Flash with Drupal

Build dynamic, content-rich Flash CS3 and CS4 applications for
Drupal 6

PACKT

Flash with Drupal

Build dynamic, content-rich Flash CS3 and CS4
applications for Drupal 6

Travis Tidwell

PUBLISHING

BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash with Drupal

Copyright © 2009 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers or distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2009

Production Reference: 1200509

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847197-58-0

www . packtpub.com

Cover Image by Gabriela y la pintura (1inazal00@hotmail . com)

[PUBLISHING]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172

Author
Travis Tidwell

Reviewer
Steve Zeidner

Acquisition Editor
David Barnes

Development Editor
Swapna V. Verlekar

Technical Editor
Aditi Srivastava

Copy Editor
Ajay Shanker

Indexer
Hemangini Bari

Credits

Editorial Team Leader
Abhijeet Deobhakta

Project Team Leader
Lata Basantani

Project Coordinator
Joel Goveya

Proofreader
Laura Booth

Production Coordinator

Aparna Bhagat

Cover Work
Aparna Bhagat

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

About the author

Travis Tidwell is the founder and CTO for TMT Digital (http: //www.
tmtdigital.com), a company that specializes in the development of Flash
applications for the Drupal Content Management System. He is also the sole
developer for the Dash Media Player (http://www.tmtdigital.com/project/
dash_player, http://www.drupal.org/project/dashplayer), which is a media
player built specifically for Drupal. As well as contributing to this media player,
Travis is also the author and co-maintainer for the FlashVideo module (http://www.
drupal.org/project/flashvideo), which is a complete video solution for Drupal.

Travis graduated with a degree of Bachelors of Science in Electrical and Computer
Engineering from Oklahoma State University and has worked as an Embedded
Systems Engineer for companies specializing in automotive and agricultural GPS
products. Travis then fell in love with web development and more specifically
with Drupal and Flash, where he has developed numerous sites including
http://www.delicioso.comfor Food Networks, Ingrid Hoffmann.

In his spare time (which is rare these days), Travis enjoys the performing arts where
he sings, plays the guitar, and even tap dances (go to http://www.youtube.com and
search for "Soul Man Tap" to see him in action).

Travis currently lives in Des Moines, IA with his beautiful wife Erin, and is the
proud parent of a feisty one-year-old named Brycen.

I would like to thank my wife, Erin, who has stood by me and
supported me through the long evenings and weekends where I
pursued my passions, including writing this book. Without her
support, I would not be where I am today.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

About the reviewer

Steve Zeidner is a web developer who has been using Perl, PHP, ActionScript,
Flash, and other technologies to design and code web sites and web applications
since 1999. In the past, he has been involved in educational projects such as Moodle
and WeBWorK while pursuing his degree in Computer Science and Engineering at
The Ohio State University.

After completing his undergraduate Computer Science studies, Steve went on

to develop his SQL database, web programming, and IT administration skills at

the Ohio Farm Bureau Federation. In 2007, he became the lead web developer at
Guardian Enterprise Studios, where he broadened his knowledge and use of web
design elements with content management systems as well as PHP, Perl, and MySQL
database integration. He currently resides in Columbus, Ohio and has an interest in
social media and how the Web is changing the way people communicate.

[PUBLISHING]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Table of Contents

Preface 1
Chapter 1: Flash with Drupal 7
Why Flash with Drupal? 8
Who is this book for? 8
Getting started with Drupal 9
Installing Drupal 9
Installing Apache-MySQL-PHP (AMP) 9
Creating the Drupal database 10
Creating a database user 11
Increasing PHP memory 12
Installing Drupal 12
Adding content to Drupal 16
Getting started with Flash 17
Creating a new Flash project 18
Setting up the workspace 18

A: The Stage 19

B: The Toolbar 19

C: The Timeline 20

D: The Properties panel 20

E: The Color Palette 21

F: The Library 21
Creating a Flash application 21
Creating a background 21
Rectangle properties 22
Adding a gradient 23
Adding text to a Flash application 24
Text properties 25
Compiling our Flash application (making a SWF) 25
Publish Settings 26
Adding Flash content to Drupal 27
Installing a contributed Drupal module 28
Adding Flash! 30
Summary 32

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Table of Contents

Chapter 2: Building a "Hello World" Application 33
How Flash and Drupal communicate 33
Understanding web services 34
Synchronous versus asynchronous programming 36
Setting up Drupal for web services 38
Installing and configuring the Services module 38
Servers and Services 38
Installing AMFPHP 39
Services configuration 41
Creating a Services key 41
Services settings 43
Service Permissions 43
Building a web service-driven "Hello World" application in Flash 44
Step 1: Creating our Flash application 45
Step 2: Creating a main.as ActionScript file 45
Step 3: Connecting to Drupal 46
Step 4: Session handling 50
Connecting to Drupal using system.connect 50
Step 5: Drupal says "Hello World" 51
Loading a node in Flash 52
Step 6: Hooking up the text 55
Step 7: Passing the node ID using FlashVars 57
Step 8: Adding it to Drupal 58
Summary 59
Chapter 3: Flash and CCK 61
Overview of a typical recipe web site 61
Using Drupal's Content Construction Kit 62
Creating a new content type 63
Adding custom fields to your Recipe content type 65
Adding a new field 66
Changing the default Body field 69
Showing CCK fields in Flash 70
Building a Recipe widget in Flash 71
Adding dynamic TextFields for Drupal content 72
Using ActionScript to show Drupal CCK fields 74
Using the Services Administrator 74
Showing CCK information in ActionScript 76
Adding ScrollBars to our TextFields 79
Creating a Drupal node template for Flash 82
Using the Content Template module (Contemplate) 82
Summary 85
Chapter 4: Drupal Images in Flash 87
Image handling in Drupal 87
ImageField for CCK 88

Lii]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Table of Contents

Installing the ImageField module 88
Adding an Image field to our Recipe content type 89
Adding an image to our Recipe node 90
Verifying that the image is attached 91

Adding an image to our Recipe Flash application 92
Adding a MovieClip container for our image 93
Using ActionScript to load the Recipe image 95

Resizing an image 100

Preserving the width and height ratio (scaling) 102

Using Drupal's ImageCache with Flash 104
Creating an ImageCache preset 104
Adding an ImageCache image in Flash 106

Adding the new Recipe Flash application to Drupal 108

Summary 109
Chapter 5: Drupal Audio in Flash 111
Working with audio in Drupal 111

Installing the getID3 library 113

Setting up the Audio content type 114

Creating an Audio node 115

How our player will be different (and better) 116

Building a custom audio player for Drupal 117

Examining the Audio node using Services Administrator 117

Referencing the audio file path 118

Writing a custom AudioPlayer class 119

Playing audio in Flash 121

Using our AudioPlayer class to play audio 122

Adding controls to your custom audio player 123

Adding a play and pause button 123
Creating a base button MovieClip 124
Adding the PlayButton movie clip 125

Creating a pause button from the play button 127

Linking MovieClips to ActionScript 128

Adding the AudioPlayer to the stage 130

Modifying the AudioPlayer class to use play and pause 131
Step 1: Adding the SoundChannel 131
Step 2: Adding load, play, and pause functions 132
Step 3: Reference the mcAudioPlayer MovieClip 133
Step 4: Hooking up our buttons! 133

Modifying our main.as file to use our new AudioPlayer 136

Summary 137

[iii]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Table of Contents

Chapter 6: Flash Video in Drupal 139
Working with video in Drupal 139
Creating a video content type 141
Adding a video file field 141
Installing and configuring the jQuery Media module 143
Configuring the jQuery Media module 143
Installing a media player 145
Creating a video node 146
Building a custom video player in Flash 148
Creating a MediaPlayer base class 148
Adding play and pause button instances to MediaPlayer 149
Removing uncommon code from MediaPlayer 150
Modifying the AudioPlayer class to derive from MediaPlayer 152
Extending and overriding base (super) class functionality 153
Creating a VideoPlayer class 156
Working with Video, NetStream, and NetConnection 157
Initializing our video variables 158
Creating the video object 159
Adding video functionality 160
Adding video load 160
Adding play and pause functionality 162
Creating a new VideoPlayer MovieClip 162
Linking the VideoPlayer to Drupal 164
Loading and playing our Drupal video 164
Adding our custom media player to Drupal 168
Summary 169
Chapter 7: The Hybrid Approach
Part 1: Componentization 171
What is the hybrid approach? 172
Creating a media player control bar 174
Creating a ControlBar class 174
Removing the ControlBar dependency from MediaPlayer 176
Adding the ControlBar to the stage 177
Communication between ControlBar and MediaPlayer 179
Creating a communication gateway 179
Using static functions 180
Using the this pointer 182
Making the connections 184
Adding the ControlBar to our Flash project 186
Removing the control bar from the MediaPlayer 188
Summary 189

[iv]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Table of Contents

Chapter 8: The Hybrid Approach

Part 2: Remote Control 191
Client-side Flash communication 191
Flash to JavaScript communication 193
Calling a JavaScript function from Flash 193
Calling a Flash function from JavaScript 194
Initializing the Externallnterface 194
Adding the MediaGateway initialization to main.as 197
Adding outgoing messages to the MediaGateway 198
Adding remote or local functionality 201
Building a JavaScript Gateway 202
Locating a Flash application using JavaScript 202
Creating the gateway functions between two Flash applications 203
Flash and JavaScript synchronization 205
Step 1: Create an array of communicating Flash applications 206
Step 2: Flash calls to see if the JavaScript Gateway is ready 207
Step 3: Flash application registers with JavaScript 209
Step 4: JavaScript initializes our Flash when all have registered 211
Using our remote control within Drupal 213
Adding the JavaScript Gateway to Drupal 213
Adding our Media Player to Drupal 215
Changing our Content Template 215
Adding the Remote Control 216
Creating a FlashNode template 219
Summary
Chapter 9: Flash with Drupal Views 221
Using the Drupal Views module 221
Views: Installation and Configuration 222
Setting up a view 222
Creating a new page view 223
Adding fields to a view 224
Adding a Filter to our view 226
Using the Views Service 227
Step 1: Install the Views Service 228
Step 2: Configure user permissions 228
Step 3: Verify it works 229
Building a Flash Playlist using Drupal 230
Creating a node teaser 233
Creating a teaser background 234
Using the timeline to add different teaser states 235
Adding a title to the teaser 236
Creating a Teaser class 238
Building a ListView class 243
Adding our ListView to Flash 247

[v]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Table of Contents

Adding the ListView to our Media Player 250
Creating a Media Region 251
Populating the list view 253

Summary 256
Chapter 10: User Management 257
Drupal user management 258

Adding new user roles 259

Adding permissions to a user role 259

Creating new users and assigning them roles 260

The User Service module 261
Installing the User Service 261
Configuring permissions 261
Configuring the User Service module 262

Building a Flash user login block 264

Welcoming our logged-in users 266

Creating a login button 267

Adding some status text 268

Creating a mcLogin movie clip 269

User handling within Flash 271
Hooking up our login button 274
Checking for a username and password 275

Logging into Drupal 276

Adding a user responder 276

Logging in 277

Logging out 278

Summary 280

Chapter 11: Adding Content to Drupal 281

Drupal Services security 281

The API key 282
API key configuration 283
The allowed domain and crossdomain.xml 284
How to use the API key 285

Building a Drupal service in Flash 286

The DrupalService class 287
Adding the API key to our DrupalService 289
Adding arguments to the service call 291

Adding DrupalService functionality to main.as 296

Building a node editor in Flash 300

Creating view, edit, and add tabs 300
Adding normal, hover, and selected states 302
Duplicating the mcView for the edit and add tabs 304

[vil

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Table of Contents

Adding a background to our node 306
Changing the node view 307
Creating a node edit form 309
Adding content to Drupal from Flash 311
Adding tab functionality 311
Saving a node from Flash 313
Editing existing content in Drupal 316
Summary 319
Chapter 12: Build a Drupal Five-star Voter in Flash 321
Building a custom Voting Service for Drupal 322
The module info file 322
Voting Service module 324
Installing the Voting Service module 325
Building a Custom Service 325
Registering external web services using hook_service 326
Defining web service callback functions 327
Adding arguments and voting logic using Voting API 329
Building a five-star voter in Flash 335
Voter design 337
Making some stars 337
Adding different vote types 340
Adding the vote layers to the mask layer 342
Adding vote hit regions 344
Creating a Voter class in ActionScript 347
Initializing the voter 347
Adding the event handlers 349
Handling the voting hover events 350
Getting a vote from Drupal 351
Setting a vote in Drupal 353
Adding the voters to main.as 354
Summary 356
Index 357

[vii]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Preface

This book is an in-depth discussion and tutorial session on how to integrate Flash
applications with the Drupal CMS. It describes the best techniques and practices for
integrating Flash technology with the power and flexibility of Drupal —by building
real-life Flash applications.

In this book, you will learn how to build Flash applications that show text from
within Drupal and also present images, music, and video within a single Flash
application. You will also be able to take advantage of the expandable fields and
content filtering provided from the CCK and Views module to add flexibility
and power to your Flash applications. Finally, you will learn how to add your
own custom functionality to Drupal and then utilize that from within your Flash
applications, leaving you with a world of possibilities.

This book starts out as a simple introduction to Flash and Drupal technology, where
you will create a simple Flash application and then embed that within Drupal. From
there, each subsequent chapter will build onto the previous chapter and you will
tackle new and challenging tasks. For each new task, you will take a step-by-step
approach to building a real-life application that utilizes the features introduced
within that chapter. You will also explore alternative design approaches that
eliminate the current design challenges that developers face when building
Flash-driven Drupal sites; and all this while staying true to the object-oriented
principles that govern the foundation of the ActionScript 3 language. By the end

of this book, you will be able to apply all the lessons learned from this book to any
other use case you may encounter.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Preface

What this book covers

Chapter 1 sets the stage for the reader to learn how Flash and Drupal can combine to
create a dynamic, content-rich experience for our users. We will learn how to embed
Flash applications within Drupal, as well as learn about some important modules
that make it easier to work with Flash in Drupal.

Chapter 2 builds a "Hello World" application. We will say hello to the world in Flash
using Drupal-driven content. However, unlike any other "Hello World" tutorial,

we will learn the important concepts of asynchronous programming and how that
relates to working with Drupal content in Flash.

Chapter 3 covers how to add custom content to our Flash applications using the
popular Content Construction Kit (CCK). We will illustrate this concept by building
a hypothetical Recipe Flash application designed for a Drupal cooking web site.

Chapter 4 shows us how to use Drupal managed images to give our application a
little visual flare as a visually stunning Flash application would not be complete
without the integration of images. We will build on from the previous chapter by
adding an image to our Recipe Flash application.

Chapter 5 explores how to use Drupal to manage a list of audio nodes and also builds
a Flash application to play that music. When it comes to multimedia, Flash is the
portal of choice for playing audio on a web sites.

Chapter 6 expands our custom media player to not only play music, but also show
Flash videos managed from our Drupal web site, which is built onto the concept
from the previous chapter. In addition, we will learn some important concepts of
object-oriented practices while we reuse common components to build a media
player for Drupal.

Chapter 7 explains the basics of how to take an existing Flash application and break
apart the components for remote communication. We achieve this by first abstracting
out separate functionalities into two separate components, and then laying the
foundation for a communication gateway between the two different components.
This is an essential first step to create a robust and easily maintained system, where
Flash applications can be separated on a Drupal web site, thus implementing a
hybrid Flash integration approach.

Chapter 8 creates the necessary components required to implement the hybrid
approach. This chapter focuses on creating the bridge between two different Flash
applications. Once we create this bridge, we will have the ability to control our
media from a remote Flash application. In other words, we will be building a remote
control for our media player that can be placed anywhere on the page, separate from
the media player.

[2]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Preface

Chapter 9 builds a media player whose playlist is driven from the power of the
Drupal Views module. Arguably, the most important aspect of any content-rich web
site is its ability to build lists of each piece of content in a meaningful manner. The
Drupal Views module gives the administrator the ability to manage the contents of
their site in a meaningful list of content to present to the users. By combining this
power within Flash, we can learn how to create a playlist of video nodes for our
custom media player.

Chapter 10 shows how to utilize user management within a Flash application by
building a User Login Flash widget. One of the most important aspects of the Drupal
CMS is its ability to manage its users and protect the content of that site using a
permission-based role system.

Chapter 11 shows how to add content to our Drupal web site while at the same time
keep our data safe from malicious software. Not only can Flash be used to show
Drupal content, but it can also be utilized to add and manipulate Drupal content
from a remote Flash application.

Chapter 12 will sum up all lessons learned in this book by building a five-star voting
mechanism in Flash. We will learn how to build a custom Voting Service as well

as create our very own Flash driven five-star voter compatible with the popular
FiveStar module.

What you need for this book

We need to install Drupal version 6, Flash CS3 or CS4, and Apache-MySQL-PHP
(AMP) for this book.

Who this book is for

This book is written for developers who wish to build dynamic Flash applications.
Although, we will be using Drupal for our Content Management System, the lessons
learned within this book can easily be applied to other content management systems
such as Joomla or WordPress. Because of this, you are not required to be familiar
with Drupal. Any interaction with Drupal will be described in full detail so that
anyone can follow along. As for Flash, it is not necessary to be familiar with how to
use Flash since that too will be covered in this book. However, it is recommended
that you have some modest understanding of ActionScript and PHP since there are
many code examples in this book.

[31]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can start this off by opening up our
main.as file and then, shift our focus to the onNodeLoad function."

A block of code will be set as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{

// Print out the node title.

title.text = node.title;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be shown in bold:

// Declare our variables

var baseURL:String = "http://localhost/drupalée";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";

var nodeId:Number = 5;

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in our text like this: "clicking
the Next button moves you to the next screen".

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[4]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedbackepacktpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note via the SUGGEST A TITLE form on www . packtpub. com, or send an email to
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book

Visit http://www.packtpub.com/files/code/7580_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in text or
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us to improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering

the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to any list of existing errata. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

[51]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If
you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately, so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of this book, and we will do our best to address it.

[PUBLISHING]

[6]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

It is no secret that the web sites that become the most popular on the Web are those
which possess a series of traits that appeal to the masses; most prominently, content
and beauty. Because of this trend, many web developers strive to produce sites

that are not only beautiful, but also rich in content. In order to satisfy the beauty
requirement, Flash has easily risen to the top as being an ideal portal to deliver
dynamic and beautiful web experiences to its users. At the same time, with the
explosion of content on the Internet, Drupal has stood out, among other content
management systems, as a powerful and expandable means to manage content. It
only seems natural, then, to combine these two incredible technologies together to
create the ultimate user experience.

In this book, we will learn how to integrate Flash with Drupal by taking a hands-on
approach to building real-life Flash applications for Drupal CMS. Each chapter will
introduce a different and more difficult challenge, where we will continually build
onto the skills learned from the previous chapters. It is my goal, that by the end of
this book, you should be able to venture off on your own and build your very own
Flash applications that integrate beautifully with Drupal. But before we get ahead of
ourselves, we need to take a step back and understand the motivation for this book.
We also need to touch base on some of the basics for integrating Flash with Drupal,
which include:

e Why Flash with Drupal?

e Who is this book for?

¢ Getting started with Drupal

e Adding content to Drupal

e Getting started with Flash

e Creating a Flash application

¢ Adding Flash content to Drupal

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash with Drupal

Why Flash with Drupal?

Within the past couple of years, there has been a major paradigm shift in the world
of product development. Everything from phones, web sites, and automobiles has
been affected from this movement, where the importance of functionality has seemed
to have been replaced with style and usability. No longer do the products that offer
maximum features sell more than their competitors. Instead, the products that offer
style and ease of use are the ones that rule the trade and are considered to be the
"next big thing".

Web development is no stranger to this trend. Just take a look at some of your
favorite web sites and you will realize how important style and usability are to

the world of web development. With this movement taking hold, it is easy to see
how Flash technology has risen to the top as being the portal of choice for many

web site user interfaces. Flash offers many tools that make it easy to create stylish
and easy-to-use applications, and because of this, many people know a Flash web
site when they see one (and usually, remember it). What is not so apparent about
Flash, though, is its lack of ability to effectively manage and deliver dynamic content.
Fortunately, this is where Drupal shines.

With the explosion of content on the Internet, Content Management Systems (CMS)
have become mainstream for any web site administrator, who wishes to manage

the onslaught of new content on his/her site. Although there are many different
flavors of CMS, Drupal is rapidly becoming the system of choice because it offers

a powerful and extensible framework that can mould to any application. However,
when it comes to style and usability, Drupal requires a lot of work to get the look
and feel in the way that you and your visitors would expect from any top-notch web
site. With that said, one can easily see how the combination of Flash and Drupal is

a match made in heaven between beauty and the brain.

Who is this book for?

This book is written for developers who wish to build dynamic Flash applications,
whose content is governed from a CMS. Although we will be using Drupal for our
CMS, the lessons learned within this book can easily be applied to other content
management systems such as Joomla or WordPress. Because of this, it is not assumed
that you are familiar with how to use Drupal, and any interaction with Drupal will
be described in full detail so that anyone can follow along. As for Flash, it is not
necessary to be familiar with how to use Flash since the basics will also be covered

in detail within this book. However, it is recommended that you have a modest
understanding of ActionScript 3.0 and PHP, since there will be many code samples
in this book. With that said, let's get started!

[8]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 1

Getting started with Drupal

We will kick things off by first exploring Drupal and seeing how to utilize a few of its
many features for our Flash applications. Although this will not be a complete guide
to Drupal, it will give us a quick introduction, so that we can comfortably integrate
its power into the Flash applications that we will create in this book. And, it all
begins with the installation!

Installing Drupal

Since Drupal is a web-based application, our first goal is to install a server that will
be able to run and execute the PHP code that makes up this incredible CMS. The
most typical setup for running Drupal is to use an Apache web server along with
PHP and MySQL services enabled.

Installing Apache-MySQL-PHP (AMP)

There are many ways to install Apache, MySQL, and PHP, but I would highly
recommend installing a pre-built AMP package onto your computer, and then
running Drupal on your machine through a local server. Luckily, there are several
pre-built installers that make this step as simple as possible. Each operating system
has its own version, and they all can be found at the following locations:

e Windows and Linux— XAMPP (http://www.apachefriends.org)

¢ Mac—MAMP (http://www.mamp.info/en/index.php)
Each of these packages has an easy-to-follow installer that will install an AMP server
on your local machine, so that we can then install Drupal. After we are done with
the installation of these packages, we should be able to go to the following locations
within your web browser, to see a welcome page.

¢ Windows and Linux—http://localhost

e Mac—http://localhost:8888/MAMP

[o]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash with Drupal

If you are using MAMP, then I would highly recommend setting the default Apache
and MySQL ports by clicking on the Preferences button in the MAMP application.
Once you are in the Preferences section, we will then select the Ports tag and click
on Set to default Apache and MySQL ports.

OO0 MAMP

Start/Stop |« Ports | PHP Apache

q Apache Port | B0] {1-65535)

MySOL Port 3306 (1024 - 65535)

I_(Set to default Apache and MySQL ports \1

| (Reset MAMP ports B

(" Cancel \1{ oK)

. Preterances... ",I"

(Quit 3

This will make it such that you can type http://localhost within your browser
without the port (:8888), which is consistent with the rest of this book. Now, with a
web server installed, our next step is to install Drupal.

Creating the Drupal database

Once we have our AMP server running, our next task is to create a database that we
will use for our Drupal installation. This simply requires running phpMyAdmin
that comes with the AMP packages, and can usually be found by navigating to the
welcome screen at http://localhost (for XAMPP) and http://localhost/MAMP
(for MAMP), and then clicking on the link that says phpMyAdmin. Once we are
inside the phpMyAdmin front page, we can easily create a new database called
drupal6 using the Create new database input field and clicking on the Create button.

i Create new database
| drupald | Collation k8 (Create)

Now that we have a new database, we will need to create a new user who can use
our Drupal database.

[10]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

Creating a database user

We will create a new user by first navigating back to the main phpMyAdmin screen,
and then clicking on the link that says Privileges. Once we are in the Privileges
section, we can create a new user by clicking on the Add a new user link. We will
then fill out the user information by providing the following information (of course,
you can use your own username):

= Add anew User

(=]

—Login Information

User name: | |sa text field: |"'$‘! travist
Host: [|)5e text field: 4% localhost
Password: | |Jse text field: 3] eeenanae
Re-type:

LI

Generate Password: I"Generateq] {Copy)

Our next task is to make sure that we give our user the correct privileges to use
the database that we just created. Since we are just using this as a local server, it is
completely fine to give your new user global privileges by clicking on the Check
All link that is next to the Global privileges section.

rGlobal privileges {

Mota: MySQL priviiege names are exprassed in English

Data rStructure————— — Administration —Resource limits
@ serzcr @ cazare M craur Note: Setting these options 1o 0 (zera) removes the fimit,
M sEar M avrER M sueen
M uepare W mupex W erocess ERL OURRT=G EER Houe | O
M pEnETE M oros | mEromo HAX UPDATES PER HOUR 0
M e ¥ crEarE TEMPORARY TABLES # sEuTDOWN MAX COMKECTIONS PER HOUR O
M creatE vIEw W sHow paTaBasES MAX USER_CONWNECTIONS 0
M swow view W rock Tamies
W caeate rouTINE W meFERENCES
M ALTER ROUTINE W mEPLICATION CLIENT
M Execure # mEprLICATION SLAVE
W creare usER

[11]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

We can now click on the Go button, at the bottom right of the Privileges section, to
create our new user. Our next step is to increase our PHP memory, so that Drupal
does not timeout when it is installing.

Increasing PHP memory

This next step is almost always overlooked when installing Drupal. By default, the
AMP packages do not allocate enough PHP memory required to install Drupal.
Because of this, we will need to edit the php. ini file and manually increase this
value. The php. ini file can be found within the conf /phps5 directory of our AMP
package installation directory. Once we open the php. ini file, we will perform a
search for memory limit and change it to 32M. While we are in this file, we should
also probably increase the execution and input time as follows:

max_execution time = 1000
max_input time = 1000
memory limit = 32M

After we save our changes, it is very important that we reset Apache so that these
changes take effect. We can do this by opening up our AMP control application,
and choosing to reset the Apache server, or we can simply close and restart this
application to perform the required Apache restart. With this done, we are now
ready to install Drupal!

Installing Drupal

Moving right along, we can download the latest version of Drupal by going

to http://www.drupal.org and clicking on the download links found on the
homepage. For this book, we will be using Drupal 6, so select the latest version
of Drupal that begins with 6. At the time of writing, the release was version 6.10,
which can be downloaded at http://ftp.drupal.org/files/projects/
drupal-6.10.tar.gz.

Once we have downloaded this package, the next step is to extract the contents into
the document root of the web server. This is typically within the htdocs folder of the
XAMPP or MAMP installation. Whatever resides in this folder is now visible when
you navigate to http://localhost from your browser. For example, if we created
an HTML file called index.html inside the htdocs folder, and then navigated to
http://localhost, we would see that HTML file rendered within our browser as a
web page. In this book, we will simply create a new folder within our htdocs called
drupalé, and then extract the contents of the Drupal 6 package inside that new
folder. Since we have placed all of our contents inside the htdocs/drupale folder,
we can now open up our browser and type http://localhost/drupalé to see

the following:

[12]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 1

Choose language

» Choose language
> Install Drupal in English
Verify requirements ' Learn how to install Drupal in other languages

Set up database
Install site

Configure site

Finished

We can begin our installation by clicking on the link that says Install Drupal in
English, where we will then be greeted with the following page:

Requirements problem

The following error must be resolved before you can continue the
installation process:

The Drupal installer requires that you create a settings file as part of the installation
process.
1. Copy the ./sites/defauit/default.settings.php file to ./sites/defauwit/settings.php.

2. Change file permissions so that it is writable by the web server. If you are unsure how
to grant file permissions, please consult the on-line handbook,

More details about installing Drupal are available in INSTALL. kxt.

Please check the error messages and try again.

[13]

PAC KT This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

Don't let the red scare you. What this is telling us to do is find the default.settings.
php file within the sites/default folder of our extracted Drupal folder. Once we find
this file, we simply need to rename it as settings . php. After it has been renamed, we
need to change the permissions of the file so that it is writable. When we are done,

we can click on the try again link, and see the following;:

Database configuration
Basic options

To set up your Drupal database, enter the following information.
Database type: *
8 mysqli

[-
.’ pgsql

The type of database your Drupal data will be stored in.

Database name: *

The name of the database your Drupal data will be stored in, It must exist on your server before Drupal
can be installed.

Database username: *
T 1

Database password:

[> Advanced options

From here, we will just enter all the database information that we set up in the
previous section, and then click on the Save and continue button. This should then
walk through the installation process. If it does not, then we can manually edit the
settings.php file and manually put in our database information by changing the
following line:

$db_url = 'mysql://travist:mypassword@localhost/drupalé’;

[14]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

We can now navigate to http://localhost/drupalé/install.php and kick off the
installation. If all goes well, we should see the following page:

Configure site

All necessary changes to ./sites/default and ./sites/default/settings.php have heen
made. They have been set to read-only for security.

To configure your website, please provide the following information.

Site information

Site name: *

! Drupal 6 |

Site e-mail address: *

ltral.rfst@tmbdigl'tal.curn |

The From address in automated e-mails sent dunng registration and new password requests, and other
notifications. (Use an address ending in your site's domain to help prevent this e-mail being flagged as
spam.)

At this point, we can fill out all of the initial configurations for our Drupal web site,
including the site name, email, user name, password, and so on. When we are done,
we can click on the Save and Continue button at the bottom of the page, where we
should see the following:

Drupal installation complete

\/ Choose language
Congratulations, Drupal has been successfully installed.
\/ Verify requirements
You may now wvisit your new site.
\/ Set up database

" Install site

\/ Configure site

/ Finished

[15]

PAC KT This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

When we click on the link that says your new site, we should then be greeted with
the most popular Drupal page (as shown in the following screenshot).

admin
My account
Create content
Administer

Log out

Welcome to your new Drupal website!

Please follow these steps to set up and start using your website:

1. Configure your website

Once logged in, visit the administration section, where you can customize and configure all aspects of your website.

2. Enable additional functionality

MNext, visit the module list and enable features which suit your specific needs. You can find additional modules in the
Drupal modules download section.

3. Customize your website design

To change the "look and feel" of your website, visit the themes section. You may choose from one of the included
themes or download additional themes from the Drupal themes download section.

4, Start posting content

Finally, you can create content for your website. This message will disappear once you have promoted a post to the
front page.

For more information, please refer to the help section, or the online Drupal handbooks. You may also post at the Drupal
forum, or view the wide range of other support options available.

With Drupal installed, we will now add some content.

Adding content to Drupal

In order to build a Flash application that utilizes Drupal content, we will first need to
understand how to add content to Drupal. Fortunately, this step is very simple and
first requires us to click on the link that says Create content on the left navigation
menu. Once we click on this menu item, we should be given an option to either
create a Page or a Story. A page is simply a single page of content. An example of a
page would be if you were to create an "About" page for your web site that simply
describes the nature of your business. A Story is a collection of pages that, together,
combine and create a common piece of content. An example of a Story would be a
web site tutorial. We can now create some content on our web site by clicking on

the Page link. We can provide a Title and Body for our page, as follows:

[PACKT

PUBLISHING

[16]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

Create Page

Title:

My first Drupal page!

Menu settings

fSpIit summary at cursor)

Body:

This is a description of my first Drupal page!|

We can then click on the Save button, at the bottom of the page, to create our
first page.

My first Drupal page! Edit

Page My first Drupal page! has been created.

This is a description of my first Drupal page!

Now that we have created our first Drupal page, we are ready to move onto Flash.

Getting started with Flash

Adobe Flash is a multimedia platform that allows us to create animations and rich
Internet applications. Each of these applications, created with Flash, is pre-compiled
into the Shockwave Flash (SWF) file format. These applications can be embedded
within a webpage or used on the desktop for local functionality. These SWF files
are read and interpreted using the Flash Player, which must be installed as a
plug-in for the browser viewing the page. This is rarely an issue though, since Flash
is so widely used by so many web sites that it is rare to not have Flash installed on
your visitor's browser.

So, our first task is to install Adobe Flash CS4 onto our computer, so that we
are able to walk through the examples in this book. Although Flash CS4 is not a
free application, you can easily download the 30-day trial version by going to
http://www.adobe.com/go/tryflash and complete this book within that trial
period. Once you have Flash C54 installed on your machine, we are ready to
move on.

[17]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

. Ifyou are using Flash CS3, you will still be able to use all of the
& tutorials in this book. Flash CS3 and CS4 are very similar, so there
= should not be any discrepancies between the two when following
through the examples in this book.

Creating a new Flash project

With Flash CS4 installed on our computer, we can open up the application and create
a new project. When the application first comes up, you should see a welcome screen,
where we can Create a new project. For all of the examples in this book, we will be
using ActionScript 3.0 for our Flash applications. So, we will continue by clicking on
the link that says Flash File (ActionScript 3.0), which should then bring up an empty
project. Since there are differences in the way that Flash CS3 and Flash CS4 look, our
next task is to change the default workspace for Flash C54 so that it looks like CS3.
This will make it easier for everyone to follow every lesson in this book and keep any
reference that I make regarding the location of certain tools consistent.

Setting up the workspace

In this step we will set the workspace layout so that it looks identical to the Flash CS3
default. In Flash CS4, we can accomplish this by clicking on the Window menu item.
Once this menu item opens up, we will select the Workspace menu item, and then
select Classic.

Extensions [4
Workspace B Animator
Hide Panels ZW v Classic
) Debug
v 1 Untitled-1 | Designer
='1 Developer
Essentials

We should now have a workspace that resembles the following diagram. We will
take a look at each highlighted section within this workspace, so that we know what
they are when they are referenced in this book.

[18]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

Document

Fl

Untitled-1

= PUBLISH
Player: Flash Payer 10
Scripr: ActionScript 3.0

st [| 2

n

nerEa

Untitled=1 X
e X Sl B En\
s WL
FPS: 25.00 %
Size: S50 % 400 px [
stge: [] &

ACB gHSNN PCRANDANRANED /S V0 A~YE

ACTIONS - FRAME

For each of the following sections, simply refer back to this diagram to see where to
find the item under discussion.

A: The Stage

With our workspace set up the way that we want, we can shift our focus to the white
square in the middle of the screen. This white square region is called the stage and
will be referenced quite a bit in this book. The stage is simply the visible window for
any object that is placed within our Flash application. By dragging an object off of the
stage, we are removing the object from the visible region of our Flash application.

B: The Toolbar

The toolbar presents many of the tools that can be used to create or edit objects on
the stage.

[19]

PAC K—|— This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Flash with Drupal

C: The Timeline

When you click on this tab, you should see the timeline for our Flash application.
The timeline is a very important aspect in Flash since it allows us to create objects
that can change in time. There are many elements within the timeline that will be
important for us in this book, and each of these items is described as follows:

. | [+ @O %2

e Within the timeline, there are a series of white blocks that span the width of
the timeline. Each of these little white blocks are called frames. A frame is a
snapshot in time for our Flash application. We can combine a series of frames
to create an animation (where an object moves for each new frame), or define
different states for our objects, where each frame shows a different state for
our object.

e Another important feature of the timeline is the ability to define multiple
layers. We will use this quite often in this book since it not only allows us to
control which objects are on top of other objects, but it also serves as a great
way to organize our Flash applications for ease of use.

e Having each object within its own layer also gives us the power to hide or
lock each layer. This can be done by clicking on the dot within the ® column
(visibility) or the @ column (lock). This will help us to keep other objects
unaffected when we are working on a different layer.

¢ We can also create new layers by clicking on the al symbol. Once we have
created a new layer, it is best practice to name that layer by clicking on the
name until it turns into an edit box, where we can then provide any name
we would like.

D: The Properties panel

The properties panel is used to describe the object that is currently selected. We will
use this panel quite often in order to change the width and height, and to give names
to our object's instance.

[20]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

E: The Color Palette

We will use this tool to change the fill colors for the objects that we create. We will
also use this tool to create gradients to give our application depth and character.

F: The Library

This tool is used to keep track of all objects that we have created within our Flash
application. We will use this to edit existing objects as well as to create new objects
that will be used in our Flash application.

Now that we are familiar with the Flash Integrated Development Environment
(IDE), we can create something within Flash and then embed that within Drupal.

Creating a Flash application

For this example, our Flash application will be very basic. For the most part I would
just like us to walk through the process of creating a Flash application within Flash,
and then take that application and embed it within a page in Drupal. Once we have
conquered this, we will be geared up to create some really cool applications that will
surely wow your visitors. But keep in mind that your imagination is the key, so feel
free to go crazy and create something very cool, and not feel limited with what we
create in this section.

Before we begin, however, we will need to create a home for our Flash project. In
this book we will always start out each chapter by first creating a new directory
to hold the contents for that chapter. With that said, we first need to create a new
folder called chapter1 and then save our currently opened up Flash application
as chapterl. fla within this folder, by clicking on the File | Save As menu item.
Once we have saved our Flash application, we can now start by adding objects to
our stage.

Creating a background

Our first task will be to create a background for our Flash application so that it sticks
out when viewing through Drupal. We can do this by clicking on the &, tool within
our toolbar. This should then change our mouse to the cross-hair symbol when you
move the mouse over the stage. Before we begin to draw our rectangle, though, we
will need to make sure that all of our rectangle properties are set up just the way

we want them.

[21]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash with Drupal

Rectangle properties

We will now shift our focus to the PROPERTIES panel, which should show some of
the options that we have for drawing a rectangle object.

PROPERTIES

= Rectangle Tool

= FILL AND STROKE

i &
Stroke: [F———
Style: |Solid Iv] &
Scale: @J (] Hinting

Cap: =~
Join: | ¥ Miter: 3

+» RECTANGLE OPTIONS
~ ™ [000 |
_ [0.00 A
w ——LF——

[0.00

The FILL AND STROKE region is used to describe how the rectangle will be drawn
and what colors can be used to either fill or stroke (border) the rectangle. For this
example we would like to have a rectangle that has a 3 pixel dark grey border, with
a dark blue center, which we can configure by setting the following;:

« FILL AND STROKE
2 R < Il
Stroke: [
Style: [Solid x| #
[22]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

Finally, we would like our rectangle to have rounded corners. We can do this by
adding a value within the RECTANGLE OPTIONS section that shows the ¢
symbols. To have a 15 pixel radius for the rounded corners, we can provide

the following;:

< RECTANGLE OPTIONS
r N [1500]
L [15.00 2 [15.00 |
& ——(—— [Feer]

We can now move our cursor over the upper left-hand corner of our stage region
(where the white square begins), and draw our rectangle region as follows:

Adding a gradient

We will now give our background some character by adding a gradient as the
fill color. To do this, we will first click on the fill region of the rectangle using the
Selection tool (&), and then open up the Color tool & on the right side of the screen.

COLOR | !

g @ Type: | Solid *'$3

S m

=])
Alpha: [100% D #000066

We can now give our background a linear gradient by clicking on the Type
drop-down menu and selecting Linear. Next, change the gradient colors by first
clicking on the right tab within the Gradient tool & &, and then changing
that color back to the dark blue color. Then, click on the left tab of the gradient tool

and give it a lighter blue color.

[23]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

Finally, to make this background more interesting, we will orient the gradient so
that it is not completely horizontal. We can do this by first clicking and then holding
down our mouse over the Transform tool (®4). By clicking and holding down our
mouse over this tool, it should bring up a submenu, where we can then select the
Gradient Transform tool (&,). Once we have this tool selected, we will click on our
fill region, which will expose some handles where we can resize and change the
orientation of our gradient. The circle symbol (=), over our fill region, will allow
us to change the orientation of our gradient, which we will use to change our fill
gradient to be oriented at approximately 45 degrees.

We are now done with our background, and ready to move onto adding some text.

Adding text to a Flash application

Before we begin adding text, we first need to create a new layer so that our text does
not collide with our newly created background. To do this, we will first click on our
TIMELINE tab, where we will first rename the default layer name to background,
and then lock this layer by clicking on the dot in the & column.

TIMELINE

“eam

After we have done this, we can create a new layer on top of the background layer
by clicking on the a] within the bottom layer tool menu al & &, and then calling this
new layer as text.

TIMELINE

.;a T

%l background « @

[PUBLISHING]

[24]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 1

Now that we have a blank layer to add our text, we can click on the Text tool (T)
within our toolbar and, and shift our focus to the PROPERTIES panel.

Text properties

The text properties are most likely familiar to anyone who has used a Word
processor application. It allows you to change the color, size, style, and letter
spacing. In our example, we want a fairly large size and light color so that our text
will stand out against the dark background that we just created. For that reason,
we should provide the following information for our text field properties:

> CHARACTER
Family: |Ccnrgi.1 | b |
Style: |Rﬂgu|nr |v|

Size: 48.0pt Letter spacing: 1.0
Color: [| M Auto kern

Anti-alias: | Anti-alias for readability | = |

After we have our properties set up, we can add our text to our stage by clicking
anywhere on the stage we would like to show our text. When we are done, we
should see the following;:

Hello Drupal!

Compiling our Flash application
(making a SWF)

Now that we have created our Flash application, the next step is to run and compile
this into a SWF file, so that we can embed it within our Drupal web site. This will
first require us to take a look at the Publish Settings, so that we can make the
necessary changes to our published SWF file.

[25]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash with Drupal

Publish Settings

Publish Settings can be found by clicking on the File | Publish Settings menu item,
where we will see the following page:

[Formats | Flash wTmL |

Type: File:
Flash (.swf) chapterl.swf ¥ |
8 HTML (.html) chapterl.html I
"1 GIF Image (.gif) chapterl.gif 3
"1 JPEG Image (.jpg) chapterl.jpg [
1 PNG Image (.png) chapterl.png ¥ |
"1 Windows Projector {.exe) chapterl.exe ¥ |
"1 Macintosh Projector chapterl.app ¥ |

(Use Default Names)

Since we are using Drupal to show our Flash applications, the first thing that we
need to do is uncheck HTML from the publish type column. After we have done
this, we can take a look at the Flash tab on the publish settings, which will show
the following screen:

| Formats | Flash

Player: | Elash Player 10 l-'i-! Info...
Script: | ActionScript 3.0 H‘d (" Settings...)
Images and Sounds
JPEG quality: ; v : 80
"1 Enable JPEG deblocking
Audio stream: MP3, 16 kbps, Mono preSetmms
Audio event: MP3, 16 kbps, Mono [Set..

[Override sound settings
" Export device sounds

SWF Settings
ECompress movie
™ Include hidden layers
Elnclude XMP metadata _File Info...)
"1 Export SWC
[26]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

Since our goal is to stay consistent with the Flash CS3 readers, we will probably
want to use Flash Player 9 to compile and run our SWF movies. We can do this by
clicking on the Player drop-down box and then selecting Flash Player 9. When we
are done, we can click on the OK button at the bottom of the settings page to accept
the changes.

Now that we have our settings in place, we can run and compile our Flash
application by pressing 8 +Enter for Mac, or Ctrl+Enter for Windows. If you wish to
just compile your application, then you can alternatively select File | Publish from
the main menu. When we are done with this step, we should be able to navigate to
our chapterl folder and see the following;:

L

chapterl.fla chapterl.swf

The SWF file is the compiled Flash file that we will now embed within our Drupal
web site.

Adding Flash content to Drupal

There are many ways to add Flash content to Drupal, but what I am going to cover
in this section is what I have found to be the easiest. Thanks to the wonderful
Drupal community, there is already a fantastic module that was built to easily add
Flash applications to Drupal. This module is called FlashNode and can be found at
http://www.drupal.org/project/flashnode. Within this project page, we need
to download the latest version for Drupal 6. We can determine a module's Drupal
version by taking a look at the first number in the package version, where 6.x means
it is for Drupal 6. After we have downloaded the version build for Drupal 6, which
was version 6.x-3.1 at the time of writing, we can install this module in our local host
Drupal installation.

[27]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

Installing a contributed Drupal module

The first thing that we need to do to install a Drupal module is locate our Drupal
installation that we placed in our computer earlier in this chapter. Within this
directory, we should see the following files:

» [l includes Today, 8:42 PM - Folder
» [misc Today, 8:42 PM - Folder
» [modules Today, 8:42 PM e Folder
» [profiles Today, 8:42 PM - Folder
> I:I scripts Today, 8:42 PM e Folder
» [l sites Today, 8:42 PM - Folder
b l:.] themes Today, 8:42 PM - Folder
|:| .htaccess Dec 10, 2008, 2:04 PM 4 KB Plain text
CHANGELOG. txt Feb 25, 2009, 3:02 PM 44 KB Plain text
COPYRIGHT.txt Feb &, 2008, 6:45 AM 4 KB Plain text
INSTALL. mysgl.txt MNov 19, 2007, 1:53 PM 4 KB Plain text
INSTALL.pgsqgl.txt Nov 26, 2007, 10:36 AM 4 KB Plain text
INSTALL.txt Jul 9, 2008, 2:15 PM 16 KB Plain text
LICENSE.txt Jan 6, 2009, 11:27 AM 20 KB Plain text
MAINTAINERS. xt May 15, 2008, 5:13 PM 4 KB Plain text
robots.txt Dec 10, 2008, 2:12 PM 4 KB Plain text
UPGRADE.txt Jan 4, 2008, 10:15 AM 8 KB Plain text
cron.php Aug 9, 2006, 2:42 AM 4 KB Smultron Document
index.php Dec 26, 2007, 2:46 AM 4 KB Smultron Document
install.php Feb 25, 2009, 5:47 AM 48 KB Smultron Document
update.php Dec 10, 2008, 4:30 PM 28 KB Smultron Document
xmirpc.php Dec 10, 2005, 1:26 PM 4 KB Smultron Document

If we open up the sites folder, we should then see an all and a default folder.
These folders are used to separate the files, modules, and themes for any web site
that is sharing the single Drupal installation (called multisite). For example, if we
wish to install a module for all of our web sites, then we would place this new
module within the al1 folder. However, if we just wish to include this module in the
default site (which is the site we are using right now), then we will have to place the
module within the default folder. In a typical multisite configuration, there would
be a separate folder within the sites directory for each web site that is being run off
the single Drupal installation. But for our purposes, we will use the default folder
for any additional module that we install to our Drupal web site. So, within the
default folder, we will need to create a new folder called modules, and then place
the extracted contents of the flashnode module within this directory as follows:

[28]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Chapter 1

-hraccess [all - default.settings.php .project
CHANGELOG.txt (] default El files L4 CHANGELOG. txt
COPYRIGHT.txt] modules "% flashnode_test_file.swf
cron.php settings.php D flashnode.admin.inc

[includes > [7 fashnode.import.inc
index.php D flashnode.info
INSTALL.mysgl.txt D flashnode.install
INSTALL.pgsgl.txt D flashnode.module
install.php INSTALL.txt
INSTALL.txt LICENSE.txt
LICENSE.txt README.txt
MAINTAINERS. txt UPDATE.txt

L misc > L] views

| modules »-

[profiles >
robots.txt

Ll scripts >

& sites

[themas >
update.php
UPGRADE.txt
xmirpc.php

Now that we have the flashnode module in the right location on our server, we can
navigate to our Drupal web site by going to http://localhost/drupalé. Once we
are there, we can go to our administrator section by clicking on the Administer link
on the left menu. Once we are within our Drupal administration section, we will
click on the Modules link. Throughout this book I will refer to this type of navigation
as saying 'navigate to Administer | Modules".

Administer L By module

Hide descriptions

Content management

Manage your site's content.

Comments
List and edit site comments and the comment moderation
queue.

Content
View, edit, and delete your site's content

Content types
Manage posts by content type, including default status, front
page promotion, etc.

Post settings
Control posting behavior, such as teaser length, requiring
previews before posting, and the number of posts on the front
page.

Welcome to the administration section. Here you may control how your site functions.

Site building

Contral how your site looks and feels.

Blocks
Configure what block content appears in your site’s sidebars and
other reglons.

Menus
Control your site's navigation menu, primary links and
S e e - Eagaand reorganize menu items.

" Modules
Enable or disable add-on modules for your site

Change which tHEmE or allows users to set,

[PACKT

PUBLISHING

[29]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash with Drupal

Once we are within the Modules section, we can scroll down to the bottom of the page
and enable the FlashNode module by clicking on the checkbox next to this module,
and then clicking on the Save Configuration button at the bottom of the page.

Other

Enabled MName Version Description

Flash :
E 6.x-3.1 Allows easy uploading and display of Flash content.
node

{ Save configuration __1

Adding Flash!

We are now ready to add our Flash application to Drupal. We will first click on the
Create Content link from the left navigation menu, and then select Flash from the
list of items.

Create content

Flash
Allows you to easily upload and display a Flash file. You can choose whether the

movie appears in the teaser, the body, or bath.

We will then see the Create Flash page, where we will start by giving our new Flash
node a title.

Create Flash

The directory sites/default/files/flash has been created.
) The directory sites/default/files/fiash/temp has been created.

Mew node

Title: *
lHEIIu Drupal!| l

[30]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 1

After this, we will select the Flash file that we just created by clicking on the Browse
button next to the Flash file input field, and then selecting our SWF file using the file
browser window.

Flash file:
[Users/Travis/Documents/book/chapters /chapterl fsource/chapterl.swf Browse. ..

Click "Browse to select a file to upload

Finally, we can scroll down to the bottom of the page, where we can click on the
Save button. Congratulations, you have added Flash to Drupal!

Drupal 6
-
—
admin Hello Drupal! View" Q="
My account
Create content Flash Hello Drupal! has been created.
Administer

Tue, 04/21/2009 - 22;28 — admin
Log out

Hello Drupal!

[31]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash with Drupal

Summary

We now have the foundation for building some dynamic applications for Drupal.
We can easily use the lessons learned in this chapter to build some very cool Flash
widgets to be used within Drupal. But these applications would be limited, since
they will be confined to only showing the content provided from within that Flash
application. In the following chapters we will dive into how to incorporate Drupal
content within our Flash applications. This will open up a whole new world of
functionality that we can utilize to create some very exciting Flash applications.

[32]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a "Hello World"
Application

We have built a static Flash application and integrated it within Drupal, now our
next step is to replace the static text with dynamic content extracted from Drupal. We
will accomplish this task by building a Flash application that is able to read a Drupal
"Hello World" page, and then displaying that text using Flash. Although this may
seem like a trivial task, surprisingly, there is much effort required to simply display
those two words using Flash and Drupal. In this chapter we will go over all the
necessary elements needed for communication between Flash and Drupal. Some of
the key topics that will be covered are as follows:

e How Flash and Drupal communicate

e Understanding Web Services

e Setting up Drupal for Web Services using the Services module
e Using Drupal's web services to say "Hello World" in Flash

e Using FlashVars in our Flash applications

How Flash and Drupal communicate

In order to understand how Flash and Drupal communicate, it is important to note
how each one differs in where it is executed. When we build a Flash application
for Drupal, the loading and execution of our Flash application will be completely
different from the execution of our Drupal website. As with any Drupal website, the
execution of all the code within Drupal will be performed on the server in which it
resides. Once this code is executed on the server, data is sent in the form of HTML
to the machine that the visitor is using to view our website. Any Flash application
that we build on top of Drupal is sent along with this HTML, and then loaded and
executed on the visitor's remote machine. In web terminology, this association is
called Client and Server, where Drupal will be the server-side application and the
Flash application will be the client-side application.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Building a “Hello World” Application

The catch here is that there is no guarantee that the server and client machines are
near each other physically. They could be a couple of feet apart or thousands of
miles away from each other, as seen in the following illustration:

Because of this, communication between Drupal and Flash requires the use of a
standard protocol, commonly referred to as web services.

Understanding web services

The fundamentals of web services are structured around the concept of remote
function calling —or remoting. Using the power of XML, remoting allows one
application to remotely call a function within another remote application. What this
means is that one application that is running on a computer half way around the
globe can send a request to call a function on your home computer. This process is
commonly referred to as RPC (Remote Procedure Call). (To read more about RPC,
visit http://en.wikipedia.org/wiki/Remote_procedure_call.) There are many
different implementations of RPC, but all of them accomplish the same task, that is,
of breaking up the elements that define a function into a standardized XML format.
This XML is then transmitted to the remote location where it can be interpreted and
executed as if the two procedures were located on the same box or even within the
same application. The detailed inner workings of RPC are slightly out of the scope of
this book. Anyway, what is important is for you to understand is how two separate
applications can accomplish this technique of RPC —since this is exactly how Flash
and Drupal communicate.

Let me demonstrate this by giving you a very simple Flash application that prints
(you guessed it!) "Hello World". Let's go ahead and open up our Flash application
and start a new project. In this project, we will start by simply adding a trace
statement to print "Hello World" in our debug shell. The trace statement is used
within Flash to print out any string or variable in the Output window. This is a very
handy tool because it lets us visually see when pieces of code are executed, and the

[34]

DAL/ This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
' 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

values of certain variables when that execution was made. Within the Actions panel,
we can now see how the trace statement works by placing the following command:

trace ("Hello World!") ;

Once this code is in place, we can run our Flash application by pressing 88 +Return
for Mac or by pressing Ctrl + Enter for Windows. This should then bring up a blank
screen where we will see the text "Hello World!" within the Output panel.

Now, let's take that simple line of code and turn it into a function that does the same
thing. It should look like the following:

function sayHello()

{
}

If we run the Flash application again, we should see that the code we wrote doesn't
do anything. The reason for this is that the simple declaration of a function really
doesn't do anything unless someone calls that function. We can do this by placing
the call just below the function declaration like the following:

trace("Hello World");

function sayHello()

{
}

sayHello() ;

trace("Hello World");

So, in the last example, we have the same application defining the routine and
making the call. In web services, these two will be separated between two completely
different applications. One application will define the function sayHello, and the
other application will be making the remote procedure call.

The previous example does a fair job of showing you the concept of how web

services work. But, it isn't very accurate in showing you how we plan to work with

Flash and Drupal. In this scenario, we will use Drupal as the source of the content

and Flash as the mechanism for displaying that content. Because of this, we need to

change our above code so that the text "Hello World" is retrieved instead of assumed.

Still working within a single application, this would look like the following;:
function sayHello(hello:String)

{
}

function getHello() : String

{
}

sayHello(getHello());

trace(hello);

return "Hello World!";

[35]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

I know that this code seems very bloated for simply printing "Hello World", but we
are getting much closer to a real-life web service interaction between two remote
applications. In this example, Flash will call getHello, which will end up making
a remote function call into Drupal and then populate the sayHello argument with
whatever it returns, as shown:

getHello () ;

"Hello World!"

But, there is still something wrong with this example. Upon closer observation, it is
clear that we are assuming that the getHello routine will instantly return the text
from its content source. In a web service scenario, this getHello routine will be
calling a remote location that will always take an unknown amount of time to return
something, if anything at all. This type of interaction is called "asynchronous" and

is usually the cause of much confusion for a programmer who is just learning

this process.

Synchronous versus asynchronous programming

In the previous example, you will notice that there are two functions. The sayHello
function is used to print whatever argument it receives, while the other function

is used to retrieve and return the text "Hello World". Now, combine these two
functions and you will get an overly complicated way to print "Hello World".
However, this over complication is necessary to understand how two independent
pieces of software interact. Of course, for the sake of simplicity, I have chosen to
keep these two functions in the same application, but soon we will separate the

two between Flash and Drupal. So, in this example, I would like to concentrate

our attention on the getHello function.

function getHello() : String

{

return "Hello World";

}

This function, as it is designed right now, is very simple because it is programmed
synchronously. This means that the time taken by this function to retrieve the string
"Hello World" is deterministic. I am able to guarantee that after we execute this
function, we will end up with a string that says "Hello World". But this is not how it
works in the world of web services. In a web service, or remote procedure call, this
function will send a request to an external application to get this string. Also, what

[36]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

is even more important to realize is that we don't know if and when this external
application will return our string. Because of this, we need to design this function
asynchronously. Let me give you an analogy...

To best describe how an asynchronous software system works, I would
like to give you a real-life analogy: My wife asks me to take out the
garbage every now and then. If we talk in software terms, we could
say that my wife is an application, telling another application (me), to
perform its routine, that is, takeOutGarbage. Now, when my wife sends
+ out this command, there is really no telling if and when she will get the
% results of me actually taking out the garbage. It could be hours, days, or
’ maybe never. But this does not mean that my wife just waits until I am

finished with my task —since she could be waiting for a really long time
and lose productivity in getting other things done. Instead, she goes about
doing other things, and when I finally do take out the garbage, she then
gets a notification from me that I have finished my work. This is exactly
how asynchronous software behaves.

So, let's change our getHello function into an asynchronous routine. In order to
accomplish this task, we need to utilize a callback function. A callback function is
just a way to tell any piece of code "Hey, do this, and then let me know when you are
finished". The callback function allows you to receive notification when something
has completed, which then allows any software process to perform other tasks while
it waits for notification. Here is an example of how to pass a callback function into
our getHello function:

function sayHello(hello:String)

{

trace(hello);

}
function getHello(callback:Function)

{

callback("Hello World");

}

getHello(sayHello);

When we execute this Flash application, we will see that the results are surprisingly
the same. The only difference is, this time, we are using a callback function that
works by passing the function sayHello into the getHello function as an argument
or (callback). When the getHello routine is finished doing what it needs to do, it
will call the callback function with the correct text. For us, this is just the

same thing as calling the sayHello function with the string "Hello World".

[37]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

The good news here is that the getHello function can now take all the time it needs.
In fact, we can now completely change the code within getHello to call an external
web service routine and not have to worry about our application hanging while it
waits for a response. This is the main benefit of using callback functions, as they
provide one of the main ingredients for asynchronous programming. So, let's put
this into action by setting up Drupal for web services.

Setting up Drupal for web services

In order to handle web services within Drupal, several contributors took an initiative
to develop a series of fantastic modules that'll accomplish the task of remote
communication. These modules are all subsets of the module Services, which can be
found at http://www.drupal.org/project/services. Utilizing the power of this
module, external applications are given the ability to make remote calls to Drupal
and extract the data that they need. So, our first task in making a Flash application
that says "Hello World" within Drupal will be to set up our Drupal installation so
that it is ready for external interaction. And we will do this using the Drupal
Services module.

Installing and configuring the Services module

The first task in getting web services connected for Drupal is to install the Services
module. You can find this module located at http://www.drupal .org/project/
services. Once you are there, you will be given the option to download a version
for either Drupal 5 or Drupal 6. This book assumes you are using Drupal 6, but since
the Services module works the same way on Drupal 5 as it does on 6, you should

be able to follow along, regardless of which version of Drupal you are using. Once
you have downloaded Services, you will need to extract the contents of this TAR file
in your sites/default/modules folder, which we created in the previous chapter.
After these files are in place, you will notice that there are two subfolders within the
main Services directory called Servers and Services.

Servers and Services

Services are the software elements that define the routines that can be executed by
outside applications. By enabling any of these modules, you are now exposing a
series of routines within their corresponding modules as "executable", so that any
outside application can use them to retrieve or set data within Drupal.

[38]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 2

The Servers act as the translators that take the XML format of the service request
from an outside source, and then translate that XML into the execution of an internal
routine. They also handle the responses (or returns) from those routines, and
convert them back into the XML format to be sent back to the external application
that originally made the request. There are several different types of servers that

can be used for RPC communication, but the one that we will need to use for our
ActionScript 3 interaction is called AMFPHP (Action Message Format PHP).

Installing AMFPHP

AMFPHP is a remoting gateway to be used specifically for Flash and ActionScript,
and Drupal already has a module that creates an AMFPHP server plug-in for the
Services module. This can be found at http://www.drupal .org/project/amfphp.
Since this is a server that will be used with the Services module, we can place the
contents of this download within the servers folder in the services module directory.

[flashnode - .project [amfphp -
[] services LICENSE.txt [xmlrpc_server -
README.txt
[services -

|:| services_a...rowse.inc

|:| services_admin_keys.inc
Services.css

[services.info

[services.install

D services.module

But before we install this module, we will need to make sure that we download
the AMFPHP source files located at http://www.amfphp.org. Once we have
downloaded the AMFPHP server package, we will need to place the contents of
that package within an amfphp folder in our AMFPHP module folder as shown
in the following illustration:

(] amfphp [@ amfphp »] htaccess
[xmirpc_server - (] amfphp.info [browser
[[] amfphp.madule @ core
LICENSE.txt gateway.php
[overrides - globals.php
README. txt json.php
phpinfo.php
[services -
xmirpc.php
[39]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

After we have both the AMFPHP and Services modules in place, we can then
navigate to the Administer | Modules section of your website and take a look at
the services section, which includes the Services module, servers, and services.

Services

Enabled Name Version Description

Provide an API for creating web services

Required By AMFPHE (disabled), File Service (disabled), Menu Service (disabled), Node Service
(disabled}, Search Service {disabled), System Service {disabled), Taxonomy Service {disabled),
User Service (disabled), Views Service (disabled), XMLRPC Server (disabled)

=) Services 6.x-0.13

Services - servers

Enabled Name Version Description

Provides an AMFPHP server
0 AMFPHP 6.x-1.0-betal o o oo™ <

Depends on: Services (disabled)

o XMLRPC 6.5-0.13 Provides an XMLRPC server
= Server ¢ : Depends on: Services (disabled)

Services - services
Enabled Name Version Description
0 File e Provides a file service.
-0,

Service Depends on: Services (disabled)
D Menu 6.%-0.13 Provides a menu service.

Service : : Depends on: Services [disabled)
o Node 6.x-0.13 Provides a node service.

Service . ’ Depends on: Services (disabled), Node (enabled)
0 Search 6.%-0.13 Provides a search service.

Service % z Depends on: Services (disabled), Search (disabled)
0 System 6013 Provides systemn services.

Service - Depends on: Services (disabled)
0 Taxonomy Gt Provides a taxonomy service.

Service s Depends on: Services (disabled), Taxonomy {enabled)
o User 6.00.13 Provides a user service.

Service - : Depends on: Services [disabled}), User {enabled}
M Views 6.%-0.13 Provides a views service.

-0,
Service Depends on: Services [disabled), Views (missing)

Although we will explore and utilize most of these services in this book, in this
chapter we will only be concerned with enabling the System and Node Services.
These services will allow us to log in to Drupal and extract node information for
any given node ID in the Drupal system. With that said, let's go ahead and enable
the Services, AMFPHP, System Service, and Node Service modules. Once we
have these modules enabled, we can go to Administer | Services to learn how

to configure the Services module for external communication.

[40]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

Services configuration

Once we navigate to Administer | Services, we should see three different tabs at the
top of the screen: Browse, Keys, and Settings.

Under the Browse tab, we should see a listing of all Servers installed as well as all
the Services available to outside applications. Since we have enabled the System
and Node Services, we should see just a system and node section followed by the
following routines associated with those services:

e system.connect

e system.mail

e gsystem.getVariable

e system.setVariable

e gystem.moduleExists

e node.get (which is node. load in Drupal 5)
e node.save

e node.delete

By using these functions, outside applications can connect to your Drupal system
and read, write, or manipulate any node in your Drupal website. Although this may
raise a red flag of security, keep in mind that much effort has been contributed to the
security of the Services module, which is what brings us to the next couple of tabs:
Keys and Settings.

Creating a Services key

If we click on the Keys tab, we should be given two tabs at the top, where we

can either list the valid keys in our system, or create a new one. Only the service
routines that manipulate data in our Drupal system require the application using
that service to provide an API (Application Programming Interface) key before any
data manipulation can occur. The concept of a key is rather simple. When we create
a new key, the Services module will create a randomly generated string. Then, we
can provide this string within our external application to call certain routines that
manipulate data. This is just a way of protecting our site from malicious spam bots
bombarding our server with service calls and attempting to manipulate our node
data automatically. So, let's go ahead and create a new key by clicking on the Create
Key tab.

Once we click on this tab, we will be given the option to enter text in two different
fields: the Application title, and the Allowed domain.

[41]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Building a “Hello World” Application

The Application title can be anything, so we will enter something descriptive about
the application we are building, which will be Hello World for our example. The

next field is an important one.

The Allowed domain will be used to populate a cross-domain file on your server

that specifies the domains allowed to access the services on our server. Since we are
using a local server to test our application, we can provide the domain name of our
localhost plus any subdirectory where our Drupal root is located. For our example,

this will simply be localhost/drupalé.

Services Browse Keys Settings
List

Application title:

' Hello World

The title of the application or website using the service.

Allowed domain:

] localhost/drupals)|

External domain allowed to use this key.

Create key

When we are done with entering these values, we can click on the Create Key
button to create our key. After our key has been created, we should see our new
key added to the list of valid keys to be used by external applications as shown in

the following screenshot:

Key Title Domain

11adffb5ed466b9d3675269a523M0cd 2f Hello World localhost/drupals

Operations

edit delete

Now that we have an API key, we are ready to move on to the Settings tab.

[42]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

Services settings

The Settings tab of the Services administrator is used to enable or disable certain
security measures as well as increase the timeout used when calling routines that
require an API key. The only thing that is important to note here is that you should
always have both the Use keys and the Use sessid (Session Handling) checked at

all times when dealing with Services. Otherwise, you run the risk of forgetting to
re-enable them later, which will introduce a security risk to your site. It also forces
you to write your applications properly so that they will never compromise with the
security of your data.

Services Browse Keys

Security

Changing securlty settings will require you to adjust all method calls. This will affect all
applications using site services.

g Use keys
‘When enabled all method calls need to provide a validation token to authediate themselves with the
SErvVer
Token expiry time:
|30

The time frame for which the token will be valid. Default is 30 secs

E Use sessid
‘When enabled, all method calls must indude a valid sessid. Only disable this setting if the application
will user browser-based cookies.

(53\'{'. mnﬁgumtiun] (Rfset to defaultsj

So, now that we have the Services configured, our next step is to explore the user
permissions used to control access of the web services to different user roles in
your Drupal system.

Service Permissions

Before we can start using our web service routines to build our Hello World
application in Flash, it is also very important to configure the permissions so that
we can access the data that we need from Drupal. We do this by first going to
the Administer | Permissions section within the User Settings section of the
Drupal Administrator.

[43]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

Once we are there, we will need to find the following permissions and enable them
for all user roles:

Permission anonymous user authenticated user
node_service module

load any node data] =)

load own node data))
services module

access services] 2]

administer services =] 8

For Drupal 5, these permissions are labelled different than they are for
Drupal 6. If you are using Drupal 5, then you will need to make sure you
enable the load raw node data and access services permissions.

This is a necessary step that will allow outside applications to make service

calls without having to log in to our Drupal system as a valid user (we will cover
this in later chapters). It is also important to remember to click the Save User
Permissions button at the bottom of the page when we are finished checking

all the necessary permissions.

We are now done with the boring setup and configuration of Drupal. Now, on to the
fun part...building the Flash application to say "Hello World!".

Building a web service-driven "Hello World"
application in Flash

As you may have guessed, there is a more-than-typical amount of effort required to
create a "Hello World" application that utilizes web services. Many books that teach
Flash techniques rarely, if at all, mention the necessary steps required to populate

a TextField or MovieClip with data from a remote location. But if you really think
about it, this type of architecture is ideal for any scalable or dynamic application.
This approach allows for a Model-View-Controller (MVC) architecture for our Flash
applications, which is considered ideal since it separates the User Interface (View)
from the Data Set (Model) and Business Logic (Component) of our application. Using
web services to populate all of our Flash fields, allows for the component abstraction
necessary for an MVC architecture, where Flash suddenly fulfils the role of the

View (User Interface) and Drupal fulfils the role as the Model and Component. This
enables us to have a truly scalable and manageable web solution.

[44]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

So, let's take a step-by-step approach on how to accomplish this on the Flash side,
which as far as I am concerned, is the fun side!

Step 1: Creating our Flash application

Before we begin this section, we first need to create a new folder to hold all of our
changes within this chapter. We can do this by copying the chapter1 folder that
we created in the previous chapter, and then paste that new folder and its contents
within a new folder called chapter2. Once we have done that, we can rename the
chapterl.fla file to chapter2. fla, and then open up that project within our
Flash IDE.

With our chapter2 project open, we can shift our focus to the Actions panel

within the Flash IDE. Although working with the Actions panel is great for small
applications, we will eventually build onto this Flash application, which might make
it impractical to keep all of our ActionScript code within the Actions panel. Because
of this, we will first need to create a separate ActionScript file that will serve as our
main entry point for our Flash application. This will allow us to easily expand our
application and add to the functionality without modifying the Actions panel

for every addition we make.

Step 2: Creating a main.as ActionScript file

For this step, we will simply create an empty file next to our chapter2.fla

file called main.as. After you have created this new file, we will then need to
reference it within our Actions panel. To do this, we will use the include keyword
in ActionScript to include this file as the main entry point for our application. So,
shifting our focus back to the chapter2. f1a file, we will then place the following
code within the Actions panel:

include "main.as";
stop () ;

Now that we are referencing the main. as file for any of the ActionScript functionality,
we will no longer need to worry about the Actions panel and add any new
functionality directly to the main.as file.

Now, for the following sections, we will use this main. as file to place all of our
ActionScript code that will connect and extract information from our Drupal system,
and then populate that information in a TextField that we will create later. So, let's
jump right in and write some code that connects us with our Drupal system.

[45]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Building a “Hello World” Application

Step 3: Connecting to Drupal

For this step, we will first need to open up our empty main.as file so that we can
add custom functionality to our Flash application. With this file open in our Flash
IDE, our first task will be to connect with Drupal. Connecting to Drupal will require
us to make a remote call to our Drupal installation, and then handle its response
correctly. This will require the use of asynchronous programming techniques
discussed earlier in this chapter, along with some standard remoting classes built
into the ActionScript 3 library. Since we have already discussed asynchronous
programming techniques, I will spend some time here discussing the class used by
ActionScript 3 to achieve remote communication. This class is called Net Connection.

Using the NetConnection class

The NetConnection class in ActionScript 3 is specifically used to achieve remote
procedure calls within a Flash application. Luckily, this class is pretty straight
forward and does not have a huge learning curve on understanding how to utilize
it for communicating with Drupal. Using this class requires that we first create an
instance of this class as an object, and then initialize that object with the proper
settings for our communication. But let's tackle the creation first, which will look
something like this in our main.as file:

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection() ;

Now, you probably noticed that I decided to name my instance of this net connection
drupal. The reason for this is to make it very clear that any place in our Flash
application where we would like to interact with Drupal, we will do so by simply
using our drupal NetConnection object. But before we use this connection, we must
first specify what type of connection we will be using. In any Net Connection object,
we can do this by providing a value for the variable objectEncoding. This variable
lets the connection know how to structure the XML format when communicating
back and forth between Flash and Drupal. Currently, there are only two types of
encoding to choose from: AMFO or AMF3. AMFO is used for ActionScript versions
less than 3, while AMEF3 is used for ActionScript 3. ActionScript 1 and 2 are much
less efficient than version 3, so it is highly recommended to use ActionScript 3 over 1
or 2. Since we are using ActionScript 3, we will need to use the AMF3 format, and we
can provide this as follows:

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection() ;
drupal.objectEncoding = ObjectEncoding.AMF3;

Now that we have an instance ready to go, our first task will be to connect to the
Drupal gateway that we set up in the previous section.

[46]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 2

Connecting to a remote gateway

Connecting to a remote gateway can be performed using the connect command

on our drupal NetConnection object. But in order for us to connect, we must first
determine the correct gateway URL to pass to this function. We can find this by
going back to our Drupal installation and navigating to Administer | Services. In
the Browse section, you will see a link to the servers available for remote procedure
calls as shown in the following screenshot:

Services Keys Settings

Services are collections of methods available to remote applications. They are defined in
modules, and may be accessed in @ number of ways through server modules. Visit the
Services Handbook for help and information.

All enabled services and methods are shawn, Click on any methed to view information or

test.

For every listed server, we can click on each link to verify that the server is ready

for communication. Let's do this by clicking on the link for AMFPHP, which should
then bring up a page to let us know that our AMFPHP gateway is installed properly.
We can also use this page to determine our AMFPHP gateway location, since it is

the URL of this page. By observing the path of this page, we can add our AMFPHP
server to our main.as file by combining the base URL of our site and then adding the
AMFPHP services gateway to that base.

// Declare our baseURL and gateway string.
var baseURL:String = "http://localhost/drupalé6";
var gateway:String = baseURL + "/services/amfphp";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection() ;
drupal .objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect(gateway);

It is important to note that the connect routine is synchronous, which means

that once this function is called, we can immediately start using that connection.
However, any remote procedure call that we make afterwards, will be asynchronous,
and will need to be handled as such. The function that can be used to make these
remote procedure calls to Drupal is called call.

[47]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

Using the NetConnection call routine

If you look at the Adobe Help section about the NetConnection call function, you
will find the following arguments:

function call(command:String,

responder :Responder, .. arguments) ;

The first argument, called command, is very easy to understand and use. It is the
command that you will send to your remote server to execute. In Drupal, this will be
the Service functions that are provided by the System and Node Services that we
installed on our server. Since our first task is to simply connect to Drupal, we will
first need to use the system.connect command to send to our System Service on
our Drupal installation.

The second argument is the responder. This is simply the object that holds the
callback functions that are used when the server returns from a remote function
call. One callback is used to handle the return value on a successful transfer, while
the other callback function is used to handle any error that might have occurred.
Since we are programming asynchronously here, we need to first create these two
callback functions and then create a new Responder object using both our success
and error callback functions. Within our main. as file, we can create the responder
with the callback functions as follows:

// Declare our baseURL and gateway
var baseURL:String = "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection() ;
drupal .objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect (gateway) ;

// Set up our responder with the callbacks.
var responder:Responder = new Responder (onConnect, onError);

// Called when Drupal returns with a successful connection.
function onConnect(result:Object)

{
}

trace("We are connected!!!");

// Called when an error occurs connecting to Drupal.
function onError(error:0Object)

{

for each (var item in error) {

trace(item) ;

PUBLISHING

[48]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 2

The third argument to the call routine, and each subsequent argument afterwards,
is what will be passed as argument(s) to the remote function that we are calling. You
will notice in the function declaration that there are "..." in front of the arguments
variable. This is called a variable argument function, which means that it can accept
any number of arguments into this function. This allows us to provide any number
of arguments, which will then be sent as arguments to the remote function that we
are calling. In later chapters we will use several different Drupal services where this
comes into play.But for the system. connect service, there are not many required
arguments, so we can just omit this for now.

So, here is the ActionScript code that illustrates how to connect to Drupal using the
function call.

// Declare our baseURL and gateway
"http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";

var baseURL:String

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection() ;
drupal .objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect (gateway) ;

// Set up our responder with the callbacks.
var responder:Responder = new Responder (onConnect, onError) ;

// Connect to Drupal
drupal.call ("system.connect", responder);

// Called when Drupal returns with a successful connection.
function onConnect (result:0bject)

{

trace ("We are connected!!!");

// Called when an error occurs connecting to Drupal.
function onError (error:0Object)

{

for each (var item in error) {
trace (item) ;

}

We can now test this out by running our application. Congratulations, we are now
connected! Let's move on.

[49]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

Step 4: Session handling

Now that we are connected to Drupal, our next intuition is for us to dive in and start
extracting data from our Drupal site; but this cannot be accomplished without first
handling the session ID for our connection with Drupal. The session ID is simply a
unique identifier for every connection made with any web site. The session ID allows
a web site to keep a track of every single person navigating the site, and therefore,
give them certain permissions depending on whether that person is logged in as

a user who can perform certain tasks. Each browser then uses cookies to store the
session ID of that user so that the next time they open up their browser, their session
is restored by setting the session ID to the same value as what was saved in the
cookie. We will use this session ID in our application for every call that we make to
Drupal to validate our connection. By default, the Services module assumes that any
application making calls to the Drupal system is an "anonymous" application, and
therefore, does not allow that application to perform specific tasks. By utilizing the
session ID, we are allowing our Flash application to validate itself with our Drupal
installation so that the typical user management system that Drupal employs to
access content is utilized. With that said, let's modify our previous code to handle
the session ID for our connection with Drupal.

Connecting to Drupal using system.connect

Although session handling may sound complicated, the effort involved is minor
since the ID is returned to us after the Drupal connection has been made using the
system. connect call. And since we will be using this session ID for other routines,
we need to declare this variable in the global realm of our ActionScript code (that is,
not within a function). So, the modified code for session handling will look like

the following:

// Declare our variables

var baseURL:String = "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

// Declare our Drupal connection
var drupal:NetConnection = new NetConnection() ;
drupal.objectEncoding = ObjectEncoding.AMF3;

// Connect to the Drupal gateway
drupal.connect (gateway) ;

// Set up our responder with the callbacks.
var responder:Responder = new Responder (onConnect, onError) ;

// Connect to Drupal
drupal.call ("system.connect", responder) ;

[50]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 2

// Called when Drupal returns with a successful connection.
function onConnect (result:0bject)

// Set our sessionId wvariable.

sessionId = result.sessid;

trace("We are connected!!!");
trace("Session Id: " + sessionId);

}

// Called when an error occurs connecting to Drupal.
function onError (error:0Object)
for each (var item in error)
trace (item) ;

We can now verify that this works by running our application. We should see, within
the output panel, our connection with Drupal followed with a valid session ID. We
are now ready to move on.

If you are not using a localhost for your server, you will most likely see a
Security dialog box when you run the application for the first time. If this
occurs, you will need to add the compiled SWF file to the Global Security
Panel by navigating to http: //www.macromedia.com/support/
% documentation/en/flashplayer/help/settings manager04.
T html. Once you are on this webpage, you can add the compiled SWF
file by clicking on the Edit Locations drop-down box, then select Add
Location. This will bring up a new dialog where you can click on Browse
for files button and choose the SWF file within our Chapter 2 directory.

Step 5: Drupal says "Hello World"

Now, we are getting to the fun part... loading Drupal data into our Flash application.
But before we can write the ActionScript to load node data from Drupal, we must
first revisit our Drupal web site and create a new node that we will use to say
"Hello". Moving back to our Drupal web site, let's create a new node by going to
Create Content | Page. The page title is what we will use to say hello, so where it
asks for a title, put in the text "Hello World!", and then go down to the very bottom
of the page and hit the Submit button. We should then see our new page created
that says, "Hello World!" for the title. It is very important for us to also remember
the node ID of the node that we just created. We can do this by simply looking at the
URL in our browser and writing down the number that comes after http;//locahost/
drupal6/node/. We will use this number to load our node in Flash, so just make sure
you either remember it or write it down.

[51]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Building a “Hello World” Application

Loading a node in Flash

Now that our node is ready, we can write the code in ActionScript that loads this
node and then parses out the title. This is how we are going to build our "Hello
World" application using Flash and Drupal. So, let's move back to our Flash IDE
and take a look at the code that we have so far.

Picking up where we left off, we are finally at the point where we have successfully
connected to our Drupal web site and received the session ID. The next step in this
process is to get the node information from the node that we just created in our Drupal
site. To accomplish this, we will be using the Service method called node . get, which
takes two arguments: the session ID, and the node ID of the node we wish to load. This
is where our variable arguments come into play, since we have two arguments that we
need to provide.

At this point, it is considered best practice to create a separate function that combines
the functionality of creating our responder with the Drupal service call to load a
node. For the sake of simplicity, we will call this new function 1oadNode, where it
will take a single argument (the node ID), and then use that argument and pass it
along to the node . get service function. The Drupal node service will then return the
node object for the node that we are requesting by calling the callback function that
we provided within the responder. Within each node object, we will have access to
the Title, Body, and any other fields of data that are associated with a Drupal node.
Since we used the node title to say "Hello World", we can create an onNodeLoad
function to print out the title field for the node object returned from Drupal. Each of
these functions will look as follows:

// Connect to Drupal
drupal.call ("system.connect", responder) ;

// Loads a Drupal node.
function loadNode(nid:Number)

{
// Set up our responder with the callbacks.
var nodeResponse:Responder = new Responder (onNodeLoad, onError);
// Call Drupal to get the node.
drupal.call("node.get", nodeResponse, sessionId, nid);
}

// Called when Drupal returns with our node.
function onNodeload(node:Object)
{

// Print out the node title.

trace(node.title);

[52]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

We can now use the 1oadNode function to load any Drupal node by passing in the
node ID for the node we wish to load. For example, if we wish to load a node with
an ID of 2, we can simply call 1oadNode (2), and all the complex functionality is
now abstracted within that single function.

Now for the big question...where do we place the call to 1oadNode so that we can
load our "Hello World!" node that we just created? This seems simple enough,

but leads to a significant gotcha where asynchronous software becomes a little
confusing. To illustrate, let's take a look at the following code where I am attempting
to connect to Drupal and then make a simple call to 1oadNode directly afterwards.
Many developers who just start out using web services very often attempt to do the
following and get very frustrated when they discover that it just does not work.

// Connect to Drupal
drupal.call ("system.connect", responder) ;

// Load our "Hello World" node (ID = 2)
loadNode(2);

If we were to run this application, we will quickly see an issue by looking at the
Output panel. This panel prints out the response returned from our Services module
after we make our call to load a node. Since an error occurred, our onError function
is called, and then the following error is printed out:

We are connected!!!

Session Id: Z26eccbb?b58f7bfalf7boale5@0ledde

Missing required arguments.

106

AMFPHP_RUNTIME _ERROR
JApplications/MAMP/htdocs/drupalé/sites/all/modules/amfphp/amfphp .module
Unknown error type

This error is the result of an elusive software bug called race condition.

Programming without race conditions

If we take another look at the previous code, we will see that we are making a

call to 1oadNode directly after the system.connect function call. In the world of
synchronous software, this would work just fine, but since we are dealing with web
service communication, our function calls to Drupal are not returned after each call is
made. Instead, each call that we make to Drupal can take any amount of time before
the result is returned using a callback function. To the trained eye, this is obvious,
but for the developers just learning asynchronous software behaviour, this can be
quite the head scratcher. Taking asynchronous software interaction into account, we
can now determine that our error occurred because we were making the call to get
the node information before we received any indication that we have successfully
connected, from the system. connect command. There is no guarantee that a

[53]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Building a “Hello World” Application

response from the server will make it back in time before we end up making the call
to loadNode. In asynchronous programming, this is most commonly referred to as a
race condition, where you are betting that the return from system. connect will beat
the call to 1oadNode. Unfortunately, you will most likely lose this bet, and the result
will be a strange error that does nothing to expose the smoking gun.

When describing the concepts behind race conditions, I always like to
think of Drupal as having a bad case of selective hearing. Since I too have
selective hearing, I can always imagine the communication between Flash
and Drupal much like how my wife communicates with me.

Over the years, she has learned the hard way that in order to give me a
command successfully, such as takeOutGarbage, she must first get my
. attention by calling my heyTravis! function first and then wait for my
% yesDear? response. If she does not wait for my response before issuing
L her command, I, almost always, misunderstand her and do something
completely different. For example, if she were to call my heyTravis!
function followed directly with two commands: changeBabyDiaper
and takeOutGarbage, there would be a good chance that I would end
up throwing the baby out with the garbage.

Taking this into account, we should always get Drupal's attention first
using the system. connect message, and then, we must wait to get a
response before issuing any additional commands.

Programming with race conditions is considered very poor programming practice,
and will most often lead to an extremely elusive software bug in your application.
In fact, I can easily say that with all my experience debugging software in complex
applications, it is always the race condition that is the hardest bug to find and
correct. So, let's take a moment and learn how to modify the previous code so that
it will never hit a race condition.

The trick is to simply move the call to 1oadNode after we receive notification from
Drupal that we are connected and have a valid session ID. After we look at the
following code, it will seem very obvious, but you would be surprised how often this
gotcha seems to crop up in complex software applications. The modified code should
look like the following (assuming the node ID you created was 2):

// Connect to the Drupal gateway
drupal.connect (gateway) ;

// Set up our responder with the callbacks.
var responder:Responder = new Responder (onConnect, onError) ;

// Connect to Drupal
drupal.call ("system.connect", responder) ;

[54]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

// Called when Drupal returns with a successful connection.
function onConnect (result:0bject)

// Set our sessionId variable.

sessionId = result.sessid;

trace ("We are connected!!!");
trace ("Session Id: " + sessionId);

// Load our "Hello World" node (ID = 2)
loadNode(2);

}

So, after we run this application, we should get a very nice surprise... a "Hello
World" from Drupal! But we are still not done here; our next step is to hook up
the text in our Flash TextField to show this exciting text.

Step 6: Hooking up the text

In this next step, we will open up our chapter2. fla project file, where we will give
our TextField an instance name so that it can be referenced within ActionScript.
Fortunately, this step is very simple and only requires that we select the TextField,
and then give it an instance of title in the PROPERTIES panel as shown in the
following screenshot:

PROPERTIES | g

[title |

| Dynamic Text |v|

=7 POSITION AND SIZE

[k

X: 119.5 Y: 170.5

Hello Drupal!
H =
=7 CHARACTER
Famnily |CEDIQ\.1 | o |
Style: |Reg|,\ar v|

Size: 48.0pt Letter spacing: 1.0

Color: I:l L Auto kern

Anti-alias: I Anti-alias for readability | v]

[

[55]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Building a “Hello World” Application

Now that we have given our TextField an instance, the next step is to remove the text
"Hello Drupal" from this TextField so that we can determine if Drupal node data is
used instead.

PROPERTIES |

T

Dynamic Text B

= POSITION AND SIZE

%> CHARACTER

Family: [Georgia [+

Style:

Size; 48.0pt Letter spacing: 1.0
Color:

Anti-alias: | Anti-alias for readability |~

We can now shift our focus back to the main. as file, where we will change our trace
statement within our onNodeLoad function so that it sets the text of this TextField
instead of just printing it to the Output panel. We can do this in ActionScript by
using the following code:

// Called when Drupal returns with our node.
function onNodeLoad(node:Object)

{

// Print out the node title.
title.text = node.title;

}

We can now run our application and see our TextField show the title for our Hello
World! node.

|F'l 6 chapter2.swf

Hello World!

[56]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 2

Now that our application is starting to look like a real Flash application, we need to
take some extra steps to make sure that it is flexible by allowing any node ID to be
used to say "Hello World".

Step 7: Passing the node ID using FlashVars

Since the goal of our Flash application is to dynamically load Drupal node
information, we will need a way to tell our Flash application which node to load.
We can easily hard code the node ID of our "Hello World" Drupal node, but this
approach does not give us much flexibility to apply it to any node within our Drupal
system. We can solve this issue by utilizing FlashVars to pass the node ID to our
Flash application.

Using FlashVars in a Flash application

Flash variables (or FlashVars) are special variables that are passed to a Flash
application that are used to provide a specific functionality for a common
application. They are passed to the Flash application when it is embedded within an
HTML page using the <object> element. For example, we can tell our Hello World
application to load the node data from node 2 using the following HTML code:

<object width="320" height="240">
<param name="movie" value="helloworld.swf" />
<param name="wmode" value="transparent" />
<param name="allowfullscreen" value="true" />
<param name="FlashVars" value="node=2" />
<param name="quality" value="high" />

</object>

Within ActionScript, the node variable is then passed to the root structure and can
be referenced within our main. as file using the root .loaderInfo.parameters
construct. For example, we can determine the node ID passed to our Flash
application by using the following code within our main.as file:

root.loaderInfo.parameters.node

Using this information, we can now create a nodeID variable at the top of our
main.as file, where we will set it to the node ID passed to our Flash application.
We can then replace our hard-coded node value with this variable so that our Flash
application is no longer dependent on a specific node value.

// Declare our variables

var baseURL:String = "http://localhost/drupalbook";
var gateway:String = baseURL + "/services/amfphp";

var sessionId:String = "";

var nodeId:Number = root.loaderInfo.parameters.node;

[57]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Building a “Hello World” Application

// Called when Drupal returns with a successful connection.
function onConnect (result:0bject)

// Set our sessionId variable.

sessionId = result.sessid;

trace ("We are connected!!!");
trace ("Session Id: " + sessionId);

// Load our node.
loadNode (nodeld) ;

}

We are now finished with our "Hello World" application. At this point, we can run
our Flash application so that it will create the chapter2 . swt file, which we will then
use to add to our Drupal web site.

Step 8: Adding it to Drupal

In this step, we can go back to the lessons learned from the previous chapter where
we used the FlashNode module to add a SWF file to our Drupal website. To start, we
will create a new Flash node by navigating to Create Content | Flash, and then give
it a title of "Hello World Application". After we have done that, we can then do what
we did in the previous chapter and select our newly created SWF file using the Flash
file input field. The next step, however, will require us to pass in the FlashVar so that
we can tell our application which node to load. To do this, we will simply expand the
Advanced flash node options, and place node=2 within the FlashVars text field.

Flashvars:
node=2|

Specify any flashvars that need to be passed to the movie. If the input format allows PHP code

you may use PHP to create a dynamic flashwars string.

[58]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 2

We can now save our new node, and see our new dynamic Flash application
in action.

Hello World Application Edit

Sat, 03/21/2009 - 23:37 — admin

Hello World!

And congratulations, we have just said "Hello World" using both Flash and Drupal!

Summary

In this chapter we covered a lot of ground, learning all of the concepts that govern
web service interaction between Flash and Drupal. When dealing with web services,
it is very important to understand how two remote applications communicate and
how to develop our software to account for its asynchronous interaction. This is
typically always overlooked when developers create their first Flash applications
for Drupal, and can easily be avoided if the concepts of web service interaction are
understood and taken into account. Each key concept is highlighted as follows:

¢ Flash and Drupal communicate asynchronously. This means that each function
call made to Drupal from Flash does not return the result immediately after the
call was made. Instead, we need to utilize a callback function that is triggered
when Drupal returns the result from our function call.

¢ We need to wait until the Flash application has finished connecting to Drupal
before making any other calls. Otherwise, we will have a race condition
where our sessionID is invalid for our other calls.

In the next chapter, we will take the concepts learned within this chapter and take it
to the next level by using the popular CCK module to expand the amount of content
that we can utilize within our Flash applications.

[59]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash and CCK

We have built a "Hello World" application, and understood how Flash extracts data
from our Drupal installation; our next task will be addition of content in our Flash
application using Drupal's Content Construction Kit, also known as CCK.

The CCK module allows you to add custom content types and data fields to your
Drupal web site, which can then be utilized to create a more customized Flash
application. In this chapter, we will go over all the technical aspects of Flash and
CCK by walking through a real-life example of building a Flash widget that shows
recipes for a cooking web site. Here is what we will cover in this chapter:

e Overview of a typical recipe web site

¢ Installing and understanding Drupal's Content Construction Kit
e Creating a custom Recipe content type for your Flash application
e Adding custom fields to the Recipe content type

e Building a Flash application that uses data from CCK

e Adding ScrollBars to Flash CCK TextFields

e Creating a Drupal node template for Flash

Overview of a typical recipe web site

In this chapter our goal is to create a Flash widget that shows each recipe for a
cooking web site. Since the structure of most recipe web sites is fairly consistent, I
believe this example will easily illustrate how to create any form of custom content
and display it within a Flash application. I am confident that after you read this
chapter, you should be able to easily apply the lessons learned in this chapter to any
type of custom implementation that your web site requires. So, let's take a moment to
set up Drupal so that its data structure resembles that of a common recipe web site.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash and CCK

If you were to visit any popular recipe web site, you will most likely see a
categorized listing of recipes ranging from cake to pot roast. When you click on
one of these listings, you will see a new page that gives the information necessary
to make that recipe. In Drupal terms, this recipe page is a single node that is
categorized using a content type called Recipe.

Al

Q

It is important to note that in Drupal, the terms node type and content
type are used interchangeably. Although, I will almost always use the
term content type in this book, there are many online tutorials and
documentation that use the term node type to refer to different types of
content. Just keep in mind that node type and content type are both used
to refer to the same thing.

Our goal in this chapter will be to replace the HTML page for each Recipe node
with our own Flash application. We will set up a simple Recipe content type in
Drupal with some necessary fields, which will then be displayed in our Flash
application. Having said that, each recipe in our cooking web site should have
the following information:

e Title

e Description

e Ingredients

e Instructions

But before we can dive into Flash, our first task will be to use CCK to build this
structure from within the Drupal CMS.

Using Drupal’s Content Construction Kit

The CCK module is one of Drupal's most popular, contributed modules, and for a
good reason. It gives the administrator the ability to create custom content types as
well as custom fields that are essential for creating a web site that manages specific
forms of content. We will use this module to create the structure required to enter
content for each recipe in our Drupal web site. But before we can start adding custom
content to our Drupal installation, it is important to first download and install the
Content Construction Kit from http://www.drupal .org/project/cck. Once we
have this module within our modules folder, we can then navigate to Administer |
Modules, where we will select all of the following modules within CCK:

[PUBLISHING]

[62]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172

Chapter 3

CCK
Enabled Name Version Description
Allows administrators to define new content types.
g Content 6.3x-2.2 Required by: Content Copy (disabled), Content Permissions {disabled}, Fieldgroup {disabled), Node
: ’ Referance (disabled), Number (disabled), Option Widgets (dizabled), Text (disabled), User Reference
(disabled)
o Content 6x.gg Enables abiity to import/export fleld definitions.
Copy ; ’ Depends on: Content {disabled}
o Content 6.x-2.2 Set fleld-level permissions for CCK fields,
Permissions = 5 Depends on: Content {disabled)
. Create display groups for CCK fields.
E Fieldgroup 6.x-2.2 piay grotip :
Depends on: Content {disabled)
E Node 6.x-2.3 Defines a field type for referencing one node from another.
Reference 7 Z Depends on: Content {disabled), Text {disabled), Option Widgets (disabled)
Defines numeric field types.
L Nutaber boeRs Depends on: Content {disabled)
Option Defines selection, check box and radio button widgets for text and numeric fields.
E id b.x-2.2 Depends on: Content {disabled)
Widgats Required by: Node Reference (disabled), User Reference (disabled)
Defines simple text fleld types.
Text 6.x-2.2 Depends on: Content {disabled)
Required by: Node Reference {disabled), User Reference [disabled)
g User 6.3-2.2 Defines a field type for referencing a user from a node.
Reference : ’ Depends on: Content {disabled), Text {disabled), Option Widgets (disabled}

Once we have all of the CCK modules selected, we can then click on the Save
Configuration button at the bottom of the page to install CCK into our web site.
Now that we have CCK installed, let's create our Recipe content type.

Creating a new content type

Our first step in building the Drupal structure for a recipe web site will be to create
the content type that will hold each recipe. By default, Drupal comes equipped with
only two different types of content: Page and Story. Each one of these content types
is placed in the default installation, simply because they provide a very generic
method for adding content on our Drupal site. When we add a new Page and Story
to our web site, we are asked to provide a Title and Body for that piece of content.
These are then used to construct a web page, where the title of the web page is
provided from the Title field; and the content of that page is provided using the Body
field. A recipe, however, requires a specific set of data that will be used to describe
the "content" that makes up that recipe. For example, the Body field really does not
make much sense when related to recipes since this is very general. A better design
will be having several fields that relate specifically to a recipe. These fields could be:
Ingredients, Instructions, Description, and so on. CCK gives us the ability to create
a custom content type called Recipe, where we can then provide custom fields to
describe that piece of content.

[63]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash and CCK

First, let's create our custom Recipe content type by walking through the
following steps:

1.

Navigate to the Drupal Administrator section by clicking on the navigation
link called Administer.

Once you are in the administrator section, you will need to click on the link
called Content Types in the Content Management section.

Now, click on the link that says Add content Type.

This should then bring up a page with open fields for you to enter
information about the content type that you wish to create. Each of these
fields are described as follows:

e Name —This is the name of your content type that will be visible to
any visitor(s) of this site.
e Type—This is the internal name for your content type. This name

should not contain any spaces or special characters, and it is also
considered best practice to make this name all lowercase.

e Description—This is the text that is presented below the Name of
this content type when our visitors wish to create a new piece of
content. It is simply used to better describe what the Name means.

We can now fill out all the information for our new piece of content as shown
in the following screenshot:

Content types List

To create a new content type, enter the human-readable name, the machine-readable name, and all other
relevant fields that are on this page. Once created, users of your site will be able to create posts that are
instances of this content type.

Identification

Name: *

[+

| Recipe
L |

The human-readable name of this content type. This text will be displayed as part of the list on the create content page. It is
recommended that this name begin with a capital letter and contain only letters, numbers, and spaces. This name must be
unique,

Type: *

I recipe

The machine-readable name of this content type. This text will be used for constructing the URL of the create content page for
this content type. This name must contain only lowercase letters, numbers, and underscores. Underscores will be converted into
hyphens when constructing the URL of the create content page. This name must be unique.

Description:

Add a new recipe to this website!

& brief description of this content type. This text will be displayed as part of the list on the create content page.

PUBLISHING

[64]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 3

o Let's save this new content type by clicking on the Save content Type
button at the bottom of the page.

We now have a new content type that will be used for each individual recipe on our
web site. We can test this out by clicking on the link in the Navigation menu that
says Create Content, and then clicking on the link that says Recipe. This should
bring up a new page that asks us to enter the Title and Body for that Recipe. If

our users were asked to do the same, they would most likely be very confused at
this point. The input for Title would most likely be understood, but as mentioned
before, the term Body does not mean anything when submitting a recipe and would
typically lead to inconsistent content, based on the assumptions of what the term
Body means to a recipe. The solution to this problem is to create specific fields that
describe each recipe in our system, and once again, CCK comes to the rescue.

Adding custom fields to your Recipe
content type

In this section you will understand that the true power of CCK does not come from
its ability to add new content types to your Drupal system, but in its ability to add
customized fields to each new content type. And the process of adding new fields
is surprisingly simple and intuitive.

To add a new field to the Recipe content type, we will need to revisit the Content
Types page by clicking on Administer | Content Types.

1. Once you are there, you will see a listing of all the content types in the system
along with the Recipe content type. Beside each content type are a set of links
where you can edit, delete, or manage the fields of each individual content
type. To add fields to each recipe, we will first click on the manage fields link
next to the Recipe content type.

2. This will bring up a listing of all the fields that are associated with our Recipe
content type, and also give us the ability to add, delete, reorder, or edit each
individual field. However, for our recipe, we want to add some new fields
that will be more descriptive of each recipe that is created.

[65]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash and CCK

Adding a new field

Within the Add | New field section of the Manage fields page, we are given the
ability to add a new field to our Recipe content type. Each input box in this section

is described as follows:

Add

4« New field

| field_|

[- Select a field type - &

- Select a widget -

.Lahcl Type of data to store.

. Field n.;rnc(a-z, 0-9,._)

Farm element -tD eﬂ't the data.

Label — This is the human readable name for this

field, such as Ingredients.

Field name — This is the machine name for this field. A machine name is used

for internal identification and will most likely not be seen by any common
user. However, this name is extremely important when writing software
that references this particular field; so, it is still important to give it an easily
distinguishable name. It must also be all lowercase and not include any

spaces, such as ingredients.

decimal, integer, text, and so on.

Type of data to store —This is the type of data for the new field, such as

Form element — This allows for each type of data to be entered in different

ways. For example, you can enter a number by either typing it into a text
tield or by selecting if from a drop-down box. Both methods store a data

type of integer, but they are entered differently.

The first field that we will add to our Recipe content type is the Ingredients field.
Before we start adding the necessary data in the required fields, let's first think about
how we would like our users to input the ingredients for their recipe. Most likely,
they would need to enter the Ingredients inside of a large text area that allows for

more than one line. From a CCK perspective, this would
of us adding a Text field that allows for multiple rows of

simply be the equivalent
data entry. Using that

information, we can easily submit the correct data for our new field as shown:

Add

New field

oda
1

IIr'll_:|redient5 field_ [ingredients [Text

Ilq [Te:tt area (multiple rows) @

Label Field name (a-z, 0-9, _) Type of data to stare.

Form element to edit the data.

Now, to add this field, we will simply click on the Save button at the bottom of the
Manage Fields page. This will then bring you to a separate page that allows you to

further refine the behavior of our new field.

[66]

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

[PUBLISHING]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

Chapter 3

I won't go over all the elements on this page because it is very self-explanatory, but
we want to change the number of rows for our Text area to be more than 5, since
recipe ingredients will almost always take up more than 5 lines. To do this, simply
change the Rows text box to have 15 lines. We also want to make sure that the user
always enters the ingredients for every recipe that they submit. We can enforce that
by simply clicking on the Required checkbox. We also need to check the Filtered text
radio button since this will auto-format the input from the user. All of our settings
should now look like the following;:

Recipe settings
These settings apply only to the Ingredients field as it appears in the Recipe content type.

Rows: *
15

Help text:

Instructions to present to the user below this field on the editing farm.
Allowed HTML tags: <a> <big> <code> <éem> <i> <ins> <pre> <g> <small> <sub> <sup> <tt> <ol=
 <li= <p>

Default value

Global settings

These settings apply to the Ingredients field In every content type In which It appears.
E Required

Number of values:

C—

Maximum number of values users can enter for this field.
"Unlimited' will provide an 'Add more' button so the users can add as many values as they like.
Warning! Changing this setting after data has been created could result in the loss of datal

Text processing:
O Plain text

O Filtered text (user selects input format)

[67]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Flash and CCK

After we are done with setting up our field, we can save it by clicking on the button
that says Save field settings. Then, we should be taken back to the Manage fields
page, where our new field has been added to the Recipe content type.

Label Name Type Operations

4 Title Node module form.

<« Menu settings Menu module form.

« Body Node module form.

4 Ingredients field_ingredients Text Configure Remove

After we have the Ingredients field set up for the Recipe content type, our next step
is to repeat the steps given previously to create an Instructions field for the Recipe
content type.

Add

<+ Mew field
|Instructiur|s | field_ ! instructions | [Text W [Te.x't area (multiple rows) E
Label Field name (a-z, 0-9, _) Type of data to store. Form element to edit the data.

When we are finished walking through the steps above for the Instructions field, we
should then have the following fields within our Recipe content type:

Recipe Edit Display fields

Ingredients Instructions

Add fields and groups to the content type, and arrange them on content display and input forms.
You can add a field to a group by dragging it below and to the right of the group.
Mote: Installing the Advanced help module will let you access more and better help.

Label Name Type Operations
Title Node module form.
Menu settings Menu module form.
Body Node module form.
4+ Ingredients field_ingredients Text Configure Remaove
4+ Instructions field_instructions Text Configure Remoave
[68]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 3

We should now have a Recipe content type that has all the necessary elements

for any user to accurately submit a new recipe to our web site. So, let's go ahead

and test this out by going to Create Content | Recipe. Although, you will see the
Instructions and Ingredients fields in the recipe form, you will most likely also
notice that the Body field is still there. This is because the Body field is a default field
for every node in the Drupal system, but luckily, this can also be easily changed.

Changing the default Body field

The difference between default fields and custom fields for a content type may cause
some confusion for any Drupal beginner, simply because they are configured in two
different places. If you go back to the Content Types | Manage Fields section for
the Recipe node type, you will probably notice that there is no option to configure
the Body field like there is for the custom types that we created. To get around this,
Drupal has given the ability to customize these fields by editing content type using
the Edit link for that content type.

After we click on this link, we will expand the section that says Submission Form
Settings. In this section, we should see some options where we can edit the Title and
Body fields for the Recipe content type. Although we can completely remove the
Body field by simply deleting the text in the Body Field label, we can also change
this text so that it represents a recipe. Let's change this field to say Description,
which will prompt each user to give each submitted recipe a description, which

we can use later when we build a page that lists many different recipes.

Submission form settings

Title field label: *
[Title

Body field label:

Descriptian| I

To omit the body field for this content type, remove any text and leave this field blank.

We can save the content type by clicking on the Save content type button at the
bottom of the page.

[69]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash and CCK

Now, when we go back to Create Content | Recipe, we will finally see that our
recipe submission form resembles what any user would expect when they wish to
enter a new recipe. We can take this moment and create a sample recipe by filling
out the contents for the Title, Description, Ingredients, and Instructions for a new
recipe, and then Save that recipe when we are finished.

Southwestern Egg Rolls Edit

Sun, 03/29/2009 - 13:00 — admin

These aren't traditional egg rolis! Small flour tortillas are stuffed with an exciting blend of
Southwestern-style ingredients, then deep fried until golden brown.

Ingredients:

1 skinless, boneless chicken breast half
2 tablespoons minced green onion

2 tablespoons minced red bell pepper
3/4 cup shredded Monterey Jack cheese
5 (& inch) flour tortillas

Instructions:

1. In a medium saucepan over medium heat, cook chicken approximately 5 minutes per side, until meat
is no longer pink and juices run clear.

2. Dice chicken and mix into the pan with onion and red pepper. Cook and stir 5 minutes, until well
blended and tender.

3. Spoon even amounts of the mixture into each tortilla. Fold ends of tortillas, then roll tightly around
mixture, Freeze at least 4 hours.

4. In a large, deep skillet, heat oil for deep frying to 375 degrees F (190 degrees C). Deep fry frozen,
stuffed tortillas 10 minutes each, or until dark golden brown.

Add new comment

Our next step is to show this newly created node inside our Flash recipe application.

Showing CCK fields in Flash

We now shift our focus to Flash and pick up where we left off from the previous
chapter. We will not only show the node title, but also show the CCK fields that we
just created. We will start by first copying the chapter2 directory that we created in
the previous chapter, and then paste our copy as chapter3. We will then rename the
chapter2. fla project within this folder as chapter3. fla. Once we have our new
project for this chapter, we can open it up, where we can modify it to include the
new fields that we just created.

[70]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 3

Building a Recipe widget in Flash

Now that we have our Chapter 3 project open, our first task will be to change the
layout of Flash application so that there is room for the Description, Ingredients, and
Instructions. We will start out by first increasing the size of our stage to 500 x 640.
Once we have done this, we will need to resize our background so that it fits to the
new stage. We will start this by first selecting the whole background region, and then
converting that into a new Movie Clip by selecting Modify | Convert to Symbol
from the Flash menu.

‘Modify Text Commands
Document...

Convert to Symbol... F8

This will then bring up a new dialog, where we can give our new Movie Clip a
name, which we will call mcBackground. We then need to make sure that we check
the Enable guides for 9-slice scaling, which will allow us to resize the background
without affecting the rounded edges.

Convert to Symbol
Name: | meBackground (o—
Type: | Movie Clip I--:-J] Registration: ﬁ __ Cancel
Folder: Library root
™ Enable guides for 9-slice scaling

Once we create a new movie clip from our background, we will then enter this Movie
Clip and then adjust the 9-scale guides so that they only cover the rounded edges.

[71]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash and CCK

We can now exit the background movie clip, and then resize the movie clip to a new
height of 632 using the Properties panel.

Our next task is to move the current title field to the top-left of our Flash application,
and then create some background regions that will hold our new fields. The design
of how this will look is completely up to you, but here is an illustration of what I
just described:

Recipe Title

Ingredients

Instructions

Now that our layout is ready for new content, the next step is to add new TextFields
to hold our recipe content.

Adding dynamic TextFields for Drupal content

Since we have already added dynamic text fields in the previous chapters, we should
be able to breeze through this section pretty quickly. The important thing to note
here is that we will need to create a new layer for each text element within our Flash
application, so that we can keep track of each field separately. We will do this within
the timeline by creating three new layers for each of our new fields, and by then
labelling them so that we can easily determine what they contain.

TIMELINE

a
Al title «a |
Wl description « + @
@l ingredients « » A
" instructions 4 + + @
4l background - @ [0

[72]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 3

Now that we have each one of these separated, we can add new text fields in each
layer, to be used for the description, ingredients, and the instructions. For each new
Text field that we create, we will need to make sure to give them an instance name so
that we can reference them within ActionScript. Each of these instance names should
reflect the names of the fields that we created for our Recipe content type, which will
be description, ingredients, and instructions respectively.

PROPERTIES

JC C |description |

[Dynamic Text B3

This is a deseription of this Recipe.

=7 POSITION AND SIZE

¥

&3 W: 508.1 H: 94.0 =

When we are done, we should have something that resembles the following;:

Recipe Title

This is a description of this Recipe.

Ingredients

1.) Ingredient 1
2.) Ingredient 2
3.) Ingredient 3

Instructions

The instructions for this recipe.

We are now ready to hook up these TextFields to real Drupal content.

[73]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash and CCK

Using ActionScript to show Drupal CCK fields

Since we are picking up where we left off from Chapter 2, we can use most of the
ActionScript that was already written to show "Hello World". We can start this
off by opening up our main.as file, and then we will shift our focus to the
onNodeLoad function.

// Called when Drupal returns with our node.

function onNodeLoad(node:0Object)

{

// Print out the node title.
title.text = node.title;

}

This function gets called after our service call to Drupal's node . get service call and
returns with the contents of the node. In the last chapter, we were simply using the
node title to populate our title textbox that we had created within Flash. Now that
we have new TextFields for each custom recipe field, we can use the node object,
passed to the onNodeLoad function, to reference the data from these custom fields,
and populate our TextFields with that data. Since the contents of this node object are
somewhat a mystery, there is a fantastic tool that is provided with Drupal that will
allow us to examine how this node is structured. We will then be able to use that
information to fill out the contents of our onNodeLoad function to show our
complete recipe node.

Using the Services Administrator

We now need to shift our focus back to Drupal, where we will navigate to the
Service Administrator section by going to Administer | Services. The Services
module comes equipped with a fantastic tool for analyzing any service routine when
working with external applications. It allows for you to call any service routine, with
any specified argument, and then see the result of that routine call. This can be used
to easily analyze the data structure that our Flash application will receive after it
makes a call to any of the service routines available.

[PUBLISHING]

[74]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172

Chapter 3

Since we are using the node.get service routine to load each recipe node, we should
be able to examine how the Description, Ingredients, and Instructions fields are
represented, and then easily apply that to our Flash application. Let's do this by
clicking on the link that says node.get in the node section. This will bring up the
following page:

Name

nid

fields

Services Keys Settings

node.get

Returns & node data.

Arguments (3)

stringsessid (required)
A valid sessid.

intnid (required)
A node ID.

arrayfields (optional)
A list of fields to return.

Call method

Session id required dB0%a1d95d324e70add2ch3cafd1535d

Call method

Required Value

required

optional

The Services module automatically places a valid Session id in the session field, so
we can just keep this field as it is. Because of this, all we really need to provide is the
nid (node ID) of our Recipe node —since the fields field is optional.

% hovering over any content link and then reading the last number in the

In order to determine the node ID for any node within the Drupal
web site, simply navigate to Administer | Content, which will list all
the content within the Drupal web site. The node ID can be found by

URL. For example, if we hover over our Recipe node, we should see a
URL similar to http://localhost/drupalé6/node/5, which means
that our node ID for this node is 5.

[PUBLISHING]

[75]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

After we have the entered the node ID in the nid field, we can now click on the
button that says Call Method. This will then show the results of that call within
the Results section just below the Call Method button. To the untrained eye, this
may look intimidating, but really what this is showing is the results for all the data
contained within the recipe node that we just created, including the Ingredients
and Instructions.

If we look within this data structure, we should see something that looks similar to
the following:

[field ingredients] => Array
(
[0] => Array
(
[value] => 1 skinless, boneless chicken breast half
2 tablespoons minced green onion
2 tablespoons minced red bell pepper
3/4 cup shredded Monterey Jack cheese
5 (6 inch) flour tortillas

[format] => 1

)

Within our Flash application, we can now access the Ingredients field in the node
object (which is what is returned when you call node . get). The ActionScript code
to reference this field should look similar to the following:

node.field ingredients[0] ["value"]

Now, let's apply this concept to show the ingredients and instructions in our
Flash application.

Showing CCK information in ActionScript

Let's move back to your Flash application and open up the main.as file. Since we
now have an understanding of how the node data is structured, we can apply that
knowledge to display the correct information within our Flash application. And, we
will do this within the function onNodeLoad.

[76]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 3

Showing the node description

Earlier in this chapter we changed our node type to represent the Body field as a
description. Because of this change, it may be confusing at first when we access the
Description field, simply because, the node object does not change the data structure
to say description, but keeps it as body. Because of this, we will need to use the code
node . body instead of node .description in order to access the description of our
recipe node.

It is also very important to note that the Body/Description field for the node will
be delivered as HTML text. If we set our description TextField with the contents
of the node description, then we will end up showing the HTML tags along with
the description contents. To solve this issue, Flash has added a new property to
the TextField object that allows you to provide HTML text and it will parse the
HTML and show that text accordingly. This property is called htmlText, and can
be provided like the following;:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)

// Print out the node title.

title.text = node.title;

// Print out the description.
description.htmlText = node.body;

}

Showing the ingredients and instructions CCK field

Since we have already examined the contents of the node object using the Drupal
Services Administrator, we can populate our ingredients and instructions
TextFields using the contents for each CCK field that we created. This will look
as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)

// Print out the node title.

title.text = node.title;

// Print out the description.
description.htmlText = node.body;
// Show the ingredients and instructions.

ingredients.text = node.field ingredients[0] ["value"];
instructions.text = node.field instructions[0] ["value"];

[77]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash and CCK

Now that we have all the fields parsed correctly in ActionScript, we are ready to run
our application to see it in action. But before we are able to test it, we will need to
temporarily hard code the node ID variable at the top of the file, so that it reflects the
recipe node ID that we just created in Drupal.

// Declare our variables

var baseURL:String = "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

var nodeId:Number = 5;

We can now finally test our Flash application, where we should then see something
that looks like the following:

| 800 chapter3.swf |

Southwestern Egg Rolls

These aren't traditional egg rolls! Small flour tortillas are stuffed with an exciting
blend of Southwestern-style ingredients, then deep fried until golden brown.

Ingredients
1 skinless, boneless chicken breast half

2 tablespoons minced green onion
2 tablespoons minced red bell pepper
3/4 cup shredded Monterey Jack cheese

5 (6 inch) flour tortillas

Instructions

1. In a medium saucepan over medium heat, cook chicken approximately 5
minutes per side, until meat is no longer pink and juices run clear.

2. Dice chicken and mix into the pan with onion and red pepper. Cook and stir 5
minutes, until well blended and tender.

3. Spoon even amounts of the mixture into each tortilla. Fold ends of tortillas,
then roll tightly around mixture. Freeze at least 4 hours.

[78]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 3

Although this is very cool, there is still a big question as to what we do when

the ingredients and instructions text does not fit within the TextField region that
we created. As it is right now, any text outside of this region will be clipped and
therefore unreadable. Since we do not want this to happen, we can easily add some
scroll bars to our text fields, so that it can hold any amount of text.

Adding ScrollBars to our TextFields

Surprisingly, thanks to the wonderful components that Flash provides out of the
box, adding scroll bars to our text fields is not that difficult. To add a scroll bar to any
text field, we will use the wonderful UIScrollBar component, which can be found in
the components section of our Flash application. So, moving back to our chapters.
f1a project, we will first open up the COMPONENTS section by clicking on the &
button in our window toolbar on the right-side of the Flash IDE.

COMPONENTS
& User Interface

[:] Button

E CheckBox

B®| ColorPicker
ComboBox
£ pataCrid
T Label
2] List
NumericStepper
B ProgressBar
@ RadipButton
%ﬁ ScrollPane
~o Slider
E‘ TextArea
Textinput
TileList
(] viLoader

B uiscroligar
[T

[PUBLISHING]

[79]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Flash and CCK

We can then easily add a scroll bar to our TextFields by simply dragging a
UIScrollBar component so that it overlaps with that TextField. Once we drop the
scroll bar over the text region, it will snap into place telling us that a connection has
been made. We will do this for both the Ingredients and Instructions TextFields

as shown:

Ingredients

1.) Ingredient 1
2.) Ingredient 2
i3.) Ingredient 3

Instructions

The instructions for this recipe.

After we have our scroll bars in place, the next step is to click on each one of them
and give them an instance name using the Properties panel. We will call each one
ingredientScroll and instructionScroll respectively.

Now that our scroll bars have instance names, we can add some simple code to our
onNodeLoad function so that each scroll bar will refresh as the text is populated
within them. We can do this by calling the update function on each UIScrollBar
component as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{

// Print out the node title.

title.text = node.title;

// Print out the description.
description.htmlText = node.body;

// Show the ingredients and instructions.
ingredients.text = node.field ingredients[0] ["value"];
instructions.text = node.field instructions[0] ["value"];

// Update the scroll bars.

ingredientScroll.update() ;
instructionScroll.update() ;

[80]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 3

When we run our application again, we should be happy to see that our scroll bars
show all the text for each CCK field within Drupal.

an0n chapter3.swf

Southwestern Egg Rolls

These aren't traditional egg rolls! Small flour tortillas are stuffed with an exciting
blend of Southwestern-style ingredients, then deep fried until golden brown.

Ingredients
1 skinless, boneless chicken breast half

2 tablespoons minced green onion
2 tablespoons minced red bell pepper
3/4 cup shredded Monterey Jack cheese

5 (6 inch) flour tortillas

Instructions

1. In a medium saucepan over medium heat, cook chicken approximately 5
minutes per side, until meat is no longer pink and juices run clear.

2. Dice chicken and mix into the pan with onion and red pepper. Cook and stir
5 minutes, until well blended and tender.

3. Spoon even amounts of the mixture into each tortilla. Fold ends of tortillas,
then roll tightly around mixture. Freeze at least 4 hours.

Now that our Flash application works as we would expect, the next step is to change
our nodeId variable back so that any node ID can be passed to our Flash application
to show the recipe content of that node.

// Declare our variables
"http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";

var baseURL:String

var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

After we run the Flash application again, we are now ready to take our Recipe Flash
application and use it within Drupal.

[81]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash and CCK

Creating a Drupal node template for Flash

Moving back to Drupal, our next task is to take our compiled Recipe Flash
application and integrate it into our Drupal system. We will start out by doing the
same thing we did in the previous chapters, and add our Flash application to our
Drupal web site using the FlashNode module.

We can do this by simply going to Create Content | Flash, and then selecting our
new SWEF file where it asks for the Flash file. We can then click on the Save button
to submit this Flash application to our Drupal system. It is very important, at this
point, that we remember the node ID that was created for our Flash node. We can
determine the node ID by looking at the URL and taking note of the number that
comes after http://locahost/drupalé/node/. With our Flash application in place,
we now run into a unique situation that differs from the previous chapters.

In order to get our Recipe application to work as expected, we need to show the Flash
application when anyone visits a recipe node. However, the FlashNode module
attaches our SWF file to a completely separate node type called Flash, and not Recipe.
In order to show that Flash application within a Recipe node type, we will need to
create a node template for our Recipe node, where we will then reference the Flash
application we just submitted using the FlashNode module. We can also utilize this
template to pass in the node ID of the recipe that they are viewing. To accomplish
this goal, we will use a very popular module for Drupal called Contemplate.

Using the Content Template module
(Contemplate)

The Content Template module (Contemplate for short) is a wonderful module that
will allow us to create a template for any content type in our system. A template is
simply a way to tell the system how to display each content type when it is viewed
by each visitor, and we can use this to tell Drupal to show our new Recipe Flash
application when anyone views a Recipe node. To begin, we will first need to
download and install this module by going to http://www.drupal.org/project/
contemplate. Once we have placed this module in the modules folder, we can then
install it by going to Administer | Modules and clicking on the Content Templates
module within the Content section.

E Content

6.x-1.0 Create templates to customize output of teaser and body content.
Templates

After we click on the Save Configuration button at the bottom of the Modules
section, we can now navigate to Administer | Content Templates, where we will
then be given an option to create a template for our Recipe node.

[82]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 3

Content templates
content type Teaser Body RSS
Flash create template
Page create template
Recipe create template
Story create template

When we click on the create template link next to the Recipe node type, we should
then be given a page that will let us customize how each recipe page will look. We
can change the body of the Recipe nodes by expanding the Body section and then
clicking on the checkbox that says Affect body output. At this point, we will get very
creative in how we retrieve our Recipe Flash application, which we submitted earlier
in this section. We can start by first loading the recipe Flash application node using
the node ID that was created when we submitted our Recipe Flash application to
Drupal. Assuming that our Flash node ID was 6, our code should then look like

the following;:
<?php
// Get the Flash application.
$sgl = "SELECT * FROM {node} WHERE nid=%d";
$flash = db fetch object (db query(ssqgl, 6));
?>

Our next task is to add all the additional information to this Flash object by calling
the flashnode load function.

<?php
// Get the Flash application.
$sgl = "SELECT * FROM {node} WHERE nid=%d";

$flash = db fetch object (db query(ssqgl, 6));

// Load the flash node.
flashnode load($flash);

?>

We can now add our FlashVars to this object by providing the node ID of the node
that is being shown. The Contemplate module provides the $node object to each
template so we have access to this node ID by referencing $node->nid.

<?php
// Get the Flash application.
$sgl = "SELECT * FROM {node} WHERE nid=%d";

$flash = db fetch object (db query(ssqgl, 6));

// Load the flash node.
flashnode load($flash);

[83]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash and CCK

// Set the flashvars to the right node Id.
$flash->flashnode["flashvars"] = 'node=' . $node->nid;
?>

Finally, we can show our Flash application using the theme function as follows:

<?php
// Get the Flash application.
$sql = "SELECT * FROM {node} WHERE nid=%d";

$flash = db fetch object (db query(s$sqgl, 6));

// Load the flash node.

flashnode load($flash);

// Set the flashvars to the right node Id.
S$flash->flashnode["flashvars"] = 'node=' . S$node->nid;

// Show the Flash application.

print theme('flashnode', $flash->flashnode, FALSE);
?>

We can now save our template by clicking on the Submit button and then navigate
to our Recipe node to see our Recipe Flash application in action!

Southwestern Egg Rolls View [

Sun, 03/29/2009 - 13:00 = admin

Southwestern Egg Rolls

These aren't traditional egg rolls! Small flour tortillas are stuffed with
an exciting blend of Southwestern-style ingredients, then deep fried
until golden brown.

Ingredients
1 skinless, boneless chicken breast half

2 tablespoons minced green onion
2 tablespoons minced red bell pepper
3/4 cup shredded Monterey Jack cheese

5 (6 inch) flour tortillas

Instructions

1. In a medium saucepan over medium heat, cook chicken 2
approximately 5 minutes per side, until meat is no longer pink and
juices run clear.

2. Dice chicken and mix intothe pan with onion and red pepper.
Cook and stir 5 minutes, until well blended and tender.

3. Spoon even amounts of the mixture into each tortilla. Fold ends
of tortillas, then roll tightly around mixture. Freeze at least 4
hours.

[84]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 3

Summary

In this chapter we learned how to incorporate custom data within our Flash
applications by walking through a real Recipe web site example. By utilizing the
power of CCK in our Flash applications, we have opened the door to a number of
possibilities where Flash can be used to display dynamic content that is specific to
any use case. In addition, we learned how to build a node template that allows us to
use a Flash application as a direct replacement for the default HTML-driven content
for each content type. In this chapter, we learned the following;:

¢ Introduction to CCK and how to utilize its power within Flash

e How to add custom fields to each content type within our Drupal system

e How to change the default fields within Drupal

e Using the Services Administrator to extract node contents to be used in Flash

¢ Building a Flash application to use custom content

e Using a scroll bar to handle long text entries

¢ Adding a content template for our Flash applications
Although we covered much ground in this chapter with regard to text content, we
still have not even scratched the surface for what power Flash can really deliver to

our web site. In the following chapter, we will continue our journey by incorporating
Drupal images into our Flash applications.

[85]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Up to this point, we have learned how to build a Flash application using only
text-based content from the Drupal CMS. Although text-based content is vital for
any web application, it is the use of images that gets the attention of any person
who is using your application, and that sets it apart from other applications. In this
chapter we will learn how to build an image and content-rich Flash application by
discussing the following topics:

e Image handling in Drupal

¢ Adding images to the Recipe content type

e Creating an image container in Flash

e Using ActionScript to load a Drupal image

e Resizing the image to fit inside our image container
e Preserving the Image ratio (scaling)

e Using ImageCache to dynamically resize images for Flash

Image handling in Drupal

I have heard from many Drupal beginners that image handling in Drupal can be

a frustrating process. Not because Drupal lacks the ability to handle images, but
simply because that person must pick between multiple contributed modules that

all claim to do the same thing. This can be intimidating to a person who is exposed

to Drupal for the first time. In this section, I will not go over all the possible ways to
handle images and let you decide which one to use. Instead, I would like to present
my opinion of a good image solution for Drupal, and then build our application from
that approach. Please keep in mind that this approach is subjective and that there are
other ways to do it, but for the sake of your sanity, I will stick with a single method
for image handling, which is using the ImageField plug-in for CCK.

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Drupal Images in Flash

ImageField for CCK

As far as I am concerned, CCK (Content Construction Kit) offers the most flexible
method for adding custom content to our Drupal web site. Although there are
dedicated modules that give us the ability to add custom content, I have found that
it is easier and more consistent to take a single approach to create custom content
through the use of CCK, and the ImageField module uses the power of CCK to
add images to any content type in our system. I believe this flexibility is what gives
ImageField an advantage over other popular image modules in Drupal. In this
section, we will use the ImageField module to build onto the previous chapter by
adding an image to the Recipe content type and then showing that image in our
recipe Flash application.

Installing the ImageField module
In order to successfully install the ImageField module, we will also need to install the
modules that the ImageField module is dependent on. Because of this, we will first
need to install a total of three modules in order to use the ImageField module. These
modules are as follows:

e FileField —http://www.drupal.org/project/filefield

e ImageAPI—http://www.drupal.org/project/imageapi

e ImageField —http://www.drupal.org/project/imagefield

Once we place these three modules in our site's modules folder, we can navigate to
Administer | Modules, where we should see the following:

Defines a file fleld type.

i ¥ Ll : Content bled
[0 FileField 6.-3.0-betaz Dependsion: Content (anabled) _ , ,
Required by: FileField Meta {(disabled), FileField Tokens {disabled), ImageField
{disabled)
0 FileField 6.%-3.0-beta3 Add metadata gamerijg and scon_age tU. F .|E.‘F|efl:l.
Meta Depends on: FileField {disabled), Getid2 {missing), Content {enabled)
FileField S — Token Integration for FileFieid.
Tokens i " Depends on: FileField {disabled), Token {missing), Content (enabled)

Defines an image field type.

B ImageField 6.x-3.0-beta3))
Depends on: Content (enabled), FileField (disabled)

ImageAPI 6.x-1.5 ImageAPI supporting multiple toolkits.
ImageAPI :
6.x-1.5 Uses PHP's bullt-in GD2 image processing support.
GD2
ImageAPI
O o 6.x-1.5 Command Line ImageMagick support.

ImageMagick

[88]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

Given this list of modules, we will select the FileField, ImageAPI, ImageAPI GD2,
and ImageField modules and then click on the Save Configuration button at the
bottom of the page. Once we have done this, we will be able to add images to any
content type in our Drupal system. Let's use this to add an image to our Recipe
content type from the previous chapter.

Adding an Image field to our Recipe content type

Now that we have the ImageField module installed, we can navigate to the Content
Types section in our Drupal administrator by going to Administer | Content Types
and then take the following steps to set up a new Image field for our Recipe

node type.

1. Click on the link that says Manage Fields, next to the Recipe content type.

2. Inthe Add section, let's provide the following information:

Add
4: New field
T ——— T
| Recipe Image [field_ ;rec[pe_image [[File hq [Image hﬂ
Label Field name (a-z, 0-9, _) Type of data to stare. Form elemant to edit the data.

3. Now, click on the Save button to save our new field.

After we save this field, we will see a new page where we can configure our new
image field. To set up our image field, we don't really need to provide anything here,
except maybe the Help text as follows:

Recipe settings
These settings apply only to the Recipe Image fleld as It appears In the Recipe content type.

Help text:

Add an image to your recipe

We can now save our new image field by clicking on the Save field settings button at
the bottom of the page.

[89]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Now, the only thing left to do is move this field higher up in the field list. This will
make it such that the image input from the user is not at the bottom of the form but
closer to the top as you would see in any average recipe web site. We can do this by
clicking on the <} symbol next to the recipe image field, and then dragging it below
the Title field as follows:

Label Name Type Operations
Title Node module form.
+ Recpe Image * field_redpe_image File Configure Remove
Menu settings Menu module farm.
+}» Description Node module form.
<4 Ingredients field_ingredients Text Configure Remowe
+ Instructions field_instructions Text Configure Remove

After we have moved our Recipe Image to where we want it in the node, we can
commit that change by clicking on the Save button at the bottom of the page. Now,
we can modify our recipe from Chapter 3 and add an image to our recipe.

Adding an image to our Recipe node

Since we will need to edit our recipe node from Chapter 2, we will need to first locate
and edit our recipe content that we had previously submitted. The easiest way to do
this is to examine all the content in our Drupal site and then select that recipe node
in the content list. We can do this by going to Administer | Content in our Drupal
administrator section.

This will then list all the content available in our site, where we should see the recipe
we submitted from the previous chapter. We can edit this node by clicking on the
Edit link, next to this listing:

H Southwestern Egg Rolls Recipe admin published edit

Now that we are in the edit screen, we can add an image to our recipe by clicking
the Browse button and selecting the image we would like to use for our recipe. Once
the image is selected, we will need to attach this image to the node by clicking on the
button that says Upload. After our image uploads, we should see something similar
to the following;:

[90]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

Southwestern Egg Rolls view L

Title: *
|5Dul:hw35t3m Eqg Rolls

Recipe Image:

Remove

Add an image to your recipe

Once our image is attached to the node, we can now save this node by clicking on the
button that says Save at the bottom of the page.

Don't be alarmed if you do not see your image on the screen after you save this node.
Just because the image is now shown in the theme of the Recipe content type, does
not necessarily mean that it is not attached to the node. We can verify if it is attached
by using the Services Administrator.

Verifying that the image is attached

Before we navigate to the Services Administrator, we will again need to make a note
of the node ID of the recipe that we attached our image to, which can be determined
by looking at the URL for that page. Once we have this number in our head, we can
then navigate to the Services Administrator by going to Administer | Services. As
discussed in the previous chapter, this section will allow us to use any services that
our system provides with the Services module. To verify that the image was attached
to our node, we will click on the link that says node.get, which will then bring up the
service page for the node.get routine. We can then place the node ID of the recipe
that we just attached the image to, in the box that says nid, and then click on the

Call method button to examine all the contents of the recipe node data structure.

[91]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Within the results of the method call, we should see the following;:

[field recipe image] => Array
{
[0] => Array
{
[£id] == &
[list] == 1
[data] => Array
{
[description] ==>
[alt] =>

[title] ==

[uid] => 1

[filename] => southwestern_eggrolls.jpg

[filepath] => sites/default/files/southwestern_sggrolls.jpg
[filemima] => image/jpeg

[filesize] => 14709

[status] => 1

[timestamp] => 1238372579

This shows that the recipe image field is present in our node, and that it can be
accessed when the node object is provided to our onNodeLoad function. By looking
at the information above, we can then determine our path to the image file by using
the following code in ActionScript:

node.field recipe image[0] ["filepath"];

We can now use this code in our Flash application to show the image of our recipe.

Adding an image to our Recipe
Flash application

Our next step is to show this image in the Recipe Flash application that we built

in the previous chapter. But before we begin, we will need to copy the chapter3
directory and its contents and then paste that directory as chapter4. Once we
have done this, we will then need to rename the chapter3. fla file within this new
directory to chapter4.fla, and then open that project up in Flash. We will now
expand our Recipe application to include an image from Drupal. Once we have this
project open, we will start by adding a MovieClip container where our image will
be shown.

[92]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

Adding a MovieClip container for our image

The first step when adding any new element to a Flash application is to create a
new layer in the timeline to place the objects that will be used for that element. So,
shifting our focus up to the timeline, let's create a layer called image, and place it
just above the description layer as shown:

TIMELINE | COMPILER ERRORS | OUTPLT
3l title «am|m
1 imag: D EE |
@l description « @ |
4l ingredients « @l
Al instructions « @ 0
@l background - @0

Before we can add the image to our stage, we must first make sure we provide room
for the image to be shown. Looking at the layout of our Recipe application, a good
place for an image will most likely be to the left of the description. So, let's unlock the
description layer and change the TextField and background sizes to make room for
an image as shown:

Recipe Title

‘This is a description of this Recipe.

Ingredients

(1) Inorediont 1

Once we are done with making room for our image, we can now lock all the layers
except for the image layer, and then add rectangle object where we would like to
show the image using the [, from the toolbar.

Recipe Title

‘This is a description of this Recipe.

Ingredients

i1.) Ingredient 1

[93]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Drupal Images in Flash

In order to reference this area within our ActionScript, we need to convert this
rectangle into a MovieClip. This can be done by selecting the rectangle object you
just created (using the ® from the toolbar) and clicking on the rectangle we just
created. Once it is selected, you can then go to the Modify menu item and select
Convert to Symbol.

DL Text Commands
Document...

Convert to Symbol... F8~

This will bring up another window, where we can give our Movie Clip a name

as follows:
Convert to Symbol
Name: |mcRecipelmage | e
. == x : : oo ()
Type: | Movie Clip I-.r] Registration: (__Cancel

Folder: Library root

| Basic)

After you have finished converting our rectangle object into a Movie Clip, we
can then give it an instance name using the PROPERTIES section. Let's call our
instance, image.

L] .
Eegmm— [Recipe Title
E |image | @ ™
[Movie Clip I =]
Instance of: mcRecipelmage
<> POSITION AND SIZE =
X: 16.0 Y: 30.0
] w: 195.0 H: 145.0 i

Now that our image MovieClip has been added, our next task is to use ActionScript
to load the image from Drupal's ImageField into this movie clip object.

[94]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

Using ActionScript to load the Recipe image

In order to load our image into the movie clip that we just created, we will need to
tap into the ActionScript code where the node has finished loading and passes the

node information to the onNodeLoad function. As it stands right now, this function
looks like the following within our main. as file:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{

// Print out the node title.

title.text = node.title;

// Print out the description.
description.htmlText = node.body;

// Show the ingredients and instructions.
ingredients.text = node.field ingredients[0] ["value"];
instructions.text = node.field instructions[0] ["value"];

// Update the scroll bars.
ingredientScroll.update () ;
instructionScroll.update () ;

}

We are now ready to add our code to this function to load an image provided from
Drupal. To do this, we will start with setting up the path to our image.

Working with the Image path

Since we have already validated that our image was attached to the recipe using the
Services Administrator, we now have access to this image path by referencing our
image field in the node object as follows:

node.field recipe image[0] ["filepath"];

The only problem with this code is that the value of the filepath provided

from the image field is relative to the base installation of our Drupal web site. This
means that our image path may look like sites/default/files/image.jpg. In
order for Flash to consistently load an image from a remote source, it must first
have an absolute path to the image it wishes to load. Converting the relative path
given from the image field to an absolute path would then look something like
http://www.mysite.com/sites/default/files/image.jpg. In order to perform
this conversion from relative to absolute paths, we will need to modify the code
above so that we can provide the URL of our web site and then append the relative
path to that URL.

[95]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Given that we have already defined the baseURL variable at the top of the main.as
file, we can fix our path to include the absolute path using the following code within
the onNodeLoad function.

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)

{
// Print out the node title.
title.text = node.title;
// Print out the description.
description.htmlText = node.body;
// Show the ingredients and instructions.
ingredients.text = node.field ingredients[0] ["value"];
instructions.text = node.field instructions[0] ["value"];
// Update the scroll bars.
ingredientScroll .update() ;
instructionScroll.update () ;
// Load the image
var imagePath:String = baseURL;
imagePath += "/";
imagePath += node.field recipe image[0] ["filepath"];
trace(imagePath);

}

At this point, we are doing nothing with this image path besides just displaying it
within our debugger using the trace function. Our next step here is to display the
image by replacing the trace function call with a new function that we will create
called 1oadImage, which will take the path of the image as an argument and then
load that image into our MovieClip container.

Creating a loadimage function

It is considered good code practice to break apart different elements of functionality
into their own functions. This makes the code more readable, reusable, and
maintainable. Loading an image is something that would definitely fit this criterion
and, therefore, should get its own function, which we will then call within our
onNodeLoad function. Our first task will be to create what is called a stub function,
which will simply be a placeholder to the ActionScript that will load the image into
our MovieClip. We can do this by simply replacing the trace statement, in the code
from the previous section, with our own custom function called 1oadImage, and
then defining a simple function below the onNodeLoad routine as follows:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)

{

[96]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

// Load the image

var imagePath:String = baseURL;

imagePath += "/";

imagePath += node.field recipe image[0] ["filepath"];
loadImage (imagePath) ;

}

// Load an image into a movie clip.
function loadImage(filepath:String)

{
}

We are now ready to take this one step further and load the image of the path given
to this function into our image MovieClip.

Loading an Image

In order to load an image in ActionScript, we will need to utilize a standard
ActionScript 3 class called Loader. The Loader class is used to load files into our
Flash application including images. In order to use this class, we will first need to
declare an instance, which we will just call imageLoader. Since this variable will
eventually be needed within multiple places in our main. as file, it will need to

be a global variable, which means it will need to be accessible within the entire
ActionScript code. To create a global variable, we will need to place it at the top of
the main.as file, outside of any function. A good place for us to declare this variable
is below the nodeId variable that we have already defined.

// Declare our variables

var baseURL:String = "http://localhost/drupalé";

var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

var nodeId:Number = root.loaderInfo.parameters.node;

// Declare our imageLoader
var imageLoader:Loader;

Now that we have the imageLoader declared, we can place the instantiation of this
variable within our 1oadImage function. We can also add a check to make sure our
image path is valid before instantiating this loader variable.

// Load an image into a movie clip.
function loadImage(filepath:String)

{
// If the filepath exists...
if(filepath) {
// Instantiate our loader.
imageloader = new Loader();
}
}

[97]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Drupal Images in Flash

Now that we have this loader declared and instantiated, our next step is to add the
Event listeners, which will be used to handle the events when the image has finished
loading, and in the event that an error has occurred. To do this, we will need to
create a new function called onImageLoaded, which we can place directly below the
loadImage function. This new function will be a callback function that will be called
when the image has finished loading. As for handling error conditions, we have
already defined a callback function in the previous section called onError that

we can use for this image loader also.

// Load an image into a movie clip.
function loadImage(filepath:String)

{

// If the filepath exists...
if (filepath) ({

// Instantiate our loader.

imagelLoader = new Loader () ;

// Add our event listeners.
imagelLoader.contentlLoaderInfo.addEventListener (Event.COMPLETE,
onImageloaded) ;

imagelLoader.contentLoaderInfo.addEventListener

(IOErrorEvent.IO ERROR, onError);

imageLoader.addEventListener (IOErrorEvent.IO ERROR, onError);

}

// Called when an image has finished loading.
function onImageLoaded(event:Event)

{
}

The last and final step to load an image is to add this loader to the MovieClip that
we created, which will hold the image followed by a simple call to load the image.
To add the loader to the MovieClip, we can use the standard Flash function called
addchild, which is used to add any Object to a MovieClip. As for loading the
image, we will use the 1oad function on the imageLoader object, using another
standard class in Flash called URLRequest. The URLRequest class is used to handle
all communication between two remote locations, as well as enforce cross-domain
policies that Flash has introduced for security reasons. To use this class, we will just
pass the path of our image into the constructor of the URLRequest and then pass that
object to the 1oad function of our imageLoader. Below, you will find the complete
loadImage function and onImageLoaded callback function:

// Load an image into a movie clip.
function loadImage(filepath:String)

{

// If the filepath exists...
if (filepath) {

[98]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Chapter 4

// Instantiate our loader.
imagelLoader = new Loader() ;
// Add our event listeners.
imageLoader.contentLoaderInfo.addEventListener

(Event.COMPLETE, onImageLoaded) ;
imageLoader.contentLoaderInfo.addEventListener
(IOErrorEvent.IO_ERROR, onError) ;
imageLoader.addEventListener (IOErrorEvent .IO_ERROR, onError) ;
// Add this loader to the image MovieClip.

image.addChild (imageLoader) ;

// Load the image.
imageLoader.load (new URLRequest (filepath)) ;

}

// Called when an image has finished loading.
function onImagelLoaded(event:Event)

{
}

We are now ready to run this application to test its functionality, but we will first
need to hard code our node1d variable back to the number value of our Recipe node
that we created in Drupal.

// Declare our variables

var baseURL:String "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

var nodeId:Number = 5;

We can now run this application and see our Drupal image load into our MovieClip.
However, once the application loads, you will most likely notice an obvious flaw in
that our image does not fit within the MovieClip container that we created for it.

Southwestern Egg Rolls

aren't iraditional egg rolls! Small flour
s are stuffed with an exciting blend of
vestern-style ingredients, then deep fried

2 tablespoons minced red bell pepper

Obviously, we still have some work to do here to resize this image to the
correct dimensions.

[99]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Resizing an image

One thing to note about our method for loading an image is that once the image has
been loaded into the image MovieClip, it will automatically resize the MovieClip

to hold that image. The approach we need to take here is to resize the MovieClip
back to its original size after the image has loaded. This will require us to keep a
global variable that stores the size of the image MovieClip before we even start to
load it. We can do this by declaring a rectangle variable that we will set within the
loadImage function, and then use again to resize the image in the onImageLoaded
function. Since this variable is needed within two different functions, it will also need
to be a global variable, which we can place below the imageLoader variable that we
have already defined.

// Declare our variables
"http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";

var baseURL:String

var sessionId:String = "";
var nodelId:Number = 5;

// Declare our imageLoader and imageSize
var imagelLoader:Loader;
var imageSize:Rectangle;

Since this variable was declared as global, we can now use it within any function and
they will all reference the same variable. We can start this by storing the original size
of the image within the 1oadImage function:

// Load an image into a movie clip.
function loadImage(filepath:String)
{
// If the filepath exists...
if(filepath) {
// Instantiate our loader.
imageloader = new Loader () ;
// Add our event listeners.
imagelLoader.contentLoaderInfo.addEventListener
(Event.COMPLETE, onlImagelLoaded) ;
imagelLoader.contentLoaderInfo.addEventListener
(IOErrorEvent .IO_ERROR, onError) ;
imageLoader.addEventListener (IOErrorEvent .IO ERROR, onError) ;
// Store the size of the image before loading.
imageSize = new Rectangle
(image.x, image.y, image.width, image.height);
// Add this loader to the image MovieClip.

[100]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

image.addChild(imagelLoader) ;
// Load the image.
imagelLoader.load (new URLRequest (filepath)) ;

}

Now that we have stored the size of our MovieClip before we load the image, we can
now resize the MovieClip back to its original size after the image loads. We can do
this within the onImageLoaded function.

// Called when an image has finished loading.
function onImagelLoaded(event:Event)
// Resize our image back to its original size.
imageLoader.width = imageSize.width;
imageLoader.height = imageSize.height;

}

When we run our application now, you will see that it looks much better than before!

Southwest_ern Egg Rolls

\ These aren't traditional egg rolls! Small flour
tortillas are stuffed with an exciting blend of

Southwestern-style ingredients, then deep fried
until golden brown.

I
Ingredients
1 skinless, boneless chicken breast half ';1

Although this may look good, under close inspection we can see that there is a slight
horizontal distortion in our image. The reason for this distortion is because we are
not preserving the ratio (width/height) of the image when it is resized. From looking
at the code above, we are assuming that the ratio of the MovieClip that we created to
hold the image will have the exact same ratio as the image we are loading. To solve
this problem, we will need to revise our code above to account for the ratio of the
loaded image and use that to properly resize our MovieClip according to the loaded
image's width and height ratio.

[101]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Preserving the width and height ratio (scaling)

In order to preserve the image ratio when loading our recipe image, we will need

to apply the same width/height ratio to our MovieClip after the image has loaded.
Our first task will be to determine the image ratio of the loaded image. This can be
accomplished by examining the event object that was passed to the onImageLoaded
function by the event handler. This event object contains a property that points to

the object that triggered the event, which is called the target. This just so happens

to be a pointer to the image that was loaded in our MovieClip, and thus can be used
to determine the ratio by dividing the width by the height of the target. We will
first delete our previous code within the onImageLoaded function, and then replace it
with this functionality as follows:

// Called when an image has finished loading.
function onImagelLoaded(event:Event)
{
// Determine our image ratio.
var imageRatio:Number = event.target.width / event.target.height;

}

Our next task is to use this ratio and apply that when resizing the MovieClip
container back to its original size. We can do this by calculating the ratio of our
MovieClip and then building a scaled rectangle that will represent the dimensions

of the image that will fit within our MovieClip. Our goal here is to pick the largest
image size possible, where its width and height can both fit within the confines of the
original MovieClip size. The code to do this might be intimidating, so I have tried my
best to comment the code to illustrate what each line is doing.

// Called when an image has finished loading.
function onImagelLoaded(event:Event)
{
// Determine our image ratio.
var imageRatio:Number = event.target.width / event.target.height;

// Set up our scaled rectangle by initializing it

// to the MovieClip size.

var scaledRect:Rectangle = new Rectangle

(imageSize.x, imageSize.y, imageSize.width, imageSize.height);

// Determine our MovieClip ratio.
var mcRatio:Number = (imageSize.width / imageSize.height);

// If the MovieClip ratio is greater than the image Ratio.
if (mcRatio > imageRatio)

{

// Set the scaled rect to be the same as the MovieClip height.
scaledRect.height = imageSize.height;

[102]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 4

// The width is the MovieClip height multiplied
// by the image ratio.
scaledRect.width = Math.floor (imageSize.height * imageRatio);

}

else

{
// The scaled rectangle is the MovieClip width divided
// by the image ratio.
scaledRect.height = Math.floor (imageSize.width / imageRatio) ;
// The scaled rectangle is the same as the MovieClip width.
scaledRect.width = imageSize.width;

}

// Resize and center our image.

imageLoader.x += (imageSize.width - scaledRect.width) / 2;
imageLoader.y += (imageSize.height - scaledRect.height) / 2;
imageloader.width = scaledRect.width;

imageloader.height = scaledRect.height;

}

Once we run our Flash application, we will see that the image has been resized
according to the correct image ratio. This will allow Drupal to load any size image
into your Flash application and then automatically resize those images, while at the
same time, maintain the original aspect ratio.

Southwestern Egg Rolls

These aren't traditional egg rolls! Small flour
tortillas are stuffed with an exciting blend of

Southwestern-style ingredients, then deep fried
until golden brown.

QR
Ingredients
1 skinless, boneless chicken breast half

T

Using this method allows for our Flash application to handle larger images from
Drupal, but you can probably imagine how this is very inefficient since loading
large images can slow down any application. We can take this one step further by
dynamically resizing our images from within Drupal before they are even loaded
into our Flash application. This will clearly illustrate the power we get when
combining Flash with a Content Management System. The module that we will use
to achieve this dynamic image resizing is the fantastic ImageCache module.

[103]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Using Drupal's ImageCache with Flash

Before we begin with this section, we will first need to go to http://www.drupal.
org/project/imagecache and download and install the ImageCache module into
our Drupal installation.

ImageCache

Enabled MName Version Description

ImageAP] supporting multiple toolkits.

o R S Required by: ImageCache (disabled), ImageCache UI (disabled)

ImageAPI
4

6.x-1.5 Uses PHP's bullt-In GD2 Image processing support
GD2
ImageAPI
= ¥ = X-1.5 Command Line ImageMagick support
ImageMagick
Dynamic Image manipulator and cache
E ImageCache 6.x-2.0-beta8 Depends on: ImageAPI {enabled)
Required by: ImageCache UI {disabled}
ImageCache ImageCache User Interface
I 6.x-2.0-betag 0 ; Bl
uI Depends ocn: ImageCache {disabled), ImageAP! (enabled})

The ImageCache module is basically a dynamic image manipulation module that we
will use with our Flash application to ensure that our recipe image is not too large
when we load it into our application. This is critical in making sure that bandwidth
is preserved and our Flash application is not loading any unnecessarily large images,
which will also improve the speed at which our images load into our Recipe node.
After we have this module installed by clicking on the Save Configuration button,
we will then need to navigate to the ImageCache administrator section found at
Administer | ImageCache, where we will create our recipe image preset.

Creating an ImageCache preset

Once we are in the ImageCache administrator section, we can create a preset for our
Recipe content type by clicking on the link that says Add new preset, which will
then take us to a new page where we can enter our preset name. Let's call our recipe
image preset recipe_image.

ImageCache List

Preset Namespace: *
[recipe_imagel I

The namespace is used in URLs for images to tell imagecache how ta process an image. Please

underscores {_), and hyphens (-] for preset names.

[Create New Preset)

[104]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Chapter 4

After we accept this name by clicking on the Create New Preset button, we will see a
new page where we can select different actions to perform on our recipe image. Since
we will want to scale our image to a certain width and height, while maintaining
aspect ratio, we can select the Add Scale action from the New Actions listing.

Within the width and height input boxes, we can either provide a percentage scale
(using the %), or we can provide a maximum dimension in pixels to scale the image.
Since we already know the maximum size of our image from our MovieClip, we can
provide those exact values into the ImageCache width and height settings on this
page. So, going back to our Flash application, we can determine the width and height
of our MovieClip by looking at the Properties section. We will now want to copy over
those values into the width and height boxes for our ImageCache settings as shown:

Add imagecache_scale to recipe_image
The directory sites/defaull/files/imagecache/recipe_image has been created.
ht:
=
o Ixmnqe | @
width:
[Moviectp v 195
Ry Enter a width in pixels or as a percentage. |.e. 500 or 80%
Instance of: mcRecipelmage Swap... 2 % -
e Height:
« POSITION AND SIZE -
|145 |
X: 16.0 Y: 50.0 Enter a height in pixels or as a percentage. |.e. 500 or 80%
& w: 195.0 H: 1450 O Allow Upscaling
Let scale make images larger than their original size
Add Action

Now that we have provided the correct dimensions for our ImageCache scaling, we
will save this by clicking on the Add Action button on the ImageCache scaling page,
which will then show your field added to the Actions panel.

Edit preset: recipe_image

Preset Namespace:

Irecipe_image

The namespace is used in URL's for images to tell imagecache how to process an image.

Please only use alphanumeric characters, underscores (), and hyphens (-} for preset names.
Actions
Action Settings

#« Scale width: 195, height: 145, upscale: No Configure Delete

MNew Actions

[105]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Drupal Images in Flash

We now need to make sure that this change commits by clicking on the Update
Preset button. At this point, our configuration for the recipe image scaling is
complete. We can now shift our focus back to Flash, where we will modify our
code to load the ImageCache image instead of the original image provided from
the ImageField module.

Adding an ImageCache image in Flash

Adding an ImageCache image in Flash might be a little trickier than expected, simply
because the manipulated image path is not provided to us within the node object like
the ImageField image. Because of this, we will need to understand how ImageCache
stores all the converted images, and then modify our Flash application to use the
ImageCache version.

ImageCache uses directory hierarchy to categorize all dynamically manipulated
images. Fortunately, this can be used in our Flash application to point to the right
image. In the previous section, we created a preset called recipe_image, which we
used to add a resize action to all images submitted for the Recipe content type.
The ImageCache module uses this name as a sub directory within an imagecache
directory in the Drupal files directory as shown in the following directory tree:

£ files .htaccess .DS_Store
[modules » | [flash » [recipe_image >
settings.php f:] imagecache
@ imagecache_sample.png
[imagefield_thumbs -
= southwest...ggrolls.jpg

Within this folder, it will then place the dynamically converted image using the same
file name as the original. This is a good thing, because we can now create a path
within ActionScript that can link to the ImageCache image, since we can determine
the filename from our node object.

Changing our ActionScript for ImageCache

Moving back to our main. as file, we can now construct the correct path needed
to reference the ImageCache version of our images by modifying our previous
imagePath variable. Instead of referencing the £ilepath for our image, we can now
include the new ImageCache base path and then append the £ilename onto that
path. This will then create the path we need to reference the dynamically resized
image from ImageCache.

// Load the image

var imagePath:String = baseURL;

imagePath += "/sites/default/files/imagecache/recipe image/";

imagePath += node.field recipe image[0] ["filename"];

loadImage (imagePath) ;

[106]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 4

At this point, we can run our Flash application and should then see the ImageCache
image load instead of the full size image.

Southwestern Egg Rolls

These aren't traditional egg rolls! Small flour
tortillas are stuffed with an exciting blend of
Southwestern-style ingredients, then deep fried
until golden brown.

—

Ingredients
1 skinless, boneless chicken breast half

2 tablespoons minced green onion
2 tablespoons minced red bell pepper

3/4 cup shredded Monterey Jack cheese

Instructions

1. In a medium saucepan over medium heat, cook chicken approximately 5 |~
minutes per side, until meat is no longer pink and juices run clear.

2. Dice chicken and mix into the pan with onion and red pepper. Cook and stir
5 minutes, until well blended and tender.

3. Spoon even amounts of the mixture into each tortilla. Fold ends of tortillas, _J
then roll tightly around mixture. Freeze at least 4 hours.

[«

Although this may look like there is no difference using ImageCache and not using
ImageCache; the huge difference here is efficiency. By dynamically resizing our image
to fit the size of our Flash image area, we are not taking on any bandwidth overhead
of loading an image larger than the region needs to show. This can then be easily
translated into money saved since that bandwidth can be used to service other clients.

Our next step is to modify the node1d variable, within the main. as file, back to the
FlashVar setting, so that we can place our new Recipe application within Drupal.

// Declare our variables

var baseURL:String = "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";
var sessionId:String = "";

var nodeId:Number = root.loaderInfo.parameters.node;

After we run our application again, we are now ready to change our old Recipe
application to our new and improved one.

[107]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Images in Flash

Adding the new Recipe Flash application
to Drupal

Since we have already done all the hard work with the node templates, this step
simply involves us overwriting the old Recipe Flash application with our new one.
To do this, we will first navigate to the Administer | Content section, where we
will then locate our Flash node that we used to originally submit our Recipe Flash
application (this is not the same node as the Recipe node). Once we have found the
Flash node, we need to edit that node by clicking on the edit link next to this node.
We can then change our old Flash application by simply uploading the new one
using the Flash file input, and finally save our node when we have selected our
new application. After it has been saved, we can then navigate to our Recipe node
and see our new image in action!

Southwestern Egg Rolls fien Edit

Sun, 03/25/2009 - 13:00 — admin

Southwestern Egg Rolls

These aren't traditional egg rolls! Small flour
tortillas are stuffed with an exciting blend of
Southwestern-style ingredients, then deep
fried until golden brown.

Ingredients

1 skinless, boneless chicken breast half
2 tablespoons minced green onion
2 tablespoons minced red bell pepper

3/4 cup shredded Monterey Jack cheese

Instructions

1. In a medium saucepan over medium heat, cook chicken
approximately 5 minutes per side, until meat is no longer pink and
juices run clear.

2. Dice chicken and mix into the pan with onion and red pepper. Cook
and stir 5 minutes, until well blended and tender.

3. Spoon even amounts of the mixture into each tortilla. Fold ends of
tortillas, then roll tightly around mixture. Freeze at least 4 hours.

PUBLISHING

[108]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 4

Summary

At this point, we have all the tools necessary to build some visually stunning Flash
applications, where the content is provided using Drupal CMS. But, this chapter
also illustrates another powerful aspect of combining Flash technology with a
Content Management System. Drupal can be used as a content delivery mechanism
to Flash. It can also be utilized as a manipulator of data, so that it can efficiently be
streamlined into our Flash applications. The perfect example of this power is our
use of the ImageCache module, where we built our Flash application to display
images that were dynamically resized to fit within the Flash image region. Without
a Content Management System, this functionality and integration would require a
significant amount of work, whereas with Drupal, it becomes easily managed and
tuned to whatever use case you may require. And the power is not in just resizing
images! We can take this same concept and apply any filter imaginable (provided
by ImageCache) and then show the result of those transformations within Flash to
deliver a truly breathtaking experience to our users.

In this chapter, we covered all the aspects of image handling within Flash and
Drupal by covering the following key topics:

e Using ImageField to load images in Drupal

¢ Loading those images in Flash

¢ Resizing images in Flash

e Retaining the aspect ratio when resizing

e Using ImageCache to dynamically resize images for our Flash applications

In the following chapter, we will take our media handling adventure to a new level
by discussing how to handle audio within Flash and Drupal.

[PUBLISHING]

[109]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

Within the past five years, there has been a major change in the type of content found
on the World Wide Web. In just a few short years, content has evolved from being
primarily text and images, into a multimedia experience! Drupal contributors have
put much effort in making this integration with multimedia as easy as possible.
However, one issue still remains: in order to present multimedia to your users, you
cannot rely on Drupal alone. You must have another application layer to present
that media. This is most typically a Flash application that allows the user to listen or
watch that media from within their web browser. In the following chapters, we will
cover all the necessary steps to integrate multimedia into our Drupal web site by
building a custom Flash application that works seamlessly with Drupal multimedia,
starting with audio content. Here is what we will learn in this chapter:

e Working with audio in Drupal

e Building a custom audio player for Drupal

e Creating an audio-handling class using ActionScript 3.0
¢ Loading and playing audio in Flash

e Adding controls to your custom audio player

Working with audio in Drupal

Integrating audio in Drupal is surprisingly easy, thanks to the contribution of the
Audio module. This module allows you to upload audio tracks to your Drupal
website (typically in MP3 format), by creating an Audio node. It also comes with a
very basic audio player that will play those audio tracks in the node that was created.
To start, let's download and enable the Audio module along with the Token, Views,
and getID3 modules, which are required for the Audio module. The modules that
you will need to download and install are as follows:

e Audio—http://www.drupal.org/project/audio
e Views—http://www.drupal.org/project/views

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Drupal Audio in Flash

o Token—http://www.drupal.org/project/token
o getID3—http://www.drupal.org/project/getid3

At the time of writing this book, the Audio module was still
+ considered "unstable". Because of this, I would recommend
downloading the development version until a stable release has
’ been made. It is also recommended to use the development or
"unstable" versions for testing purposes only.

Once we have downloaded these modules and placed them in our site's modules
folder, we can enable the Audio module by first navigating to the Administer |
Modules section, and then enabling the checkboxes in the Audio group as follows:

Audio
Enabled Name Version Description
Allows you to upload and playback audio files.
Depends on: Token (enabled), Views {enabled)
v Audio B.x-1.x-dev Required by: Audio Attach (enabled), Audio Feeds (disabled), Audio getID3
{enabled), Audio Images (enabled), Audic Import (disabled), Audio Playlist
{disabled)
Allows audio files to be attached to any node type.
E Audio & -1 den Depends on: Audio (enabled), Content (enabled), Node Reference {enabied),
Attach ’] Token {enabled), Views (enabled), Text (enabled}, Option Widgets {enabled)
Required by: Audio Playlist (disablad)
O Audio Euxl x-dey Frovide XSPF PLS, and M3U audio XML feeds.
Feeds ' ' Depends on: Audio (enabled), Token (enabled), Views {enabled)
Adds the abllity to read artist info from and write to audio files.
o Audio Bl x-dey REGUIrES that the getlD3 library be installed.
getID3 ' i Depends on: Audio (enabled), getID3{) (enabled), Token {enablad), Views
{enabled)
B Audio P e Adds the abllity to attach album art to audio nodes.
Images ' ' Depends on: Audio (enabled), Token (enabled), Views {enabled)
O Audio Gt Allows audio medule admins to import batches of audio files,
- Import : : Depends on: Audio (enabled), Token (enabled], Views {enablad)
Provide ‘Add to playlist’ link to audia content.
D Audic P e Depends on: Audio (enabled), Audio Attach (enabled), Token (enabled),
Playlist ; " Wiews (enabled), Content {enabled), Node Reference {enabled), Text
{enabled), Option Widgets (enabled)

[112]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

After you have enabled these modules, you will probably notice an error at the top of
the Administrator section that says the following;:

| The getID3() module cannot find the getID3 library used to read and write ID3 tags. The
;site administrator will need to verify that it is installed and then update the settings.

This error is shown because we have not yet installed the necessary PHP library to
extract the ID3 information from our audio files. The ID3 information is the track
information that is embedded within each audio file, and can save us a lot of time
from having to manually provide that information when attaching each audio file to
our Audio nodes. So, our next step will be to install the getID3 library so that we can
utilize this great feature.

Installing the getID3 library

The getID3 library is a very useful PHP library that will automatically extract audio
information (called ID3) from any given audio track. We can install this useful utility
by going to http://sourceforge.net/project/showfiles.php?group_1id=55859,
which is the getID3 library URL at SourceForge.net. Once we have done this, we
should see the following:

getID3() is a PHP script that extracts useful information (such as ID3 tags, bitrate, playtime, etc.} from MP3s & other multimedia

file formats (Ogg, WMA, WMV, ASF, WAV, AVI, AAC, VQF, FLAC, MusePack, Real, QuickTime, Monkey's Audio, MIDI and maore).
Package Release Date Notes / Monitor Downloads
getID3(} 1.x 1.7.9 March 9, 2009 E‘ |:;| Download
getID3(} beta 2.0.0b5 March 9, 2009 B =3 Download
getID3(} User Modules getid3-1.7.8-5VG January 8, 2007 B = Download
getID3() Windows Support 2003.12.29 December 29, 2003 B =3 Download

We can download this library by clicking on the Download link on the first row,
which is the main release. This will then take us to a new page, where we can
download the ZIP package for the latest release. We can download this package
by clicking on the latest ZIP link, which at the time of writing this book was
getid3-1.7.9.zip.

[113]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

Once this package has finished downloading, we then need to make sure that

we place the extracted library on the server where the getID3 module can use it.
The default location for the getID3 module, for this library, is within our site's
modules/getid3 directory. Within this directory, we will need to create another
directory called getid3, and then place the getid3 directory from the downloaded
package into this directory. To verify that we have installed the library correctly, we
should have the getid3.php at the following location:

D files - .DS_Store .cvsignore .D5_Store I_] Idelete any...encies.txt *
(] modules £ audio » .DS_Store changelog.txt extension.....dbm.php
settings.php Bl cck - L__| getid3 L:\ demos - extension....mysqgl.php
[contemplate - [getid3.info dependencies.txt getid3.lib.php
&3 filefield » [getid3.install [getid3
[flashnode > [getid3.module [helperapps - module.archive.gzip.php
[:| getid3 LICENSE.txt license.commercial.txt module.archive.rar.php
[imageapi - license.txt module.archive.szip.php
D imagecache - readme.txt module.archive.tar.php
[imagefield > structure.txt module.archive.zip.php
[services - Zipinfo. TXT module.a...eo.asf.php
(i token - module.au....bink.php
D views - module.au...eo.flv.php

Our next task is to remove the demos folder from within the getid3 library, so that
we do not present any unnecessary security holes in our system.

Once this library is in the correct spot, and the demos folder has been removed, we
can refresh our Drupal Administrator section and see that the error has disappeared.
If it hasn't, then verify that your getID3 library is in the correct location and try again.
Now that we have the getID3 library installed, we are ready to set up the Audio
content type.

Setting up the Audio content type

When we installed the Audio module, it automatically created an Audio content type
that we can now use to add audio to our Drupal web site. But before we add any
audio to our web site, let's take a few minutes to set up the Audio content type to the
way we want it. We will do so by navigating to Administer | Content Types, and
then clicking on the edit link, next to the Audio content type.

Our goal here is to set up the Audio content type so that the default fields make
sense to the Audio content type. Much like the Recipe node type that we created in
earlier chapters, Drupal adds the Body field to all new content types, which doesn't
make much sense when creating an Audio content. We can easily change this by
simply expanding the Submission form settings. We can then replace the Body label
with Description, since it is easily understood when adding new Audio tracks to

our system.

[114]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

Submission form settings

Title field label:
Title

Body field label:

’Desl:riptiun

To omit the body field for this content type, remove any text and leave this held blank.

We will save this content type by clicking on the Save content type button at
the bottom of the page. Now, we are ready to start adding audio content to our
Drupal web site.

Creating an Audio node

We will add audio content by going to Create Content, and then clicking on Audio,
where we should then see the following on the page:

Create Audio

Title: *

l[audio—tag-title-raw] by [audio-tag-artist-raw]

The title can use the file's metadata. You can use the tokens listed below to insert information into the title. Note: the node title is escaped so it is safe to use
the -raw kokens.

Token list

Description:

Input format
Menu settings

Audio File Info

Current File:
No file is attached.

Add a new audio file:
Browse._..

Click "Browse..." to select an audio file to upload. Only files with the following extensions are allowed: mp3, wav, ogg.
NOTE: the current PHP configuration limits uploads to 300 MB.

] Allow file downloads.

If checked, a link will be displayed allowing visitors to download this audio file on to their own computer,

WARNING: even if you leave this unchecked, clever users will be able to find a way to download the file. This just makes them work a lithe harder to find
the link.

[115]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

You will probably notice that the Title of this form has already been filled out with
some strange looking text (as shown in the previous screenshot). This text is a series
of tags, which are used to represent track information that is extracted using the
getID3 module that we installed earlier. Once this ID3 information is extracted, these
tags will be replaced with the Title and Artist of that track, and then combined to
form the title of this node. This will save a lot of time because we do not have to
manually provide this information when submitting a new audio track to our site.
We can now upload any audio track by clicking on the Browse button next to the
Add a new audio file field. After it adds the file to the field, we can submit this audio
track to Drupal by clicking on the Save button at the bottom of the page, which will
then show you something like the following screenshot:

California by Rogue Wave o Edit

Audio California by Rogue Wave has been created.
Sun, 04/05/2008 - 09:42 — admin

« >

Artist: Rogue Wave

Title: California

Album: Descended Like Vultures

Track: 7

Genre: Indie

Year: 2005

Length: 4:07 minutes (4.81 MB)

Format: MP3 Stereo 44kHz 163Kbps (VBR)

Add new comment Download audio file 0 downloads 0 plays

After this node has been added, you will notice that there is a player already
provided to play the audio track. Although this player is really cool, there are some
key differences between the player provided by the Audio module and the player
that we will create later in this chapter.

How our player will be different (and better)

The main difference between the player that is provided by the Audio module and
the player that we are getting ready to build is how it determines which file to play.
In the default player, it uses flash variables passed to the player to determine which
file to play. This type of player-web site interaction places the burden on Drupal to
provide the file that needs to be played. In a way, the default player is passive,
where it does nothing unless someone tells it to do something.

The player that we will be building is different because instead of Drupal telling our
player what to play, we will take an active approach and query Drupal for the file we
wish to play. This has several benefits, such as that the file path does not have to be
exposed to the public in order for it to be played. So, let's create our custom player!

[116]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

Building a custom audio player for Drupal

In this section we will expand the Flash project from Chapter 2, and use that to create
a custom audio player for Drupal. So, let's get started by copying the chapter2
directory, and then create a new directory called chapters that we will use to keep
track of all of our changes. After we have done that, we should then rename the
chapter2.fla project file to chapters. f1a. Once we have our new directory set

up, we will need to open up both the chapters.fla and the main.as file within our
Flash IDE, where we will then direct our attention once again to the main. as file.

The first thing we will need to do is temporarily change the nodeId variable at the
top of this script to the node ID of the audio node that we just created as follows:

// Declare our variables

var baseURL:String = "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp";
var sessionlId:String = "";

var nodeId:Number = 8;

Now that this node ID is set to the correct node, our next task is to determine what
data we are looking for when we load the node. This will bring us back to our
Drupal web site, where we will take advantage of the Services Administrator to
investigate the data from our audio node.

Examining the Audio node using Services
Administrator

For this section, we will navigate back to our Services Administrator section by going
to Administer | Services in our Drupal web site. Once we are there, we will then
click on the node.get link, which will let us load any node in our system to examine
the data that will be passed to our Flash Application. We will then need to provide
the node ID for the audio node we created —where it says nid, and then click on the
button below that says Call method.

Call method
Name Required Value
Session id required | d809a1d95d324e70a4d2cb3cafd1535d
nid required IB I
fields optional

[117]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

Looking at the results from this call, the data that we are looking for is all
contained within the audio tag in the node object, which should look similar
to the following screenshot:

[audio] => Array
|

[play_count] => 1

[download count] == 0

[downloadable] => 1

[format] => mp3

[sample rate] => 44100

[channel mode] => sterec

[bitrate] => 163324

[bitrate_mode] => wvbr

[playtime] => 4:07

[file] == stdClass Object

[

[£id] == 9
[uid] =» 1
[filename] => 07 - California.mp3
[filepath] => sites/default/files/audio/07 - California.mp3
[filemime] => audio/mpeg
[filesize] => 5044131
[status] == 1

[timestamp] => 1238942526

From looking at this data structure, we determine that we can access the filepath of
our audio node within our onNodeLoad function. So, let's test this out by modifying
our "Hello World" code to replace the node title with the filepath to our audio file.

Referencing the audio file path

Using the knowledge that we gained from the Services Administrator, we should
be able to now reference the audio filepath for any given audio node within our
Drupal web site. If we observe the node object data returned from our Services
Administrator, we can determine how to access the file path to our song by using
the following code:

node.audio.file.filepath

[118]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

We can easily test this out by opening up our main. as file, and then placing a trace
statement to display this file path within the onNodeLoad function:

// Called when Drupal returns with our node.

function onNodeLoad(node:0Object)

{

// Print out the node title.
title.text = node.title;

// Trace the audio file path.
trace(node.audio.file.filepath);

}

The output should then show the correct filepath to the node that we just loaded
(as shown in the following screenshot).

We are rmcted! 1
S5ession Id: BZ2cl@7Z47976e@@46b@8515f0121908a
sites/default/files/audio/@7 - California.mp3

We have now successfully referenced the audio file path. Our next task will be to
create an audio class that will use this path to play some music!

Writing a custom AudioPlayer class

When working with ActionScript 3, it is highly recommended to use the
object-oriented features that are built into the language using the class construct.
By creating a class for our custom audio functionality, we will be encapsulating the
code, which makes our code more maintainable, expandable, and portable. This is
also referred to as componentization. This section assumes that you already have
some previous experience with object-oriented techniques, but in case you do not, I
will try my best to explain the concepts as we move forward. If you are just beginning
with object-oriented programming, then I would also highly recommend reading
the Wikipedia article at http: //en.wikipedia.org/wiki/Object-oriented_
programming, which describes in great detail the concepts behind object-oriented
programming. With that said, let's begin building our AudioPlayer class.

[PUBLISHING]

[119]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Drupal Audio in Flash

In Flash, there is already a class called sound that was built to play audio files, and
we can build our class to utilize this functionality to play audio. So, let's begin by
creating a blank file next to your chapters. fla project file called AudioPlayer.as.
We will then open up this file and write the following:

package
{
// Import all dependencies
import flash.media.Sound;
// Declare our class
public class AudioPlayer
{
// Constructor function.
// Called when someone creates a new AudioPlayer
public function AudioPlayer ()
{
// Make sure to create our sound object
sound = new Sound() ;
// Let us know that we created this player.
trace("AudioPlayer created!");
}
// Declare our sound variable.
private var sound:Sound;

}

Here we have created a new class that we will use to place all of our custom Audio
player functionality. Currently, this doesn't really do much, other than send a trace
to the output to notify us that the player has been created. To help track our progress,
we can test this out by going back to our main. as file, and within the onNodeLoad
function, we can place the following code to create our custom AudioPlayer:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{

// Print out the node title.

title.text = node.title;

// Create our AudioPlayer.

var player:AudioPlayer = new AudioPlayer();
// Trace the audio file path.

trace(node.audio.file.filepath);

[120]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

Now, when we run this application, we will get a very pleasant surprise when our
trace statement from within our custom AudioPlayer gets called to reveal that we
really did create our custom audio player!

ouTPuT |
We are connected!!!
Session Id: 38411b47124ad5b772bd65261321F119
AudioPlayer created!
sites/default/files/audio/@7 - California.mp3

Our next step will be to add functionality to our custom audio class to play any
audio track passed to our player.

Playing audio in Flash

In order to play an audio track, we will need to first create a public function within
our custom class, that will be used to play any given file passed to our routine.

This function will be used to play any given audio file path provided as the file string
passed as an argument to the play function. Since we have already included the
sound object in our custom class, we can now use that to load and play our file.

To do this, we will need to import the URLRequest class, because that class is used to
pass a URL string to the load routine of the sound object. After this, we can then call
the load routine on the sound object using this URLRequest object, and then play the
file after it has been loaded. This will look as follows:

package
{
// Import all dependencies
import flash.media.Sound;
import flash.net.URLRequest;
// Declare our class
public function AudioPlayer
{
// Constructor function.
// Called when someone creates a new AudioPlayer
public function AudioPlayer ()
{
// Make sure to create our sound object
sound = new Sound() ;
// Let us know that we created this player.
trace("AudioPlayer created!");

}

// Play an audio file

[121]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

public function playFile(file:String)

{

// Print out what file is playing...
trace("Playing file " + file);

// Load our sound file.

sound.load(new URLRequest(file));
// Play our sound file.

sound.play () ;

}

// Declare our sound variable.
private var sound:Sound;

}

We have finished setting up our audio class to play an audio file. We can now direct
our attention to the main. as file, where we will play the audio file from Drupal
using our new custom audio class.

Using our AudioPlayer class to play audio

Now that we have our main. as file opened, we can direct our attention once again
to the onNodeLoad function, where we will pass the correct file path from Drupal to
our custom AudioPlayer class. Since the path to our audio file, given to us from the
node object, is relative to the base URL of our Drupal web site, we will need to do the
same thing that we did in the previous chapter, where we added the base URL of our
web site to the front of this path before we send it to the play function of our custom
class. We can do this pretty easily by creating a variable called £ileURL, which will
hold the baseURL to our web site, and then add that to the audio file path before
sending it to the play function of our custom class. The code to do this should look
like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{

// Print out the node title.

title.text = node.title;

// Create our AudioPlayer.

var player:AudioPlayer = new AudioPlayer();
// Declare our base URL.

var fileURL:String = baseURL;

// Add our file's relative path.

fileURL += "/";

fileURL += node.audio.file.filepath;

// Play our audio file
player.playFile(fileURL) ;

[122]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 5

Now, when we run our application, we should be greeted with the sweet sound
of success!

We will now expand our audio player to include some controls, so that your site
visitors can start and stop the music while playing.

Adding controls to your custom
audio player

Playing music by itself is pretty cool, but is not very useful unless we give our users
a way to interact with the playback of that audio track. In this section we will create
some very basic controls that will allow our users to do just that. Although there are
a handful of controls that we can add to this custom audio player, this section will
demonstrate the concept by adding the most basic control for multimedia, which is
the play and pause buttons.

Adding a play and pause button

To begin, we will need to first move and resize our title field within our Flash
application, so that it can hold more text than "Hello World". We can then make
room for some new controls that will be used to control the playback of our
audio file. Again, the design of each of these components is subjective, but what
is important is the MovieClip instance hierarchy, which will be used within our
ActionScript code. Before we begin, we will need to create a new layer in our
TIMELINE that will be used to place all AudioPlayer objects. We will call this
new layer player:

TIMELINE | €0 !
O
 piay Flsaen
Al text « 8 B
%l background « @ O
Al oW |4

We can now proceed to creating our play and pause buttons.

[123]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

Creating a base button MovieClip

Our base button will simply be a rounded rectangle, which we will then add some
gradients to, so as to give it depth. We can do this by first creating a rounded
rectangle with a vertical linear gradient fill as follows:

We can now give it some very cool depth by adding a smaller rounded rectangle
within this one, and then orient the same gradient horizontally. An easy way to
do this is to copy the original shape and paste it as a new shape. Once we have a
new copy of our original rounded rectangle, we can navigate to Modify | Shape
| Expand fill, where we will then select Inset, change our Distance to 4px, and
then click on OK. After doing this, you will realize how such a simple contrast in
gradients can really bring out the shape.

After we have our new button shape, we will then need to create a new MovieClip,
so that we can reuse this button for both the play and pause buttons. To do this,
simply select both the rounded rectangle regions, and then choose Modify | Convert
to Symbol in the Flash menu. We are going to call this new movie clip mcButton.

Convert to Symbol
Name: [mcButtor| | —oek—3
> [" N Y N 0 oo
Type: | Movie Clip |-—,--] Registration: (_ Cancel |

Folder: Library root

(Basic)

Now that we have a base button MovieClip, we can now add the play and pause
symbols to complete the play and pause buttons.

[124]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

Adding the PlayButton movie clip

The first button that we will create is the play button, which simply consists of a
sideways triangle (icon) with the button behind it. To do this, we will first create a
new movie clip that will hold the button we just created, and the play icon. We can
do this by first clicking on the mcButton movie clip, and then creating a new movie
clip from that by selecting Modify | Convert to Symbol. We will call our new
movie clip mcPlayButton.

Name: ImcF'IavBultorI l (i ’

Type: | Movie Clip I-G-{ Registration:

Folder: Library root

(Basic)

What we are really doing here is creating a parent movie clip for our mcButton,
which will allow us to add new specific elements. For the play button, we simply
want to add a play symbol. To do this, we first want to make sure that we are
within the mcPlayButton movie clip by double-clicking on this symbol, so that
our breadcrumb at the top of the stage looks as follows:

P & Scene 1] mePlavButton

Our next task is to modify our timeline within this movie clip so that we can separate
the icon from the button. We can do this by creating two new layers within our
timeline, called button (which will hold our button) and icon (which we will create
in the next section).

We are now ready to start drawing the play icon.

[125]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[P/&\C KT 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Drupal Audio in Flash

Drawing a play icon
To draw a Play icon, we will need to first select the PolyStar Tool by clicking and
holding on the [, tool until you can select the PolyStar Tool.

= |

¢
| @ Oval Tool (0)
|
-
O]

Rectangle Tool (R)

Rectangle Primitive Tool (R)
Oval Primitive Tool (Q)

PolyStar Tool

This tool will allow us to create a triangle, which we will use for the play icon in our
play button. But before we can start drawing, we need to first set up the PolyStar
Tool so that it will draw a triangle. We can do this by clicking on the Options button
within the Properties tab, which will then bring up a dialog, where we can tell it to
draw a polygon with three sides (triangle).

Toul._%'ﬂgg
s

Mumber of Sides: :

Star point size: 0.50

(Cancel) E 0K 3

After we click on OK, we will then need to change the fill color of this triangle, so
that it is visible on our button. We will just change the fill color to Black. & m

We can then move our cursor onto the stage where the button is, and then draw our
triangle in the shape of a play button icon. Remember, if you do not like the shape of
what you made, you can always tweak it using the transform % tool. When we are
done, we should have something that resembles a play button!

[126]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

Our next task is to create a pause button. Since we have already created the play
button, which is similar to the pause button except for the icon, we can use a
handy tool in Flash that will let us duplicate our play button, and then modify
our duplication for the pause button icon.

Creating a pause button from the play button

In order to create our pause button, we will first need to duplicate our play button
into a new movie clip, where we can change the icon from play to pause. To do this,
we will first direct our attention to the library section of our Flash IDE, which should
show us all of the movie clips that we have created so far. We can find the LIBRARY
by clicking on the [ii§ button on the right-hand side of our workspace.

2 items 0

Name

mcButton
mecPlayButton

To create a duplicate, we will now right-click on the mcPlayButton movie clip, and
then select the option Duplicate.

Name

mecButton

El e PlavRuttnn
Cut
Copy
Paste
Rename
Delete

Duplicate
Move to...

[127]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

This will then bring up a dialog very similar to the dialog when we created new
symbols, but this time, we are defining a new movie clip name that will serve
as a duplicate for the original one. We will call our new movie clip duplicate
mcPauseButton.

Duplicate Symbol

Name: |mcPauseButton | t=—or—3
. [. + Y
Type: | Movie Clip |'-."] (_ Cancel

Folder: Library root

[Basic)

Now that we have created our duplicate movie clip, the next task is to change the
icon within the pause button. We can do this by opening up our mcPauseButton
movie clip by double-clicking on that name within the Library. At this point, we can
now change the icon of our pause button without running any risk of also modifying
the play button (since we created a duplicate). When we are done, we should have a
complete pause button.

lgl % Scene 1 mecPauseButton

+

We now have play and pause buttons that we will use to link to our
AudioPlayer class.

Linking MovieClips to ActionScript

One overlooked feature within the Flash IDE is its ability to link MovieClips to
ActionScript code, which is used to add scripted functionality to movie clips. This is
an extremely powerful feature that we will use to create the play and pause buttons
automatically when we create the AudioPlayer object. To start, we will need to
combine both the mcPlayButton and the mcPauseButton into a single MovieClip
that will directly link to the AudioPlayer class, which we created earlier in this
chapter. This movie clip that we will create will be called mcAudioPlayer since

[128]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

it is directly representative of the class that will govern it. With that said, we will
now create a new MovieClip by first navigating back to our stage, and then clicking
on the Insert | New Symbol from our Flash IDE.

BLEE Modify Text

New Symbol... $rs

Now, before we do anything, I would like to point out a difference in how we will
create this MovieClip versus other MovieClips that we have created in the past. This
time, instead of just giving our MovieClip a name (mcAudioPlayer), we will also
check the box that says Export for ActionScript. What this is doing is linking this
movie clip to ActionScript code, and even cooler, we can provide a class that will link
its functionality to this MovieClip by filling out the class name where it says Class.
Before hitting OK, make sure that your MovieClip definition looks like the following:

Create New Symbol

Name: mcAudioPlayer (L)
i . N -
Type: | Movie Clip 4 (__Cancel)

Folder: Library root

{ Basic
| Enable guides for 9-slice scaling
Linkage
E Export for ActionScript
™ Export in frame 1
Identifier: |
Class: IAudicPIaver I E @
Base class: flash.display.MovieClip [v] [#]

After we have done this, it will open up our new movie clip for editing, where

we will add both the mcPlayButton and the mcPauseButton. Again, it is highly
recommended to place each of these MoveClips on their own separate layer within
the mcAudioPlayer movie clip. We will also need to make sure that both the X and
Y positions for both the mcPlayButton and mcPauseButton are 0. It is also important
to give each of our buttons an instance name using the Properties panel for each
movie clip. This is so that we can reference them within ActionScript. We will call
our play and pause buttons playButton and pauseButton respectively.

[129]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

When we are done, our mcAudioPlayer MovieClip should look like the following
on your stage:

Al pause « @ .E

A OW I mE &2 250fs 00s [3

| @

[Movie Clip I~]

Instance of: mcPlayButton

=~ POSITION AND SIZE

|playButton]

[

€5 Ww: 40.0 H: 30.0

Our next and final task is to add our new mcAudioPlayer movie clip to our stage.

Adding the AudioPlayer to the stage

If we were to navigate back to the stage, we will see that the mcPlayButton movie
clip is currently being shown on the stage. Because of this, we will need to swap this
object out for the mcAudioPlayer movie clip, since it now contains both the play and
pause buttons. Luckily, there is a very handy operation in Flash that allows for us to
swap one symbol with another.

When we click on the mcPlayButton movie clip, and look over at the Properties
panel, we should see a button called Swap that will allow us to switch one movie
clip for another. This is perfect for our use case since we would like to swap the
mcPlayButton movie clip with the mcAudioPlayer movie clip that we just finished
creating. When we click on the Swap button, we are presented with a list of movie
clips that we would like to swap. In this list, we can select the mcAudioPlayer and
then click on OK to accept the swap.

mcAudioPlayer @

mcButton

mcPauseButton Cancel

micPlayButton

[130]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

We can now give our new mcAudioPlayer movie clip an instance so that it can be
referenced within our ActionScript code. We will call it player.

PROPERTIES

[Movie clip B3
Instance of: mcAudioPlayer SWap...

[player | @

Once we do this, we will be ready to make some modifications to our AudioPlayer
class to reference the mcAudioPlayer movie clip that we just created.

Modifying the AudioPlayer class to use play
and pause

In this section, we will take our AudioPlayer class and modify it so that it will work
with the mcAudioPlayer movie clip that we just created, which incorporates the play
and pause buttons. We can accomplish this with a series of quick steps.

Step 1: Adding the SoundChannel

Before we begin, we will need to add the mechanism to our Sound class that allows
us to control the audio channel that is currently being played. In Flash, there is a
class that we will use to do this called soundChannel. We can use the SoundChannel
as a member variable with sound that will keep track of the current track position.
Because of this, we will also need to add another variable called position to our
AudioPlayer class. These variables will live along with the sound variable that we
already created. We will also need to include the dependency for the SoundChannel
variable, which we can place at the top of the class.

// Import all dependencies
import flash.media.Sound;

import flash.media.SoundChannel;
import flash.net.URLRequest;

// Declare our sound variable.

private var sound:Sound;

// Declare our sound channel

private var channel:SoundChannel;

// Variable to keep track of the audio position.
private var position:Number;

[131]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

Step 2: Adding load, play, and pause functions

The next major change that we will need to make is to modify our class so that we
can load, play, and pause the file in three separate functions. This will require us to
completely change the current play function that we have, so that it matches this
new structure. The play function will set the audio channel and play the file at the
current position. The pause function will first save the channel position and then
stop the audio file. And finally, the load function will simply load the file passed to
our AudioPlayer class. These changes are as follows:

// Constructor function.
// Called when someone creates a new AudioPlayer
public function AudioPlayer ()
{
// Make sure to create our sound object
sound = new Sound() ;
// Initialize the position.
position = 0;
// Let us know that we created this player.
trace("AudioPlayer created!");

}

// Play an audio file
public function playFile()
{
// Play our sound file.
channel = sound.play(position);

}

// Pause an audio file
public function pause ()

{
// Save the channel position.
position = channel.position;
// Stop our sound file.
channel.stop() ;

}

// Load an audio file.
public function load(file:String)
{
// Load our sound file.
sound.load(new URLRequest(file));

[132]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 5

Step 3: Reference the mcAudioPlayer MovieClip

After we have done that, the next task will be to change our class so that it officially
references the mcAudioPlayer movie clip that we created. We can do this by simply
stating that our class derives from the MovieClip class. This can be done using the
extends keyword, when we declare our class as follows:

// Import all dependencies

import flash.display.MovieClip;

import flash.media.Sound;

import flash.media.SoundChannel;

import flash.net.URLRequest;

// Declare our class

public class AudioPlayer extends MovieClip

{

// Constructor function

// Called when someone creates a new AudioPlayer

public function AudioPlayer ()

// Make sure we call the MovieClip constructor
super () ;

// Make sure to create our sound object
sound = new Sound() ;

// Initialize the position.

position = 0;

// Let us know that we created this player.
trace("AudioPlayer created!");

Step 4: Hooking up our buttons!

The last and final step in creating our AudioPlayer class is to hook up the play and
pause buttons that we added to our mcAudioPlayer movie clip object. Since we
already told Flash to reference the Audioplayer class when creating mcAudioPlayer
movie clip, the instance names for the play and pause buttons can now be used
within our class to manipulate their behavior during audio playback. These instance
names were playButton and pauseButton, and we will start out by declaring them
as buttons.

[133]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

Declaring playButton and pauseButton as buttons

We will declare playButton and pauseButton as buttons using the but tonMode
parameter along with an event handler that will call any given function when that
button is clicked. The mouseChildren parameter is used to tell Flash to not let
any child movie clip within these buttons to get focus. This functionality will be
placed within the 1oad function of our class, and then we will set their visibility
state according to which button should be shown (which we will default as the
play button).

// Import all dependencies
import flash.display.MovieClip;
import flash.media.Sound;

import flash.media.SoundChannel;
import flash.net.URLRequest;
import flash.events.MouseEvent;

// Load an audio file.
public function load(file:String)
{
// Setup the play button.
playButton.buttonMode = true;
playButton.mouseChildren = false;
playButton.addEventListener (MouseEvent .MOUSE UP,onPlay) ;

// Setup the pause button.

pauseButton.buttonMode = true;

pauseButton.mouseChildren = false;
pauseButton.addEventListener (MouseEvent .MOUSE UP, onPause) ;

// Set the state of the play and pause buttons.

// We want to show the play button at first, so...
playButton.visible = true;

pauseButton.visible = false;

// Load our sound file.
sound.load(new URLRequest(file));

[134]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 5

Along with this, we need to create two handler functions that will handle the mouse
events and then make the correct function calls depending on which button the
user clicks.

// Load an audio file.

public function load(file:String)

{
// Setup the play button.
playButton.buttonMode = true;
playButton.mouseChildren = false;
playButton.addEventListener (MouseEvent .MOUSE UP, onPlay) ;
// Setup the pause button.
pauseButton.buttonMode = true;
pauseButton.mouseChildren = false;
pauseButton.addEventListener (MouseEvent .MOUSE UP, onPause) ;

// Set the state of the play and pause buttons.

// We want to show the play button at first, so...
playButton.visible = true;

pauseButton.visible = false;

// Load our sound file.
sound.load(new URLRequest(file));
}
// Called when the play button has been pressed.
private function onPlay(event:MouseEvent)
{
// Play the audio track.
playFile();
}
// Called when the user presses the pause button.
private function onPause(event:MouseEvent)
{
// Pause the audio track.
pause() ;

}

Now, all we need to do is make sure we change the state of these buttons as they are
clicked, by adding the following code to the play and pause functions:

// Play an audio file

public function playFile ()

{
// Play our sound file.
channel = sound.play(position) ;
// Show only the pause button.

[135]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Drupal Audio in Flash

playButton.visible = false;
pauseButton.visible = true;

}

// Pause an audio file
public function pause ()

{

// Save the channel position.
position = channel.position;
// Stop our sound file.
channel.stop() ;

// Show only the pause button.
playButton.visible = true;
pauseButton.visible = false;

}

We have now finished making modifications to our AudiopPlayer class to allow the
play and pause buttons to work.

The last and final step is to make two very minor modifications to our main
audioplayer. fla project to account for the changes that we have made.

Modifying our main.as file to use our
new AudioPlayer

Now, moving back to the main.as file, we will make some very simple modifications
to our ActionScript code to allow the AudioPlayer to work the way we want it to.
The first change that we will need to make is to remove our call to create the new
player using new AudioPlayer (). The reason we can remove this is because Flash
has done this for us when we added the mcaudioPlayer movie clip to our stage

and then gave it an instance name of player. Because of this, we now have a valid
AudioPlayer on our stage when the Flash movie is created, and we can then use the
player instance to reference that AudioPlayer.

The last and final change that we will need to make is to change the play call from
the player to the load call, which will set up our AudioPlayer's buttons to allow the
user to control whether the audio should play or not. Our new onNodeLoad function
should look like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{

// Print out the node title.

title.text = node.title;

// Declare our base URL.

var fileURL:String = baseURL;

[136]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 5

// Add our file's relative path.
fileURL += "/";
fileURL += node.audio.file.filepath;

// Load our audio file
player.load(f£ileURL);

}

When we run this, we will now be happy to see that our play/pause button works
as expected, and we are now able to control the play or pause state of the audio
track being played!

California by Rogue Wave

il

A good exercise from here would be to take the lessons learned from the previous
chapters, and then build our audio player for a live site (by changing the node1d
variable at the top of the page to use FlashVars). Once we are done with that, we can
then replace the default theme for the Audio node type and use our new player to
play the audio tracks attached to each audio node!

Summary

In this chapter we learned how audio is handled within Drupal and how to build a
custom application that can play and pause audio content created through Drupal.
There are several key points that I would like you to remember as you read through
to the next chapters:

e The Audio module is a contributed module that allows Drupal to upload and
automatically tag audio content using the getID3 library.

e We can determine how to reference that audio content in Flash using
Drupal's Services Administrator section.

e We designed our custom audio player to take advantage of the
object-oriented techniques provided by ActionScript 3 using the class
construct. By doing this, we allowed for our implementation to be easily
maintained, portable, and expanded.

e When creating the mcAudioPlayer movie clip, we were able to link the
ActionScript code to the MovieClip buttons that we created using the
Export to ActionScript checkbox.

In the next chapter we will take our implementation of Drupal multimedia one step
further by discussing how to handle Video content using Drupal and Flash.

[137]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

In recent years the amount of bandwidth available to the masses has resulted in a
surge of video content. As a result of this surge, the integration of video and Content
Management Systems has become a necessary step to help manage and deliver that
video content to millions of viewers every day. In this chapter we will learn how
Drupal handles video content, and how to build a custom video player to interface
with that content. We'll cover the following key topics:

Working with video in Drupal

Learning how to utilize object-oriented techniques in ActionScript 3.0
to build a common MediaPlayer class to be used for both audio and
video applications

Building a custom video player in Flash
Linking our custom video player to the Drupal content
Dynamically selecting which player to use depending on node media content

Adding our custom media player to Drupal

Working with video in Drupal

Before we dive into Flash, we will first explore the process of implementing video
into our Drupal web site. Much like audio and images, the Drupal contributors have
introduced numerous modules for integrating video into our web site. Consequently,
the process of finding the right solution for your needs can be somewhat confusing,
since each one was developed to handle specific video requirements. In this section,
we will briefly explore the different video solutions available for video integration,
and then choose one that best fits our needs in this chapter. It is important to note,
however, that the video solution we choose may not be the only or the best solution,
but simply a solution that fits the bill for what we need to get done.

200 1933 West Mall, , Vancouver , Canada, V6T 172

[] This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
PUBLISHING

Flash Video in Drupal

Although it is not an exhaustive list, following are four different video modules
available for Drupal 6 at the time of writing this book. Each one of these modules
was designed with a different use case in mind.

e Embedded Media Field (http://www.drupal.org/project/emfield)—
this is a fantastic module, written to integrate third-party videos into your
site such as YouTube, Brightcove, and many more. It works as a plug-in for
CCK to allow any content type to attach a third-party video to that node.

e FlashVideo (http://www.drupal.org/project/flashvideo)—this
module is used as a standalone video module that gives Drupal the power
to host and maintain all of its own video content, without relying on
third-party video web sites. It does this by providing an upload and
conversion mechanism that gives Drupal the ability to host and maintain
its own user-generated Flash video content. This solution is ideal to site
owners wanting a user-generated video content system, without relying
on third-party web sites to host and maintain those videos.

e Media Mover (http://www.drupal.org/project/media mover)—thisis a
fantastic video module geared more towards the administrative management
of video content on a Drupal web site. As far as the administrative abilities
for video management are concerned, this module is top of its class. It gives
the administrators the ability to specify where their videos are coming from
and where they are going, as well as any conversion that needs to be handled
in between.

o FileField + jQuery Media (http://www.drupal.org/project/jquery
media)—these two modules work as a great team to allow an individual to
upload a pre-converted video to use on their Drupal web site. This solution
is perfect for web sites where the users do not provide video content on the
site, but the videos are uploaded by the site administrators who have the
capability to convert the videos to Flash format before they upload them
to the site.

Given these four different video modules and their specific use case, we can now
select the one that is appropriate for this chapter. Since this chapter will mostly
involve us creating our very own video player, I think it is wise to choose the
solution that allows us to upload pre-converted videos that we will then show
in our custom player. For this reason, we will proceed with using the FileField +
jQuery Media video solution.

[140]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 6

But, before we begin installing the necessary modules for video functionality, we first
need to create a new content type that will be used to hold all of our video content.

Creating a video content type

In this section we will use the same methods from the previous chapters to create

a new content type called video. To do this, we will need to navigate to the
Administer | Content Types section of our Drupal Administrator, and then click on
the link that says Add Content Type. Following the steps from previous chapters,
we can now create a Video content type by providing the following information:

e Name: Video
e Type: video

e Description: Adds a new video to this website

Once we have provided this information, we can now save this by clicking on the
Save content type button at the bottom of the page. After the Video content type
has been created, we can add our field that we will use to upload our videos

to our system.

Adding a video file field

To add our file field to the Video content type, we will start by clicking on the link
next to our newly created Video content type that says manage fields. Once the
manage fields page opens up, we will then want to add a new file field to our video
node type by providing the following information in the Add section:

Add

+ MNew field

Label Field name (a-z, 0-9

Video Upload field_ | video {File '-3'* |_ File Upload a

of data to store t to edit the dat:

[141]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

After you click on the Save button at the bottom of the page, you will be given a
new page where you can configure our video field. There are several things that we
need to do on this page. The first thing we need to do is provide a very good help
description that explains the steps involved in attaching a new video to the node.
After this, we need to provide the permitted file extensions. This will filter any
unwanted files, except for those that can be played as video in Flash.

Video Upload

Video settings
These settings apply only to the Video Lipioad field as it appears In the Video content type.

Help text:
To add a new video, press the Browse button and select your video. After your video path has been added to

the input box, you will then need to press the Upload button to upload your video. When the video has
finished uploading, you can then press the Sawe Button to submit your video.

Instructions ta present to the user below this field on the editing form.
Allowed HTML tags: <a> <big> <code> <i> <ins> <pre> <> <small> <sub> <sup> <tt>
 <p>
 <img=>

Permitted upload file extensions:
Impd- mov flv mav|]

Extensions a user can upload to this field. Separate extensions with a space and do not include the leading dot. Leaving this blank will
allow users to upload a file with any extension.

The important thing to note here is the extensions allowed for our video
upload. The reason we are limited to mp4, mov, flv, and m4v is because
. these are the video files that are compatible with Flash Player. If we wish
a to allow our web site to accept any video type, then that will require us to
L= have some backend conversion utility such as FFmpeg. If this

is a requirement for your web site, then I would highly recommend using
either the FlashVideo or the Media Mover modules, which have support
for backend video conversions using FFmpeg.

After we enter the help text and the file formats, we need to make sure that this field
is required, since we do not want anyone submitting a video node without a video.
We can do this by checking the checkbox that says Required. Now that we are done,
we can click on the Save field settings button at the bottom of the page to save our
new field.

After the field has been added to our video node type, we will set this field as the top
most field, since the primary piece of content for our video nodes will be the video.
We can do this by clicking on the -}- symbol and then dragging the Video Upload
field to the top of the list. After we do this, we need to make sure that we click on the
Save button at the bottom of the page to commit the change.

[142]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

Video Edit ! - Display fields

Add fields and groups to the content type, and arrange them on content display and input forms.
You can add a field to a group by dragging it below and to the right of the group.
Note: Installing the Advanced help module will let you access more and better help.

Label Name Type Operations

+ Video Upload * field_video File Configure Remowve

We have our Video content type ready to add videos to our site. Our next job is
to install and configure the jQuery Media module, which we will use to show the
submitted video content using our Video content type.

Installing and configuring the jQuery

Media module

Installing the jQuery module can be done by simply downloading the jQuery Media
module from http://www.drupal.org/project/jquery_media, and then placing
the contents of this package in your site's modules folder. Now that we have this
module in the right spot, we can enable it by navigating to the Administrator |
Modules section of our Drupal site and clicking the checkbox next to jQuery Media,
and then clicking on the Save Configuration button at the bottom of the page. Now
that this module has been enabled, we will need to configure this module to show
video on our web site.

Configuring the jQuery Media module

Configuring the jQuery Media module is a snap, and only requires us to visit one
location within our Drupal administration. This location can be found by going to
Administer | jQuery Media. This page will allow us to configure the jQuery Media
module, so that we can view any video uploaded to our site.

[143]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

To begin, we will need to enable this module for our Video content type, which we
can do by simply expanding the Node Types section, and then checking the Video
content type.

Node types

This plugin will be automatically activated when displaying nodes of the following types.
Note that this will only enable the plugin for teasers and full node page views. Other uses,
such as in Views, may reguire manual Invocations.

Types:

O audio

O Flash

g Page

a Recipe
a Story

™ video

A list of node types for which you want to automatically invoke this plugin on display.

The next thing we will need to do is expand the Default settings, where we can
provide a default width and height to our player.

7 Default settings

Media Width:
450 |
The width, in pixels, of the media that will be displayed.

Media Height:

r

405 |
The height, in pixels, of the media that will be displayed.

The last and final step will be to expand the Default players section, where we
should then see the following:

Default players

Setting these values will determine the default players that will be loaded by the
registered media links.

Flash Player (fivPlayer):
[mediaplayer.swf

Enter the path relative to your webroot to your flash video player, such as for the JW Media Player
or Wimpy Rave, Do not include the beginning slash.

MP3 Player (mp3Player):
mediaplayer.swf

.Enl:Er the path relative to your webroot to your MP3 audio player, such as for the W Media Player
or Wimpy MP3. Do not include the beginning slash.

[144]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

This section calls a Flash Player that will be used to play our media. Although we
will be building our own video player, we can install a commercially available media
player to view any videos that we submit.

Installing a media player

There are several media players available to show video and audio content on
our web site. Although each one of these players has their differences, all of them
are fundamentally the same in how they play media on the site they are loaded.
Following are the most popular media players that can be used with the jQuery
Media module to show videos:

e Dash Media Player —http://www.tmtdigital.com/project/dash player

e JWFLV Player—http://www.longtailvideo.com/players/
jw-flv-player/

e Flow Player —http://www.flowplayer.org

All of these players are great, so I suggest you read up on all of them and pick
whichever fits your needs. Regardless of which one you download, the following
still applies.

Within each media player download, you should see a SWF file located at the root

of the downloaded package. This file is used as the core player, and we need to
remember the name of this file since we will use it to change the Default player for
the jQuery Media module. Along with this file, there might be several additional files
and directories that serve to complement the player's function, look, and feel. All

we really need to do to install our player is create a folder at the root of our Drupal
installation called player, and then place the contents of our downloaded player
package inside that folder. For example, if we have downloaded the Dash Media
Player, our Drupal folder structure should look like the following:

Drupal
root

index.php

— [player

——— dashPlayerswf
—— [skins

——— g config

[145]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

Now that we have our media player in the right spot, we will just need to change the
Default player settings in the jQuery Media administrator to reflect this path to our
media player.

Default players

Setting these values will determine the default players that will be loaded by the
registered media links.

Flash Player (fivPlayer):
i player/dashPlayer.swf |

Enter the path relative to your webroot to your flash video player, such as for the JW Media Player
or Wimpy Rave. Do not include the beginning slash.

MP3 Player (mp3Player):
i player/dashPlayer.swf

Enter the path relative to your webroot to your MP3 audio player, such as for the JW Media Player
or Wimpy MP3. Do not include the beginning slash,

After we have done this, we can now click on the Save Configuration button at the
bottom of the page to save our jQuery Media settings. Now that we have the jQuery
Media module configured, our next step is to create a video node that we will use
later to create our very own custom video player.

Creating a video node

To add a new video to our site, we will go to Create Content | Video. The first
section that we will direct our attention to is the Video Upload field, which we
created earlier in this chapter.

Create Video

Video Upload: *

pioad
Maximum Filesize: 300 MB

Allowed Extensions: mpd mov fiv mdv

To add a new video, press the Browse button and select your video. After your video path has been added to the input box, you will then need
te press the Upload button to upload your video. When the video has finished uploading, you can then press the Save Button ta submit your
video,

Title: *

Menu settings

[146]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Chapter 6

We can now add a new video file by clicking on the Browse button to search for a
video file with an extension of MP4, FLV, MOV, or M4V. If you do not have any
videos of this format, then you can easily download a sample video by going to

www . google. com and typing "Sample FLV video file". Once you have your video on
your local machine, and have selected it using the Browse functionality of the Video
Upload, we can then attach that video to this node by clicking on the Upload button.

Once the video is done attaching itself to the node, we can then give our node a Title,
and save our node by clicking on the Save button at the bottom of the page. Now,
let's take a moment to give ourselves a pat on the back: we have successfully added
video content to our Drupal web site.

Crazy at the wheel | view [

Sun, 04/05/2009 - 16:44 — admin

Video Upload:

antenalwheel.fiv

Add new comment

Our next task will be to build our very own custom video player to replace the
commercial player used above.

[147]

PAC K—|— This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Flash Video in Drupal

Building a custom video player in Flash

For this section, we will now shift our focus to Flash, where we will build our very
own custom video player to interface with Drupal. So, let's start by making a copy
of the previous chapter's directory, and paste that copy as a new directory called
chapteré. Once the files have been copied to the new directory, we will rename the
chapters5.fla file to chapteré. f1a, and then open up that project file along with
the main.as file in Flash. Because the audio and video players share some similar
functionalities, our first step will be to create a common class that can be used for
both the audio and video functionalities.

Creating a MediaPlayer base class

Before we start creating a class to hold the functionality of video, we need to examine
the contents of the AudioPlayer. as file that we created in the previous chapter.
Looking at the code, we can see how some of the functionalities for audio can also

be used for our video player functionality. As an example, in the 1oad function of
our AudioPlayer.as file, we can see how the video player would also implement
the play and pause button functionality (since it can be played and paused), but the
call to the sound object might not be shared between video and audio. The following
highlighted code represents the code that can be shared between audio and video:

// Load an audio file.

public function load(file:String)

{
// Setup the play button.
playButton.buttonMode = true;
playButton.mouseChildren = false;
playButton.addEventListener (MouseEvent.MOUSE UP,onPlay);
// Setup the pause button.
pauseButton.buttonMode = true;
pauseButton.mouseChildren = false;
pauseButton.addEventListener (MouseEvent .MOUSE UP, onPause) ;
// Set the state of the play and pause buttons.
// We want to show the play button at first, so...
playButton.visible = true;
pauseButton.visible = false;
// Load our sound file.
sound.load(new URLRequest(file));

[148]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 6

Whenever this situation arises, it is always best to create a new base class that will
hold all the common functionalities between video and audio, and then have the
VideoPlayer and AudioPlayer classes derive from that common class. This is the core
concept behind object-oriented programming (OOP), which will allow our code to
be easily maintained, reused, and expanded with additional functionality.

Since we have already created an AudioPlayer class in the previous chapter, we can
create our common class by simply copying the file AudioPlayer.as, then creating a
new file called MediaPlayer.as, and finally opening up that file in Flash.

Our first task will be to rename the class and constructor for this class to
MediaPlayer, since that will be the name of our new base class.

// Declare our class
public class MediaPlayer extends MovieClip

{

// Constructor function.
// Called when someone creates a new MediaPlayer
public function MediaPlayer ()

{

Another thing to note is that since our MediaPlayer class is using the playButton
and pauseButton movie clips, we will need to add those variables to this file so
that Flash will not throw an error when it cannot make the association to those
movie clips.

Adding play and pause button instances to
MediaPlayer

As mentioned before, the reason we need to take this step is because there are
variables within our base class that represent objects within a subclass. Whenever
this situation crops up, it is important to define the variables within the base class,
so that Flash knows how to make that association to a subclass' child movie clips.
This step requires us to not only add the variables to the MediaPlayer class, but
also change a setting in the Publish Settings of our Flash project, so that Flash
understands exactly what we are trying to do.

The first task here is to add the variables playButton and pauseButton to the
MediaPlayer. This can be done pretty easily by adding the following variables
to the bottom of our MediaPlayer class:

// Add the play and pause button to the media player.
public var playButton:MovieClip;
public var pauseButton:MovieClip;

// Declare our sound variable.

[149]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Flash Video in Drupal

private var sound:Sound;

// Declare our sound channel
private var channel:SoundChannel;

// Variable to keep track of the audio position.
private var position:Number;

After we add these variables, we need to make a change to our Flash project so that
it reflects this change. Now, shifting our focus back to the chapteré. f1a project file,
we change the Publish Settings by navigating to File | Publish Settings in the Flash
top menu.

We make sure that we are in the Flash section of the settings by clicking on the Flash
link in the settings bar. Once we are there, we click on the Settings button next to the
ActionScript 3.0 to enter the ActionScript settings for this project.

I Formats | Flash

Player: | Flash Player 9 '.l Info...

script: | ActionScript 3.0 & l f—s&ﬂwgwq—’

Now that we are in the ActionScript settings for this project, we make sure that we
uncheck the Automatically declare stage instances checkbox.

Errors: (W Strict Mode
E‘Wamings Mode

Stage: [| Automatically declare stage instances

What we are doing here is telling ActionScript to not declare the movie clip
instances, playButton and pauseButton, automatically in our classes, but that
we will declare them ourselves (which we just did in the MediaPlayer class).

Now that we are done setting up the play and pause buttons for the MediaPlayer,
we are ready to remove the rest of the uncommon code from the MediaPlayer class.

Removing uncommon code from MediaPlayer

Our final task will then be to go through the MediaPlayer.as file and remove
any functionality that would not be common between video and audio. This
will basically encompass any functionality that has to do with audio. One thing
to constantly ask yourself when you are going through this process is, "Is this
functionality something that both audio and video player would share?" If your
answer to that question is no, then delete that functionality. When all is said and
done, your base MediaPlayer class should look similar to the following:

[150]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

package

{
// Import all dependencies
import flash.display.MovieClip;
import flash.events.MouseEvent;

// Declare our class
public class MediaPlayer extends MovieClip
{
// Constructor function.
// Called when someone creates a new MediaPlayer
public function MediaPlayer ()
{
// Make sure we call the MovieClip constructor
super () ;
// Let us know that we created this player.
trace("MediaPlayer created!");

}

// Play a media file

public function playFile ()

{
// Show only the pause button.
playButton.visible = false;
pauseButton.visible = true;

}

// Pause a media file

public function pause()

{
// Show only the pause button.
playButton.visible = true;
pauseButton.visible = false;

}

// Load a media file.

public function load(file:String)

{
// Setup the play button.
playButton.buttonMode = true;
playButton.mouseChildren = false;
playButton.addEventListener (MouseEvent .MOUSE UP, onPlay) ;
// Setup the pause button.
pauseButton.buttonMode = true;
pauseButton.mouseChildren = false;
pauseButton.addEventListener (MouseEvent .MOUSE UP, onPause) ;
// Set the state of the play and pause buttons.
// Set the state of the play and pause buttons.
// We want to show the play button at first, so...
playButton.visible = true;
pauseButton.visible = false;

}

// Called when the play button has been pressed.

[151]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

private function onPlay(event:MouseEvent)

{

// Play the audio track.
playFile () ;

}

// Called when the user presses the pause button.
private function onPause(event:MouseEvent)

{

// Pause the audio track.
pause () ;

}

// Add the play and pause button to the media player.
public var playButton:MovieClip;

public var pauseButton:MovieClip;

}

Now that we have our common MediaPlayer class, we can modify our
AudioPlayer.as file, so that it derives this common functionality from the

MediaPlayer class.

Modifying the AudioPlayer class to derive from
MediaPlayer

To modify the AudioPlayer class, we will first need to open up the AudioPlayer.as
file that contains the original code from our previous chapter. The first thing we
need to do is make the AudioPlayer class derive from the MediaPlayer class that

we just created. This can be done by adding the MediaPlayer class after the
extends keyword:

// Declare our class
public class AudioPlayer extends MediaPlayer

By doing this, we are basically saying that the AudioPlayer class is inheriting
functionality from the MediaPlayer class, and we will do the same when we create
the videoPlayer class. This creates a hierarchy of functionality most commonly
referred to as inheritance in object-oriented programming. Shown in a graphical
representation of the class structure, we can now represent the AudioPlayer,
VideoPlayer, and MediaPlayer classes as the following:

MovieClip

MediaPlayer

’ AudioPlayer ‘ ’ VideoPlayer ‘

[152]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

There is some terminology that is important for us to remember when working with
this hierarchical structure of class functionality. In ActionScript 3.0, the base class is
referred to as super class, and can be referenced in any of the subclasses by using the
keyword super. This is important to note since we will be using this keyword in the
following section, where we extend the functionality of the super class MediaPlayer
within the subclass AudioPlayer.

Since we have already inherited functionality from the MediaPlayer class, our next
task will be to walk through the AudiopPlayer class and remove any functionality
that is provided from the MediaPlayer class. Our task also includes overriding
certain functions whose functionality will be extended with the AudiopPlayer class.

Extending and overriding base (super) class
functionality

Our first task here will be to remove all the MediaPlayer class functionalities from
the AudioPlayer class. We can do this by simply deleting the play and pause button
functionality that we provided within the MediaPlayer class. After we have done
this, our AudioPlayer.as file should look as follows:

package
{
// Import all dependencies
import flash.media.Sound;
import flash.media.SoundChannel;
import flash.net.URLRequest;
// Declare our class
public class AudioPlayer extends MediaPlayer
{
// Constructor function.
// Called when someone creates a new AudioPlayer
public function AudioPlayer ()
{
// Make sure we call the MediaPlayer constructor
super () ;
// Make sure to create our sound object
sound = new Sound() ;
// Initialize the position.
position = 0;
// Let us know that we created this player.
trace("AudioPlayer created!");

// Play an audio file
override public function playFile()

// Play our sound file.

[153]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

PUBLISHING

Flash Video in Drupal

channel = sound.play(position) ;
}
// Pause an audio file
override public function pause()

{

// Save the channel position.
position = channel.position;
// Stop our sound file.
channel.stop() ;

}

// Load an audio file.
public function load(file:String)

{

// Load our sound file.
sound.load(new URLRequest(file));

}

// Declare our sound variable.
private var sound:Sound;
// Declare our sound channel
private var channel:SoundChannel;
// Variable to keep track of the audio position.
private var position:Number;

}

After we have done that, we will need to override certain functions where the
AudioPlayer extends the functionality of the MediaPlayer. In ActionScript 3.0, we
can override any public or protected functions from the base class by using the
keyword override when declaring the function. For example, in the MediaPlayer
class, there is a function called playFile, which we will need to override in

our AudioPlayer class to actually play the file. But, since we want to keep the
functionality of the MediaPlayer class, which sets the play and pause button states,
we also want to make sure that we call the super.playFile in our overridden
function to make sure that we get the full functionality. By calling super.playFile,
we are telling ActionScript to call the playFile function of the super class
MediaPlayer. By following these rules, our playFile function in the AudioPlayer
class should look like the following:

// Play an audio file
override public function playFile()
{
// Call the MediaPlayer playFile function.
super.playFile() ;
// Play our sound file.
channel = sound.play(position) ;

[154]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

It is also important to note that if we ever wish to completely override a function
from a super class, we would leave out the super function call (super.playFile).
But since we wish to extend functionality, as opposed to override functionality, we
will leave the super function call so that our super class MediaPlayer has a chance
to add its functionality to the playFile function.

Taking this into account, we now have enough knowledge to modify the pause
and load functions within our AudioPlayer class, so that it correctly extends
functionality from the MediaPlayer class.

// Play an audio file
override public function playFile()
{
// Call the MediaPlayer playFile function.
super.playFile() ;
// Play our sound file.
channel = sound.play(position) ;

// Pause an audio file
override public function pause()

// Call the MediaPlayer pause function.
super.pause() ;

// Save the channel position.

position = channel.position;

// Stop our sound file.

channel.stop() ;

// Load an audio file.
override public function load(file:String)

{

// Call the MediaPlayer load function.
super.load(file);

// Load our sound file.

sound.load(new URLRequest(file));

}

We are now done modifying our AudioPlayer class to extend the MediaPlayer
functionality. Before we move onto the next section, it is very important for us to run
this code to make sure that it still functions as it did before we made our change to
class hierarchy. If all is well, we can move on to creating a new videoPlayer class.

[155]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

Creating a VideoPlayer class

The first step we will take to create a video player class is copy the AudioPlayer.as
file to a new file called videoPlayer.as. After we open up this new file in Flash, we
can create a stub class, where we will remove any of the audio functionality (leaving
only the super class functionality). After removing all audio functionality, our
VideoPlayer class should look like the following:

package
{
// Declare our class
public class VideoPlayer extends MediaPlayer
{
// Constructor function.
// Called when someone creates a new VideoPlayer
public function VideoPlayer ()
{
// Make sure we call the MediaPlayer constructor
super () ;
// Let us know that we created this player.
trace("VideoPlayer created!");
}
// Play a video file
override public function playFile()
{
// Call the MediaPlayer playFile function.
super.playFile() ;
}
// Pause a video file
override public function pause ()
{
// Call the MediaPlayer pause function.
super .pause () ;
}
// Load a video file.
override public function load(file:String)
{
// Call the MediaPlayer load function.
super.load(file);

}

Our next task will be to add the Flash video functionality that utilizes these functions
to play and pause video. There are three different classes that are used to show and
manipulate video in Flash, which are video, NetStream, and NetConnection.

[156]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

Working with Video, NetStream, and NetConnection

The first thing that we will need to do is make sure that we import the functionality
from these three classes as well as any dependent classes used by these classes. We
can do that by including the following code at the top of our videoPlayer class

as follows:

package

{
// Import all dependencies
import flash.media.Video;
import flash.net.NetStream;
import flash.net.NetConnection;
import flash.net.ObjectEncoding;
import flash.events.*;

// Declare our class
public class VideoPlayer extends MediaPlayer

{

After we import those classes, our next task will be to create variables within
this class that we will use to add video functionality. We can do this pretty easily
as follows:

// Load a video file.

override public function load(file:String)
// Call the MediaPlayer load function.
super.load(file);

// Add all of our video variables.

private var video:Video;

private var stream:NetStream;

private var connection:NetConnection;

After these variables have been added to your videoPlayer class, we can now add
the video functionality that will show a video stream in our custom media player.
We will start with initializing all of our video variables.

[157]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

Initializing our video variables

Our first task when adding video functionality is to make sure that all the variables
have been initialized to stream video. We can do this by adding some new functions
to our videoPlayer class called connect and setupvideoStream, which we will
use to set up the connection and stream variables respectively. We can then call
those functions from within the constructor of our videoplayer. When initializing
the connection and stream variables, we will also need to create onError and
onstatus callback functions, to be called when the status changes or an error occurs.
Another thing to note when looking at this code is that we will need to include an
empty function called onMetaData. This is simply a stub function to keep Flash from
throwing errors when the client association tries to call this function. The additions
to our videoPlayer class should look like the following:

// Constructor function.

// Called when someone creates a new VideoPlayer

public function VideoPlayer ()

{
// Make sure we call the MediaPlayer constructor
super () ;
// Let us know that we created this player.
trace("VideoPlayer created!");
// Connect to our NetConnection.
connect () ;
// Setup the video stream.
setupVideoStream() ;

}

// Create a new NetConnection

private function connect ()

{
connection = new NetConnection() ;
connection.addEventListener (NetStatusEvent.NET STATUS,onStatus);
connection.addEventListener (SecurityErrorEvent.SECURITY ERROR,
onError) ;
connection.objectEncoding = ObjectEncoding.AMFO0;
connection.connect (null) ;

}

// Setup a new video stream.

private function setupVideoStream()

{
stream = new NetStream(connection) ;
stream.addEventListener (NetStatusEvent.NET STATUS,onStatus);
stream.addEventListener (AsyncErrorEvent .ASYNC ERROR, onError);
stream.client = this;

}

[158]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 6

// Stub function for the client association.
public function onMetaData(info:Object) {}

// Our video status handler.
private function onStatus(event:NetStatusEvent)

{
}

// Called when a video error occurs.
private function onError (event:Object) :void

{

trace("VideoPlayer Error: " + event);

}

Our final task in initializing all the variables is to create the video object that we will
use to show our video on the screen.

Creating the video object

In order to create the video object, we must first instantiate it with the width and the
height of the video area we wish to show. This is where it might get a little fuzzy since
we really do not want to hard code a width and height for our video. A better solution
is to design our software so that the size of the embedded player determines the size of
the video. This can be done by referencing the stage object within our videoPlayer
class, and then setting the width and height of our video to the same size.

This, however, presents an unusual caveat since our videoPlayer must first be
added to the stage in order to make the stage variable valid. Fortunately, we can
design our class to trigger an event when our class is added to the stage, and then set
the width and height of our video to the stage width and height within the handler
function of this event. Once we have the size of our video player, we can assign the
NetStream to our video object using the attachNetStream function.

Once we have declared our new video object, we will need to add it to the
VideoPlayer so that it is visible to our users. In order to do this properly, we will
need to place it behind the play and pause buttons, so that it will not cover them up
when the video is playing. This can be done using the addchildat function, and
then providing an index of 0, which means to place it behind every object within
the videoPlayer class

// Constructor function.
// Called when someone creates a new VideoPlayer
public function VideoPlayer ()
{
// Make sure we call the MediaPlayer constructor
super () ;

[159]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

// Let us know that we created this player.

trace("VideoPlayer created!");

// Connect to our NetConnection.

connect () ;

// Setup the video stream.

setupVideoStream() ;

// Add a listener when the player is added to the stage.
addEventListener (Event.ADDED TO STAGE, onAdded);

}

// Called when the video player has been added to the stage.
private function onAdded(event:Event)

{

// Create our video object the size of our stage.
video = new Video(stage.width, stage.height);
// Attach our net stream to the video object.
video.attachNetStream(stream);

// Add the video to the VideoPlayer.

addChildAt(video, 0);

}

We are now done initializing all the variables for our videoPlayer class. Our next
task will be to hook up the functionality.

Adding video functionality

To add video functionality, we will now shift our focus to the load, play, and pause
functions, where we will play with our video stream to perform this functionality.
We will start with the load functionality.

Adding video load

For the video load function, we will want to load the video file passed to the function
but not play it. Unfortunately, the video stream class does not support a load
function, but we can simulate it by playing the file and then pausing it once it starts
to play. This will trigger our videoPlayer class to start loading the video file. To do
this, we will need to utilize two different functions where we play the video stream,
and then handle the play status in the onstatus function, where we will pause the
stream. In order to make this work correctly, we will need to create a class variable
that will keep track if the video file has been loaded, and only pause the video if it
has not been loaded. This functionality looks like the following:

// Constructor function.

// Called when someone creates a new VideoPlayer
// Constructor function.

// Called when someone creates a new VideoPlayer
public function VideoPlayer ()

[160]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 6

// Make sure we call the MediaPlayer constructor
super () ;

// Let us know that we created this player.

trace("VideoPlayer created!");

// Connect to our NetConnection.

connect () ;

// Setup the video stream.

setupVideoStream() ;

// Initialize to not loaded.

loaded = false;

// Add a listener when the player is added to the stage.
addEventListener (Event.ADDED TO STAGE, onAdded) ;

}

// Our video status handler.
private function onStatus (event:NetStatusEvent)
{
// If the video is playing.
if (event.info.code == "NetStream.Play.Start")
{
// Pause the stream if it is not loaded.
if(!loaded) {
loaded = true;
stream.pause() ;

}

// Load an audio file.
override public function load(file:String)
{
// Call the MediaPlayer load function.
super.load(file);
// Reset the loaded flag.
loaded = false;
// stop the current stream.
stream.close() ;
// Start playing the new stream.
stream.play(file) ;
}
// Add all of our video variables.
private var video:Video;
private var stream:NetStream;
private var connection:NetConnection;
// Variable to keep track of loaded state.
private var loaded:Boolean;

Now that we have load functionality, our next task is to create the play and
pause functionality.

[161]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

Adding play and pause functionality

Fortunately, adding the play and pause functionality to the videoPlayer class is
very simple, and requires only a single function call using the stream variable like
the following:

// Play a video file.
override public function playFile()

{

// Call the MediaPlayer playfile function.
super.playFile() ;

// Resume the stream.

stream.resume () ;

}

// Pause a video file
override public function pause ()

{

// Call the MediaPlayer pause function.
super .pause () ;
// Pause the stream.

stream.pause () ;

}

Now that we are done adding the play and pause functionality, we can shift our
focus to our chaptere6 . f1a file, where we will utilize this new class to show video.

Creating a new VideoPlayer MovieClip

We can start out this section by opening up the chapters. f1a file, where we will
then direct our attention to the Library section. This is where we will set up our
new custom video player.

The first thing that we would like to do is create a duplicate of the mcAudioPlayer
movie clip, and then change the properties so that it has a different functionality.
To do this, we will first right-click on the mcAudioPlayer movie clip and select the

option Duplicate.

6 items |,O

Name

Cut

Copy
Paste

Rename
Delete

Duplicate
Move to...

[162]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

This will then bring up a new window, where we can create a new movie clip for our
video player. We will also need to make sure to check the Export for ActionScript
and then provide VideoPlayer for the class.

Duplicate Symbol
Mame: |mcVideoPlayer EL')
- [¥ . A
Type: | Movie Clip H i

Folder: Library root

([Basic)
[T Enable guides for 9-slice scaling
Linkage
M Export for ActionScript
"1 Export in frame 1
Identifier: | |
Class: llu"ideoPIaver I E‘ E
Base class: flash.display.MovieClip [v]]

As mentioned in the previous chapter, this will create a link between the movie clip
mcVideoPlayer and the class videoPlayer that we just created. Now that we have
created our mcVideoPlayer movie clip, we need to navigate back to the root of our
Flash project and then delete the mcAudioPlayer instance from the stage. This is
done so that we can programmatically select which player to use depending on the
media within our Drupal node. When we are done with this step, we should be left
with only the Title region of our Flash application.

We are now ready to modify the onNodeLoad function within our main. as file to
use our new VideoPlayer, and to reference the video attached to our Drupal node,
but first, we need to take a look at the Services Administrator to determine the node
structure of a video node.

[163]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

Linking the VideoPlayer to Drupal

Shifting our focus back to Drupal, we will first determine the node structure of the
video node that we created at the beginning of this chapter. Again, the Services
Administrator comes to our rescue, where we can use the node . get routine to
examine the video node that we created earlier in this chapter. Once we enter the
node ID in the nid input box and click on the Call Method button, we should see
the following results in the Results section. We can then examine the result, where
we will notice the field_video FileField that we created.

[field wideo] => Array
{
[0] == Array
(
[£id] == 10
[list] => 1
|[data] => Array
(
[description] =*

!

(uid] = 1
[filename] => antenalwheel.flwv

[filepath] => sites/default/files/antenalwheel.flwv
[filemime] => application/octet-stream

[Eilesize] => 13659378

[status] == 1

[timestamp] => 1238967828

Looking at this information, we can determine that the node data that we are
interested in can be represented by the following code, given the node object:

node.field video[0] ["filepath"]

We can now take that information back to our main.as file, where we can modify the
onNodeLoad function to load this video.

Loading and playing our Drupal video

Moving our focus back to the main.as, we can now examine the onNodeLoad
function, which up to this point, should look like the following;:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)

{

[164]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

// Print out the node title.
title.text = node.title;

// Declare our base URL.

var fileURL:String = baseURL;

// BAdd our file's relative path.
fileURL += "/";

fileURL += node.audio.file.filepath;

// Play our audio file
player.load(fileURL) ;

}

Our first task will be to programmatically allow ourselves to either create an
AudioPlayer or a VideoPlayer, depending on the type of media that is attached
to our node. To start with, we will need to modify our existing code within the
onNodeLoad function so that our AudioPlayer is only created when the audio is
provided within the node. To do this, we will first declare a generic player variable,
and then set the value of that player when we know for sure what kind of player it
should be.

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{
// Print out the node title.
title.text = node.title;
// Declare our base URL.
var fileURL:String = baseURL;
// Add our file's relative path.
fileURL += "/";
// Declare a generic media player.
var player = null;
// If this node has audio.
if (node.audio) {
// Declare our player as an AudioPlayer.
fileURL += node.audio.file.filepath;
player = new AudioPlayer() ;

}

// Play our audio file
player.load(f£ileURL) ;

[165]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

After we have done this, we can now do the same for the videoPlayer if we find the
field_video within the node object.

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{
// Print out the node title.
title.text = node.title;
// Declare our base URL.
var fileURL:String = baseURL;
// Add our file's relative path.
fileURL += "/";
// Declare a generic media player.
var player = null;
// If this node has audio.
if (node.audio) {
// Declare our player as an AudioPlayer.
fileURL += node.audio.file.filepath;
player = new AudioPlayer () ;
}
else if(node.field video) {
// Declare our player as a VideoPlayer.
fileURL += node.field video[0] ["filepath"];
player = new VideoPla;er();
}
// Play our audio file
player.load(f£ileURL) ;

}

Finally, we need to make sure to add our player as a child to stage. We can do this
by using the addchild function, which will trigger the onadded function to trigger
within our VideoPlayer class.

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{
// Print out the node title.
title.text = node.title;
// Declare our base URL.
var fileURL:String = baseURL;
// Add our file's relative path.
fileURL += "/";
// Declare a generic media player.
var player = null;
// If this node has audio.

[166]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

if (node.audio)
// Declare our player as an AudioPlayer.
fileURL += node.audio.file.filepath;
player = new AudioPlayer() ;

}

else if(node.field video) {
// Declare our player as a VideoPlayer.
fileURL += node.field video[0] ["filepath"];
player = new VideoPlayer() ;

}

// Add the player to the stage.
addChild(player);
// Play our audio file
player.load(fileURL) ;
}
We can now temporarily provide the nodeID for our video node at the top of the
main.as file so that we can try out our new video player.

// Declare our variables

var baseURL:String = "http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp"
var sessionId:String = "";

var nodeId:Number = 9;

Now, when we run our project, we should see a working video with play and
pause functionality!

anon chapterB.swf

We are now ready to take this application back to Drupal.

[167]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

Adding our custom media player to Drupal

The first step we will need to take is to change our node1d variable back to the
FlashVars format so that we can compile our new media player for Drupal.

// Declare our variables
"http://localhost/drupalé";
var gateway:String = baseURL + "/services/amfphp"

var baseURL:String

var sessionId:String = "";
var nodeId:Number = root.loaderInfo.parameters.node;

After we run our media player with these changes (which compiles the SWF file), we
can follow the steps from Chapter 4 and upload our new media player by navigating
to Create Content | Flash. Once we have our Flash application submitted to Drupal,
we can create a template for both the audio and video nodes using the Content
Templates within the Drupal Administrator. Assuming that the node ID for our
flash node application is 11, our body templates should look like the following for
both the video and audio nodes:

<?php
// Get the Flash application.
$sgl = "SELECT * FROM {node} WHERE nid=%d";

$flash = db_fetch object (db_query($sql, 11));
// Load the flash node.

flashnode load(s$flash);

// Set the flashvars to the right node Id.

Sflash->flashnode["flashvars"] = 'node=' . $node->nid;

// Show the Flash application.
print theme ('flashnode', $flash->flashnode, FALSE) ;

?>

Once we have our templates in place, we can navigate to any audio and video node
within our Drupal website and see our new media player in action!

[168]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 6

I Home

Crazy at the wheel | view [

Sun, 04/05/2009 - 16:44 — admin

Summary

This chapter covered a lot of material. The following is a list of the key topics covered:

e We started out with a brief overview of four different video solutions for
Drupal, and decided to implement the FileField + jQuery Media for our
use case

e We successfully set up a working video solution for our Drupal web site by
combining a commercially available media player with the FileField and
jQuery Media module

e We created a base class called MediaPlayer to hold the common
functionality between video and audio

[169]

DAL/ This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
' 200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Flash Video in Drupal

o We discussed some key object-oriented features in ActionScript 3.0 such as
extends, override, and super keywords as well as the meaning of inheritance

o Weredesigned our AudioPlayer class to use our new object-oriented structure
e We built a videoPlayer class that utilizes Flash classes to display video

e We created some functionality to dynamically select which media player to
declare, depending on the type of media attached to our Drupal node

e We added our new media player to Drupal
In the next chapter we will discuss how external components can interact with our

Flash applications in Drupal (including other Flash components) by building a
remote control for our new custom media player.

[170]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

The Hybrid Approach

Part 1. Componentization

When integrating Flash with Drupal, one common obstacle that most people face is
creating architecture that delivers the Flash content while, at the same time, utilizes
the advantages of Drupal content management. This creates a problem because
Drupal was designed and implemented with an HTML/JavaScript user interface,
which tends to have a tightly woven bond to the server-side business logic that
controls the function of the site. Because of this, many Flash implementations for a
Drupal web site tend to have an all-or-nothing approach when integrating Flash as
the user interface. What many people do not realize is that another approach exists.
In this approach, the Flash integration takes the form of a collection of widgets, each
with their own specific functions that are able to communicate to one another as if
they were built into a single Flash application. In my opinion, this hybrid approach is
ideal because it allows us to pick and choose the components that we wish to have as
Flash on our Drupal site and the ones that we would like to keep as HTML, giving us
the best of both worlds.

In the next two chapters we will discuss how to build a Drupal site where the Flash
integration is componentized. We will also discuss how each of these Flash widgets
can communicate with one another as if they were combined into one application by
creating a Remote Control for the media player we built in the previous chapter.

This example will easily illustrate the power of this technique when developing a
Flash-integrated Drupal web site. We will cover the following topics in this chapter:

e What is the hybrid approach?

e Creating a media player control bar

e Creating a communication gateway

e Static functions and the this pointer

e Adding the controlBar to our Flash project

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

[] 200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

The Hybrid Approach Part 1: Componentization

What is the hybrid approach?

Many Flash web sites today are constructed as a single Flash application (SWF)

that is built to behave like a web site. Although this approach is great for many use
cases, it does not work well with content management systems. This is because the
content in content management systems is constantly changing, or there are many
different forms of content such as comments, user profiles, and so on. For these web
sites, an approach is needed where Flash and HTML are inter-mixed to give the best
user interface for each component on the web site. This approach is called a hybrid
approach, where we integrate Flash into Drupal.

To illustrate this, let us take an example of a typical all-or-nothing Flash
implementation for a Drupal web site, where the entire user interface is provided
through Flash. In the following illustration we can see a block diagram showing how
a Flash application would look if it was embedded to take up the entire page.

HTML Body

Flash Application

Primary Links

Menu Content

This diagram may look very familiar since it is typical for most Flash-driven Drupal
web sites. However, there are several problems in using this type of architecture.
These problems can be explained with the help of the following points:

1. Static layout— A static layout is one that does not resize when the browser
viewing the page resizes. This is a very common issue with Flash web sites,
where the web developer must pick a common browser size and then design
the layout of the whole Flash application to fit that size. A fluid layout will
automatically resize with the browser and is usually preferred for most use
cases. Standard HTML allows fluid layouts.

2. All-or-nothing development —Integrating Flash into your Drupal web site is
usually a very frustrating process because it has a tendency to spider web its
way through your entire site, until it completely takes over. In most cases this
makes the development time much longer than if the site were designed and
deployed using only HTML.

[172]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 7

3. Large and cumbersome application —When a single Flash application is used
to deploy your entire user interface for Drupal, the end product is almost
always large and cumbersome. This makes your bandwidth usage greater
when your site is deployed to a large audience and it will slow down the
speed of your site.

4. Not search engine friendly — Although much improvement has been made
with Flash content being indexed with popular search engines, it still is no
comparison to HTML-driven web content.

The hybrid approach, however, breaks apart this massive Flash application into
separate components (or widgets), where each widget is in charge of a single piece
of functionality, and then communicates to the other widgets using a JavaScript
gateway. This approach is illustrated as follows:

HTML Body

Header Flash Primary Links

Sidebar Content

FAEE Flash Content
Menu

{ JavaScript >

By using this architecture we can use the facilities that Drupal provides when placing
content on the page, such as using Blocks and Panels —which we will cover in the
next chapter. It also forces us to break our Flash widgets into smaller applications,
where each widget performs a specific task. In software development this is
commonly referred to as componentization. Componentization makes our Flash
implementation expandable and easier to maintain. Although this architecture may
be more flexible, it does require a communication protocol between each widget on
the page, which we will simulate by creating a remote control for our media player
from the previous chapter. But first, we must abstract out all the functionality

that we would like to use as the separate remote control application, namely the
control bar.

[173]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

The Hybrid Approach Part 1: Componentization

Creating a media player control bar

Before we begin this section, we will first need to copy all the files used for Chapter
6 and create a new folder to hold all of our changes made for this chapter. Once
we are done doing this, our first task will be to change the architecture of our
current MediaPlayer so that it will support the separation between the media and
control bar functionality. In order to do this, we will need to create an abstraction
between the media and controls so that their functionality may be within the
same Flash application or in two separate Flash applications connected together
with a JavaScript gateway. By performing this abstraction we will understand

the importance and benefits of object-oriented practices which allows this type

of abstraction. To start, we will first extract all of the play and pause button
functionality into a new class that we will call controlBar. The main purpose

of this class will be to hold all the user interaction for the media player.

Creating a ControlBar class

Let's start this section by copying the MediaPlayer.as file, and then creating a new
file from that copy called controlBar.as in the same directory. The reason we are
copying the MediaPlayer.as file is simply because the MediaPlayer class currently
holds the functionality that we will use for our new ControlBar class.

Once we have done this, we are ready to open up the ControlBar.as file and
modify it so that it represents the correct class name, and change the constructor
function given as follows. When we are done, our class definition should look
something similar to the following, where the changes have been highlighted:

package

{
// Import all dependencies
import flash.display.MovieClip;
import flash.events.MouseEvent;

// Declare our class

public class ControlBar extends MovieClip

{
// Constructor function.
// Called when someone creates a new ControlBar
public function ControlBar ()

{

// Make sure we call the MovieClip constructor

super () ;
// Let us know that we created the ControlBar.
trace("ControlBar created!");

[174]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 172
PUBLISHING

Chapter 7

We will also need to move the playButton and pauseButton initialization into the
constructor of this class, since we do not want any dependency on loaded media in
order to instantiate our buttons. We can do this by first copying all the contents of
the 1oad function and moving that code into the constructor, and then completely
deleting the 1oad function. When we are done, our ControlBar class should look
like the following;:

package

{
// Import all dependencies
import flash.display.MovieClip;
import flash.events.MouseEvent;

// Declare our class

public class ControlBar extends MovieClip
// Constructor function.
// Called when someone creates a new ControlBar
public function ControlBar ()

{

// Make sure we call the MovieClip constructor

super () ;
// Let us know that we created the ControlBar.
trace("ControlBar created!");

// Setup the play button.

playButton.buttonMode = true;

playButton.mouseChildren = false;
playButton.addEventListener (MouseEvent.MOUSE UP,onPlay);
// Setup the pause button.

pauseButton.buttonMode = true;

pauseButton.mouseChildren = false;
pauseButton.addEventListener (MouseEvent .MOUSE UP,onPause) ;
// Set the state of the play and pause buttons.

// We want to show the play button at first, so...
playButton.visible = true;

pauseButton.visible = false;

}

// Play a media file

public function playFile ()

{
// Show only the pause button.
playButton.visible = false;
pauseButton.visible = true;

}

// Pause a media file

public function pause ()

{

// Show only the pause button.

[175]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

The Hybrid Approach Part 1: Componentization

}

playButton.visible = true;
pauseButton.visible = false;

}

// Called when the play button has been pressed.
private function onPlay(event:MouseEvent)
{
// Play the audio track.
playFile() ;
}
// Called when the user presses the pause button.
private function onPause(event:MouseEvent)
{
// Pause the audio track.
pause () ;
}
// Add the play and pause button to the media player.
public var playButton:MovieClip;
public var pauseButton:MovieClip;

Our next task is to modify the MediaPlayer.as file so that it no longer has a
dependency on the ControlBar class. Let's now open up the MediaPlayer.as
file so that we can make all the appropriate changes.

Removing the ControlBar dependency from
MediaPlayer

In this section we will start by opening up the MediaPlayer.as file and removing
any dependencies that this file has on the ControlBar object. Although we will
temporarily break this class, we will make the connection again when we build a
communication gateway later in this chapter. For now, we simply want to remove
any trace of a control bar until our MediaPlayer.as file looks like the following;:

package

{

// Import all dependencies
import flash.display.MovieClip;
import flash.events.MouseEvent;

// Declare our class
public class MediaPlayer extends MovieClip

{

// Constructor function.
// Called when someone creates a new MediaPlayer
public function MediaPlayer ()

{

PUBLISHING

[176]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2

Chapter 7

// Make sure we call the MovieClip constructor
super () ;

// Let us know that we created this player.
trace("MediaPlayer created!");

}

// Play the media file
public function playFile ()

{
}

// Pause the media file
public function pause ()

{
}

// Load a media file.
public function load(file:String)

{
}

}

Now that the control bar has been removed from the MediaPlayer class, our next
step is to re-add the controlBar to the stage when the player runs.

Adding the ControlBar to the stage

In order to add our new ControlBar to the stage, we will need to make a few
modifications to our main. as file. Our goal here is to allow our Flash application to
run as a remote control application, a media player, or both. Because of this, we will
need to design our Flash application so that it can handle situations where we would
like it to behave only as a control bar. For this use case, we will need the ability to
resize our Flash application so that it only shows the control bar section and not the
media region. However, by default, Flash will scale the size of our application to

fit any embedded width and height that we provide, which is not what we want.
Instead, we would like the Flash application to mask off any region outside of the
width and height region provided to our HTML object code. To do this, we will need
to add the following code to our main. as file, to tell our stage to not scale when the
player is being resized:

// Set up our responder with the callbacks.
var responder:Responder = new Responder (onConnect, onError) ;

// We do not want to scale the stage.
stage.scaleMode = StageScaleMode.NO SCALE;
stage.align = StageAlign.TOP LEFT;

// Connect to Drupal

drupal.call ("system.connect", responder) ;

[177]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009
200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

The Hybrid Approach Part 1: Componentization

Our next task is to add our controlBar to the stage. Again, we need to be able to
handle the use case where our player will be used as a remote control only. For this
case we do not really require the node1d variable to be valid, since we can connect to
any remote media player and let them worry about the node1d of the media to play.
For this reason, we will need to add our controlBar in two different places. The first
place will be within the onNodeLoad function, when a node has successfully been
added to the player; and the second place is when a node1d is not provided. These
changes look like the following:

// Called when Drupal returns with our node.
function onNodeLoad(node:0Object)
{
// Print out the node title.
title.text = node.title;
// Declare our base URL.
var fileURL:String = baseURL;
// Add our file's relative path.
fileURL += "/";
// Declare a generic media player.
var player = null;
// If this node has audio.
if (node.audio) {
// Declare our player as an AudioPlayer.
fileURL += node.audio.file.filepath;
player = new AudioPlayer() ;
}
else if(node.field video) {
// Declare our player as a VideoPlayer.
fileURL += node.field video[0] ["filepath"];
player = new VideoPlayer() ;
}
// Add the player to the stage.
addChild(player);
// Add a control bar.
addControlBar () ;
// Play our audio file
player.load(fileURL) ;
}
// Add the control bar to the stage.
function addControlBar ()
{
var controlBar:ControlBar = new ControlBar() ;
addChild(controlBar);
}
// Called when Drupal returns with a successful connection.
function onConnect (result:0bject)

{

[178]

This material is copyright and is licensed for the sole use by Chris Bovard on 15th September 2009

200 1933 West Mall, , Vancouver , Canada, V6T 1Z2
PUBLISHING

Chapter 7

// Set our sessionId variable.
sessionId = result.sessid;

trace ("We are connected!!!");
trace ("Session Id: " + sessionId);
// If the node Id is valid...

if(nodeId) {

// Load our node.

loadNode (nodeId) ;

}

else {
// Add a control bar.
addControlBar() ;

}
}

Now that we have removed the control bar dependency from the media player, we
must recreate the communication channels between ControlBar and MediaPlayer
by building a new communication mechanism that will support both local and
remote connections.

Communication between ControlBar and
MediaPlayer

In a typical Flash architecture, communication between two different components
would use ActionScript's event model to dispatch events from one component

to the next. But, for our implementation, we will need to take an unconventional
approach with our architecture, since the communication between these two
different components can be performed, either local