To simplify
this process, we will make our ListView automatically scroll when the user hovers
over the scroll region. Instead of explaining all the steps to incorporate this change,
we can follow each change by observing the comments made for each change to
this file.

package
{
 // Import all dependencies
 import flash.events.Event;
 import flash.events.MouseEvent;
 import flash.display.Sprite;
 import flash.geom.Rectangle;

 // Declare our class
 public class ListView extends Sprite
 {
 // The scroll speed of our list view.
 private static const speed:Number = 10;

 // The hysteresis of our scroll bar.
 private static const hyst:Number = 15;

 // Constructor function.
 // Called when someone creates a new ListView
 public function ListView()
 {
 // Instanciate our variables.
 lastRect = new Rectangle(0,0,0,0);

 // Set up our events..
 addEventListener(Event.ADDED_TO_STAGE, onAdded);
 addEventListener(MouseEvent.MOUSE_OVER, onOver);
 addEventListener(MouseEvent.MOUSE_OUT, onOut);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[246]

 }

 // Called when this object has been added to the stage.
 private function onAdded(event:Event)
 {
 // Get the scroll mid point.
 scrollMid = listMask.height / 2;

 // Remove the default teaser.
 list.removeChildAt(0);
 }

 // Called when the mouse moves over our list.
 private function onOver(e:MouseEvent)
 {
 // Trigger on every frame event. 30 frames per sec.
 addEventListener(Event.ENTER_FRAME, scrollEvent);
 }

 // Called when the mouse moves out of our list.
 private function onOut(e:MouseEvent)
 {
 // Remove the trigger event.
 removeEventListener(Event.ENTER_FRAME, scrollEvent);
 }

 // Scroll's our list region.
 private function scrollEvent(e:Event) : void
 {
 // Get our relative mouse position to the mid point.
 var mousePos:Number = listMask.mouseY - scrollMid;

 // See if our list height is greater than the mask.
 var shouldScroll:Boolean = (list.height > listMask.height);

 // See if we are not within our hysteresis region.
 shouldScroll = shouldScroll && (Math.abs(mousePos) > hyst);

 // If we should scroll.
 if(shouldScroll) {

 // Find the delta.
 var delta:int = speed * (mousePos / scrollMid);

 // Set our list position.
 list.y = list.y - delta;

 // Make sure the list does not scroll down to far.
 list.y = (list.y > 0) ? 0 : list.y;

 // Make sure the list does not scroll up to far.
 var bot:Number = -(list.height - listMask.height);
 list.y = (list.y < bot) ? bot: list.y;
 }
 }

 // Used to add an item to our list view.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[247]

 public function addItem(item:*)
 {
 // Set the items position in the list.
 item.y = lastRect.y = lastRect.y + lastRect.height;
 item.x = lastRect.x;
 lastRect.width = item.width;
 lastRect.height = item.height;

 // Add the item to the list.
 list.addChild(item);
 }

 // Delcare our child movie clips.
 public var list:Sprite;
 public var listMask:Sprite;

 // The previously added teasers rectangle region.
 private var lastRect:Rectangle;

 // The midpoint of the list mask.
 private var scrollMid:Number;
 }
}

Now that we have our ListView control ready for action, we can make some changes
to our chapter9.fla file so that it incorporates out new ListView control.

Adding our ListView to Flash
With our chapter9.fla project file open, we can start our task of creating a list view
by clicking on the menu item Insert | New Symbol, where we will then provide the
following information:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[248]

After we click on OK, we should be within our new movie clip, where we will first
set up two different layers, one for the list and one for the list mask as follows:

Within the mask layer, we will simply draw a rectangle region that will act as the
visible window for our teaser list. Since this will be a mask region, we can use a crazy
green fill color with no border, and then set the rectangle to have the dimensions
of 200 pixels wide (same as our teasers) and 240 pixels high (same as our video).
When we are finished drawing our mask rectangle, we can then turn it into a movie
clip called mcMask with an instance name of listMask (as referenced within our
ListView class).

We can now lock the mask layer, and then select the list layer where we will first
drag and drop our mcTeaser movie clip from the Library onto our stage, making
sure we give it an x and y coordinate of (0,0).

Once the teaser has been added to our stage, we will simply click on the mcTeaser
movie clip and then select the menu item Modify | Convert to Symbol, where we
will give our new symbol a name of mcList.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[249]

Once our new movie clip has been created, we will give it an instance name of list.

We can now set up our mask layer, so that it behaves as a mask by first locking both
the list and mask layers. Once they are locked, we can then right-click on the mask
layer and select Mask from the drop-down menu.

We should then see something similar to the following:

We are now ready to move on and incorporate this ListView into our main player,
so that it shows a listing of all teasers within our Drupal view.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[250]

Adding the ListView to our Media Player
Now that we have a ListView control, we can add this list view to our media player
by first adding the mcListView to the main stage of our chapter9.fla project.
With this project open, we will first want to resize our stage so that it can hold our
new playlist by clicking on the stage, and then clicking on the Edit button next to
the stage dimensions in the Properties section. We can then resize our stage to a
new size of 540 pixels wide and 260 pixels high. This will allow us to have a 10-pixel
border with a 320x240 video with a 200x240 playlist right next to it.

Now, with the stage set to a larger size, our next task is to resize our background
so that it matches the width and height of our stage. We can do this in the same
way that we did in Chapter 3, where we first created a new movie clip for our
background, and then used the 9-slice scaling for that movie clip to resize our
background without distortion.

Once we have done this, we can create a new layer to hold our ListView above our
background layer.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[251]

We can now drag and drop our mcListView from the Library and onto the stage. We
will then set its X and Y position on the stage to 331px and 10px respectively.

Now that we have our views playlist set up on our stage, our next task is to define a
media region that will hold our video.

Creating a Media Region
In Chapter 6, we created a video player that was designed to take up the width and
height of the entire stage. Since we now have a video playlist and a background
region, we will need to make a change to our project so that we can define the width
and height of our video to take up a designated area of our player. To do this, we
will first create a new layer in our project that will hold our media region as shown:

Within this layer, we will create a new dark grey rectangle that is 240x320, and then
create a new movie clip from that region called mcMediaRegion. Once we have this
new media region created, we will give it an instance name of media as shown:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[252]

Our next task is to modify our main.as file so that we add the media to this media
movie clip rather than the stage as seen below.

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;

 // Declare our base URL.
 var fileURL:String = baseURL;

 // Add our file's relative path.
 fileURL += "/";

 // Declare a generic media player.
 var player = null;

 // If this node has audio.
 if(node.audio) {

 // Declare our player as an AudioPlayer.
 fileURL += node.audio.file.filepath;
 player = new AudioPlayer();
 }
 else if(node.field_video) {

 // Declare our player as a VideoPlayer.
 fileURL += node.field_video[0]["filepath"];
 player = new VideoPlayer();
 }

 // Add the player to the media region.
 media.addChild(player);

 // Add a control bar.
 addControlBar();

 // Play our audio file
 player.load(fileURL);
}

Finally, our last change will be to the VideoPlayer.as file, where we will set the
width and height of our player to the width and height of the parent movie clip
rather than the entire stage.

// Called when the video player has been added to the stage.
private function onAdded(event:Event)
{
 // Create our video object the size of our parent.
 video = new Video(parent.width, parent.height);

 // Attach our net stream to the video object.
 video.attachNetStream(stream);

 // Add the video to the VideoPlayer.
 addChildAt(video, 0);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[253]

Now that we have our media region ready, our next task will be to edit the main.as
file so that our list region will populate a new teaser for every node within our view.

Populating the list view
With the main.as file open, we can now pick up where we left off in the previous
section by editing the onViewLoad function so that it creates a new Teaser for each
new node and then adds those teasers to the ListView.

// Called when a view gets loaded.
function onViewLoad(_view:Object)
{
 // Iterate through all of the nodes.
 for each(var node:Object in _view)
 {
 // Declare our new teaser.
 var teaser:Teaser = new Teaser();

 // Add our teaser to the list.
 view.addItem(teaser);
 }
}

If we were to run our video player at this point, we should be happily surprised to
see that a new teaser is added to our ListView for every new teaser that is given in
our view. We can now load the node data, within each teaser, by calling node.get
on each teaser that is added to our list.

// Called when a view gets loaded.
function onViewLoad(_view:Object)
{
 // Iterate through all of the nodes.
 for each(var node:Object in _view)
 {
 // Declare our new teaser.
 var teaser:Teaser = new Teaser();

 // Add our teaser to the list.
 view.addItem(teaser);

 // Load the node information into the teaser.
 drupal.call("node.get", teaser.responder, sessionId,
 node.nid);
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[254]

Running the application again, we should see that all the teaser information is
populated within our playlist.

Moving on, we will now need to hook up the Click and Load events from our Teaser
to interact with our main media region. To do this, we will simply need to register
for two events from our Teaser, one when it is clicked with the mouse, and the other
when the teaser has finished loading its node information. We will also need to
keep track of which teaser is selected so that we can de-select it when a new one is
selected. Once we make all of our changes to the main.as file, it should look like
the following.

// Declare our variables
var baseURL:String = "http://localhost/drupalbook";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;
var viewName:String = "videos";
var id:String = root.loaderInfo.parameters.id;
var connect:String = root.loaderInfo.parameters.connect;
var selectedTeaser:Teaser = null;

...

...

// Called when a view gets loaded.
function onViewLoad(_view:Object)
{
 // Iterate through all of the nodes.
 for each(var node:Object in _view)
 {
 // Declare our new teaser.
 var teaser:Teaser = new Teaser();

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 9

[255]

 // Add an event handler when this teaser is clicked.
 teaser.addEventListener(Event.COMPLETE, onTeaserLoad);
 teaser.addEventListener(MouseEvent.MOUSE_UP, onTeaserClick);

 // Add our teaser to the list.
 view.addItem(teaser);

 // Load the node information into the teaser.
 drupal.call("node.get", teaser.responder, sessionId,
 node.nid);
 }
}

...

...

// Called when a teaser loads
function onTeaserLoad(e:Event)
{
 if(!selectedTeaser) {
 loadTeaser((e.target as Teaser));
 }
}

// Called when a teaser gets selected.
function onTeaserClick(e:MouseEvent)
{
 // Load the selected teaser.
 loadTeaser(e.target as Teaser);
}

// Function to load any teaser.
function loadTeaser(teaser:Teaser)
{
 // Deselect the selected teaser.
 if(selectedTeaser) {
 selectedTeaser.setSelected(false);
 }

 // Set the new teaser and select it.
 selectedTeaser = teaser;
 selectedTeaser.setSelected(true);

 // Load the node.
 onNodeLoad(selectedTeaser.node);
}

// Called when an error occurs connecting to Drupal.
function onError(error:Object)
{
 for each (var item in error) {
 trace(item);
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal Views

[256]

When we run this application, we should have a fully functional media player with a
playlist driven by the power of Drupal Views!

Summary
In this chapter we covered a lot of ground by building a media player whose playlist
is driven from the power of the Drupal Views module. After walking through this
exercise, it is probably easily understood how powerful this feature is when building
dynamic lists of content in our Flash application. Since we can control and govern
all of the filtering for our content using the Drupal administrator backend, we
can essentially customize our Flash applications without having to recompile our
SWF files. In my opinion, this is the most powerful advantage of using a Content
Management System over the traditional static XML-driven content.

In the next chapter, we will take our interaction with Drupal one step further by
learning how to add content to a Drupal site from a Flash application.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management
In the previous chapters we learned the essentials of extracting Drupal data to be
used within a remote Flash application. Since most of that data was delivered as
read-only, not much effort was needed to help secure the integrity of the information
that resided on the hosting server. Our goal for this chapter, along with the following
chapters, is to explore how that data can be manipulated and controlled from a
remote location. We will learn how a remote Flash application can use the data
from a remote location. We will also learn how to manipulate and change that data.
Obviously, this raises many security questions on how we can allow this type of
control while at the same time keep our data safe from malicious software. And the
answer for those questions begins with the integration of Drupal's user management
system, which is paramount in protecting and managing all the data within its
database. By utilizing Drupal's built-in user management system, any remote
application can literally log into the Drupal web site, which in turn validates that
user to perform any data manipulation task.

In this chapter we will tackle the first part of the data manipulation puzzle by
building a user login block. This user login block can be used within our Flash
applications to log into Drupal from a remote location. We will accomplish this
goal by walking through the following key topics:

Drupal user management
The User Service module
Building a Flash user login block
User handling within Flash
Logging into Drupal from Flash

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[258]

Drupal user management
Before we dive into building a login system in Flash, we must first understand
how Drupal protects our data using its built-in user management system. This user
management system is extremely vital to the security of our Drupal system as it
constantly checks if each user (even the anonymous ones) has access to do his or her
intended task. And at the core of this data security system, is a permission-based
system governed by the user roles.

All users visiting our Drupal web site are assigned a specific role, where they can
perform specific tasks, if their role allows such operations. Anything from viewing
content to changing module settings is tightly controlled using the Drupal user role
system. We can see this firsthand by logging into our administrator Drupal account
and then navigating to the Permissions section within our Drupal administrator
backend. Here, we should see some permission settings for each module that might
resemble the following:

What this image is showing is how the Drupal administrator can easily control who
is allowed to do certain things by checking the checkbox for that permission in the
column for that specific user role. If a box is not checked, then the default action is
to deny that user role access to that function.

By default, there are only two different user roles; anonymous pertains to any user
who is not logged into the Drupal system, while authenticated pertains to any user
who has registered and is logged into the Drupal web site. Although this may not
seem like much control for specific user permissions, the true power comes from the
administrator having the ability to add as many user roles as they like to control the
access levels to an even more refined level.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[259]

Adding new user roles
Adding a new user role is a very simple process. We will start by deciding what user
role we would like to create, which should illustrate how this process works. In the
next chapter, we will create a Flash widget that will be able to create new web pages
in our Drupal system. However, the current user roles do not allow the creation of
user pages since the create page content permission is unchecked for both user roles.
Instead of enabling this permission for all authenticated users, we would like to have
the ability to refine this privilege to only certain users who we will call webmasters.
To start this off, we will need to create a new user role called webmaster by
navigating to Administer | Roles.

Once we are in the User Roles section of the Drupal administrator, we can easily
add a new role by typing webmaster in the text field underneath the last role, and
then clicking on the Add role button.

Now that we have successfully added a new webmaster role to our Drupal system,
the next step in this process is to add permissions to this user role.

Adding permissions to a user role
To edit the permissions for a user role, we can either navigate to the Permissions
section in the Administrator section, or we can simply click on the edit permissions
link next to our new user role. Either way, we should see the User Permissions
section, where we can add new permissions to our webmaster role.

To start, we will check all the checkboxes that are checked for the authenticated
role, but within our webmaster column. This will give us all the same permissions
as any other authenticated user, but we will add to the webmaster permissions
by checking other permissions that we want to enable for this role. In addition to
the authenticated role permissions, we will also need to make sure the following
permissions are checked for the webmaster role:

create page content
create story content
delete own page content

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[260]

delete own story content
edit own page content
edit own story content

What we have just done is allow any user with the webmaster role to create new
page and book content onto our Drupal server. However, we will not really be able
to test this until we create a new user who has this new webmaster role.

Creating new users and assigning them roles
Our final task with setting up the user management for our Flash application will be
to add a new webmaster user who we will use to add content to Drupal from within
Flash. To do this, we will first need to navigate to the users' section within the Drupal
administrator by going to Administer | Users and clicking on the button that says
Add User.

Here, we will enter a new Username and E-mail address. Make sure to check the
webmaster user role. Once we have our new user filled out, we can create the user
by clicking on the Create new account button.

And congratulations, we now have a new user ready to add data to our Drupal web
site! Our next task will be to install and configure the User Service module.

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[261]

The User Service module
The User Service module is a Services plug-in that acts as the glue between Drupal's
user management system and remote applications requiring the ability to log into
our web site. Giving remote applications the power to log into our Drupal web site
opens up a whole slew of possibilities, where user-specific data can be presented
in a secure manner to those remote applications. Not only that, we can design our
applications so that content can be added, edited, and removed from our Drupal site
from a remote Flash application. Of course, this depends on whether the user logged
in to our Flash application has the privileges to do such operations. We will explore
this great feature by first installing and configuring the User Service.

Installing the User Service
Since we have already downloaded the Services module, we will not have to do
much in this section simply because the User Service module comes pre-packaged
with the Services module. Because of this, we can install the user service much like
any other module in our system; by navigating to the Drupal modules section and
then clicking on the checkbox next to the User Service module within the Services
section. Once we have done this, we can install this module by clicking the Save
Configuration button at the bottom of the page.

Configuring permissions
Now that we have enabled the user service module, our next task is to navigate
to the Permissions section (Administer | Permissions), where we will select the
permissions that will be required to utilize this module from a remote source.
By scrolling down to the user_service module section, we should set up our
permissions to be as follows:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[262]

After we check the following permissions, we must now make sure to commit this
change by clicking on the button at the bottom of the page that says Save permissions.

Configuring the User Service module
Our next task is to take a journey to the Services Administrator (by navigating to
Administer | Services), where we should see our new service functions available
to our remote applications.

Although each of these services can be very useful, we will only be utilizing the
login and logout services in this chapter to illustrate how this module works. We
can see how the interface looks for each of these functions by clicking on the links
defined by each service call (user.delete, user.get, and so on). Let's do this by
clicking on the user.login service method, where we should see the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[263]

At first glance, anyone looking at all of these arguments would most likely be very
intimidated. The majority of these arguments, except for the last two, are used for
security reasons and much explanation is required on what they are and how they
are used. We will cover all of this information in the next chapter. For this chapter,
we will do something that I would normally not recommend: disable the API key
so that we can get a working login system without all of these security arguments.
Then, once we walk through the next chapter, we will re-enable the API key to help
minimize any security issues that may threaten our web site.

With that said, we can now disable the API keys by clicking on the Settings tab
within the Services Administrator and then uncheck the checkbox where it says
Use Keys.

Now, when we navigate back to our user.login function declaration, we will be
happily surprised to see that all that is required to log into our Drupal system from a
remote application is the session ID (which we know), along with the username and
password of that user.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[264]

Disabling the API keys is ONLY done to simplify the flow of this
chapter and is not recommended as a permanent solution. It is highly
recommended to complete this chapter and read the next chapter where
security is discussed and where the API keys are re-enabled.

Now that we have our User Service in place, we can shift our focus back to Flash,
where we will build a user login system.

Building a Flash user login block
Our first task in this section will be to copy all of the Flash contents from the
chapter2 folder, and then, copy all of the contents of that folder to a new folder
called chapter10. We will rename the chapter2.fla project file to chapter10.fla.
The reason we are starting with Chapter 2 is simply because any of the additional
functionality that was added to the chapters following the second will be white noise
to our real goal at hand, which is to create a user login system.

Once we have our new chapter directory, we will open up the chapter10.fla
project file, where we will construct our user login. With this project open, we will
start out by creating a new layer in our timeline that will be used for our user
login block.

Once we have this layer selected, we can now construct our user login by first
clicking on the tool, and then placing two Input Text fields on the top lefthand
corner of our stage along with two static text fields that will be used as the labels.

After we have our text fields in place, we will now want to give each of them an
instance name so that they can be referenced within ActionScript. We will give
these text fields an instance name of username and password respectively.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[265]

Now that each of these fields has been created, we will need to make sure that the
user knows where to type in their username and password. By default, the Input
Text field does not set the background color as white, which would make it hard for
the user to see where to start typing. We can fix this by giving our text fields a border
by selecting each one of the Input Text fields and then clicking on the button
within the Properties panel. We will also need to make sure that the text color within
these text fields is a color that is not the same as the background color of our Input
field. Otherwise, we will get a surprise when we try to enter text and it appears that
nothing is happening, even though text is being entered but is just not visible. We
can do this by clicking on each of the input fields and then, from Color within the
Properties panel, selecting a dark color.

Finally, for the password field, we will need to make sure that all the characters
are hidden when the user types in their password. We can do this by selecting the
password text field and then selecting password from the Behavior drop-down box
within the Properties panel.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[266]

Now that we have these two fields in place, our next task will be to create a new
movie clip that will act as a container for the username and password text fields
along with their labels. To do this, we will need to select both the username and
password input text fields along with their labels and then select Modify | Convert
to Symbol, where we will create a new Movie Clip called mcUserPass.

Once this movie clip has been created, we will give it an instance name of userpass
so that we can reference it within ActionScript.

Now that we have a user login block, we still need to handle the situation when the
user has already logged in.

Welcoming our logged-in users
For this section, we will want to greet our users who are logged in by simply
showing a text field that says "Welcome" followed by the name of that user. We can
start this by first creating a new layer below the login layer called welcome, and then
hiding and locking the login layer so that it does not get in our way.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[267]

With the welcome layer selected, we can now add our text strings on the stage in the
same spot as the userpass movie clip, if it were visible. This welcome message will
simply consist of two different text fields, one Static and the other one Dynamic. The
static text field will simply display "Welcome", while the dynamic text field will be
used to dynamically populate our user's name. Because of this, we will need to make
sure we give it an instance name of username.

Once we are done setting up our welcome text fields, we can follow the steps
given earlier in this section to create a new movie clip from the text fields called
mcWelcome, with an instance name of welcome.

Now that we have our welcome layer, we will want to lock and hide the welcome
layer, and then reshow the login layer so that we can accurately place our
login button.

Creating a login button
Our next step is to create a login button, so that the user has control over logging in
or logging out of our Flash application. We can do this by first creating a new layer
below our login layer called loginButton.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[268]

Then, within the loginButton layer, we can use the pre-defined Button component
from the Components section of Flash to place our new login button.

With our login button in place, our last task, within Flash, is to give our login button
an instance name of submit, and then change the text within that button. To change
the text within the button, simply click on the button and open up the Component
Inspector by clicking on the Window | COMPONENT INSPECTOR menu, and
then changing the text inside the label field.

Adding some status text
Now that we have a login button, our last element that we will need for our login
block is a status text box that will tell the user if an error occurred. This can be done
pretty easily by creating a new layer in their timeline called status.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[269]

Now that we have our own status layer, we will create a new dynamic text field
within this layer, with an instance name of status.

We should now have a set of Flash objects that resemble a user login block. To keep
everything componentized, our next step will be to place all of the login components
that we just created into their own movie clip called mcLogin.

Creating a mcLogin movie clip
Since our goal here is to retain all of the layers and objects that we just created, we
will need to take a different approach when combining these elements into a single
movie clip. We will start this process by first copying all of the layers that we just
created for our login block by unlocking these layers, and then, using the Shift key,
selecting all of them as a group. When they are all selected, we can then right-click
and select Copy Frames.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[270]

With these frames copied, we can now create an empty movie clip called mcLogin by
selecting Insert | New Symbol in the Flash menu.

This will create an empty movie clip, where we can right-click on the default key
frame and select Paste Frames to copy all the layers and objects that we just created
into this movie clip.

Now that we have a complete mcLogin movie clip, our next task is to move back
to the main stage, remove all of the login layers that we created, and then delete
the userpass movie clip from the login layer.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[271]

With the empty login layer selected, we can now drag and drop our new mcLogin
movie clip from our Library so that it is the only movie clip within this layer. When
we are done placing our mcLogin movie clip, we make sure that we give it an
instance of login.

Our next task will be to build the ActionScript code that will govern the logic of our
user login block so that we can log in to our Drupal web site and start adding data.
But first, we need to handle the currently logged in user within our Flash application.

User handling within Flash
In order to handle the current user, we will first need to open up the main.as file,
where we will build the business logic behind the Flash objects we created in the
previous section. Since each of these objects was given an instance name, they can
now be referenced within our ActionScript code. Looking at the main.as file, our
first task will be to instantiate our user login block by hiding the welcome movie clip.

// Hide the welcome message.
login.welcome.visible = false;

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[272]

Our next task is to show the correct login block depending on whether the user is
logged in or not. This can be determined from the user object passed to us after we
connect to our Drupal system. If the user is defined and the user ID is not 0, then
this means that we are logged in, and should show the welcome block and hide the
login block. We will also want to fill out the text within the username text field inside
the welcome block to be that of the logged-in user. All of this functionality can be
placed within its own function called setUser. Since, the currently logged-in user
is someone who we will need to reference at a later time, we will also need to add a
global declaration for the currently logged-in user at the top of the main.as file, and
then set the value within this function.

// The current user.
var user:Object = null;

// Hide the welcome message.
login.welcome.visible = false;

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection();
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

...

...

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 // Set our current user.
 setUser(result);
 trace("We are connected!!!");
 trace("Session Id: " + sessionId);	
 // Load our node.
 loadNode(nodeId);	
}

// Used to set the current user.
function setUser(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;

 // Set the global variable.
 user = result.user;
 // Check to see if we are logged in.
 if(user && user.userid > 0) {
 // Welcome our user.
 login.welcome.visible = true;
 login.welcome.username.text = user.name;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[273]

 login.userpass.visible = false;		
 }
 else {
 // Show the login block.
 login.welcome.visible = false;
 login.userpass.visible = true;		
 }
}

Along with the welcome and userpass movie clips, we will also need to change the
text within our login button so that it says Login if the user is not logged in and
Logout otherwise.

// Used to set the current user.
function setUser(_user:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;

 // Set the global variable.
 user = result.user;
 // Check to see if we are logged in.
 if(user && user.userid > 0) {
 // Welcome our user.
 login.submit.label = "Logout";
 login.welcome.visible = true;
 login.welcome.username.text = user.name;
 login.userpass.visible = false;		
 }
 else {
 // Show the login block.
 login.submit.label = "Login";
 login.welcome.visible = false;
 login.userpass.visible = true;		
 }
}

All of this functionality is used to set and display the Flash objects based on whether
the user is logged in or not. However, we must now complete this functionality by
hooking up the login button so that we can trigger an event when the user clicks on
the button to log in.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[274]

Hooking up our login button
In order to log into Drupal, we will need to hook up our login button so it can be
used to log the user in or out depending on whether they are logged in or not. We
can do this by adding an event handler when this button is clicked.

// The current user.
var user:Object = null;

// Hide the welcome message.
login.welcome.visible = false;

// Add a listener when the user presses the Login button.
login.submit.addEventListener(MouseEvent.CLICK, onLogin);

We now need to create our stub function that will get called whenever the user clicks
this button.

// Used to set the current user.
function setUser(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;
 // Set the global variable.
 user = result.user;
 // Check to see if we are logged in.
 if(user && user.userid > 0) {
 // Welcome our user.
 login.submit.label = "Logout";
 login.welcome.visible = true;
 login.welcome.username.text = user.name;
 login.userpass.visible = false;
 }
 else {
 // Show the login block.
 login.submit.label = "Login";
 login.welcome.visible = false;
 login.userpass.visible = true;
 }
}

// Called when the user clicks the login button.
function onLogin(event:MouseEvent)
{
 trace("Login clicked");
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[275]

At this point, we can now add functionality into the onLogin function so that it
will log the user into our Drupal system. But first, we will need to perform some
pre-validation on the username and password.

Checking for a username and password
In this section we need to check to make sure that the user provided both their
username and password into the text fields, and if they have not, then we will
change the text within the status text field to let the user know. In order to make our
code very robust, we need to make sure that we remove any unwanted characters
from the username and password that could have been added involuntarily by
the user such as tabs or spaces. We can do this by performing a search for all of
those characters, and replacing them with an empty string. We will use the String
replace function, which takes a regular expression as the search parameter.
Although the explanation of regular expressions is somewhat beyond the scope of
this book, we can use the regular expression /[\t\n\r\f]/ to search for any tabs or
new line indicators within the text field. If there are any of these characters within
our string, they will be replaced with an empty string.

Our changes should look like the following:

// Called when the user clicks the login button.
function onLogin(event:MouseEvent)
{
 // Get the username and password.
 var username:String = login.userpass.username.text;
 var password:String = login.userpass.password.text;

 // Replace unwanted characters.
 username = username.replace(/[\t\n\r\f]/,'');
 password = password.replace(/[\t\n\r\f]/,'');

 // Check for the username and password
 if(username.length && password.length) {
 trace("Login to Drupal");
 }
 else {
 login.status.text = "username and password required.";
 }
}

Now that we have some preliminary checks on the username and password, we can
make our call to Drupal to log in the user.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[276]

Logging into Drupal
Our next task will be to utilize the User Service that we set up earlier in this chapter
to allow us to perform a remote login using Flash. Within the User Services module,
there are two different remote functions that we can use to log in and log out of our
Drupal system. These two functions are user.login and user.logout respectively,
and depending on whether the user is logged into the system or not, we will need to
call one or the other. But first, we will need to set up our responder that will be used
to contain our callback functions when the server returns after each remote function
is called.

Adding a user responder
We will create a single responder that we will use to handle both the login and
logout functionality. This responder will be called userResponder, and we can
declare it as follows:

// Set up our responder with the callbacks.
var responder:Responder = new Responder(onConnect, onError);

// User responder to handle Login and Logout commands.
var userResponder:Responder = new Responder(setUser, onUserError);

// Connect to Drupal
drupal.call("system.connect", responder);

Our next step is to create the onUserError callback function that the responder calls
when Drupal has returned with an error during the login process. This function will
be very useful to pass along the error from our Drupal server, so that the user knows
what went wrong with their user login. For example, this error handler would be
able to tell our user if they accidentally misspelled their username by giving them a
message that says "Wrong username and password". This function can be defined
as follows:

// Used to set the current user.
function setUser(result:Object)
{
 // Set our sessionId variable.
 sessionId = result.sessid;	
 // Set the global variable.
 user = result.user;
 // Check to see if we are logged in.
 if(user && user.userid > 0) {
 // Welcome our user.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[277]

 login.submit.label = "Logout";
 login.welcome.visible = true;
 login.welcome.username.text = user.name;
 login.userpass.visible = false;		
 }
 else {
 // Show the login block.
 login.submit.label = "Login";
 login.welcome.visible = false;
 login.userpass.visible = true;		
 }
}

// Called when an error occurs during login.
function onUserError(error:Object)
{
 // Set the status to what happened.
 login.status.text = error.description;
}

Now that we have our responder in place, our next step is to utilize it by calling the
User Service routines to log into our Drupal system.

Logging in
Logging into Drupal can be accomplished by placing a drupal.call to the User
Service routine when the user clicks on the login button. This can be done by placing
the drupal.call at the point where both username and password have been
checked within the onLogin function. We will also make sure that the user is not
logged in before calling this functionality.

// Called when the user clicks the login button.
function onLogin(event:MouseEvent)
{
 // Is the user logged out?
 if(user && user.userid == 0) {	
 // Get the username and password.
 var username:String = login.userpass.username.text;
 var password:String = login.userpass.password.text;
 // Replace unwanted characters.
 username = username.replace(/[\t\n\r\f]/,'');
 password = password.replace(/[\t\n\r\f]/,'');
 // Check for the username and password
 if(username.length && password.length) {
 drupal.call("user.login", userResponder, sessionId, username,
 password);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[278]

 }
 else {
 login.status.text = "username and password required.";
 }
 }
}

Now that we have login functionality, this system would not be complete without
letting the user log out of the Flash application.

Logging out
Logging out of the Flash application requires us to make the drupal.call to
user.logout when the user is currently logged into the Flash application. Since we
are already changing the name of the login button to say Logout when the user is
logged in, we will utilize the same button handler function (onLogin) to handle the
case when the user also wishes to log out of the system.

// Called when the user clicks the login button.
function onLogin(event:MouseEvent)
{
 // Is the user logged out?
 if(user && user.userid == 0) {	
 // Get the username and password.
 var username:String = login.userpass.username.text;
 var password:String = login.userpass.password.text;
 // Replace unwanted characters.
 username = username.replace(/[\t\n\r\f]/,'');
 password = password.replace(/[\t\n\r\f]/,'');
 // Check for the username and password
 if(username.length && password.length) {
 drupal.call("user.login", userResponder, sessionId,
 username, password);
 }
 else {
 	 login.status.text = "username and password required.";
 }
 }
 else {
 // Log out of Drupal.
 drupal.call("user.logout", userResponder, sessionId);
 }	
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 10

[279]

We run into a problem, however, when our Drupal site responds to our request. For
the login, we are using the userResponder, which in turn uses the setUser function
as the callback function that gets triggered when the server returns with its response.
The problem comes in that the response of the user.login service is different from
the response of the user.logout service. Instead of redefining a new responder for the
logout functionality, we can still use the setUser function as the callback for the logout
response, but we will need to make some changes to account for the different response.

The response from user.logout is different from user.login in that it returns a
simple Boolean value notifying the remote application as to whether the logout was
successful or not. Because of this, we can determine if the response is from the logout
service call by checking the result value for the Boolean type. If it is a Boolean, then
we can reset our userId to 0, which will place our application in the logged out state.

// Used to set the current user.
function setUser(result:Object)
{
 if(result is Boolean) {
 // Set our userId to 0
 user.userid = 0;
 }
 else {
 // Set our sessionId variable.
 sessionId = result.sessid;	
 // Set the global variable.
 user = result.user;
 }
 // Check to see if we are logged in.
 if(user && user.userid > 0) {
 // Welcome our user.
 login.submit.label = "Logout";
 login.welcome.visible = true;
 login.welcome.username.text = user.name;
 login.userpass.visible = false;		
 }
 else {
 // Show the login block.
 login.submit.label = "Login";
 login.welcome.visible = false;
 login.userpass.visible = true;		
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

User Management

[280]

And we are done…We can now run our application and see a fully functional user
login system!

Summary
In this chapter we learned how to log into Drupal's user management system
from a remote Flash application. Although this may seem like a trivial exercise,
it completely opens up the doors to some more exciting possibilities with data
management and manipulation from a remote location. It will serve as a necessary
segue to the following chapters where user management is required for data
manipulation. In the next chapter, we will utilize this user management to learn how
to add data to Drupal using Flash. We will also learn how to take advantage of all
the security measures that the Services module puts into place by re-enabling the
API key functionality that we temporarily disabled in this chapter.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal
Now that we have set the foundation for retrieving content from within Drupal, we
can focus our efforts on turning that one-way street of data transfer into a two-way
street, where we can not only retrieve content, but also add and manipulate that
content from within a remote Flash application. Obviously, this may raise some
concerns regarding security, which is why we will cover how Drupal allows for this
type of remote interaction, while, at the same time, keeping our data safe. In this
chapter we will learn how to add content to our remote Drupal web site, from within
Flash, by building a custom Flash node editor that will allow us to create, view, and
edit nodes within the Drupal system.

In this chapter, we will cover the following points:

Learning about Drupal Services Security
Building a Drupal Service class
Building a node editor in Flash
Adding content to Drupal from Flash
Editing existing content in Drupal from Flash

Drupal Services security
In recent times, security has become crucial for any web site tapped into the
treacherous environment that is the World Wide Web. Because of the ever increasing
popularity of Drupal, much effort has been placed on ensuring that any person
using this incredible content management system does not fall victim to a security
breach in their web site. Although it is impossible to plug all the holes, we can put
our faith in Drupal that they are covering most bases when it comes to the security of
our data. And the Services module is no exception. However, opening up the ability
for any external web application to add and manipulate data within our web site is
something we will want to approach with caution. Because of this, it is extremely
important that we are very familiar with the security measures that the Services
module employs to ward off malicious software.

•
•
•
•
•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[282]

In the previous chapter, we caught a glimpse of these security measures when we
opened up the API for the user.login web service. Due to the complexities of adding
support for these security measures, we temporarily disabled them to illustrate
a user login system. However, for this chapter, we will re-enable these security
measures and then build a new Drupal Service class to help abstract out all of the
complexities when using them for any future Flash applications. To start, we will
navigate to Administer | Services on our Drupal site, where we will re-enable the
API keys within the settings of our Services Administrator by clicking on the Use
keys checkbox and then clicking on the Save Configuration button.

Now that we have the Services API keys enabled, we can explore how the Services
module keeps our data safe by looking at what makes up the API key.

The API key
The API key, or Application Programming Interface key, is used to help keep our
data safe by keeping track of a set of keys for any external applications to use when
performing data critical tasks. The Services module uses this unique identifier to
check any service requests to make sure that whoever made that call has the right
credentials to do whatever he/she is trying to do.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[283]

It is much easier to think of the API key by giving an analogy of an underground
club that we see in the movies. If we stick true to Hollywood, you would almost
always see some cool character, wearing sunglasses in the middle of the night, walk
up to a metal door with a small sliding notch window. Then, the eyes of some guard
are revealed from behind that sliding window asking, "What's the secret password?"
Then, the cool and collected character would respond "abra-cadabra" (or probably
something much cooler).

In the nerdy world of web services, this scenario is captured as the Services module
asking some remote application what the secret password is…or, in other words,
what is the API key? Then, the cool and collected remote application would present
the API key and in return gain entry into the night club (metaphorically speaking).
In Chapter 2, we briefly covered the use of these API keys and even created one for
our Hello World application. One thing that we did not do, however, was go over
in great detail what an API key actually is and how it is used to protect our system
from malicious software.

API key configuration
To start, we will explore the current API key configuration that we set up within
Chapter 2 by navigating to the Keys section of our Services Administrator where
we should see the following:

What this is showing is the API key that we created in Chapter 2, which includes the
key (shown within the Key column), along with the Title of the application and the
Domain. Since we can use the same API key for multiple applications, we can easily
edit this key by clicking on the edit link within the Operations column.

Within this page, we can provide both the Application title and the Allowed
domain for our API key. The application title is the name of the application that
will be using the web service API key. This is generally only used to keep track of
what each key is used for, and is not necessarily important to get a working system.
Since we wish to use it for any Flash application that we create, we can change the
name from Hello World to simply Flash Application. The allowed domain is the
important value when creating a new API key.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[284]

The allowed domain and crossdomain.xml
The allowed domain is the value that gets populated within the crossdomain.xml
file of our Drupal site. The crossdomain.xml file is a file used by Flash to
determine which sites it can communicate with and which sites it cannot. The
Services module automatically generates this file using the Drupal menu system.
We can see the contents of this simulated file by visiting our domain followed
by crossdomain.xml, such as http://localhost/drupal6/crossdomain.xml.
Although we do not have a crossdomain.xml file within our Drupal root on our
server, the menu system generates this file using the values that we provide in
this API key section. Therefore, it is important to provide a value for our allowed
domains that will populate this crossdomain.xml file with the correct values. It
is also important to note that the http:// should not be included when providing
the allowed domain, but any subdirectory that our Drupal root resides in should be
included. Following are a list of examples that give the domain name for a web site
along with the correct values for the allowed domain values:

Drupal root Allowed Domain
http://www.mysite.com www.mysite.com

http://mysite.com mysite.com

http://www.mysite.com/subdir www.mysite.com/subdir

http://mysite.com/subdir mysite.com/subdir

http://localhost localhost

http://localhost/subdir localhost/subdir

Once we have finished filling out our API key, we should have the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[285]

When we are done, we can save our key by clicking on the Save key button. After we
do this, we should be able to navigate back to our crossdomain.xml file, where we
should then see our domain added to the list of allowed domains. Now that we have
edited our API Key, we can move on to the next section, where we will learn how to
use it within a remote Flash application.

How to use the API key
We can see firsthand how the API key works by clicking on the Browse link of
the Services Administrator, where it lists all of the services available to external
applications. Since not all service calls require an API key, we will need to select a
service that performs data critical operations on our Drupal data in order to see what
the API key does and what is required to implement this security check. We can see
this key by selecting the same service that we did in the previous chapter by clicking
on the user.login link to view the API declaration for that service. We should see
something similar to the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[286]

Although we cannot see the API key when viewing any of these arguments, the
API key, along with all the other arguments, are used when calculating the hash
argument. Each of these arguments is explained as follows:

hash—The hash is an encoded string that is made up of the API key along
with the domain_name, domain_time_stamp, and nonce arguments. It uses
an HMAC encoding to create a hash value of all of these values combined.
domain_name—This is the domain name that should match what is
provided as the allowed domain that we just created for the API key.
domain_time_stamp—This is a timestamp of when the external call was
made. This is used so that each hash will have a timeout value and only be
valid for a certain time interval.
nonce—Also written as N-once, this is a single random string that is only
allowed for a single call. The Services module keeps track of all nonce strings
for each service call and checks them to make sure that they are never reused.
This keeps any malicious software from trying to mimic any service call by
using the same security parameters. Since the nonce can only be used once,
the second (malicious) call will end up failing.
sessid—The session ID for the current user session. Each user for our web
site will get a unique session, and this can be used to validate each user for
the privileges that they have on our Drupal site.

Now that we have a clear understanding of what each of these arguments are, we are
ready to dive back into Flash where we will build a system that is able to provide all
the necessary elements to perform data critical operations.

Building a Drupal service in Flash
We can shift our focus back to Flash, where we will build a reusable system
for interfacing with Drupal using the API keys where applicable. To begin this
section, we will need to make a copy of our chapter10 directory and create a new
chapter11 directory with the contents of that folder.

Once we have our new chapter11 folder created, our task will be to get all of the
necessary components needed to generate the hash required from Drupal's API key.
Luckily, all of the hard work has already been done thanks to the wonderful open-
source development community and the kind folks at http://crypto.hurlant.com.
The library that we will use is called as3crypto and can be downloaded at http://
as3crypto.googlecode.com/files/Crypto.zip. This library gives us the ability
to generate any type of hash, including the HMAC required by the Services module.
Once we have the ZIP package downloaded, we will then extract the contents of this
package and copy the com folder within this package into our chapter11 directory.

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[287]

Now that we have the as3crypto library in place, we can start to build our new class
that we will use to encapsulate all of the special functionality required for the Drupal
service interaction.

The DrupalService class
In all the previous chapters we interfaced with Drupal using the simple
NetConnection call method. With each of these calls to our Drupal system, the
API key was not required, and consequently, it was not necessary to build a separate
class for interacting with our Drupal web site from a remote location. However, now,
we have a special need to make certain service calls that require an added security
measure, which should be encapsulated within its own class. Because of this, we will
use this section to build a re-usable DrupalService class that can be used within any
Flash project to interact with Drupal. To start, we will simply need to create a new
ActionScript file within our chapter11 directory called DrupalService.as file.

Within our new DrupalService.as file, we will want to derive all functionality from
the NetConnection class so that we can expand on that functionality to include the
API key. At this point, our code should look like the following:

package
{
 // Import all dependencies
 import flash.net.NetConnection;
 // Declare our DrupalService class
 public class DrupalService extends NetConnection
 {
 }
}

At this point, we will want to provide the same functionality as the NetConnection
class, but build in our Drupal-specific needs into this class. For example, we can
keep track of our sessionId and user object within this class, as well as build in
our connection to Drupal, which sets these parameters:

package
{
 // Import all dependencies
 import flash.net.NetConnection;
 import flash.net.Responder;

 // Declare our DrupalService class

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[288]

 public class DrupalService extends NetConnection
 {
 // The DrupalService constructor.
 public function DrupalService(_gateway:String, _api:String)
 {
 // Save the gateway path and apiKey.
 gateway = _gateway;
 apiKey = _api;

 // Set the object encoding and connect to Drupal.
 objectEncoding = flash.net.ObjectEncoding.AMF3;
 super.connect(gateway);
 }

 // Connect to our Drupal system.
 public function connectToDrupal(_onConnected:Function)
 {
 // Set our callback function.
 onConnected = _onConnected;

 // Call our system.connect service.
 call("system.connect", new Responder(onConnect, onError));
 }
 // Called when we have connected to Drupal
 private function onConnect(result:Object)
 {
 // Set our session Id and user object.
 sessionId = result.sessid;
 user = result.user;
 // Call the callback function.
 onConnected({user:user, sessid:sessionId});
 }
 // Called when an error occurs connecting to Drupal.
 private function onError(error:Object)
 {
 trace("An error has occurred!");
 }
 // Store our user and session Id.
 public var user:Object;
 public var sessionId:String="";
 public var gateway:String = "";
 public var apiKey:String = "";
 // Set the onConnected callback function.
 private var onConnected:Function;
 }
}

Now that we have our DrupalService class working to connect and retrieve
information from our Drupal system, we will add to it to allow the additional
API key for certain service calls.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[289]

Adding the API key to our DrupalService
Since the API key is only required for the services where data manipulation is
required, we will need to structure our DrupalService class to either use the API
key for some service calls, while at the same time, only use the session ID for others.
Because of this, we will need to create our very own serviceCall method within
our DrupalService that will handle these custom arguments depending on which
service is called. Also, because the declaration of the call method, within the
NetConnection class, uses the variable arguments declaration (…), we will need
to be clever when we pass on the arguments to the NetConnection call method.
Unfortunately, the only way to do this is to create a switch for the maximum amount
of arguments that we can expect to be passed to this function, and then call each
NetConnection method for that number of arguments. This can be seen as follows:

// Connect to our Drupal system.
public function connectToDrupal(_onConnected:Function)
{
 // Set our callback function.
 onConnected = _onConnected;
 // Call our system.connect service.
 serviceCall("system.connect", onConnect, null);
}
 // Create a service Call method.
 public function serviceCall(command:String, onSuccess:Function,
 onFailed:Function, ... args)
{
 // Use default error handler if none is provided.
 if(onFailed == null) {
 onFailed = onError;
 }
 // Declare our responder.
 var responder:Responder = new Responder(onSuccess, onFailed);
 // Switch and make the call.
 switch (args.length) {
 case 0 :
 call(command, responder);
 break;
 case 1 :
 call(command, responder, args[0]);
 break;
 case 2 :
 call(command, responder, args[0],
 args[1]);
 break;
 case 3 :
 call(command, responder, args[0],
 args[1],
 args[2]);

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[290]

 break;
 case 4 :
 call(command, responder, args[0],
 args[1],
 args[2],
 args[3]);
 break;
 case 5 :
 call(command, responder, args[0],
 args[1],
 args[2],
 args[3],
 args[4]);
 break;
 case 6 :
 call(command, responder, args[0],
 args[1],
 args[2],
 args[3],
 args[4],
 args[5]);
 break;
 case 7 :
 call(command, responder, args[0],
 args[1],
 args[2],
 args[3],
 args[4],
 args[5],
 args[6]);
 break;
 case 8 :
 call(command, responder, args[0],
 args[1],
 args[2],
 args[3],
 args[4],
 args[5],
 args[6],
 args[7]);
 break;
 default:
 trace("Too many arguments in DrupalService");
 break;
 }
}

Now that we have our own serviceCall routine, our next task is to build up the
arguments based on which service is called.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[291]

Adding arguments to the service call
Our next task will be to determine which methods require an API key and which do
not. This can be done using a simple function within our DrupalService class that
will let us know if the API key is required given the service command. Although
there are several functions that require an API key, we will only include the ones
that we will use in our application. This function will look as follows:

// Determines if we should use an API Key.
private function usesKey(command:String):Boolean
{
 switch (command) {
 case "user.login":
 case "user.logout":
 case "node.save":
 return true;
 break;
 }
 return false;
}

We can add a new function that adds the required arguments for each Flash
call to our Drupal site. This new function will take the arguments passed to the
serviceCall method, and then call the unshift method on the arguments array to
add each of the required arguments. For the time being, we will not populate all of
the parameters, but just use this as a shell to add the additional arguments.

// Create a service Call method.
public function serviceCall(command:String, onSuccess:Function,
onFailed:Function, ... args):void
{
 // Use default error handler if none is provided.
 if(onFailed == null) {
 onFailed = onError;
 }
 // Declare our responder.
 var responder:Responder = new Responder(onSuccess, onFailed);

 // Setup our arguments.
 setupArgs(command, args);
 ...
 ...
}
// Setup the arguments.
private function setupArgs(command:String, args:Object)
{

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[292]

 // Add the session Id as the first argument.
 args.unshift(sessionId);

 // Check to see if we should add the API key.
 if (usesKey(command)) {
 var baseURL:String = "";
 var timestamp:String = "";
 var nonce:String = "";
 var hash:String = "";
 args.unshift(nonce);
 args.unshift(timestamp);
 args.unshift(baseURL);
 args.unshift(hash);
 }
}

Our next task is to fill in the blanks by providing functions that get the timestamp,
nonce, base URL, and hash values. To help simplify this integration, we will tackle
each one of these additions individually.

Adding the base URL
To determine the base URL that was used to generate the API key, we can simply
extract this value using the gateway string. Since there are an infinite amount of
possibilities for the value of this gateway string, we will need to use some clever
regular expressions to extract the right string from this gateway. By looking at the
typical gateway string, we can then see how to construct the base URL used for
our API key by observing the following rules:

The typical base URL is highlighted from the following gateway string
http://www.mysite.com/drupal6/services/amfphp

We will search for http:// and remove that from the string leaving
www.mysite.com/drupal6/services/amfphp

We will then search for /services/amfphp and remove that from the
gateway leaving the base URL of www.mysite.com/drupal6

The code that realizes this set of rules is realized as follows:

// Setup the arguments.
private function setupArgs(command:String, args:Object)
{
 // Add the session Id.
 args.unshift(sessionId);
 // Check to see if we should add the API key.
 if (usesKey(command)) {

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[293]

 var baseURL:String = getBaseURL();
 var timestamp:String = "";
 var nonce:String = "";
 var hash:String = "";
 args.unshift(nonce);
 args.unshift(timestamp);
 args.unshift(baseURL);
 args.unshift(hash);
 }
}

// Get the baseURL.
private function getBaseURL():String
{
 // The regular expression to find "http://"
 var http:RegExp = /^(http[s]?\:[\\\/][\\\/])/;
 // Remove the "http://" from the gateway.
 var baseURL:String = gateway.replace(http, "");
 // Remove "/services/amfphp" from the gateway.
 baseURL = baseURL.replace("/services/amfphp", "");
 // Return the base URL.
 return baseURL;
}

Adding the TimeStamp
The timestamp, we can determine relatively easily by using ActionScript's date
module, which has the ability to determine the current system time.

// Setup the arguments.
private function setupArgs(command:String, args:Object)
{
 // Add the session Id.
 args.unshift(sessionId);
 // Check to see if we should add the API key.
 if (usesKey(command)) {
 var baseURL:String = getBaseURL();
 var timestamp:String = getTimeStamp();
 var nonce:String = "";
 var hash:String = "";

 args.unshift(nonce);
 args.unshift(timestamp);
 args.unshift(baseURL);
 args.unshift(hash);
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[294]

...

// Get the timestamp.
private function getTimeStamp():String
{
 // Get the current date/time
 var now:Date = new Date();

 // Get the time as a timestamp.
 var nowTime:Number=Math.floor((now.getTime() / 1000));

 // Return it as a string.
 return int(nowTime).toString();
}

Adding the nonce
The nonce is simply a randomly generated 10 character string. However, the one
problem with ActionScript 3.0 is that there is currently no standard method to create
a random string. Because of this, we will just need to get creative by creating a string
with all the alphabet characters, and then constructing a new string by randomly
selecting characters from that alphabet to create a random string of characters. This
can be seen as follows:

// Setup the arguments.
private function setupArgs(command:String, args:Object)
{
 // Add the session Id.
 args.unshift(sessionId);
 // Check to see if we should add the API key.
 if (usesKey(command)) {
 var baseURL:String = getBaseURL();
 var timestamp:String = getTimeStamp();
 var nonce:String = getNonce();
 var hash:String = "";
 args.unshift(nonce);
 args.unshift(timestamp);
 args.unshift(baseURL);
 args.unshift(hash);
 }
}

...

// Returns the nonce, or 10 character random string.
private function getNonce():String
{
 // Create an alphabet string with all the alphabet.
 var alphabet:String = "abcdefghijkmnopqrstuvwxyz";
 alphabet += "ABCDEFGHJKLMNPQRSTUVWXYZ23456789";

 // Store the length.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[295]

 var len:int = alphabet.length - 1;
 var randString:String = '';

 // Iterate 10 times for each character.
 for (var i:int = 0; i < 10; i++) {
 // Append a random character.
 randString += alphabet.charAt(rand(len));
 }

 // Return our random string.
 return randString;
}

// Generate a random number with a max range.
private static function rand(max:Number):Number
{
 return Math.round(Math.random() * (max - 1));
}

Adding a hash
Our last step to creating our security checks is to take all three of the previous values
and mash them together to create a hash. For this piece, we will need to bring in our
as3crypto libraries that we should already have in place. The hash simply consists
of the timestamp, domain, nonce, and the Services command all combined and then
scrambled using an SHA256 encoded HMAC with the API key as the algorithm seed.
We will also need to make sure to include all the necessary encoding libraries to
perform this magic. This can be seen as follows:

package
{
 // Import all dependencies
 import flash.net.NetConnection;
 import flash.net.Responder;
 import flash.utils.ByteArray;
 import com.hurlant.crypto.hash.SHA256;
 import com.hurlant.crypto.hash.HMAC;
 import com.hurlant.util.Hex;

...

...

// Setup the arguments.
private function setupArgs(command:String, args:Object)
{
 // Add the session Id.
 args.unshift(sessionId);
 // Check to see if we should add the API key.
 if (usesKey(command)) {
 var baseURL:String = getBaseURL();
 var timestamp:String = getTimeStamp();

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[296]

 var nonce:String = getNonce();
 var hash:String = getHash(timestamp,baseURL,nonce,command);
 args.unshift(nonce);
 args.unshift(timestamp);
 args.unshift(baseURL);
 args.unshift(hash);
 }
}
...

// Get the hash of all values.
private function getHash(timestamp:String, domain:String, nonce:
String, method:String):String
{
 // Combine all values into an input string.
 var input:String = timestamp + ";";
 input += domain + ";";
 input += nonce + ";";
 input += method;
 // Create an SHA256 encoded HMAC object.
 var hmac:HMAC = new HMAC(new SHA256());
 // Convert the API Key into a ByteArray.
 var kdata:ByteArray = Hex.toArray(Hex.fromString(apiKey));
 // Convert our input string into a ByteArray.
 var data:ByteArray = Hex.toArray(Hex.fromString(input));
 // Compute our hash.
 var currentResult:ByteArray = hmac.compute(kdata,data);
 // Return our hash in string form.
 return Hex.fromArray(currentResult);
}

At this point, we can make any service call to Drupal and not have to worry about
providing the right credentials for that connection. And because all this functionality
is encapsulated within a single DrupalService class, we can use this for other
Drupal-Flash projects where the API key is necessary to perform data critical tasks.

Our next task is to open up our main.as file and make the necessary changes to
incorporate our new DrupalService component.

Adding DrupalService functionality to main.as
In this section, we will start by opening up our main.as file, where we will
replace all of our previous NetConnection functionality with our newly created
DrupalService class. This will consist of performing the following tasks:

Changing the drupal variable to a DrupalService variable
Adding the apiKey and passing that to the new drupal variable

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[297]

Deleting all Responders, and then adding those callback functions to the
serviceCall methods they are used for
Removing all sessionId handling and instead using the DrupalService
to keep track of this value

Changing drupal.connect to drupal.connectToDrupal

When we are done making these changes, our new main.as file should look as
follows, which we should be happy to see is less complicated from the previous
version (an indication that we have just done a good thing).

// Declare our variables
var baseURL:String = "http://localhost/drupalbook";
var gateway:String = baseURL + "/services/amfphp"
var nodeId:Number = root.loaderInfo.parameters.node;
var apiKey:String = "b77dda3f11083aeb42b046d0b50a1848";

// The current user.
var user:Object = null;

// Hide the welcome message.
login.welcome.visible = false;

// Add a listener when the user presses the Login button.
login.submit.addEventListener(MouseEvent.CLICK, onLogin);

// Declare our Drupal connection
var drupal:DrupalService = new DrupalService(gateway, apiKey);

// Connect to Drupal
drupal.connectToDrupal(onConnect);

// Loads a Drupal node.
function loadNode(nid:Number)
{
 // Call the Drupal service to load the node.
 drupal.serviceCall("node.get", onNodeLoad, null, nid);
}

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Print out the node title.
 title.text = node.title;
}

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)
{
 // Set our current user.
 setUser(result);

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[298]

 trace("We are connected!!!");
 trace("Session Id: " + drupal.sessionId);

 // Load our node.
 loadNode(nodeId);
}

// Used to set the current user.
function setUser(result:Object)
{
 if(result is Boolean) {
 // Set our userId to 0
 user.userid = 0;
 }
 else {
 // Set our sessionId variable.
 drupal.sessionId = result.sessid;

 // Set the global variable.
 user = result.user;
 }

 // Check to see if we are logged in.
 if(user && user.userid > 0) {
 // Welcome our user.
 login.submit.label = "Logout";
 login.welcome.visible = true;
 login.welcome.username.text = user.name;
 login.userpass.visible = false;
 }
 else {
 // Show the login block.
 login.submit.label = "Login";
 login.welcome.visible = false;
 login.userpass.visible = true;
 }
}

// Called when an error occurs during login.
function onUserError(error:Object)
{
 // Set the status to what happened.
 login.status.text = error.description;
}

// Called when the user clicks the login button.
function onLogin(event:MouseEvent)
{

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[299]

 // Is the user logged out?
 if(user && user.userid == 0) {
 // Get the username and password.
 var username:String = login.userpass.username.text;
 var password:String = login.userpass.password.text;

 // Replace unwanted characters.
 username = username.replace(/[\t\n\r\f]/,'');
 password = password.replace(/[\t\n\r\f]/,'');

 // Check for the username and password
 if(username.length && password.length) {
 drupal.serviceCall("user.login", setUser, onUserError,
 username, password);
 }
 else {
 login.status.text = "username and password required.";
 }
 }
 else {
 // Log out of Drupal.
 drupal.serviceCall("user.logout", setUser, onUserError);
 }
}

// Called when an error occurs connecting to Drupal.
function onError(error:Object)
{
 for each (var item in error) {
 trace(item);
 }
}

At this point, we are at about the same spot that we left off from the previous
chapter, except that one major thing is different…we are handling the API Key
transparently within our new DrupalService class. By abstracting out this complex
functionality into its own class, we have clearly simplified our interface to Drupal by
calling the same API routine for all method calls to Drupal. We are then leaving the
hard work to our new DrupalService class, which determines on its own if more
arguments are needed and then supplies them accordingly. We are now ready to
start building a node editor within Flash.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[300]

Building a node editor in Flash
Before we can create our business logic for adding content to our Drupal installation,
we will construct our node editor that we will use to view, edit, and add new content
to our Drupal web site. Our goal here is to make this editor as easy to use as possible
and make it obvious which operation we are performing (viewing, adding, or
editing). We can achieve this goal by creating an editor that resembles Drupal's node
editor, where there are tabs at the top of the content that allow us to perform specific
operations on that content. We can start this off by opening up our chapter11.
fla project file, where we will make some cosmetic changes to our old Hello World
application. For starters, we will create our new tab system that will have our view,
edit, and add tabs.

Creating view, edit, and add tabs
Before we begin this section, we will direct our attention to the timeline, where we
will rename the current title layer to node, and then create a new layer called tabs
that we will use to add all of our tabs. Once we are done with this, we will then
hide our node layer so that we can have a blank slate to work on when creating
our new tabs.

We are now ready to create the background that will be used for each view, edit, and
new tab. The easiest way to do this is to use the Rectangle tool and then draw a
rounded top rectangle by specifying the following in the Properties panel:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[301]

In order to draw a rounded top rectangle, we will need to break the lock
on the rounded corner settings so that it does not apply to all the corners.
To do this, simply click on the symbol in the Rectangle Options. This
will allow us to provide a value for only the top corners.

We can then draw a single, rounded top rectangle that is about 50 pixels wide and
about 20 pixels tall, like the following illustrates.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[302]

Our next task will be to create a Static Text field on top of this shape that will be
used as the label for this tab. For now, we can just use the label for the first tab,
which will be called view.

Finally, we can create a new MovieClip from both the rectangle and the static text
field by selecting both of these objects and selecting Modify | Convert to Symbol
from the menu. We will call this movie clip mcView, and then give it an instance
name of view.

We can edit this movie clip by double-clicking on it, where we will add some
timeline labels for the normal, hover, and selected states.

Adding normal, hover, and selected states
With our new view tab, MovieClip, open, we will need to break apart the text and
the background into two separate layers. We will place the text on a layer called text,
and the background on a layer called background, and then lock the text layer.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[303]

Once this is done, we will add three new key frames to the background layer's
timeline (by pressing F6), and then extend the text layer (by pressing F5).

For each of these key frames, we will give them a label of normal, hover, and
selected. We can do this by clicking on the key frames within the backround layer,
and then typing in the name of that key frame in the Properties panel.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[304]

Our last task is to change the background color for the tab for each of these key
frames so that we can distinguish them for each state. The following background
fill colors are recommended:

normal—0xCCCCCC
hover—0xFFFFFF
selected—0x666666

Now that we have done the view tab, we can duplicate the mcView movie clip three
times to create our edit and add links.

Duplicating the mcView for the edit and add tabs
To duplicate our view tab, we will navigate back to our stage movie clip by clicking
on the Scene 1 link in the breadcrumb trail above the stage area. Now that we are
back on the root stage, we can then click on the Library link and locate our
mcView movie clip. We will then right-click on mcView and select the Duplicate
drop-down item.

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[305]

We will need to use this method to create a mcEdit and a mcAdd movie clip to our
library. Now that we have two new duplicate movie clips from the mcView movie
clip, we can edit each one of them by double-clicking on them within the library and
then changing the text within each of them to say edit and add instead of view.

And now moving back to the stage, we can add our new add and edit tabs so
that they are aligned next to the view tab as follows. We will need to make sure to
give each of these tabs an instance name of view, edit, and addTab (since add is
a reserved word in Flash) respectively.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[306]

After we have our three different tabs in place, our next task will be to select all three
of these tabs and turn them into a single movie clip by clicking on Modify | Convert
to Symbol from the Flash menu. We will call our new movie clip mcTabs and then
give it an instance name of tabs.

Once we have done with this, we can lock our tabs layer and add a background to
our node to give it some unity.

Adding a background to our node
By adding a background to our node, we visually tie the tabs that we created with
the content that they represent. This can be easily done by creating a new layer
above the background layer called nodeBackground.

Then, by using the Rectangle tool , we will create a rounded bottom rectangle
whose color matches the normal state of the tabs. We should also leave a small gap
between the tabs and this background to give it some depth. This should look like
the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[307]

We can lock the nodeBackground layer, and then move onto changing our current
node view so that it fits within our new node layout.

Changing the node view
With the nodeBackground layer locked, we will unlock and reveal our node layer to
expose our current title text field. Our first task will be to resize the title text field so
that it fits our new node editor region, as well as reducing the font size so that we can
have more room for the node body.

Our next task is to add a new Dynamic Text field that we will use as the body of our
node. We will give it an instance name of body, and use a smaller font size, so that
we can fit a lot of content within our node editor.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[308]

And since we will want to place as much text as we would like within the body, we
can follow the steps provided in Chapter 3 to add a new UIScrollBar to our body
field, and then give that scrollbar an instance name of bodyScroll.

Our final task is to select all of the node components and place them in their own
Movie Clip so that it is easier to manage within ActionScript. We will call this movie
clip mcNode and then give it an instance name of nodeMC.

We can now move on to creating our node edit form in Flash.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[309]

Creating a node edit form
Now that we have our node view taken care of, our next task is to create our node
edit form so that we can add new, and modify existing, Drupal content. We will
start this by locking and hiding the node layer, and then creating a new layer in our
timeline called editor.

Within our editor layer, we will start by adding two new input text fields (like we
did in the previous chapter with the user login) on our stage. We will use these input
fields for the Title and Body of our new node, and give them both an instance name
of title and body respectively. Also, while we are at it, we will probably want to
add some static text fields to indicate which input fields are which, and again add a
UIScrollBar to the body field called bodyScroll. This should look like the following:

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[310]

Our next task will be to create a Submit button that we will use to submit this new
node information to our Drupal web site. We can use the same method that we used
for the Login button from the previous chapter to create a new button that says
Submit, and then give it an instance name of submit.

Now that we have our node edit fields in place, our next task is to select all of these
elements and turn them into a single movie clip by clicking on the Modify | Convert
to Symbol menu item. We will then give our new movie clip a name of mcEditor
and an instance name of editor.

Our next task will be to modify our main.as file to account for these changes and
add the business logic required to add content to our Drupal site.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[311]

Adding content to Drupal from Flash
Now that we have our new node editor ready to go in Flash, we are ready to add
new data to our Drupal web site using this Flash application. We will start by
opening up our main.as file, where we will hook up all the business logic that
will govern our new node submit form.

Adding tab functionality
Because we added our tabs to our node editor, we will need to create the business
logic that will hide and show certain elements when these tabs are clicked. But first,
we will need to add event handlers to each tab so that we can handle each state
(normal, hover, and selected). We can add the most flexibility by iterating through
all of the children within the tabs movie clip and then adding all the handlers we
need on all tabs within our tabs movie clip. By doing this, we can easily add new
tabs without having to modify our main.as file every time.

// The current user.
var user:Object = null;
// Instantiate our tabs.
var i:Number = tabs.numChildren;
while(i--) {
 var tab:MovieClip = (tabs.getChildAt(i) as MovieClip);
 tab.gotoAndStop("normal");
 tab.addEventListener(MouseEvent.MOUSE_OVER, onTabHover);
 tab.addEventListener(MouseEvent.MOUSE_OUT, onTabNormal);
 tab.addEventListener(MouseEvent.MOUSE_DOWN, onTabNormal);
 tab.addEventListener(MouseEvent.MOUSE_UP, onTabSelect);
}

// Called when a tab is hovered over.
function onTabHover(event:MouseEvent)
{
}

// Called when a tab goes back to normal.
function onTabNormal(event:MouseEvent)
{
}

// Called when a tab is selected.
function onTabSelect(event:MouseEvent)
{
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[312]

At this point, we just need a good way to keep track of the selected tab, and then
change the state of the other tabs to the state defined by each mouse event. With
a little finessing, we can perform this logic in the following way:

// Instantiate our tabs.
var i:Number = tabs.numChildren;
while(i--) {
 var tab:MovieClip = (tabs.getChildAt(i) as MovieClip);
 tab.gotoAndStop("normal");
 tab.addEventListener(MouseEvent.MOUSE_OVER, onTabHover);
 tab.addEventListener(MouseEvent.MOUSE_OUT, onTabNormal);
 tab.addEventListener(MouseEvent.MOUSE_DOWN, onTabNormal);
 tab.addEventListener(MouseEvent.MOUSE_UP, onTabSelect);
}

// Set the view tab as the selected tab.
var selectedTab:MovieClip = (tabs.getChildByName("view") as
MovieClip);
selectTab(selectedTab);

// Called when a tab is hovered over.
function onTabHover(event:MouseEvent)
{
 // If we are not the selected tab, then change state.
 if(event.target != selectedTab) {
 event.target.gotoAndStop("hover");
 }
}

// Called when a tab goes back to normal.
function onTabNormal(event:MouseEvent)
{
 // If we are not the selected tab, then change state.
 if(event.target != selectedTab) {
 event.target.gotoAndStop("normal");
 }
}

// Called when a tab is selected.
function onTabSelect(event:MouseEvent)
{
 // Select this tab.
 selectTab(event.target as MovieClip);
}

// Selects a new tab.
function selectTab(newTab:MovieClip)
{
 // Make the previous tab go to normal.
 selectedTab.gotoAndStop("normal");

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[313]

 // Set the new selected tab.
 selectedTab = newTab;

 // Go to the selected state.
 selectedTab.gotoAndStop("selected");
}

Our last objective is to hide and show the nodeMC and editor movie clips depending
on which tab is selected. We can do this pretty easily by setting each of these movie
clips as visible depending on whether or not the name of the tab that was selected
was the vew tab.

// Selects a new tab.
function selectTab(newTab:MovieClip)
{
 // Make the previous tab go to normal.
 selectedTab.gotoAndStop("normal");

 // Set the new selected tab.
 selectedTab = newTab;

 // Go to the selected state.
 selectedTab.gotoAndStop("selected");

 // Hide or show the editor or node view.
 nodeMC.visible = (selectedTab.name == "view");
 editor.visible = (selectedTab.name != "view");
}

And now, we should have the tab functionality of our node editor, and we can move
onto the fun stuff of saving and editing nodes using Flash.

Saving a node from Flash
Our first task in this section will be to change the onNodeLoad function, where we
will add the title and body of our node to our Flash nodeMC movie clip. Since the
body of the node is in HTML form, we will also need to use the htmlText when
showing the text within our text field.

// Called when Drupal returns with our node information.
function onNodeLoad(node:Object)
{
 // Set the string of our body and title fields.
 nodeMC.title.text = node.title;
 nodeMC.body.htmlText = node.body;

 // Update the node body scroll bar.
 nodeMC.bodyScroll.update();
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[314]

Our next task will be to hook up the functionality of our Submit button by adding
some event handlers when this button is clicked. We will also want to verify that
they have provided the Input title and body fields before we do anything spectacular
in this function. If they do not provide these fields when they click on the Submit
button, we can inform the user using the status text field that this is an error. On the
other hand, if they do provide the title and body, we will temporarily just add some
trace statements to verify that the input fields are being referenced correctly.

// Hide the welcome message.
login.welcome.visible = false;

// Add a listener when the user presses the Login button.
login.submit.addEventListener(MouseEvent.CLICK, onLogin);

// Add a listener when the user presses the Submit button.
editor.submit.addEventListener(MouseEvent.CLICK, onNodeSubmit);
...
...

// Called when the user presses the submit button.
function onNodeSubmit(event:MouseEvent)
{
 // Get the title and body text
 var titleText:String = editor.title.text;
 var bodyText:String = editor.body.text;

 // Replace unwanted characters.
 titleText = titleText.replace(/[\t\n\r\f]/,'');
 bodyText = bodyText.replace(/[\t\n\r\f]/,'');

 // Check to make sure they provide the title and body.
 if(titleText.length && bodyText.length) {
 trace(titleText);
 trace(bodyText);
 }
 else {
 login.status.text = "You must provide a title and body.";
 }
}

We can replace the trace statements that we entered above with a real call to our
Drupal Node Service. In order to create a new node in Drupal, we will need to
construct a Drupal node object within Flash, and then pass that node as an argument
to our Drupal web site. The node object will need three different parameters when it
is created: the title, body, and the node type. The title and body are the text strings
that were entered in our input title and body text fields. The node type is simply the
type of node that we would like to create with our Service call. We can create a Page
node type by simply providing "page" as the value for this variable.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[315]

After we make our call to Drupal to save our node using the node.save service, we
will also need to remember to handle the return from Drupal, which will simply
be the ID of the node that was just created. We can then take that new node ID and
make a call to node.get to get all of the node information and populate our title and
body fields to show our new node. As for the error, we will simply display what
happened in our login status text to let the user know what happened.

// Called when the user presses the submit button.
function onNodeSubmit(event:MouseEvent)
{
 // Get the title and body text
 var titleText:String = editor.title.text;
 var bodyText:String = editor.body.text;

 // Replace unwanted characters.
 titleText = titleText.replace(/[\t\n\r\f]/,'');
 bodyText = bodyText.replace(/[\t\n\r\f]/,'');

 // Check to make sure they provide the title and body.
 if(titleText.length && bodyText.length) {
 // Create a new node object.
 var newNode:Object = new Object;
 newNode.type = "page";
 newNode.title = titleText;
 newNode.body = bodyText;
 drupal.serviceCall("node.save", onNodeCreate, onNodeError,
 newNode);
 }
 else {
 login.status.text = "You must provide a title and body.";
 }
}

// Called when a new node has been created.
function onNodeError(error:Object)
{
 // Set the status to what happened.
 login.status.text = error.faultString;
}

// Called when a new node has been created.
function onNodeCreate(nodeId:Number)
{
 // Make a call to get the node we just created.
 drupal.serviceCall("node.get", onNodeLoad, null, nodeId);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[316]

We can run our Flash application and test this out by logging into our Flash
application, and then adding a title and body to our input fields and clicking on
Submit. After we click on the Submit button, we should be able to click on our
view tab and be able to see the following:

We can verify that this node was actually created by making our way to the Drupal
Administrator and navigating to Administer | Content, which will show us all the
content in our system, including our new node!

Now that we have successfully added content to our Drupal web site, our next task
will be to add functionality to edit existing content.

Editing existing content in Drupal
At this point, we simply need to modify our existing functionality so that it is
capable of editing nodes as well as adding new ones. Fortunately, we can use the
same editor movie clip to do both editing and adding, but will need to populate the
fields within this editor, depending on which tab is selected. We will need to add
some functionality within our selectTab function, that will populate the title and
body fields with node information if we are within the view tab, and clear them
otherwise. To do this, we will need to store the value of the current node that has
been populated within the view tab, and then use that stored copy to add text to
our title and body fields of the editor for the edit tab.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[317]

// The current user.
var user:Object = null;
var currentNode:Object = null;

...

...

// Selects a new tab.
function selectTab(newTab:MovieClip)
{
 // Make the previous tab go to normal.
 selectedTab.gotoAndStop("normal");

 // Set the new selected tab.
 selectedTab = newTab;

 // Go to the selected state.
 selectedTab.gotoAndStop("selected");

 // Hide or show the editor or node view.
 nodeMC.visible = (selectedTab.name == "view");
 editor.visible = (selectedTab.name != "view");

 // Populate the editor title and body.
 if(selectedTab.name == "edit" && currentNode) {
 editor.title.text = currentNode.title;
 editor.body.htmlText = currentNode.body;
 }
 else {
 editor.title.text = "";
 editor.body.htmlText = "";
 }

 // Update the editor scroll bar.
 editor.bodyScroll.update();
}

...

...

// Called when Drupal returns with our node information.
function onNodeLoad(node:Object)
{
 // Store the current node.
 currentNode = node;

 // Set the string of our body and title fields.
 nodeMC.title.text = node.title;
 nodeMC.body.htmlText = node.body;
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Adding Content to Drupal

[318]

The last change that we need to make is to specify the node ID of the current node to
our node.save function if we are within the edit tab. By giving our service the node
ID, it tells the node service that we would like to update the node rather than create
a new one. This can be done within the nodeSubmit function as follows:

// Called when the user presses the submit button.
function onNodeSubmit(event:MouseEvent)
{
 // Get the title and body text
 var titleText:String = editor.title.text;
 var bodyText:String = editor.body.text;

 // Replace unwanted characters.
 titleText = titleText.replace(/[\t\n\r\f]/,'');
 bodyText = bodyText.replace(/[\t\n\r\f]/,'');

 // Check to make sure they provide the title and body.
 if(titleText.length && bodyText.length) {
 // Create a new node object.
 var newNode:Object = new Object;

 if(selectedTab.name == "edit") {
 newNode.nid = currentNode.nid;
 }

 newNode.type = "page";
 newNode.title = titleText;
 newNode.body = bodyText;
 drupal.serviceCall("node.save", onNodeCreate, onNodeError,
 newNode);
 }
 else {
 login.status.text = "You must provide a title and body.";
 }
}

So once we run this, we should be able to pat ourselves on the back, because we
should have a fully functional node editor!

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 11

[319]

Summary
It is amazing to consider the amount of possibilities that present themselves when
we build our remote applications that not only read content but are also capable of
adding to and manipulating that content on the fly. This chapter really serves as an
enabler for many great things and creative solutions to some really tough problems
that many developers may face when trying to add and manipulate Drupal content
from within a remote Flash application. It also gives those developers the ability to
perform such operations while at the same time preserving data integrity against
malicious software. To summarize, we learned the following points in this chapter:

Data security handling by the the Services module
Building a Drupal node editor in Flash
Encapsulating all Drupal communication within a DrupalService class
Building our DrupalService to utilize security measures that the Services
module uses to keep our data safe
Adding data to Drupal using our node editor
Editing that data using the same node editor

In the final chapter we will bring all lessons learned in this book together for one
final project. We will build a five star voter by building our own custom Drupal
service that hooks into the very popular Voting API module. This new service will
not only add votes, but retrieve them as well, to populate our Flash driven five star
voting widget.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter
in Flash

Although this is the final chapter in this book, you can expect anything but the
typical "sum-it-all-up" theme from this chapter. Of course, we will utilize all the core
lessons learned from previous chapters and add onto that knowledge by building
our very own custom Drupal Service that will allow customized interaction between
Flash and Drupal. This information is vital for any web site that wishes to create its
own server tasks and make those services available for external web applications.
Once we learn how to build a custom service, we can then apply that knowledge to
interface with any subsystem within Drupal (voting, shopping carts, and so on).

Instead of discussing the necessary techniques involved to perform such feats, we
will walk through the evolution of a real Flash application that requires its own
custom service routine. We will do this by building our very own Flash-driven
five-star voter that has the ability to rate content within any Drupal web site. I know
that there is already a fantastic module called FiveStar within Drupal that gives us
a five-star voting mechanism, but by building our own voter within Flash we can
utilize some cool animations within our voter that we would not be able to do within
a JavaScript voting mechanism. This alone can open your imagination to some
innovative and appealing voting mechanisms for Drupal that will set your web site
apart from all the rest. In this chapter, I will give you the foundation to the basics
behind building a Flash voter for Drupal. Hopefully, this foundation will spark your
imagination to create some truly remarkable voting system that will get everyone's
attention, but I will leave that part up to you. In this chapter, we will cover the
following points:

Building a custom Voting Service for Drupal
Building a five-star voter in Flash
Creating a Voter class in ActionScript

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[322]

Building a custom Voting Service for
Drupal
Our first task in this chapter will be to create a new API (Application Programming
Interface) for our external application to get and set votes for any piece of content in
our Drupal web site. This will require us to create a new module, where we will use
the existing Services hook structure to add to the existing services in our system. In
order to accomplish this, we first need a general overview on how to create a new
module, as well as having a brief overview on how the module hook system works, so
that we can add our custom functionality without modifying any core functionality.

It is also important to note that the Voting Service module that we will create in this
section has already been built by me and can be downloaded from the Dash Media
Player module at http://www.drupal.org/project/dashplayer. Although this
module is already available to the public, it is important to walk through this process
since this information can be easily used to construct new services for any custom
application. To start, we will need to tell Drupal about our new module, and we can
do that using the module info file.

The module info file
The info file is used as a registration file so that Drupal can determine whether the
contents of the directory, in which it resides, make up the functionality of a module.
Drupal, in turn, will then add that module to its list of modules available in the
Drupal administrator section. We will start this by opening up a new text document
using our favorite text editor. With our empty file open, we will give our module a
name and description as follows:

name = Voting Service
description = Provides a voting service.

We will now provide a location to show our new module within the modules list.
Since we already have a Services module section, we can add our new module along
with all the rest of the services by adding the following line.

name = Voting Service
description = Provides a voting service.
package = "Services - services"

Our next task is to add any dependency that this module has on other modules.
What this means is that we do not want our users to install this module without
them already having another module that we depend on installed as well. For our
Voting Service module, our users are required to have both the Services and
Voting API modules installed, before they are allowed to install our Voting Service

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[323]

module (makes sense, huh?). To illustrate this in our info file, we will now add the
following lines:

name = Voting Service
description = Provides a voting service.
package = "Services - services"
dependencies[] = services
dependencies[] = votingapi

Finally, we will need to give Drupal some version information so that it can
determine if it is compatible with the Drupal installation in which it resides. This can
be done by adding the following lines of code to our text editor:

name = Voting Service
description = Provides a voting service.
package = "Services - services"
dependencies[] = services
dependencies[] = votingapi
version = VERSION
core = 6.x

We are now done with our voting service info file. We can save it in a location where
our Drupal server will be able to recognize it. If you are using a localhost server, then
this simply requires saving this file as voting_service.info within a voting_service
folder within your site's modules directory as follows:

Now that we have our module info file in place, our next task is to create the
module file that will give us a new voting service.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[324]

Voting Service module
With our text editor still open, we will now need to create a new text file, where
we will build our Voting Service module. Our first goal should be to simply get the
module to install in our Drupal web site and only create the functionality necessary
to view it in the modules list, and then install it. By doing this, we can make
incremental changes and then test each of those changes. To start with, we need to
place our PHP tags within this file since it is technically going to be parsed with a
PHP parser.

<?php

?>

With that simple code in our file, let's now save our file right next to the voter_
service.info file, and then name this file as voter_service.module.

Surprisingly, this is all we really need to make our module show up within the
Drupal modules section, and we can now install our module.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[325]

Installing the Voting Service module
We will now navigate to our Drupal Administrator | Modules section, where we
should see our new module showing up in the modules list.

At this point, we can see that we need to install the Voting API module, which can
be found at http://www.drupal.org/project/votingapi, before we can enable
our new Voting Service. Once we install the Voting API module, we can install our
new Voting Service module by clicking on the checkbox next to the Voting Service
module, and then clicking on the button at the bottom of the screen that says Save
Configuration. Congratulations, you have just created your first module…granted,
it doesn't do anything, but it is at least recognized by Drupal and ready to rock and
roll! Now, we just need to make it actually do something.

Building a Custom Service
In order to add functionality to our new Voting Service, we first need to learn a
little bit about the "hook" system, which allows any contributed module to add or
extend default functionality. A hook simply works by using naming conventions
to find and execute pieces of code by matching the name of the function within
that external module. For example, if I have a custom module that wishes to hook
into Drupal's node API functionality, I can simply declare a new function called
{module name}_nodeapi, where I would replace the {module_name} with the name
of my custom module. So, if our Voting Service module needed to hook into the
Node API to edit and modify any node data, I would simply declare a new function
called voting_service_nodeapi, and then add whatever functionality I need within
this function. This concept is the foundation of any module for the Drupal core as
well as any of its contributed modules.

The Services module comes with its very own hook system that allows any custom
module to literally "hook" into its functionality and add themselves to its list of
routines to publish for web services. What this means for us is that we can define
a series of functions that can be called from a remote application to perform any
custom task. Keep in mind that this can be anything that we can do in PHP, so the
amount of possibilities is limitless.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[326]

Registering external web services using
hook_service
We will start our voting_service.module by first declaring our hook into the
Services module, where we can define the routines we would like to publish to
external applications. The hook that we are interested in is called hook_service.
This hook is simply a registration mechanism, where we will pass back an array of
all of the external methods we would like to publish to the world. But for now, we
can simply add the prototype for this function to our module file as follows:

<?php
/**
 * Implementation of hook_service()
 */
function voting_service_service() {
 return array();
}
?>

Our next task is to return an array of any external web services that we would like to
use for our Voting Service module. As mentioned before, these are simply functions
that can be called from any web application (with the correct credentials) to perform
any imaginable server-side task. Within this array is another array, which contains
all functions that we would like to "register" to the outside world. We will start by
simply declaring the name of the functions that we would like to create along with a
description of each method. But first, we need to figure out which methods we will
need in order to have a fully functional Flash voter. Obviously, we will need a web
service for getting, setting, and deleting votes.

vote.getVote

vote.setVote

vote.deleteVote

But we will also need a way for any user to get his or her own vote. This is needed
so that we can show the voters if they have voted for that piece of content or not,
and then give them the number of stars that they previously voted. This will require
another web service routine.

vote.getUserVote

We can register these functions by declaring a series of arrays that describe each
function we would like to register. But first, we will simply give the names and
descriptions of each using the tags #method and #help for each function that we
would like to create.

•

•

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[327]

<?php
/**
 * Implementation of hook_service()
 */
function voting_service_service() {
 return array(
 // vote.get
 array(
 '#method' => 'vote.getVote',
 '#help' => t('Returns a vote.')
),

 // vote.getUserVote
 array(
 '#method' => 'vote.getUserVote',
 '#help' => t('Returns a users vote.')
),

 // vote.set
 array(
 '#method' => 'vote.setVote',
 '#help' => t('Submit a new vote.')
),

 // vote.delete
 array(
 '#method' => 'vote.deleteVote',
 '#help' => t('Delete a vote.')
)

);
}
?>

Defining web service callback functions
Now that we have our functions defined, we are ready to trigger real functions when
each of these web services are called from a remote location. We can do this by first
creating a set of functions for each of the services that we defined above. For now,
we will just stub these functions out with no functionality.

/**
 * Implementation of hook_service()
 */
function voting_service_service() {
 ...
 ...

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[328]

}

/**
 * Returns a specified node.
 */
function voting_service_get_vote() {
}

/**
 * Gets a vote for the specified user.
 */
function voting_service_get_user_vote() {
}

/**
 * Sets a vote
 */
function voting_service_set_vote() {
}

/**
 * Deletes a vote.
 */
function voting_service_delete_vote() {
}

We now need to register these functions as callbacks by assigning them to each of the
web services we declared in the hook_service function. This can be done using the
simple #callback tag within each web service registration array as follows:

/**
 * Implementation of hook_service()
 */
function voting_service_service() {
 return array(
 // vote.get
 array(
 '#method' => 'vote.getVote',
 '#callback' => 'voting_service_get_vote',
 '#help' => t('Returns a vote.')
),

 // vote.getUserVote
 array(
 '#method' => 'vote.getUserVote',
 '#callback' => 'voting_service_get_user_vote',
 '#help' => t('Returns a vote.')
),

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[329]

 // vote.set
 array(
 '#method' => 'vote.setVote',
 '#callback' => 'voting_service_set_vote',
 '#help' => t('Submit a new vote.')
),

 // vote.delete
 array(
 '#method' => 'vote.deleteVote',
 '#callback' => 'voting_service_delete_vote',
 '#help' => t('Delete a vote.')
),

);
}

We are now ready to define the arguments, returns, and logic for each service call.

Adding arguments and voting logic using
Voting API
In order to complete the callback function declarations, we first need to define the
arguments and return values for each one of these callback routines. Since we are
using the Voting API as our interface for all voting functionality, we will need to
basically provide the same function requirements that the Voting API requires when
getting, adding, and deleting votes. We can pass these parameters along to the
Voting API and then allow it to do all of its voting magic behind the scenes. But
first, we will need to learn a little bit about how the Voting API works.

The Voting API module
The Voting API is a fantastic module that allows votes to be cast on any form of
content (not just nodes). Not only that, it also allows someone to vote on a specific
criteria for each piece of content. As an example, we can build a voter for a Recipe
node that allows our users to vote on the "difficulty", "taste", and "value" for each
recipe node. This functionality is huge, and is something that the FiveStar module
does not allow. Because of this, we will need to build our API functions so that they
take the following parameters when locating a specific vote within our system:

content_type—This is the type of content we are voting on. This can be
anything from nodes, comments, users, and so on.
content_id—This is the ID for the piece of content that we are voting on.
For nodes, this is the Node ID (nid); for users, this is the User ID (uid); for
comments, this is the Comment ID (cid), and so on.

•

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[330]

content_tag—This is the criteria that we are voting on for each individual
piece of content. As described above, this can be any tag, such as "difficulty",
"taste", "value", and so on.

Given this information, we can construct our routines so that they can first locate
the specific vote within the Voting API and then perform that operation on that
particular vote. Each of these parameters can be passed to the Voting API routines as
the criteria for finding the vote before the operation is performed (with the only
exception being the addition of votes). Also, for the returned parameters, we can use
the Voting API to return the modified vote after the operation has been performed.
This functionality will look like the following within our callback functions:

/**
 * Returns a specified node.
 */
function voting_service_get_vote($content_type, $content_id, $tag =
"vote") {
 // Setup the vote criteria.
 $criteria['content_type'] = $content_type;
 $criteria['content_id'] = $content_id;
 $criteria['tag'] = $tag;
 $criteria['value_type'] = 'percent';

 // Select the vote.
 $votes = votingapi_select_votes($criteria);

 if($votes) {
 return $votes[0];
 }
 else
 {
 return array('type'=> $content_type, 'tag' => $tag,
 'value' => 0);
 }
}

/**
 * Gets a vote for the specified user.
 */
function voting_service_get_user_vote($content_type, $content_id, $tag
= "vote") {
 // Get the current user.
 global $user;

 // If the user is logged in.
 if($user->uid)
 {

•

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[331]

 // Set up our vote criteria.
 $criteria['content_type'] = $content_type;
 $criteria['content_id'] = $content_id;
 $criteria['tag'] = $tag;
 $criteria['uid'] = $user->uid;
 $criteria['value_type'] = 'percent';

 // Select the given vote.
 $votes = votingapi_select_votes($criteria);
 }

 if($votes) {
 return $votes[0];
 }
 else
 {
 return array('type'=> $content_type, 'tag' => $tag, 'value'
 =>0);
 }
}

/**
 * Sets a vote
 */
function voting_service_set_vote($content_type, $content_id, $vote_
value, $tag = "vote") {
 // Setup the new vote.
 $vote['content_type'] = $content_type;
 $vote['content_id'] = $content_id;
 $vote['value'] = $vote_value;
 $vote['tag'] = $tag;

 // Set the vote.
 votingapi_set_votes($vote);

 // Recalculate and return the result.
 votingapi_recalculate_results($content_type, $content_id, TRUE);
 return voting_service_get_vote($content_type, $content_id,
 $tag);
}

/**
 * Deletes a vote.
 */
function voting_service_delete_vote($content_type, $content_id, $tag =
"vote") {
 // Get the logged in user.
 global $user;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[332]

 // Setup the vote criteria.
 $criteria['content_type'] = $content_type;
 $criteria['content_type'] = $content_id;
 $criteria['tag'] = $tag;
 $criteria['uid'] = $user->uid;
 $criteria['value_type'] = 'percent';

 // Select the vote.
 $votes = votingapi_select_results($criteria);

 if($votes) {
 // If the vote exists, then delete it.
 votingapi_delete_vote(array('vote_id' => $votes[0]->vote_id));
 votingapi_recalculate_results($content_type, $content_id,
 TRUE);
 }

 // Return the result.
 return voting_service_get_vote($content_type, $content_id, $tag);
}

Our next task is to declare each of these arguments within our registration array
in the hook_service function. Each function can declare an array of arguments
that each define the #name, #type, #description, and #optional (if the argument
is optional) for each argument declared. We can then declare the return value by
simply specifying the type that the web service can expect from the return for each
web service call.

/**
 * Implementation of hook_service()
 */
function voting_service_service() {
 return array(
 // vote.get
 array(
 '#method' => 'vote.getVote',
 '#callback' => 'voting_service_get_vote',
 '#args' => array(
 array(
 '#name' => 'content_type',
 '#type' => 'string',
 '#description' => t('The type of content which you are
 voting for.')),
 array(
 '#name' => 'content_id',
 '#type' => 'int',

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[333]

 '#description' => t('The ID of the content which you are
 voting for.')),
 array(
 '#name' => 'tag',
 '#type' => 'string',
 '#description' => t('The category of the vote within the
 content type.'),
 '#optional' => TRUE)
),
 '#return' => 'array',
 '#help' => t('Returns a vote.')
),

 // vote.getUserVote
 array(
 '#method' => 'vote.getUserVote',
 '#callback' => 'voting_service_get_user_vote',
 '#args' => array(
 array(
 '#name' => 'content_type',
 '#type' => 'string',
 '#description' => t('The type of content which you are
 voting for.')),
 array(
 '#name' => 'content_id',
 '#type' => 'int',
 '#description' => t('The ID of the content which you are
 voting for.')),
 array(
 '#name' => 'tag',
 '#type' => 'string',
 '#description' => t('The category of the vote within the
 content type.'),
 '#optional' => TRUE)
),
 '#return' => 'array',
 '#help' => t('Returns a vote.')
),

 // vote.set
 array(
 '#method' => 'vote.setVote',
 '#callback' => 'voting_service_set_vote',
 '#args' => array(
 array(
 '#name' => 'content_type',

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[334]

 '#type' => 'string',
 '#description' => t('The type of content which you are
 voting for.')),
 array(
 '#name' => 'content_id',
 '#type' => 'int',
 '#description' => t('The ID of the content which you are
 voting for.')),
 array(
 '#name' => 'vote_value',
 '#type' => 'int',
 '#description' => t('The value of the vote.')),
 array(
 '#name' => 'tag',
 '#type' => 'string',
 '#description' => t('The category of the vote within the
 content type.'),
 '#optional' => TRUE)
),
 '#return' => 'array',
 '#help' => t('Submit a new vote.')
),

 // vote.delete
 array(
 '#method' => 'vote.deleteVote',
 '#callback' => 'voting_service_delete_vote',
 '#args' => array(
 array(
 '#name' => 'content_type',
 '#type' => 'string',
 '#description' => t('The type of content which you are
 deleting.')),
 array(
 '#name' => 'content_id',
 '#type' => 'int',
 '#description' => t('The ID of the content which you are
 deleting.')),
 array(
 '#name' => 'tag',
 '#type' => 'string',
 '#description' => t('The category of the vote within the
 content type.'),
 '#optional' => TRUE)
),

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[335]

 '#return' => 'array',
 '#help' => t('Delete a vote.')
),

);
}

Our last and final task is to specify which web service routines should use the API
key and which ones should not. By default, each and every method defined, uses
the API key. However, for the get vote functions, it is not necessary to require an
API key since data is retrieved and not modified when the user gets a vote. Because
of this, we can tell the Services module to not require an API key by adding a #key
parameter for each service and then setting that value to FALSE.

'#method' => 'vote.getVote',
'#callback' => 'voting_service_get_vote',
'#key' => FALSE,

'#method' => 'vote.getUserVote',
'#callback' => 'voting_service_get_user_vote',
'#key' => FALSE,

At this point, we should have a fully functional custom Voting Service. We can
test it out by simply going to the Services Administrator, where we should see
the following web services defined:

We are now ready to move onto the fun part, Building a five-star voter in Flash.

Building a five-star voter in Flash
Before we begin this section, we need to copy the chapter11 directory and paste
that directory and all its contents as the chapter12 directory, and then rename the
chapter11.fla to chapter12.fla. After we have all the files that we need within
our new directory, we can now open up our chapter12.fla project file, where we
will add a node voter to our editor.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[336]

Since our five-star voter is going to be its own separate component within our Flash
application, we will start out by creating the movie clip that will serve as the voter,
and then build everything from within that movie clip. This will allow us to only see
the contents within that movie clip so that we can concentrate fully on the voter and
not the node editor in which it will eventually reside.

We will start this out by creating a new layer called voter within our node editor
timeline, above the editor layer.

With the voter layer selected, we can now insert a new movie clip by clicking on the
menu item Insert | New Symbol.

Within the new symbol window, we will give our voter a movie clip name of
mcVoter, and since we will eventually create an ActionScript class called Voter
to tie with this movie clip, we can save ourselves a trip by specifying this during
the movie clip creation.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[337]

Once we click on OK, we should see the following error. This is simply complaining
that we have not yet created the Voter class, and basically says that it will create a
default one until we specifically define our new class. Since we will eventually build
a Voter class, we can just ignore this error by clicking on OK.

After we click on OK, it should create a new symbol, and then present us with a
blank stage that we can use to build our five-star voter.

Voter design
Web voters come in all shapes and sizes, and the beauty about using Flash to
build ours is that we can literally draw what we want it to look like, and it will
automatically function as a voting mechanism. We could easily turn our five-star
voter into a five trash can voter by simply drawing trash cans instead of stars. But
for the simplicity of this chapter, we will stick with stars since they are familiar.

Making some stars
Our first task to build our voter will be to create the stars that we will use for voting.
We can do this by first selecting the small black arrow on the Rectangle () tool
selection. This should bring up a submenu where we can then select the Polystar
tool ().

With this tool selected, we can now create a star by opening up the Properties window,
and then clicking on the Options button inside the TOOL SETTINGS section.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[338]

This should bring up a new window, where we can tell our polygon to draw a star
shape with 5 different sides.

Our next task will be to set up the stroke and fill for our stars, which is also found
within the Properties panel. Since we want to see the outline of our stars clearly
when they have not been filled, we will pick a fairly dark color (#333333) and then
make the stroke width 2 pixels wide. The fill color, at this moment, can be anything
we like since we will later use this fill shape as a mask. Our settings for the fill and
stroke should look like the following:

We are now ready to draw our star. With the polygon tool still selected, we will
create our star so that it is approximately 25 pixels wide by 25 pixels high. When
we are done, it should look similar to the following:

Our next task is to duplicate this shape five times so that we can have a five-star
voter. We can do this by selecting the whole star shape, holding down the Ctrl key
(Option for Mac), and then dragging the mouse out to duplicate that shape. We will
do this four times, until we have the following:

We can make sure that they are evenly spaced by selecting all of the star shapes,
and then opening up the ALIGN window (menu item Window | Align). With
the ALIGN window open, we will first need to make sure the To Stage button is
unchecked, and then click on the button that says Distribute Horizontal Center.
What you should end up with is five evenly spaced stars for voting.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[339]

Our next task will be to separate the strokes from the fill regions into two separate
layers. We can do this by first creating a new layer called mask within the timeline,
and then placing that layer above the default layer and renaming it as outline.

Once we have our layers set up, we can individually click on each of the fill regions
for each star (make sure you do not click on the outlines), and then right-click on the
mouse and select Cut. We will click on the mask layer in the TIMELINE, then click
on the stage, and then right-click and select Paste in place. When we are done, we
should see the following:

Now that we have our mask layer set up, we will construct our different fill regions
for each color that our votes can be.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[340]

Adding different vote types
The fill colors for our stars should be dependent on what type of vote we are
displaying. For example, if the user has already voted on the piece of content, we will
probably want to show the color as blue (this is completely subjective, of course).
To show the average vote, we will use yellow. For the votes that light up as the user
scrolls their mouse over them, we will use green. Because of this, we will need three
different layers below the mask layer that will indicate which type of vote we are
performing. We will call these different vote types (and layers) uservote, vote, and
voting. We will then lock and hide the mask layer so that we can work on each one
of them individually.

Now, with the uservote layer selected, we will simply create a filled rectangle
(with no stroke) that will be used to show the user's vote if they have already voted
on the piece of content. We need this layer to be a Blue (#0000CC) rectangle that is
approximately the height of the stars and the width of all of them combined, like in
the following screenshot:

Our next task is to make sure that the width of this rectangle is completely filled
when the vote is 100 (the max). This will require a nifty little trick with the movie clip
hierarchy, where we will create a child movie clip container for this rectangle that is
only 100 pixels wide, and then adjust the parent movie clip to be the size of the star
region. This is a clever trick that will do the pixels to vote conversion for us without
having to touch any code.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[341]

We can start this by first selecting the blue fill region, converting that into a new
symbol called mcUserVoteFill, and then giving it an instance name of fill. We will
then give it a width of exactly 100 pixels wide as shown in the following screenshot:

Our next task is to create a new movie clip by first clicking on the mcUserVoteFill
movie clip and then clicking on the Modify | Convert to symbol menu item. We
will call this new movie clip mcUserVote (basically, a parent of the mcUserVoteFill
movie clip). We will give this movie clip an instance name of uservote, and then
stretch it to be the correct width to fill up all of the stars.

Now, to change the vote value of this user's vote within ActionScript, all we have
to do is change the width of the fill movie clip to be of the same value as the vote,
and it will automatically set the width of the parent uservote movie clip to show the
amount of stars that it equates to! This is a very cool trick that will save us a lot of
code and time.

We will do the exact same thing that we did for the user vote, but now, for the vote
and voting layers. Instead of rehashing these steps, I can simply give you the names
and instance names of each of the movie clips for each layer so that we can easily
replicate this process but for different movie clip names. Indentation within the
MovieClip column represents parent-child relationship.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[342]

Layer Movie Clip Instance
uservote mcUserVote uservote
 mcUserVoteFill fill
vote mcVote vote
 mcVoteFill fill
voting mcVoting voting
 mcVotingFill fill

When we are done, we should have the following:

Finally, we can add each of these layers to the mask layer.

Adding the vote layers to the mask layer
Now that we have all our vote types set up, we can set up the mask layer so that it
only shows the colors within the star windows that the mask will define. We can
start this by first making the mask layer visible, then right-clicking and selecting
the Mask selection from the menu.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[343]

This will add the uservote layer to the mask region defined by the mask layer.
What we then need to do is move the vote and voting layers within the mask layer
as follows. It is very important that the voting layer is on top of all the other voting
layers within the mask. Once we lock each of the vote type layers, we should be
able to see all of the vote states by clicking on the visible tab for each layer.

Our next task is to add vote hit regions for when the user wishes to click on a star to
cast their vote.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[344]

Adding vote hit regions
A hit region is simply an invisible button that will define a region that the user can
click their mouse on, and it will simulate a button click. This is used primarily as a
method for us to cast a vote when the user slides their mouse over the star regions
and then presses the star that they wish to vote for. We will start this section out by
creating a new layer within our voter called votes, and it is important that we make
this layer the top most layer in our voter.

Once we have done that, we need to create a 25x25 rectangle with no stroke using
the tool. It doesn't matter what fill color is used, since we will eventually make
the rectangle invisible.

We will now make this rectangle invisible by clicking on the fill region using the
selection tool, and then opening up the Color window to set the Alpha of this
color to 0.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[345]

Our next task is to create a new movie clip from this invisible rectangle by selecting
the rectangle and then selecting Modify | Convert to Symbol from the Flash menu.
We will call this hit region mcVoteButton. Our next task is to copy this movie clip
so that there is a vote button on top of each star.

Our last task in this section is to give each of these hit regions an instance name so
that we can determine which one is hit when the user clicks on them. Here, we will
use a popular technique called name conventions to reduce the amount of code
needed to build our voting system.

Using name conventions
Name conventions is just a fancy term for creating a consistent naming method that
can be taken advantage of within the software to simplify the logic behind making
decisions on those objects. For example, we could easily name each of our star hit
regions, vote1, vote2, vote3, vote4, and so on. But then we would need to place some
special code within our ActionScript that would switch on each one of these names
and then do something different for each one. A better design would be to name our
instances so that our ActionScript can use that name to perform its task. Because our
ActionScript code is going to translate the hit region object into a vote value for each
hit region, why don't we just put the value of the vote within the instance name and
then write a single piece of logic to parse out the name and set the value of the vote
based on what that name is? Since the first star would equate to the user giving the
piece of content a score of 20, why don't we call that object v20, and so on? You can
probably see where I am going here.

This technique can be very powerful when applied to other software designs, but
will be perfect for our need to determine which vote button was pressed and then
assign that vote to the content it represents. So, let's now give instance names to
our hit regions that represent the value of the vote they represent. These would be
v20, v40, v60, v80, and v100 respectively.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[346]

Once we have given all the votes instance names, our next task is to click on all of the
hit regions and then convert them into a single movie clip called mcVotes with an
instance name of votes.

After this, we are ready to move back to the root of our stage, where we will place
our new five-star voter within the node editor. Since we will need one voter to
show the current vote, and then one voter to show the user's vote, we will place two
mcVoter movie clips right on top of one another, with one called rating, and the
other called uservote. We will then design our Voter class so that it can have two
different modes of operation, one for showing the current node vote, and the other
to behave as a user voter.

If we were to run this project now, we would see that not much happens with the
voter. We can change all of that by building the logic behind our Voter movie clip.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[347]

Creating a Voter class in ActionScript
Our next task is to build the ActionScript class that will drive the functionality of
the voter that we just created within Flash. We can do this by simply creating a new
ActionScript file within our chapter12 directory called Voter.as and then starting
it off by declaring the class as follows:

package
{
 // Import all dependencies
 import flash.display.MovieClip;

 // Declare our Voter class.
 public class Voter extends MovieClip
 {
 // The Voter constructor.
 public function Voter()
 {
 super();
 }

 // Declare all of our child movie clips
 public var votes:MovieClip;
 public var vote:MovieClip;
 public var uservote:MovieClip;
 public var voting:MovieClip;
 }
}

We can now move on to initializing our voter.

Initializing the voter
The first thing that we will do to initialize our voter is add an operation mode for
the voter. As discussed earlier, our voter can either be a user voter, which will allow
each user to see or cast his or her own votes, or it will be a simple vote display that
displays the current vote for the piece of content it is connected to. We can do this by
setting the default of our player to be in the normal vote mode, and then providing
a way to explicitly tell our voter to go into "user mode". This will require a new
function called setUserMode, which will hide or show certain movie clips within
the voter, depending on which mode we are in.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[348]

If we are in user mode, then we will want to show the votes, uservote, and voting
movie clips, and hide all others. If we are not in user mode, then we will want to
show the vote movie clip, and hide all others. This can be realized as follows:

package
{
 // Import all dependencies
 import flash.display.MovieClip;

 // Declare our Voter class.
 public class Voter extends MovieClip
 {
 // The Voter constructor.
 public function Voter()
 {
 super();
 setUserMode(false);
 }

 // Sets the user mode for this voter.
 public function setUserMode(_user:Boolean)
 {
 // Store the state.
 userMode = _user;

 // Hide or show depending on the mode.
 votes.visible = userMode;
 vote.visible = !userMode;
 uservote.visible = userMode;
 voting.visible = userMode;
 }

 // Declare all of our child movie clips
 public var votes:MovieClip;
 public var vote:MovieClip;
 public var uservote:MovieClip;
 public var voting:MovieClip;

 // Keep track of what mode we are in.
 private var userMode:Boolean;
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[349]

We will now want to initialize the fill regions for each of the voter movie clips
(uservote, vote, and voting) so that they are zero width. This will basically initialize
them to not show any star value when the Voter is initialized.

// The Voter constructor.
public function Voter()
{
 super();

 // Initialize our fill widths.
 voting.fill.width = 0;
 uservote.fill.width = 0;
 vote.fill.width = 0;

 // Set the user mode to false.
 setUserMode(true);
}

Adding the event handlers
Now that we have our initial state, we need to set up our event handlers to get called
when the user interacts with our voter. When the voter is not in user mode, there
is not much interaction required since it will simply show the current vote value.
However, when the voter is in user mode, we will need to dynamically change the
voting movie clip so that it highlights which star the user is currently hovering over.
But before we get ahead of ourselves, let's just create the event handlers for each hit
region to trigger when the user hovers over or clicks any of those movie clips. We
will also want to add a handler when the user exits the voter entirely. For this, we
will just trigger the event on the voter rather than each individual hit region.

// Import all dependencies
import flash.display.MovieClip;
import flash.events.MouseEvent;

...

...

// Sets the user mode for this voter.
public function setUserMode(_user:Boolean)
{
 // Store the state.
 userMode = _user;

 // Hide or show depending on the mode.
 votes.visible = userMode;
 vote.visible = !userMode;
 uservote.visible = userMode;
 voting.visible = userMode;

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[350]

 if(userMode) {
 // Iterate through all the hit regions.
 for each(var v:MovieClip in votes) {

 // Setup each hit region for voting.
 v.buttonMode = true;
 v.mouseChildren = false;
 v.addEventListener(MouseEvent.CLICK, onVote);
 v.addEventListener(MouseEvent.MOUSE_OVER, onVoteOver);
 }

 // Called when the mouse exits the voter.
 this.addEventListener(MouseEvent.MOUSE_OUT, onOut);
 }
}

// Called when the user makes a vote.
private function onVote(event:MouseEvent)
{
 trace("onVote");
}

// Called when the user hovers over a vote.
private function onVoteOver(event:MouseEvent)
{
 trace("onOver");
}

// Called when the user moves his mouse out.
private function onOut(event:MouseEvent)
{
 trace("onOver");
}

Handling the voting hover events
Our next task is to move the fill of the voting movie clip so that it matches which star
the user is currently hovering over. This is where our naming conventions come in
handy. Since we labeled each of the hit regions, the vote value for each movie clip,
and then also designed our fill regions so that they can match the value of the vote
value, we can very easily assign the fill width to the value of the vote provided from
the name of the hit region. All of this can be done by a single line of code within the
onVoteOver routine.

// Called when the user hovers over a vote.
private function onVoteOver(event:MouseEvent)
{
 voting.fill.width = event.target.name.substr(1);
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[351]

We can then handle the case when the user moves his mouse off the voter by setting
the voting fill width to zero when this occurs. This can be done within the onOut
function as follows:

// Called when the user moves his mouse out.
private function onOut(event:MouseEvent)
{
 voting.fill.width = 0;
}

At this point, we can temporarily change the setUserMode(false); in our
constructor to setUserMode(true); and then run our application to see a
pleasant surprise. The fill width of the voting movie clip changes dynamically
depending on which hit region we are over. If we didn't use naming conventions
and good design patterns, the amount of code to do this functionality would
probably have been much more complicated. After we change the constructor
back to setUserMode(false); we are now ready to move on!

Getting a vote from Drupal
We are now ready to retrieve the vote information from our Drupal web site and
then populate those values in our custom voter. To do this, we will need to add a
new function that takes the DrupalService component as well as the node ID of the
node we are connected to. This function will be called getVote, and we will place it
right under the setUserMode function.

// Gets a vote for any node.
public function getVote(_drupal:DrupalService, _nodeId:Number)
{

}

We are now ready to use our custom service to retrieve our votes from Drupal.
We created two services that we can use within our Flash application to retrieve a
vote, one called vote.getVote and the other is called vote.getUserVote. Since
we already have a mode of operation (user mode), we can determine which function
to call depending on whether we are in user mode or not. It is also important to
note that we need to store the node ID and the drupal connection that is passed
to this function so that we can reference it again when we make any other Drupal
service calls.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[352]

As for the callback function, it is declared to take the vote result from our service
routine, and then display that vote value in the debug terminal for that instance.
This will look as follows:

// Gets a vote from Drupal.
public function getVote(_drupal:DrupalService, _nodeId:Number)
{
 // Store the node Id and drupal connection.
 nodeId = _nodeId;
 drupal = _drupal;

 // Get the vote from Drupal.
 var cmd:String = userMode ? "vote.getUserVote" : "vote.getVote";
 drupal.serviceCall(cmd, onGetVote, null, "node", nodeId);
}

// The return function from Drupal.
private function onGetVote(result:Object)
{
 // The value of the result.
 trace(result.value);
}
...
...

// Keep track of what mode we are in.
private var userMode:Boolean;

// Store the node Id.
private var nodeId:Number = 0;

// Store the drupal connection.
private var drupal:DrupalService;

Our next task is to change the fill of our uservote and vote movie clips so that
it matches the value of our vote. And since we designed our voter movie clips to
perform the vote to pixel conversion for us, this becomes very simple.

// The return function from Drupal.
private function onGetVote(result:Object)
{
 // Set the fill width of our voting movie clips to the value.
 if(userMode) {
 uservote.fill.width = result.value;
 }
 else {
 vote.fill.width = result.value;
 }
}

And we are now ready to move onto setting votes in Drupal.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[353]

Setting a vote in Drupal
In order for us to use the vote.setVote and vote.deleteVote functions, we will
need to make some changes to our DrupalService class since these functions
are protected with the API key. This can be done by simply adding the following
lines of code to the usesKey function within our DrupalService class, within the
DrupalService.as file:

// Determines if we should use an API Key.
private function usesKey(command:String):Boolean
{
 switch (command) {
 case "user.login":
 case "user.logout":
 case "node.save":
 case "vote.setVote":
 case "vote.deleteVote":
 return true;
 break;
 }

 return false;
}

With that out of the way, we are ready to dive into the Voter class, where we will
add the ability to set the votes that the user selects. Surprisingly, this is going to be
very trivial since most of the hard stuff is handled from the Voting API within our
Drupal web site. Because of this, we simply need to handle the case when the user
clicks on a hit region, which calls onVote, and then pass the same callback that sets
the vote value when the server returns the result. All of this functionality can be
provided within the onVote function, which gets triggered when the user clicks on
any hit region within our voter.

// Called when the user makes a vote.
private function onVote(event:MouseEvent)
{
 // Check to make sure we know what node we are.
 if(nodeId)
 {
 // Get the value of the vote that was clicked.
 var voteValue:String = event.target.name.substr(1);
 drupal.serviceCall("vote.setVote", onGetVote, null, "node",
 nodeId, voteValue);
 }
}

We are now ready to add this functionality to our main.as file.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[354]

Adding the voters to main.as
This section is going to be surprisingly simple. Because we encapsulated all of the
voting functionality within the Voter class, we simply need to set the user state for
the uservoter movie clip, and then get the votes when each node loads in our node
editor. This is the beauty of object-oriented design. It makes the development and
interfaces between different software components much easier. To start, we will
simply set the user mode of the uservote movie clip at the beginning of the
main.as file.

...

// The current user.
var user:Object = null;
var currentNode:Object = null;

// Set the uservote to user mode.
uservote.setUserMode(true);

...

...

Next, we will make it such that the voting system is only visible on the view tab. We
can do this within the selectTab routine by placing the following code:

// Selects a new tab.
function selectTab(newTab:MovieClip)
{
 // Make the previous tab go to normal.
 selectedTab.gotoAndStop("normal");

 // Set the new selected tab.
 selectedTab = newTab;

 // Go to the selected state.
 selectedTab.gotoAndStop("selected");

 // Hide or show the editor or node view.
 nodeMC.visible = (selectedTab.name == "view");
 editor.visible = (selectedTab.name != "view");
 uservote.visible = (selectedTab.name == "view");
 rating.visible = (selectedTab.name == "view");

 if(selectedTab.name == "edit" && currentNode) {
 editor.title.text = currentNode.title;
 editor.body.htmlText = currentNode.body;
 }
 else {
 editor.title.text = "";
 editor.body.htmlText = "";
 }
}

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 12

[355]

And finally, we can hook up all the functionality by simply calling the getVote
routine on both the uservote and rating movie clips once the node is done loading.
This would place these calls within the onNodeLoad function as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)
{
 // Store the current node.
 currentNode = node;

 // Get the rating and user votes for this node.
 rating.getVote(drupal, node.nid);
 uservote.getVote(drupal, node.nid);

 // Set the string of our body and title fields.
 nodeMC.title.text = node.title;
 nodeMC.body.htmlText = node.body;

 // Update the node body scroll bar.
 nodeMC.bodyScroll.update();

And that's it! We should now be able to run our application and see a fully functional
voting system.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Build a Drupal Five-star Voter in Flash

[356]

Summary
Now that we have built a complete Flash-Drupal application from the ground up,
I believe that you have all the knowledge necessary to tackle any Flash and Drupal
project thrown your way. The five-star voter was a perfect exercise to take you
through the complete development process of building a custom Flash application
for Drupal. We started by building a custom service to tap into the power of the
Services module to provide server-side functionality to our voting application.
After that, we started from scratch in creating the five-star voter in Flash, and then
employed object-oriented techniques to hook up that movie clip with business logic
to allow remote Drupal voting.

With all the lessons learned in this book, I really do hope that you now have all the
tools necessary to create any custom Flash application that will tap into the power
and flexibility of Drupal. We have explored many popular uses for this technology
from media handling to hybrid Flash-Drupal architectures, and hopefully, this
has completely opened the door to many new, unique, and innovative Flash
applications. The possibilities are really limitless. I hope that, after reading through
these lessons, you now fully understand how powerful the combination of these two
amazing technologies can really be, and hope that one day, one of you will use this
knowledge to create the next big thing.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Index
A
Action Message Format PHP. See AMFPHP
ActionScript 150
ActionScript 3.0

features 154
ActionScript class 238
AMFPHP

about 39
installing 39

API key, Drupal Services security
about 282, 283
allowed domain 284
arguements 286
configuring 283
crossdomain.xml 284
using 285

audio, integrating in Drupal
about 111
audio content type, setting up 114
audio node, creating 115, 116
getID3 library, installing 113
player, features 116

audio module
about 111
downloading 111
player 116

audio node
creating 115, 116
examining, services administrator used

117, 118
AudioPlayer class

about 120
audio, playing 122
building 120
modifying 131

AudioPlayer class, modifying
about 131
load function, adding 132, 133
mcAudioPlayer movieClip, referencing 133
pauseButton, declaring as buttons 134, 135
pause button, hooking up 133
pause function, adding 132, 133
playButton, declaring as buttons 134, 135
play button, hooking up 133
play function, adding 132, 133
SoundChannel, adding 131

B
buttonMode parameter 134

C
callback function 53
CCK

about 61
custom fields, adding 65
downloading 62
installing 63
new content type, creating 63-65
recipe content type, creating 64, 65

CCK fields, showing in Flash
ActionScript used 74
CCK information, showing in

ActionScript 76
dynamic TextFields, adding 72, 73
recipe widget, building 71
scrollbars, adding to TextFields 79-81
services administrator, navigating 74, 75

CCK information, showing in ActionScript
ingredients and instructions CCK field,

showing 77, 78

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[358]

node description, showing 77
client-side Flash communication

about 191, 192
architecture 192
Flash, synchronizing with JavaScript 205
Flash to JavaScript communication 193
JavaScript Gateway, building 202
remote control, implementing in

Drupal 213
Client and Server 33
communication gateway

ControlBar, adding to Flash project 186
ControlBar, removing from

MediaPlayer 188
creating 179
creating, static functions used 180

componentization 173
contemplate

about 82
downloading 82

content, adding to Drupal
about 311
node, saving from Flash 313-316
tab functionality, adding 311-313

content, Drupal
editing 316

Content Construction Kit. See CCK
content template

module. See contemplate
ControlBar

adding, to Flash project 186, 188
adding, to stage 177
communicating, with MediaPlayer 179
removing, from MediaPlayer 188, 189

ControlBar class
creating 174

controls, custom audio player
adding 123
AudioPlayer, adding 130, 131
AudioPlayer class, modifying 131
base button MovieClip, creating 124
main.as file, modifying 136
MovieClips, linking to

ActionScript 128, 129
pause button, adding 123
pause button, creating from play

button 127, 128

play button, adding 123
PlayButton movie clip, adding 125
play icon, drawing 126

custom audio class
about 119
setting, for playing audio 122

custom audio player
about 117
building 117
controls, adding 123

custom audio player, building
about 117
audio, playing Audioplayer class used 122
audio, playing in Flash 121
audio node, examining services administra-

tor used 117, 118
audio path file, referencing 118
custom AudioPlayer class, writing 119

custom field, CCK
default body field, changing 69
field name 66
form element 66
label 66
new field, adding 66
type of data 66

custom video player, in Flash
AudioPlayer class, modifying 152, 153
base class functionality, extending 153-155
base class functionality, overriding 153-155
building 148
MediaPlayer class, creating 148, 149
NetConnection, working with 157
NetStream, working with 157
pause button instances, adding 149, 150
play button instances, adding 149, 150
uncommon code, removing from Media-

Player 150, 152
Video, working with 157
video object, creating 159, 160
VideoPlayer class, creating 156
video variables, initializing 158, 159

custom voting service, for Drupal
arguments, adding, voting API used 329
building 322, 325
custom service, building 325
external web services, registering 326, 327
module info file 322, 323

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[359]

voting API module 329
voting service module 324
web service callback functions,

defining 327-329

D
Drupal

audio, integrating 111-113
CCK 61
CCK, using 62
communicating, with Flash 33
content, adding 16, 17
content, adding from Flash 311
content types 63
custom audio player, building 117
existing content, editing 316, 318
Flash application, adding 30, 31
Flash content, adding 27
image handling 87
installing 9
logging in 276, 277
logging out 278, 279
page, content types 63
setting up, for web services 38
story, content types 63

Drupal, installing
about 12, 13, 14, 15
AMP package, installing 9
database, creating 10
database user, creating 11
PHP memory, increasing 12

Drupal, logging in
user responder, adding 276, 277

Drupal, setting up for web services
about 38
AMFPHP, installing 39, 40
Servers 38
Services 38
services module, configuring 38
Services module, installing 38
Sevices, configuring 41
Sevices key, creating 41, 42
Sevices permissions 43
Sevices settings 43

Drupal-Flash communication. See Flash-
Drupal communication

Drupal connection, Hello World application
about 46
NetConnection call routine, used 48, 49
NetConnection class, used 46
remote gateway, connecting to 47

Drupal module
installing 28, 29

drupal NetConnection object 46
Drupal node template

contemplate, using 82
creating, for Flash 82

Drupal service
building, in Flash 286

DrupalService class
about 287, 288
API key, adding 289, 290
arguements, adding 291, 292
base URL, adding 292, 293
hash arguement, adding 295, 296
nonce arguement, adding 294, 295
timestamp arguement, adding 293, 294

Drupal Services security
about 281, 282
API key 282
Drupal service, building in Flash 286
DrupalService class 287
DrupalService functionality, adding to

main.as 296-299
Drupal user management

about 258
anonymous user roles 258
authenticated user roles 258
new user roles, adding 259
new users, creating 260
permissions, adding to user role 259
roles, assigning to users 260
user roles 258

Drupal Views module
about 221
configuring 222
downloading 222
view, setting up 222

F
five-star voter

building, in Flash 335, 337

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[360]

five-star voter, building in Flash
about 335
voter design 337

Flash
about 17
CCK fields, showing 70
communicating, with Drupal 33
new project, creating 18
node editor, building 300
recipe widget, building 71, 72
user handling 271-273

Flash, communicating to JavaScript
external function, calling ExternalInterface

used 193
ExternalInterface, initializing 194-197
Flash function, calling from JavaScript 194
outgoing messages, adding to

MediaGateway 198, 200
remote, adding 201, 202
the MediaGateway initialization, adding to

main.as 197, 198
Flash, synchronizing with JavaScript

array, creating 206
Flash application, registering with

JavaScript 209, 211
gateway function, creating 208
JavaScript, initializing Flash application

211-213
JavaScript Gateway, calling 207

Flash-Drupal communication
about 33
Drupal, setting up for web services 38
Hello World application 34
Hello World application, building in

Flash 44
web services, understanding 34

Flash-Drupal integration
need for 8

Flash application
adding, to Drupal 30, 31
background, creating 21
compiling 25
creating 21
layout, changing 71, 72
publish settings 26, 27
text, adding 24
text properties 25

Flash application background
creating 21
gradient, adding 23, 24
rectangle properties 22, 23

Flash content
adding, to Drupal 27

Flash driven Drupal web site, issues
all-or-nothing development 172
large and cumbersome application 173
not search engine friendly 173
static layout 172

FlashNode 27
flashnode_load function 83
Flash playlist, building

Drupal used 230-232
listview, adding to Flash 247-249
listview, adding to media player 250
listview class, building 243
node teaser, creating 233
teaser class, creating 238

Flash project
color palette 21
library 21
properties panel 20
stage 19
timeline 20
toolbar 19
workspace, setting up 18, 19

Flash user login block
building 264-266
logged-in users, welcoming 266, 267
login button, creating 267
mcLogin movie clip, creating 269-271
status text, adding 268, 269

FlashVars 57

G
getID3 library

about 113
installing 113

getID3 module 111

H
Hello World application

about 34, 36
adding, in Drupal 58

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[361]

building, in Flash 44
Drupal, connecting to 46
Drupal connection, system.connect used 50
Flash application, creating 45
FlashVars, using in Flash application 57
main.as ActionScript file, creating 45
node, creating in Drupal 51
node, loading in Flash 52
node ID, passing FlashVars used 57
programming, without race conditions 53,

54
session handling 50
text, hooking up 55, 56

hook_service function 326
hybrid approach 172

I
ImageCache, using with Flash

ActionScript, changing 106, 107
ImageCache image, adding in Flash 106
ImageCahce preset, creating 104-106

ImageCache module 104
ImageField, for CCK

about 88
image, adding to recipe node 90
image attachment, verifying 91
image field, adding to recipe content type

89, 90
ImageField module, installing 88, 89

image handling, Drupal
about 87
image, adding to recipe Flash application

92
image, resizing 100, 101
ImageCache, using with Flash 104
ImageField, for CCK 88
new Recipe Flash application, adding to

Drupal 108
width/height ratio, preserving 102, 103

J
JavaScript Gateway, building

Flash application, locating 202
gateway functions, creating 203, 205

jQuery Media module
configuring 143, 144

installing 143
media player, installing 145, 146

L
listview, adding to media player

about 250
list view, populating 253-256
media region, creating 251, 252

listview class, Flash playlist
adding to Flash 247
building 243-247

Loader class 97
loadImage function 97
loadNode function 53

M
main.as file

about 117
modifying 136, 137

media player control bar
ControlBar, adding to stage 177-179
ControlBar-MediaPlayer

communication 179
ControlBar class, creating 174, 176
ControlBar dependency, removing 176
creating 174

module info file 322, 323
mouseChildren parameter 134

N
NetConnection class 46
node.get method 52
node editor

building, in Flash 300
node editor, building in Flash

add tab, creating 300, 302
background, addign to node 306, 307
edit tab, creating 300, 302
hover state, adding 302, 304
mcView, duplicating 304-306
node edit form, creating 309, 310
node view, changing 307, 308
normal state, adding 302, 304
selected state, adding 302, 304
view tab, creating 300, 302

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[362]

nodeId variable 97
node teaser, Flash playlist

creating 233
different teaser states, adding 235, 236
teaser background, creating 234, 235
timeline, using 235, 236
title, adding 236, 237

O
objectEncoding variable

about 46
onError function 53
onNodeLoad function 74, 118

R
recipe content type

creating 63
custom fields, adding 65
ingredients field, adding 66, 68

recipe Flash application
image, adding 92
MovieClip container, adding to

image 93, 94
overview 61
recipe image, loading ActionScript used 95

recipe image, loading
ActionScript used 95
image, loading in ActionScript 97-99
image path, working with 95, 96
loadImage function, creating 96, 97

recipe web site
Drupal structure, creating 63

remote control, implementing in Drupal
block visibility, adding 217, 218
content template, changing 214
FlashNode template, creating 218
JavaScript Gateway, adding to

Drupal 213, 214
media player, adding to Drupal 214
Remote Control, adding 215, 216

Remote Procedure Call. See RPC
remoting 34
RPC 34

S
Servers 38
Services 38
session ID 50
Sevices key

about 41
creating 41

Sevices permissions 43, 44
Sevices settings 43
sound class 120
static functions

about 180
connections, making 184-186
declaring 180
drawbacks 180
this pointer, using 182-184

system.connect function 53

T
teaser class

creating 238-243
theme function 84
token module 111

U
Universal Description and Discovery

Information. See UDDI
URLRequest class 121
user handling, Flash

about 271-273
login button, hooking up 274, 275
password, checking 275
username, checking 275

User Service module
about 261
configuring 262, 263
installing 261
permissions, configuring 261, 262

V
variable argument function 49
video, implementing in Drupal

about 139

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[363]

custom media player, adding to
Drupal 168, 169

custom video player, building in Flash 148
Drupal video, loading 164-167
Drupal video, playing 164-167
jQuery Media module, configuring 143
jQuery Media module, installing 143
mcVideoPlayer movie clip creating 162, 163
pause functionality, adding 162
play functionality, adding 162
video content type, creating 141
video functionality, adding 160
video load, adding 160, 161
video node, creating 146
video player, linking to Drupal 164

video code
creating 146, 147

Video content type
creating 141
video file field, adding 141, 142

view, Drupal Views module
fields, adding 224, 225
filter, adding 226, 227
new page view, creating 223, 224
setting up 222

view module 111
Views service

about 227
installing 228
user permissions, configuring 228
verifying 229, 230

voter class, creating in ActionScript
about 347
event handler, adding 349, 350
vote, retrieving from Drupal 351, 352
vote, setting in Drupal 353
voter, initializing 347, 349
voters, adding to main.as 354, 355
voting hover events, handling 350

voter design, five-star voter
about 337
different vote types, adding 340, 341
name conventions, using 345, 346
stars. creating 337-339
vote hit regions, adding 344, 345
vote layers, adding to mask layer 342, 343

voting API module 329-335
voting service module

about 324
installing 325

W
weblog. See blog
web services

about 34
synchronous, versus asynchronous

programming 36, 37
width/height ratio, image handling

about 102
preserving 102

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Thank you for buying
Flash with Drupal

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Flash with Drupal, Packt will have given some of the
money received to the Drupal project.
In the long term, we see ourselves and you—customers and readers of our books—as part
of the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Multimedia
ISBN: 978-1-847194-60-2 Paperback: 241 pages

Create media-rich Drupal sites by learning to embed
and manipulate images, video, and audio

1.	 Learn to integrate multimedia in your
Drupal websites

2.	 Find your way round contributed modules
for adding media to Drupal sites

3.	 Tackle media problems from all points of
views: content editors, administrators,
and developers

Building Powerful and Robust
Websites with Drupal 6
ISBN: 978-1-847192-97-4 Paperback: 362 pages

Build your own professional blog, forum, portal or
community website with Drupal 6

1.	 Set up, configure, and deploy Drupal 6
2.	 Harness Drupal's world-class Content

Management System
3.	 Design and implement your website’s look

and feel

4.	 Easily add exciting and powerful features
5.	 Promote, manage, and maintain your

live website

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

	Cover
	Table of Contents
	Preface
	Chapter 1: Flash with Drupal
	Why Flash with Drupal?
	Who is this book for?
	Getting started with Drupal
	Installing Drupal
	Installing Apache-MySQL-PHP (AMP)
	Creating the Drupal database
	Creating a database user
	Increasing PHP memory
	Installing Drupal

	Adding content to Drupal

	Getting started with Flash
	Creating a new Flash project
	Setting up the workspace
	A: The Stage
	B: The Toolbar
	C: The Timeline
	D: The Properties panel
	E: The Color Palette
	F: The Library

	Creating a Flash application
	Creating a background
	Rectangle properties
	Adding a gradient

	Adding text to a Flash application
	Text properties

	Compiling our Flash application (making a SWF)
	Publish Settings

	Adding Flash content to Drupal
	Installing a contributed Drupal module
	Adding Flash!

	Summary

	Chapter 2: Building a "Hello World" Application
	How Flash and Drupal communicate
	Understanding web services
	Synchronous versus asynchronous programming

	Setting up Drupal for web services
	Installing and configuring the Services module
	Servers and Services
	Installing AMFPHP
	Services configuration
	Creating a Services key
	Services settings
	Service Permissions

	Building a web service-driven "Hello World" application in Flash
	Step 1: Creating our Flash application
	Step 2: Creating a main.as ActionScript file
	Step 3: Connecting to Drupal
	Step 3: Session handling
	Connecting to Drupal using system.connect
	Step 4: Drupal says "Hello World"
	Loading a node in Flash
	Step 5: Hooking up the text
	Step 6: Passing the node ID using FlashVars
	Step 7: Adding it to Drupal

	Summary

	Chapter 3: Flash and CCK
	Overview of a typical recipe web site
	Using Drupal's Content Construction Kit
	Creating a new content type
	Adding custom fields to your Recipe content type
	Adding a new field
	Changing the default Body field

	Showing CCK fields in Flash
	Building a Recipe widget in Flash
	Adding dynamic TextFields for Drupal content
	Using ActionScript to show Drupal CCK fields
	Using the Services Administrator
	Showing CCK information in ActionScript
	Adding ScrollBars to our TextFields

	Creating a Drupal node template for Flash
	Using the Content Template module (Contemplate)

	Summary

	Chapter 4: Drupal Images in Flash
	Image handling in Drupal
	ImageField for CCK
	Installing the ImageField module
	Adding an Image field to our Recipe content type
	Adding an image to our Recipe node
	Verifying that the image is attached

	Adding an image to our Recipe Flash application
	Adding a MovieClip container for our image
	Using ActionScript to load the Recipe image

	Resizing an image
	Preserving the width and height ratio (scaling)
	Using Drupal's ImageCache with Flash
	Creating an ImageCache preset
	Adding an ImageCache image in Flash

	Adding the new Recipe Flash application to Drupal

	Summary

	Chapter 5: Drupal audio in Flash
	Working with audio in Drupal
	Installing the getID3 library
	Setting up the Audio content type
	Creating an Audio node
	How our player will be different (and better)

	Building a custom audio player for Drupal
	Examining the Audio node using Services Administrator
	Referencing the audio file path
	Writing a custom AudioPlayer class
	Playing audio in Flash
	Using our AudioPlayer class to play audio

	Adding controls to your custom audio player
	Adding a play and pause button
	Creating a base button MovieClip
	Adding the PlayButton movie clip

	Creating a pause button from the play button
	Linking MovieClips to ActionScript
	Adding the AudioPlayer to the stage
	Modifying the AudioPlayer class to use play and pause
	Step 1: Adding the SoundChannel
	Step 2: Adding load, play, and pause functions
	Step 3: Reference the mcAudioPlayer MovieClip
	Step 4: Hooking up our buttons!

	Modifying our main.as file to use our new AudioPlayer

	Summary

	Chapter 6: Flash Video in Drupal
	Working with video in Drupal
	Creating a video content type
	Adding a video file field

	Installing and configuring the jQuery Media module
	Configuring the jQuery Media module
	Installing a media player

	Creating a video node
	Building a custom video player in Flash
	Creating a MediaPlayer base class
	Adding play and pause button instances to MediaPlayer
	Removing uncommon code from MediaPlayer
	Modifying the AudioPlayer class to derive from MediaPlayer
	Extending and overriding base (super) class functionality
	Creating a VideoPlayer class
	Working with Video, NetStream, and NetConnection
	Initializing our video variables
	Creating the video object

	Adding video functionality
	Adding video load
	Adding play and pause functionality

	Creating a new VideoPlayer MovieClip
	Linking the VideoPlayer to Drupal
	Loading and playing our Drupal video

	Adding our custom media player to Drupal

	Summary

	Chapter 7: The Hybrid Approach Part 1: Componentization
	What is the hybrid approach?
	Creating a media player control bar
	Creating a ControlBar class
	Removing the ControlBar dependency from MediaPlayer
	Adding the ControlBar to the stage
	Communication between ControlBar and MediaPlayer

	Creating a communication gateway
	Using static functions
	Using the this pointer
	Making the connections

	Adding the ControlBar to our Flash project
	Removing the control bar from the MediaPlayer

	Summary

	Chapter 8: The Hybrid Approach Part 2: Remote Control
	Client-side Flash communication
	Flash to JavaScript communication
	Calling a JavaScript function from Flash
	Calling a Flash function from JavaScript
	Initializing the ExternalInterface
	Adding the MediaGateway initialization to main.as
	Adding outgoing messages to the MediaGateway
	Adding remote or local functionality

	Building a JavaScript Gateway
	Locating a Flash application using JavaScript
	Creating the gateway functions between two Flash applications

	Flash and JavaScript synchronization
	Step 1: Create an array of communicating Flash applications
	Step 2: Flash calls to see if the JavaScript Gateway is ready
	Step 3: Flash application registers with JavaScript
	Step 4: JavaScript initializes our Flash when all have registered

	Using our remote control within Drupal
	Adding the JavaScript Gateway to Drupal
	Adding our Media Player to Drupal
	Changing our Content Template
	Adding the Remote Control
	Creating a FlashNode template

	Summary

	Chapter 9: Flash with Drupal Views
	Using the Drupal Views module
	Views: Installation and Configuration
	Setting up a view
	Creating a new page view
	Adding fields to a view
	Adding a Filter to our view

	Using the Views Service
	Step 1: Install the Views Service
	Step 2: Configure user permissions
	Step 3: Verify it works

	Building a Flash Playlist using Drupal
	Creating a node teaser
	Creating a teaser background
	Using the timeline to add different teaser states
	Adding a title to the teaser

	Creating a Teaser class
	Building a ListView class
	Adding our ListView to Flash

	Adding the ListView to our Media Player
	Creating a Media Region
	Populating the list view

	Summary

	Chapter 10: User Management
	Drupal user management
	Adding new user roles
	Adding permissions to a user role
	Creating new users and assigning them roles

	The User Service module
	Installing the User Service
	Configuring permissions
	Configuring the User Service module

	Building a Flash user login block
	Welcoming our logged-in users
	Creating a login button
	Adding some status text
	Creating a mcLogin movie clip

	User handling within Flash
	Hooking up our login button
	Checking for a username and password

	Logging into Drupal
	Adding a user responder
	Logging in
	Logging out

	Summary

	Chapter 11: Adding Content to Drupal
	Drupal Services security
	The API key
	API key configuration
	The allowed domain and crossdomain.xml
	How to use the API key

	Building a Drupal service in Flash
	The DrupalService class
	Adding the API key to our DrupalService
	Adding arguments to the service call

	Adding DrupalService functionality to main.as

	Building a node editor in Flash
	Creating view, edit, and add tabs
	Adding normal, hover, and selected states
	Duplicating the mcView for the edit and add tabs

	Adding a background to our node
	Changing the node view
	Creating a node edit form

	Adding content to Drupal from Flash
	Adding tab functionality
	Saving a node from Flash

	Editing existing content in Drupal
	Summary

	Chapter 12: Build a Drupal Five-star Voter in Flash
	Building a custom Voting Service for Drupal
	The module info file
	Voting Service module
	Installing the Voting Service module

	Building a Custom Service
	Registering external web services using hook_service
	Defining web service callback functions
	Adding arguments and voting logic using Voting API

	Building a five-star voter in Flash
	Voter design
	Making some stars
	Adding different vote types
	Adding the vote layers to the mask layer
	Adding vote hit regions

	Creating a Voter class in ActionScript
	Initializing the voter
	Adding the event handlers
	Handling the voting hover events
	Getting a vote from Drupal
	Setting a vote in Drupal
	Adding the voters to main.as

	Summary

	Index

