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This column is an open forum. We welcome opin-
ions on all mathematical issues: research; educa-
tion; and communication. Please feel free to write.
Opinions expressed in this forum do not necessarily reflect
those of the editorial board, PIMS, or its sponsors.

The Language of Mathematics

by Timothy Taylor

I’m a writer. I write stories—novels, short stories, novel-
las. I’m aware that sometimes the creative arts (like my
fiction) and the hard sciences (like mathematics) are con-
sidered uncomfortable companions. People tend to imag-
ine themselves as being attracted to one or the other, but
not to both. In my case, to be truthful, I found mathe-
matics difficult in school and for a long time I thought I
didn’t like the subject. But I was wrong. Not only have I
surprised myself in recent years by discovering an interest
in mathematics and its applications, I have surprised my-
self more by discovering this interest through my creative
writing.

Somebody once asked me, “What’s the most important
skill required to write fiction?” I told them that you had
to be able to sit alone in a room and type on a computer
for long periods of time. This is partly true. When you
have your story idea and you know your characters, there
comes a point when you simply have to sit down and write
for as long as it takes to finish. But that’s not the only
requirement, of course. There is also a lot of research
required to prepare yourself. In my writing, some of this
research might be considered incidental. If my character
visits Rome, I make it my business to learn about the city.
I don’t just write, “He went to Rome.” I write something
like, “He stayed at the Albergo Pomezia in Campo di’Fiori
not far from the old Jewish ghetto.” This detail might not
help us understand the character better, but it serves to
create a sense of reality.

Ultimately, you do want the reader to understand the
characters however, and here’s where a more integral kind
of research comes into play. Characters in my stories tend
to have a fairly clear set of desires and objectives in life.
These can range from grand to mundane. But in any case,
there will be a particular set of issues that concern a char-
acter, some variety of problem that he or she must solve.
For example, a character arriving at a new school might
wish to meet new friends. My character in Rome (he’s
an art critic) is consumed with the work of a particular
painter. The crucial thing is that the set of issues, or
the problems that confront a character, determine which
language they use.

When I say “language,” I don’t mean “tongue,” where
Chinese, Russian, English, or French might be examples.
Instead, I mean the set of words and concepts that a char-
acter is inclined to use within a given tongue. These arise
directly from the issues that concern that character. And
so, there is a unique language of art criticism (colour, com-
position, theme, culture, aesthetic etc.), just as there is a
language of business, of church, of personal relationships,
and—drum roll please—of mathematics!

I hadn’t really considered this until I wrote a story called
Silent Cruise a few years back. In that story, I introduce
Dett and Sheedy. Sheedy is a businessman and thinks only
in those terms. Dett is a young man who is consumed
by his own way of calculating probabilities (he does this,
in part, because he likes betting at the racetrack). In
order to put words into Dett’s mouth that make sense
given his very peculiar obsessions, I had to re-acquaint
myself with a language I hadn’t thought about in some
time: mathematics. I should emphasize that Dett’s way
of making calculations is not rigourous. A math student
reading the story would see this right away. But the point
is that he thinks not in a literate language (like Sheedy),
but in a numerate one. And Dett’s way of expressing
himself, to a large extent, defines who he is, how well he
communicates with Sheedy, and what kinds of problems
he is able or unable to solve. As I wrote the story, I
enjoyed trying to “think” through Dett in his numerate
way, even though I had a hard time doing so at school.
In the process, I came to think that of all the languages I
had researched for characters over the years, mathematics
is very special. I would even go so far as to say that it is
a precious language. It’s difficult to learn and, as a result,
it is rare and valuable. But it is also very powerful, and
perhaps this interests me more. As I wrote Dett’s story—
even though he applied his numeracy in an unconventional
way—he had the tools to solve many, many problems that
Sheedy did not. And that fact, boiled right down, was the
essence of my story.

An editor once commented on Silent Cruise in a news-
paper article. He said that I had drawn a picture of a
character who thought primarily with numbers and how
that was very unusual in Canadian fiction. I take these
words as a compliment beyond any other that I have re-
ceived in connection with my writing. They mean that I
had not only done my research well enough to convince
this editor, but that I had communicated some of what
is precious—rare and valuable—in the language of math-
ematics. I only wish I spoke it better.

Timothy Taylor is the author of the national bestseller
Stanley Park, a novel. His book, Silent Cruise and Other
Stories, will be published next year. The short story,
Silent Cruise, was short-listed for the Journey Prize 2000.
Taylor won the prize for a different story, where the lan-
guage spoken was concerned mostly with cheese.

We should also mention that an article written by Timo-
thy Taylor for Saturday Night Magazine won a Gold Medal
at the National Magazine Awards.
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Tic-Tetris-Toe

by Andy Liu

Part I: Introduction

Tic-Tetris-Toe is very much like Tic-Tac-Toe. The
classic game is played on a 3 by 3 board, taking a square
in each turn. Whoever is first to get 3 squares in a row
or 3 on a diagonal wins. However, in this new game, we
make two changes.

First, while we still play on a square board, it does not
have to be 3 by 3. Tic-Tetris-Toe is actually five different
games, each with a board of a different size. Second, we
try to get different shapes. We use those from the popular
video game Tetris, as shown in Figure 1.

Figure 1

There are actually seven different pieces, but since they
are allowed to turn over, we have only five Tic-Tetris-
Toe games. We call these pieces N4, L4, T4, I4 and O4,
because they each have four squares and look like the let-
ters N, L, T, I and O, respectively.

For N4, we play on a 3 by 3 board. For L4, we play on
a 4 by 4 board. For T4, we play on a 5 by 5 board. For
I4, we play on a 7 by 7 board. For O4, we play on a 9 by
9 board. Of course, the advantage is with the first player.
Can you figure out a way for a sure win if I let you go
first? Try these games with your friends, and then check
below. Don’t peek—that will spoil the fun!

Part II: The N4 Game

Let us label the rows of the board 1, 2, and 3, and the
columns a, b, and c. That way, each square will have a
name. For example, the square at the bottom left corner
will be called a1.

You will need at least four moves to win, and you will
have an extra fifth move that may come in handy in some
scenarios. Mapping out a winning strategy requires that
you look quite far ahead. On the other hand, I (the op-
posing player) may be able to stop you from winning with
one or two moves. Perhaps you should first consider what
my strategy will be.

a b c

1

2

3

O

a b c

1

2

3

O O

a b c

1

2

3

O

O

Figure 2

Figure 2 shows three ways in which I can stop you from
winning. In each case, even if I give you all of the remain-
ing squares, you still cannot complete N4. This tells you
that you must take b2 in your first move, and make sure
that you take at least one of b1 and b3, and at least one
of a2 and c2.

Note that once you have taken b2, you do not have to
worry about me sneaking up on you for a surprise win.
You will do no worse than a draw. It would be too em-
barrassing to lose as the first player. Can I still stop you
from winning? After you have taken b2, I really have two
different choices: taking an edge square or a corner one.

Suppose I take a2. You already know that you must
take c2. Now I give up. In your third move, you can take
b1 and create a double-threat at a3 and c1. If I prevent
you from doing this by taking one of these three squares,
you will take b3 and create a double-threat at a1 and c3.
Figure 3 shows that the key to your success is the W5
shape.

a b c

1

2

3

O1 X1 X2

a b c

1

2

3

O1 X1 X2

Figure 3

Am I better off if I start with a corner square, say a1?
Suppose you still take c2. After all, it has worked once.
Now I know that I must take one of a3, b3, and c1. You
can force me to take c3 on my next move by taking b1
yourself. Then you can create a double-threat by taking
one of c3, a2, and a3, depending on my move.

a b c

1

2

3

O1

O2 O3

X1 X2

X3 X4

a b c

1

2

3

O1

O2 O3

X1 X2

X3

X4

a b c

1

2

3

O1 O2

O3

X1 X2

X3

X4

Figure 4

Can you remember all of this? You do not have to
do that. Just understand that you must have b2, one of
a2 and c2, and one of b1 and b3. Then look for double
threats. With a little bit of practice, you will always win
if you move first.
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Part III: The L4, T4 and I4 Games

Label the extra rows 4, 5 and so on, and the extra
columns d, e and so on. You can have an easy win in
the L4 game. Start by taking b2. You are guaranteed to
get b3 or c2 in your next move. If both are still there and
both b1 and b4 are still empty, take b3. Otherwise, a2
and d2 will be empty, so take c2. On your third move,
complete 3 squares in a row, and I cannot stop you from
completing L4 on your fourth move. Since I have only
made three moves so far, I cannot beat you to it.

You can win the T4 game by starting at the obvious
place, c3. I can make one of five essentially different re-
sponses, at a1, a2, a3, b2, or b3. On your second move,
you take d4. On your third move, you take either c4 to
create a double-threat at b4 and c5, or d3 to create a
double-threat at d2 and e3. I can neither stop you nor
beat you to it.

1

2

3

4

5

6

7

a b c d e f g

O1

O2

O3

O4O5

X1

X2

X3

X4X5

X6

Figure 5

The I4 game is the only one of the five that can be
played competitively. While you have a sure win, it cannot
be forced until your eighth move. In trying for the win,
it is possible that you may set up a double-threat for me.
Figure 5 shows a sample game in which I put up a good
fight. On the seventh move, you either take c6 for the
double-threat at a6 and e6, or take b4 for the double-
threat at b3 and b7. I cannot stop both.

Part IV: The O4 Game

This game holds a big surprise. Even though the board
looks more than large enough, you will not be able to force
a win. I have a very simple but effective counter strategy
that will prevent you from winning, even if we play on an
infinite board. It is an elegant idea which demonstrates
the beauty of mathematics.

Figure 6

I will combine pairs of adjacent squares into dominoes
in the pattern of a brick wall, into which you will bash
your head in vain. Whenever you take a square, I will
take the other square of the same domino. As shown in
Figure 6, no matter how you fit in O4, it must contain a
complete domino. Since you can only have half of it, you
cannot win!

Part V: Further Projects

Problem 1.
Find four connected shapes of three squares or less, joined
edge-to-edge.

Remark: These shapes are called the monomino O1, the
domino I2, and the trominoes I3 and V3. None of them
provides much challenge as a game—the first player has an
easy win if the board is big enough. This is because each
of these pieces form parts of other pieces for which the first
player can win. Our Tetris pieces are the tetrominoes. If
we go to the pentominoes, you will find these games much
more challenging. There are twelve such pieces, called F5,
I5, L5, N5, P5, T5, U5, V5, W5, X5, Y5, and Z5, as
shown in Figure 7. Pentomino is a registered trademark
of Solomon Golomb, who has written a wonderful book
called Polyominoes. This word means, “shaped or formed
of many squares.” After the pentominoes come the 35
hexominoes, 108 heptominoes, 369 octominoes, and so on.

Problem 2.
Since P5 contains O4, and the domino strategy of Figure
6 works for the O4 game, the second player can also force
a draw in the P5 game, even if it is played on an infinite
board. On the other hand, there are four pentominoes that
do not contain O4, but for which the domino strategy of
Figure 6 also works. Which pentominoes are they?

Problem 3.
Show how the first player can force a win for the N5 game
on a 6 by 6 board, and for the L5 and Y5 games on a 7
by 7 board.

Figure 7

Problem 4.
Match each of the other four pentominoes with one of the
patterns in Figure 8 for a domino strategy.
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Figure 8

Problem 5.
How many of the hexominoes contain a pentomino for
which the second player has a domino strategy?

Figure 9

Problem 6.
Find domino strategies for the second player in games us-
ing the hexominoes in Figure 9. For one of them, you will
have to find a new pattern.

Figure 10

Problem 7.
With the possible exception of the hexomino in Figure 10,
no polyominoes formed of six or more squares offer the
first player a sure win, even on an infinite board. Can a
win be forced in a game using this hexomino?

Problem 8.
Returning to Tic-Tetris-Toe, it is easy to see that there is
no win for the first player in the N4 game if it is played
on a 2 by 2 board, because it is not even big enough to
hold the piece. The L3 game on a 3 by 3 board is also a
draw, if played properly. The classic Tic-Tack-Toe is still
a draw even with additional winning configurations. Can
the first player still force a win in the T4 games on a 4 by
4 board, or the I4 game on a 6 by 6 board?

Part VI: Acknowledgement

This article is based on Martin Gardner’s Mathemati-
cal Games column in Scientific American magazine, April,
1979. It has since been collected into the anthology Frac-
tal Music, Hypercards and More, as Chapter 13, under the
title Generalized Tic-tac-toe. This book was published by
W. H. Freeman and Company, New York, in 1992. The
original work was done by the noted graph theorist Frank
Harary.

A mother of three is pregnant with her fourth child. One
evening, her eldest daughter says to her dad, “Do you know,
daddy, what I’ve found out?”

“No.”
“The new baby will be Chinese!”
“What?!”
“Yes. I’ve read in the paper that statistics show that every

fourth child born nowadays is Chinese. . . .”

A father who is very much concerned about his son’s poor
grades in math decides to register him at a religious school.
After his first term there, the son brings home his report card;
he gets ‘A’s in math.

The father is, of course, pleased, but wants to know, “Why
are your math grades suddenly so good?”

“You know,” the son explains, “when I walked into the class-
room the first day and saw that guy nailed to a plus sign on
the wall, I knew one thing—this place means business!”

“What happened to your girlfriend, that really smart math
student?”

“She is no longer my girlfriend. I caught her cheating on
me.”

“I don’t believe that she cheated on you!”
“Well, a couple of nights ago I called her on the phone,

and she told me that she was in bed wrestling with three un-
knowns. . . .”

Q: Why do mathematicians often confuse Christmas and
Halloween?

A: Because Oct 31 = Dec 25.∗

Q: How do you make one burn?
A: Differentiate a log fire.

∗ Write to us if you get this joke!
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Weierstraß∗

Volker Runde†

Each university and each department develops a pecu-
liar kind of folklore—anecdotes about those of its gradu-
ates (or dropouts) that somehow managed to become fa-
mous (or notorious). Very often, there is an element of
glee to these stories: “Well, he may now be a government
minister, but I flunked him in calculus!” And also very
often, it is impossible to tell the truth from the legend.

Karl Weierstraß

When I was a math stu-
dent at Münster, Germany
in the 1980s, such anecdotes
centered mainly around two
people: Gerd Faltings, the
first and only German to win
the Fields medal1, mathe-
matics’ equivalent of the No-
bel prize; and Karl Weier-
straß, the man who (be-
sides many other mathemat-
ical accomplishments) intro-
duced ε and δ into calculus.
Weierstraß had been a stu-
dent at Münster in the 1830s
and 1840s. There was no one
around anymore who knew

anybody who had known anybody who had known any-
body who had known Weierstraß, but this didn’t prevent
the folklore from blooming. According to his legend,
Weierstraß flunked out of law school because he spent
most of his time there drinking beer and doing math-
ematics. Then he worked for more than ten years as
a school teacher in remote parts of Prussia, teaching
not only mathematics, but also subjects like botany,
calligraphy, and physical education. Finally, when almost
40 years old, he became a famous mathematician, and
was eventually appointed a professor at Berlin—without
ever having received a PhD. This story may sound wild,
and in some ways it simplifies the facts, but it is not far
from the truth.

Karl Theodor Wilhelm Weierstraß was born on October
31, 1815, in the village of Ostenfelde, which is located in
what was then the Prussian province of Westphalia. A
street and an elementary school in Ostenfelde are named
after him, and his birth house—still occupied today—is

∗ The last letter is not a β, but an “ß”, a letter unique to the
German alphabet, which is pronounced like an “s”. Books written
in English usually spell the name “Weierstrass.”

† Volker Runde is a professor in the Department of Math-
ematical Sciences at the University of Alberta. His web site is
http://www.math.ualberta.ca/∼runde/runde.html and his E-mail
address is vrunde@ualberta.ca.

1 If you want to know more about the Fields medal: there is an
article on it—The Top Mathematics Award by Florin Diacu—in the
June 2001 issue of π in the Sky .

listed in a local tourist guide. His father, who worked for
Prussia’s customs and taxation authorities, was sent from
one post to the next within short periods of time. For the

Karl Weierstraß
as a young man

first 14 years of Karl Weier-
straß’ life, his family was
more or less constantly on
the move. In 1829, Karl’s fa-
ther obtained an assistant’s
position at the tax office in
the city of Paderborn (also
in Westphalia), and the fam-
ily could finally settle down.
Young Karl enrolled at the
local Catholic Gymnasium in
Paderborn, where he excelled
not only in mathematics, but
also in German, Latin, and
Greek. Not only was he a
strong student, he was also
quite capable of putting his
brains to work on much more

practical matters. At age 15, Karl contributed to his
family’s income by doing bookkeeping for a wealthy
merchant’s widow.

Throughout his life, Weierstraß Senior suffered from the
knowledge that he did not have the right education to rise
to a rank in the Prussian civil service that would have
better suited his abilities. Instead, he had to content him-
self with relatively low-level positions, not very challenging
and not very well paid. Like many a father in this situ-
ation, he was determined to prevent such a fate befalling
his bright eldest son. When Karl graduated in 1834, his
father decided to send him to Bonn to study Kameralis-
tik (a combination of law, finance, and administration).
Being a dutiful son, Karl went. . .

. . . and did all he could to sabotage the life his father
had planned for him. He joined a schlagende Verbindung ,
a kind of student fraternity typical of German universities
in the 19th century. Besides keeping the brewing indus-
try busy, fraternity members engaged in a peculiar rit-
ual: the Mensur , a swordfight with a peculiar twist. Un-
like in today’s athletic competitions, the students fought
with sharp sabers. They wore protective gear that cov-
ered most of their bodies—except the cheeks. During a
Mensur , the opponents tried to inflict gashes on one an-
other’s cheeks. The scars were borne with pride as signs
of honour and manhood.2 Almost two metres tall, quick
on his feet, and with strong arms, Karl Weierstraß was a
fearsome swordsman. His face remained unscarred, and
after a while nobody was keen on challenging him any-
more. Having escaped from under his father’s tutelage,
he spent his years at Bonn drinking beer and wielding the
saber—and seriously studying mathematics. Although he
was not enrolled in mathematics, he read some of the most
advanced math books of his time. In 1838, when it was
time for him to take his exams, he simply dropped out.

His family was desperate. They had made considerable
financial sacrifices to secure a better future for Karl, who
had let them down. Having wasted four years of his life,
he needed a bread-winning degree, and fast. So, in 1839,

2 If you find such ideas of honour and manhood absolutely re-
volting, you’re absolutely right.
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he enrolled at the Akademie in Münster, the forerunner to
today’s university, to become a secondary school teacher.
Although this was not really a university, but rather a
teacher training college, they had one good mathemati-
cian teaching there—Christoph Gudermann. He is said
to have been an abysmal teacher: very often, he had just
one student sitting in his class—Karl Weierstraß. In 1840,
Weierstraß graduated. His thesis was so good that Gud-
ermann believed it to be strong enough for a doctoral de-
gree. However, the Akademie was not really a university;
it did not have the right to grant doctorates. So, instead
of receiving a doctorate and starting an academic career,
Weierstraß left the Akademie as a mere school teacher.

His first job (probationary) was in Münster. One year
later, he was sent to Deutsch Krona3 in the province of
West Prussia as an auxiliary teacher, then, in 1848, to
Braunsberg4 in East Prussia. Of course, he taught math-
ematics, but also physics, geography, history, German,
and—believe it or not—calligraphy and physical educa-
tion. Besides the demands of working full time as a teacher
and having a social life (remember, he liked beer), he found
time to do research in mathematics. During his time in
Braunsberg, he published a few papers in his school’s year-
book. High school year books are not exactly where peo-
ple look for cutting edge research in mathematics, and so
nobody noticed them. Then, in 1854, he published a pa-
per entitled, “Zur Theorie der Abelschen Functionen” in a
widely respected journal. I won’t even make an attempt to
explain what it was about. But unlike his previous work,
this one was noticed.

It dawned on mathematicians all over Europe that the
man who was probably the leading analyst of his day
was rotting in a small East Prussian town, spending most
of his time teaching youngsters calligraphy and physical
education. On March 31, 1854, Weierstraß finally re-
ceived a doctorate, an honorary one from the university of
Königsberg.5 In 1856, he accepted a position at the Gewer-
beinstitut in Berlin, an engineering school, and a year later
he joined the faculty of the University of Berlin as an ad-
junct professor. As a teacher, he attracted large audiences.
Often, he taught in front of more than 200 students. In
1869, when he was almost 50 years old, Weierstraß was ap-
pointed full professor at the university of Berlin. In 1873
and 1874, he was Rektor magnificus of the university; in
1875, he became a knight of the order “Pour le Mérite”
in the category of Arts and Sciences, the highest honour
newly unified Germany could bestow upon one of its citi-
zens; and, in 1885, on the occasion of his 70th birthday, a
commemorative coin was issued in his honour.

The years of leading a double life as a secondary school
teacher and a mathematical researcher took their toll on
Weierstraß’ health. A less vigorous man would probably
have collapsed under the double burden much earlier. In
1850, Weierstraß began to suffer from attacks of dizziness,
which culminated in a collapse in 1861. He had to pause
for a year before he could teach again, and he never re-
covered fully. In 1890, at age 75, Weierstraß retired from
teaching because of his failing health. The last years of

3 Now Wa lcz in Poland.
4 Now Braniewo in Poland.
5 Now Kaliningrad in Russia.

his life were spent in a wheelchair. In 1897, he died.

Weierstraß published few papers—he was very critical
toward his own work. But although he was a brilliant re-
searcher, the greatest impact he had on mathematics was
as a teacher. At Berlin, he repeatedly taught a two-year
course on analysis, the predecessor of all modern introduc-
tions to calculus and analysis. Although he never wrote
a textbook, notes taken in class by his students have sur-
vived and convey an impression of his lectures. Perhaps
the longest lasting legacy of those lectures is their em-
phasis on rigour. When calculus was created in the 17th
century, mathematicians did not worry about rigourously
proving their results. For example, the first derivative
dy/dx of a function y = f(x) was thought of as a quotient
of two “infinitesimals” (i.e., infinitely small quantities dy
and dx). Nobody could really tell what infinitely small
quantities were supposed to be, but mathematicians then
didn’t really care. The new mathematics enabled them
to solve problems in physics and engineering that had
been beyond the reach of the human mind before. So why
bother with rigour? In the 18th century, mathematicians
went so far as to proclaim that rigour was for philosophers
and theologians, not for mathematicians. But with the
lack of rigour, contradictory results cropped up with dis-
turbing frequency—people often arrived at formulae that
were obviously wrong. And, if a particular formula deter-
mines whether or not a bridge collapses, you don’t want
it to be wrong. Weierstraß realized that if calculus was
to rest on solid foundations, its central notion, that of the
limit, had to be made rigourous. He introduced the defi-
nition that (essentially) is still used today in classrooms:

A number y0 is the limit of a function f(x) as x
tends to x0 if, for each ε > 0, there is δ > 0 such
that |f(x)− y0| < ε for each x with |x− x0| < δ.

Students may curse it, but it will not go away.

Weierstraß was not only an influential lecturer, but also
one of the most prolific advisors of PhD theses of all time.
There is a database on the Internet6 that lists 31 PhD stu-
dents of Weierstraß and 1,346 descendants (i.e., PhDs of
PhDs of PhDs etc.) of Weierstraß. Interestingly, the two
former students who generated the most folklore weren’t
his students in a technical sense.

Sofya Kovalevskaya was a young Russian noblewoman
who had come to Germany to study mathematics. This
alone was no small feat at a time when the very idea of a
woman receiving a university education was revolutionary.
For two years, she studied at Heidelberg, where authorities
would not let her enroll officially, but eventually allowed
her to attend lectures unofficially (provided the instructor
did not object). Then she moved to Berlin to work with
Weierstraß, only to find that she was not even allowed to
audit lectures.

6 The Mathematics Genealogy Project at
http://hcoonce.math.mankato.msus.edu/ .
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Sofya Kovalevskaya

This prompted Weier-
straß, by all we know a po-
litically conservative man,
to tutor her privately.
Since Kovalevskaya could
not receive a doctorate
from Berlin, Weierstraß
used his influence to per-
suade the University of
Göttingen to award her
the degree in 1874. She
spent the following nine
years jobhunting. Be-
ing a woman didn’t help.
The best job she could
find was teaching arith-
metic at an elementary
school. Finally, in 1883,
she was offered a pro-
fessorship at Stockholm,
where she worked until her

death in 1891 at the age of 41. Weierstraß and Ko-
valevskaya stayed in touch throughout her mathematical
career. After her death, Weierstraß destroyed their
correspondence. This fact, along with Kovalevskaya’s
striking beauty, gave rise to innuendos that she may have
been more to Weierstraß (who never married) than just a
student. Perhaps—but we don’t know.

Karl Weierstraß
in old age

Gösta Mittag-Leffler,
another of the great math-
ematician’s protegées, was
also not Weierstraß’ stu-
dent strictly speaking.
Already enrolled at the
University of Uppsala,
Sweden, he came to Berlin
in 1875 to attend Weier-
straß’s lectures, which had
an enormous impact on
his mathematical develop-
ment. He then returned
to his native Sweden,
where he received his doc-
torate. Over the years,
Mittag-Leffler became in-
disputably the most
influential mathematician
of his time in Sweden. He
made use of his clout to

overcome the obstacles faced by Sofya Kovalevskaya
regarding her appointment at Stockholm. What Mittag-
Leffler is most famous for, however, is not a mathematical
accomplishment, but a piece of mathematical folklore.
To this day, mathematicians suffer quietly from the
lack of a Nobel prize, and, some say, Mittag-Leffler
is to blame—according to legend, the first version of
Nobel’s will mentioned a prize in mathematics. Then,
Nobel found out that his wife had had an affair with
Mittag-Leffler. Infuriated that his wife’s lover could well
be the first prize winner, Nobel changed his will and
removed the math prize. That’s a fine piece of juicy
folklore, but nothing more; like Weierstraß, Nobel was a
lifelong bachelor.

At the end of his course on mathematical methods in opti-
mization, the professor sternly looked at his students and said,
“There is one final piece of advice I’m going to give you now—
whatever you have learned in my course, never, ever try to
apply it to your personal lives!”

“Why?” the students asked.

“Well, some years ago, I observed my wife preparing break-
fast, and I noticed that she wasted a lot of time walking back
and forth in the kitchen. So, I went to work, optimized the
whole procedure, and told my wife about it.”

“And what happened?”

“Before I applied my expert knowledge, my wife needed
about half an hour to prepare breakfast for the two of us. And
now, it takes me less than fifteen minutes. . . .”

Q: What is an extroverted mathematician?

A: One who, in conversation, looks at the other person’s
shoes instead of at his own.

In a dark, narrow alley, a function and a differential operator
meet, “Get out of my way or I’ll differentiate you ’til you’re
zero!”

“Try it—I’m ex. . . .”

c©Copyright 2001
Sidney Harris

Same alley, same function, but a different operator: “Get
out of my way or I’ll differentiate you ’til you’re zero!”

“Try it—I’m ex. . . .”

“Too bad. . . I’m d/dy.”
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Life and Travel in 4D

by Tomasz Kaczynski†

It is the spirit of the age to believe
that any fact, no matter how suspect,
is superior to any imaginative exercise,
no matter how true.
Gore Vidal

In higher-level mathematics courses, the study of vector
spaces of arbitrary dimension n or even infinite dimension
is often required. A natural question that arises is:

“How can we visualize a space of a dimension
higher than 3?”

We can draw pictures in 2D, we can make models in 3D—
but 4D? That seems very strange! Most teachers have no
choice but to introduce an n-dimensional space R

n as a
purely algebraic object consisting of sequences

~x := (x1, x2, x3, . . . , xn)

of n real numbers. But this does not satisfy people who
dabble more in geometry than in algebra. Some physi-
cists and mathematicians claim to be able to see in 4D—
Einstein supposedly could even see in 5D! I do not quite
believe those stories, but rather think that all we can do is
accept 4D or 5D, learn to cope with it, and maybe one day
we will believe that we really see it. When I was in college,
I once attended a series of talks given by university stu-
dents with the aim of popularizing mathematics. There I
learned a beautiful way of coping with a multi-dimensional
space. The answer is in the concept of empathy, the ca-
pacity for participation in another’s feelings or ideas. Who
is that other person? He is called Flatman.∗

Figure 1

† Tomasz Kaczynski is a professor in the Département de
mathématiques et d’informatique at Université de Sherbrooke. His
web site is http://www.dmi.usherb.ca/∼kaczyn/index.html and
his E-mail address is kaczyn@dmi.usherb.ca.

∗ We recommend the book by Edwin A. Abbott, “Flatland: a
romance of many dimensions,” London, Seeley, 1884.

Let us put ourselves in the position of Flatman, a 2D
man who lives in a 2D world and is unable to imagine a
3D space. What does his 2D world look like? His world
is a straight line. His skin is not a surface, it is a closed
curve. This is shown in Figure 1, which is not just another
2D projection of our World, but an image showing how his
Flat World would actually appear.This presents Flatman
with some technical problems. For example, if Flatman
wants to pass to the right of Flatwoman, he has to jump
over her. The anatomy of Flatman or Flatwoman is also
not evident.

Now, let’s look at Figure 2. Flatwoman’s digestive
system cannot be a tube like the one we have inside
us, because it would split her into at least two separate
parts (called by mathematicians connected components),
as shown on Figure 2(a). We may guess that Flatman or
Flatwoman must digest food similarly to the bacteria in
Figure 2(b).

Note that the Flatman in Figure 1 cannot see the in-
terior of the Flatwoman. But we, 3D-beings, can see her
interior from our outer dimension. Maybe some superior
4D-being can see what we have inside without using X-
rays, and could remove a tumor from a patient’s body
without any surgery. It is thus clear that concepts such as
interior, exterior, and boundary are relative to the outer
space in which our world is embedded.

Part A
Part B

Food
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��

�
�
�
�

��

�

(a) (b)

Figure 2

Let’s give this discussion some mathematical meaning.
Suppose a prisoner is kept at a point P = (0, 0) of a 2D-
world R

2 whose points are denoted by the Cartesian coor-
dinates (x, y). His cell is limited by the circle S1 given by
the equation x2 + y2 = 1. If there is no hole in the circle,
there is no way he could get outside of the circle, e.g., to
the point Q = (2, 0). This fact is intuitively acceptable,
but very hard to prove—it is the famous Jordan Closed
Curve Theorem. But everything changes if we embed the
plane into the 3D-space R

3, whose points are denoted by
Cartesian coordinates (x, y, z). Our planar world is given
by the equation z = 0. The prisoner’s position is now
P = (0, 0, 0), the boundary circle is given by the pair of
equations

x2 + y2 = 1,
z = 0,

and the destination point is Q = (2, 0, 0). The prisoner
can easily get out by jumping over the circle. A possible
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trajectory in time t can be given by

x = t,
y = 0,
z = t(2 − t),

which starts at t = 0 and reaches the point Q at t = 2.
This is shown in Figure 3(a).

���
�

0
1 2

Q x

y

z

P

S1 S2

P Q

(a) (b)

Figure 3

We may now raise the dimension. Consider the point
P = (0, 0, 0) inside a balloon-shaped cell called sphere S2

and given by the equation x2 + y2 + z2 = 1. Consider the
point Q = (2, 0, 0) on the outside of the sphere. Again,
there is no way a prisoner staying at P could move out to
Q without cutting through the sphere. Let’s add an extra
dimension: the points of R

4 are (x, y, z, u), P = (0, 0, 0, 0),
and Q = (2, 0, 0, 0). Our 3D-space is given by the equation
u = 0, and the limiting 2D-sphere S2 is now given by

x2 + y2 + z2 = 1,
u = 0.

With the extra fourth dimension, the prisoner can jump
outside the sphere without cutting it. The trajectory is
now

x = t,
y = 0,
z = 0,
u = t(2 − t).

This scenario is shown in Figure 3(b). Now, let’s tackle
a more serious topic. Once upon a time, a scientist named
Flatilei discovered that the Earth is not a line, but a circle
around a disc. Many flat sailors rushed to attempt a cruise
around the world, the first one being Flatellan. Several
centuries pass before some flastronomers claim that the
universe is not a 2D space; it is actually limited. It might
be, for example, a huge balloon in a 3D space, i.e., the
sphere S2

R given by the equation

x2 + y2 + z2 = R2,

where R is the radius of the sphere. This is shown in
Figure 4.

Figure 4

The flat circular Earth is a small round patch in that
spherical universe. Science-fiction writers imagine stories
of space missions where a spacecraft is sent along a straight
line and returns to the Earth. How can that be? Because
what was believed to be a straight line is actually a great
circle on the sphere. We may attempt the same mental
exercise by adding one more dimension, and view our uni-
verse as a 3D-sphere S3 given by the equation

x2 + y2 + z2 + t2 = R2.

One may ask: If the universe is limited, why must it be
a 3D-sphere? Actually, it does not have to be. In the next
issue, we will investigate other possibilities; look forward
to the article Travelling on the Surface of a Giant Donut.

Q: Do you already know the latest stats joke?
A: Probably. . . .

Q: What is the fundamental principle of engineering mathe-
matics?
A: Every function has a Taylor series that converges to the
function and breaks off after the linear term.
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Shark Attacks and
the Poisson

Approximation

by Byron Schmuland†

A story with the dramatic title “Shark attacks at-
tributed to random Poisson burst” appeared on September
7, 2001 in the National Post. In the story, Professor David
Kelton of Penn State University used a statistical model
to try to explain the surprising number of shark attacks
that occurred in Florida last summer. According to the
article, Kelton suggests the spate of attacks may have had
nothing to do with changing currents, dwindling food sup-
plies, the recent rise in shark-feeding tourist operations, or
any other external cause.

“Just because you see events happening in a rash like this
does not imply that there’s some physical driver causing
them to happen. It is characteristic of random processes
that they exhibit this bursty behaviour,” he said.

What was the professor trying to say? Can mathematics
really explain the increase in shark attacks? And what are
the mysterious Poisson bursts?

The main point of the Professor Kelton’s comments was
that unpredictable events, like shark attacks, do not occur
at regular intervals as in Figure 1(a), but tend to occur
in clusters, as in Figure 1(b). The unpredictable nature
of these events means that there are bound to be periods
with a higher than average number of events, as well as
periods with a lower than average number of events, or
even no events at all.

† Find more about the author at the following web site:
http://www.stat.ualberta.ca/people/schmu/dept page.html

You can also send your comments directly to the author at
schmu@stat.ualberta.ca

Regular Events

Time

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(a)

Random Events

Time

∗ ∗ ∗∗ ∗∗∗∗ ∗ ∗∗∗∗
(b)

Figure 1

The statistical model used to study the sequences of
random events gets its name from French mathematician
Siméon Denis Poisson (1781-1840), who first wrote about
the Poisson distribution in a book on law. The Poisson
distribution can be used to calculate the chance that a
particular time period will exhibit an abnormally large
number of events (Poisson burst), or that it will exhibit
no events at all. Since Poisson’s time, this distribution has
been applied to many different kinds of problems, such as
the decay of radioactive particles, ecological studies on
wildlife populations, traffic flow on the Internet, etc. Here
is the marvellous formula that helps to predict the proba-
bility of random events:

The chance of exactly k events occurring is

λk

k!
× e−λ,

for k = 0, 1, 2, . . .

The funny looking symbol λ is the Greek letter lambda,
and it means “the average number of events.” The symbol
k! = k×(k−1)× . . .×2×1 is the factorial of k, and e−λ is
the exponential function ex with the value x = −λ plugged
in. Let’s take this new formula out for a spin.

Shark Attack!
If, for example, we average two shark attacks per sum-

mer, then the chance of having six shark attacks next sum-
mer is obtained by plugging λ = 2 and k = 6 into the
formula above. This gives

probability of six attacks ≈ (26/6!) × e−2 = 0.01203,

which is a little more than a 1% chance. This means that
six shark attacks are quite unlikely in any one year, al-
though it is likely to happen about once every 85 years.
The chance that the whole summer passes without any
shark attacks can also be calculated by plugging λ = 2
and k = 0 into the formula. This gives

probability of no attacks ≈ (20/0!) × e−2 = 0.13533,

which is a 13% chance. Thus, we can expect a “sharkless
summer” every seven or eight years.

In this hypothetical shark problem, the number of at-
tacks followed the Poisson distribution exactly. The Pois-
son distribution is most often used to find approximate
probabilities in problems with n repeated trials and prob-
ability p of success. Let me show you what I mean.
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Lotto 6–49
One of my favourite games to study is Lotto 6–49. Six

numbers are randomly chosen from 1 to 49, and if you
match all six numbers you win the jackpot. Since the num-
ber of possible ticket combinations is

(

49
6

)

= 13,983,816,
your chance of winning the jackpot with one ticket is one
in 13,983,816, which is p = 7.15× 10−8. Let’s say you are
a regular Lotto 6–49 player and that you buy one ticket
twice a week for 100 years. The total number of tickets
you buy is n = 100× 52× 2 = 10,400. What is the chance
that you will win a jackpot sometime during this 100 year
run?

This is a pretty complex problem, but the Poisson for-
mula makes it simple. First of all, the average num-
ber of jackpots during this time period is λ = np =
10,400/13,983,816 = 0.0007437. Plugging this into the
formula with k = 0 shows that the chance of a “jackpot-
less 100 years” is

probability of no jackpots ≈ e−0.0007437 = 0.99926.

Wow! Even if you play Lotto 6–49 religiously for 100 years,
there is a better than 99.9% chance that you will never,
ever win the jackpot.

Coincidences
Take two decks of cards and shuffle both of them thor-

oughly. Give one deck to a friend and place both decks
face down. Now, at the same time, you and your friend
turn over the top cards. Are they the same? No? Then
try again with the second card, the third card, etc. If you
go through the whole deck, what is the chance that, at
some point, you and your friend will turn over the same
card?

In this problem, there are n = 52 trials and the chance
of a success (coincidence) on each trial is p = 1/52. The
average number of coincidences is λ = np = 52/52 = 1,
and so putting k = 0 in the Poisson formula gives

probability of no coincidences ≈ e−1 = 0.36788.

The chance that you will see a coincidence is 1 −
0.36788 = 0.63212. You will get a coincidence about 63%
of the time you play this game. Try it and see!

Birthday Problem
Suppose there are N people in your class. What are the

odds that at least two people share a birthday? Imagine
moving around the class checking every pair of people to
see if they share a birthday. The number of trials is equal
to the number of pairs of people, i.e., n =

(

N
2

)

= N(N −
1)/2. The probability of success in a given trial is the
chance that two randomly chosen people share a birthday,
i.e., p = 1/365. This gives the average number of shared
birthdays as λ = N(N − 1)/(2 × 365), so the probability
of “no shared birthdays” is

probability of no shared birthdays ≈ e−N(N−1)/(2×365).

Therefore, the probability of at least one shared birth-
day is approximately 1 − e−N(N−1)/(2×365). Here’s what
happens when you try using different values of N in this
formula.

Probability of a shared birthday

N Prob N Prob

10 0.115991 60 0.992166
20 0.405805 70 0.998662
30 0.696320 80 0.999826
40 0.881990 90 0.999983
50 0.965131 100 0.999999

With N = 10 people, there is only about an 11.5%
chance of a shared birthday, but with N = 30 people there
is a 69.6% chance. In a large class (like at a university!)
with N = 100 students, a shared birthday is 99.9999%
certain.

In a large class, perhaps it is possible to have a triple
birthday. Following the same pattern, let’s work out the
chance that there is at least one triple shared birthday in
a class of N people. This time, as each triple of people is
checked, there are

(

N
3

)

= N(N − 1)(N − 2)/6 trials, and

the chance of success on each trial is p = 1/3652.
This gives λ = N(N − 1)(N − 2)/(6 × 3652), so the

probability of “no triple shared birthdays” is

probability of no
triple shared birthdays

}

≈ e−N(N−1)(N−2)/(6×3652).

Therefore, the probability of at least one triple shared

birthday is 1 − e−N(N−1)(N−2)/(6×3652). Now, let’s look
at different values of N in this formula.

Probability of a triple shared birthday

N Prob N Prob

10 0.002699 60 0.537254
20 0.025344 70 0.708481
30 0.087370 80 0.842779
40 0.199470 90 0.929027
50 0.356838 100 0.973779

My large first year statistics courses usually have about
100 students, and I always check their birthdays. Accord-
ing to the table, there should be a triple shared birthday
more than 97% of the time. It really is true; there has
always been a triple shared birthday in my classes.

The Great One
During Wayne Gretzky’s days as an Edmonton Oiler, he

scored a remarkable 1669 points in 696 games, for a rate of
λ = 1669/696 = 2.39 points per game. Using the Poisson
formula, with k = 0, we estimate that the probability of
Gretzky having a “pointless game” is

probability of no points ≈ (2.39)0

0!
e−2.39 = 0.0909.
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Over 696 games, this ought to translate into about 696 ×
0.0909 = 63.27 pointless games. In fact, during that pe-
riod, he had exactly 69 pointless games.

For one-point games, we find an approximate probabil-
ity of

probability of one point ≈ (2.39)1

1!
e−2.39 = 0.2180,

for a predicted value of 696 × 0.2180 = 151.71 one-point
games. Let’s try the same calculation for other values of k,
and compare the Poisson formula prediction to the actual
statistics.

Points Actual # Games # Predicted by Poisson

0 69 63.27
1 155 151.71
2 171 181.90
3 143 145.40
4 79 87.17
5 57 41.81
6 14 16.71
7 6 5.72
8 2 1.72
9 0 0.46

As you can see, there is remarkable agreement between
the predictions of the Poisson formula, and the actual
number of games with different point totals. This shows
that Gretzky was not only a high scoring player, but a
consistent one as well. The occasional pointless game, or
“Poisson burst” in seven- or eight-point games, was not
due to inconsistent play, but was exactly what would be
expected in any random sequence of events. Another rea-
son why he really was the Great One!

A physicist, a statistician, and a pure mathematician go to
the races and place bets on horses.

The physicist’s horse comes in last. “I don’t understand it.
I have determined each horse’s strength through a series of
careful measurements.”

The statistician’s horse does a little bit better, but still fails
miserably. “How is this possible? I have statistically evaluated
the results of all races for the past month.”

They both look at the mathematician, whose horse came in
first. “How did you do it?”

“Well,” he explains. “First, I assumed that all horses were
identical and spherical. . . .”

Two men are having a good time in a bar. Outside, there’s
a terrible thunderstorm. Finally, one of the men thinks that
it’s time to leave. Since he has been drinking, he decides to
walk home.

“But aren’t you afraid of being struck by lightning?” his
friend asks.

“Not at all. Statistics shows that, in this part of the country,
one person per year gets struck by lightning—and that one
person died in the hospital three weeks ago.”

“Isn’t statistics wonderful?”
“How so?”
“Well, according to statistics, there are 42 million alligator

eggs laid every year. Of those, only about half get hatched. Of
those that hatch, three-fourths of them get eaten by predators
in the first 36 days. And of the rest, only 5 percent get to be a
year old for one reason or another. Isn’t statistics wonderful?”

“What’s so wonderful about all that?”
“If it weren’t for statistics, we’d be up to our arses in alliga-

tors!”

c©Copyright 2001
Sidney Harris

Do you know that 87.166253% of all statistics claim a preci-
sion that is not justified by the method employed?

A mathematician has been invited to speak at a conference.
His talk is announced as, Proof of the Riemann Hypothesis.

When the conference takes place, he speaks about something
completely different. After his talk, a colleague asks him, “Did
you find an error in your proof?”

He replies: “No, I never had one.”
“But why did you make this announcement?”
“That’s my standard precaution—in case I die on my way

to the conference. . . .”
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The Rose and

the Nautilus

A Geometric Mystery Story

by Klaus Hoechsmann†

The image below—or some variation thereof—appears
in many books and web sites. The story behind it deals
with such diverse concepts as

golden rectangles,
Fibonacci numbers,
regular pentagons,
and logarithmic spirals.

Figure 1

Its main appeal lies in uncovering the invisible threads
connecting these items. Its origins are lost in the mists of
antiquity, with some parts as old as the Pyramids, and oth-
ers surfacing in Euclid’s Elements (250 BC) and Ptolemy’s
Almagest (150 AD). The artwork by Leonardo da Vinci in
Pacioli’s Divina Proportione (1509 AD) helped spread its
fame beyond the mathematical crowd.

Older accounts are entirely geometric, but with their
fussy monochrome diagrams and awkward notation, they
are difficult to follow. More recent versions, on the other
hand, tend to achieve brevity by abundant use of algebraic
formulas, which most people find incomprehensible. This
article will try to provide a simple but complete account
in the geometric vein and in full colour.

Figure 2 is a simplification of Figure 1. To recreate the
latter, you need only cut a quarter circle out of the yellow
square, another one out of the light green square, then
the dark green square, and so on—and draw the brown

† Find more about the author and other interesting articles at
http://www.math.ubc.ca/∼hoek/Teaching/teaching.html.

diagonals in again.

Figure 2

Here you have a rectangle made up of smaller and
smaller squares arranged in spiral fashion. This is known
as a golden rectangle.

A rectangle is golden if it has the following special prop-
erty: if you cut a square (shown in yellow) away from it,
you are left with a rectangle of the same shape—so you
can continue cutting off squares indefinitely.

A rose is a rose is a rose—
and shares its pentagonal sym-
metry with many other flow-
ers, from buttercups to petu-
nias. The underlying penta-
gram (shown here in blue) is
made up of golden triangles,
each of which is obtained from
a golden rectangle by collapsing
one of the shorter sides.

This is the connection between golden rectangles and
regular pentagons.

The nautilus, a tropical sea-
shell, provides a beautiful ex-
ample of a logarithmic spiral,
described by a point revolving
around a center while, at the
same time, moving outward ex-
ponentially (like the tip of a

clock-hand that grows as compound interest). Hence, it
could just as well be called an exponential spiral. But
people love the L-word—it sounds so impressive—and
since it merely refers to the reverse way of looking at the
same pattern, it is quite as legitimate as the E-word.

The scaffolding for such a curve is given by a kind of
rectangular spiral (shown here in green) wrapping around
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a rectangular cross (in red).

Figure 3

Figure 3 reveals an analogous structure within the
golden rectangle. In fact, if you start with any non-square
rectangle, draw a diagonal and (from another corner) a
perpendicular to it, and then wrap a rectangular spiral
around the resulting cross, you always get the framework
for some logarithmic spiral. Doing this with a golden rect-
angle, gives you a bonus: your spiral can now be approxi-
mated by a bunch of (easily drawn) quarter circles. Alas,
only approximated! The golden spiral shown in Figure
1 is not truly logarithmic—it is not even smooth: if you
were driving along it with constant speed, you would feel
a sudden jerk in the steering wheel as you changed circles
in passing from the yellow square to the green one.

So much for the geometric inhabitants of this zoo—but
what about Fibonacci and his numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . ?

This is the hub of the mystery, although it looks in-
nocent and even playful at first sight. Through this se-
quence, Fibonacci (about 1200 AD) was attempting to
model the growth of a population in which the newborn
have to “sit out” one mating season before getting involved
in the game. He actually thought of rabbits! What does
this rabbit sequence have to do with the “divine propor-
tion?”

The truth is that the squares shown in Figure 2 are not
in an ideal plane, but are actually made up of coloured
dots (called “pixels”), and have side lengths of 144, 89,
55, 34, 21 and 13 pixels, respectively—rabbit numbers!

The red rectangle stuck in the
middle of Figure 2 measures 13-
by-8 pixels, and when enlarged
10-fold looks like what you see
on the left.

If you continue to cut off squares, you will—after 5
steps—wind up with the white square. And then? In
a truly golden rectangle, you would be able to continue
cutting off squares indefinitely. So, this is a fake—but a
close imitation! This is no coincidence, as we shall now
see.

Inflating Away the Imbalance

Inflating a rectangle means adding a square to its longer
side, as shown on the right. The original rectangle is pur-

ple, while the added square is yellow. The enlarged rectan-
gle will be referred to as the inflation of the old one. This
is not standard terminology; it is an ad hoc term coined
for the sole purpose of making this text easier to read.
(Mathematics allows that kind of
poetic license, as long as it is con-
sistent.) We want to study the
way inflation affects the shape of
a rectangle. If it remains un-
altered, we say the rectangle is
golden.

We shall eventually see that continued inflation leads
to a more and more golden shape. But what does that
mean? How can we compare the shapes of rectangles and
check that one is “more golden” than another?

Of course, we all know that
rectangles come in various
shapes, from squat squares to
the thinnest of strips. Here
is a way to compare them:
when two rectangles have the
same shape—like the blue

and the yellow ones depicted on the left—their diagonals
line up as shown, splitting the whole diagram exactly in
two. The two grey rectangles must therefore be equal in
area.

If the blue and yellow shapes are not the same, their di-
agonals do not line up, and the complementary grey areas
are not equal. This is the situation shown below on the
right.

To compare the shape of
a rectangle with the shape
of its inflation, we therefore
have to look at the diagram
below, where the blue and

purple rectangles are congru-
ent (i.e., their corresponding
sides are equal in length).
The difference between the
areas of the upper grey square
and the lower grey strip will
be called the imbalance of the
purple rectangle.

This is another ad hoc term intended to simplify the
language. In some sense, the imbalance of a rectangle
measures how far it is from being golden. The imbalance
is zero in a golden rectangle.

The grey square and strip
in the diagram above, show
up again—coloured yellow
and blue, respectively—in the
diagram at the right. (Make
sure you can argue this in de-
tail!).

This suggests another way of defining the imbalance of
the purple rectangle: It is the difference between the areas
of (a) the square that must be added to inflate it and (b)
the strip that must be added to the inflation to complete
the larger square.
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Now let us look at the
imbalance of the inflation,
shown all in purple on the
left. The square used to in-
flate the inflation is yellow,
the strip required to com-
plete the larger square is blue.
What is the difference be-
tween the areas of these two
shapes? The answer is shown

on the right: since the blue
and yellow rectangles are con-
gruent, they contribute noth-
ing to the new imbalance. It
is still based on the difference
between the two grey areas—
just like the old one!

Conclusion: Inflation does
not change the size of the
imbalance. In particular,
inflation keeps golden rectangles golden. Even better—
since continued inflation keeps pumping up the area with-
out changing the imbalance, the latter fades into insignif-
icance compared with the size of the rectangles. More
concretely, in the last four diagrams above, the imbalance
happens to be five (square) pixels—a puny amount if we
keep inflating the rectangles to wall size. In the end, our
rectangles will—for all practical purposes—be golden.

Back to the Rabbits

So, where is the promised insight into the Fibonacci
numbers? Well, if you attach a square to the longer side of
a one-by-two rectangle, you get a two-by-three rectangle;
further inflation yields a three-by-five rectangle, and so on,
generating the sequence

1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . ,

already seen on the previous page. Comparing the square
of any of these numbers with the product of its two neigh-
bours, you will always get a difference of 1. That is the im-
balance. If, however, you begin with a one-by-three rect-
angle, continued inflation will spawn the Lucas sequence,

1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . . ,

named after the French number wizard Edouard Lucas,
who lived in the 19th century. Its imbalance is 5, and, of
course, it too marches toward the divine proportion.

Algebraically, the preservation of the imbalance is very
easy to see. After all, we are dealing here with number
sequences

a, b, c, d, . . . with c = a + b and d = b + c = a + 2b.

The imbalance for a, b, c is b2 − ac = b2 − a(a + b). For
b, c, d, it is c2 − bd = (a + b)2 − b(a + 2b), which comes
to ac − b2, as you can (and should) easily check. In other
words, its size remains constant but it changes from plus to
minus and vice versa. Can you see this switching of signs
in the pictorial proof above? How would you compare
this algebraic proof with the geometric one? Would the

conclusions of this comparison hold in every case where
both algebra and geometry can be used? Try to come up
with examples. . . .

What about the perfectly golden case, with zero imbal-
ance: b2 = a(a + b)? Is this possible with integers a and
b? Remember: an a − by − b rectangle would be golden,
and could be “deflated” (as in Figure 2 on the previous
page) ad infinitum, always keeping integer values for its
sides. Could that be?. . . TO BE CONTINUED. . . .

A mathematician gives a talk intended for a general audi-
ence. The talk is announced in the local newspaper, but he
expects few people to show up because anyone who is not a
mathematician will be unable to make any sense of the title:
Convex Sets and Inequalities.

To his surprise, the auditorium is full when his talk begins.
After he has finished, someone in the audience raises a hand.

“But you said nothing about the actual topic of your talk!”
“What topic do you mean?”
“Well, the one that was announced in the paper: Convicts,

Sex, and Inequality.”

c©Copyright 2001
Sidney Harris

Q: What does the little mermaid wear?
A: An algae-bra.

One day, Jesus said to his disciples, “The Kingdom of Heaven
is like 3x squared plus 8x minus 9.”

A man who had just joined the disciples looked very con-
fused, and asked Peter, “What on Earth, does he mean by
that?”

Peter replied, “Don’t worry—it’s just another one of his
parabolas.”
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Three Easy Tricks

by Ted Lewis†

These three math tricks will baffle most people.
In each case, I will describe how you will present
the trick to “Jessica and Jonathan,” two of your
spectators. The challenge for you is to figure out
how it is done before peeking at the explanations
at the end of the article. Each trick uses a different
but simple mathematical principle.

Finding a Card
You hand a deck of cards to Jessica. Ask her to think

of a number no smaller than 11 and no larger than 19,
and to deal that many cards face down in a pile on the
table. Turn your back so you cannot see how many cards
she deals, and tell her to do it silently so that you cannot
count the cards.

When she has finished, take the rest of the deck from
her and place it alongside the small pile she has dealt.
Ask her to pick up the small pile of cards that she dealt,
add the two digits of her chosen number, then deal that
many cards face down onto the top of the deck. So, if
the number she chose was 17, she would now deal eight
cards onto the top of the deck. To make the cards dealt
completely random, ask her to shuffle the cards she is left
holding, and to remember the card that is on the bottom
without showing it to you.

Then have her put this little packet of cards face down
on top the deck. The card she looked at is now sandwiched
somewhere in the middle the deck.

Now, have her cut the deck twice. Although there seems
to be no way for you to do so, you look through the deck
and immediately display her card.

A Prediction

†Ted Lewis is a professor in the Department of Mathemat-
ical Sciences at the University of Alberta. His web site is
http://www.math.ualberta.ca/∼tlewis.

A sealed envelope is placed on the table.

You fan the cards and let Jonathan freely choose one
and place it face up on the table. You may even let him
look at the faces of the cards as you fan them. Let us sup-
pose that card is the 8♠. You hand the deck to Jonathan,
face down, and ask him to deal some cards face down next
to the 8♠, counting from the value of the card up to the
King. In this case, he would he would count, “Nine, 10,
Jack, Queen, King” as he deals five face down cards. Ask
him to turn the next card face up and repeat the process.
Say it is the J♦: Jonathan deals two face down cards as
he counts, “Queen, King”. He turns up the next card, say
the 4♥, counting, “Five, six, . . ., Jack, Queen, King” as
he deals the face down cards. Now, he totals the face up
cards: 8 + 11 + 4 = 23, and he counts 23 more cards face
down on the table.

He places the next card face up the table; it is, say,
the ace of hearts. He opens the envelope and finds a pa-
per inside with the message, “You will choose the ace of
hearts!”

In this trick, the cards that Jonathan turns face up do
not have to be an eight, a Jack and a four—the trick works
no matter what they are.

Two Spectators
Both Jessica and Jonathan participate in this trick.

Three cards are placed face down on the table. Jessica
is going to do some calculations, and using a calculator
would be a good idea. Jonathan will not need to do any
calculations.

Ask Jessica to write down any three-digit number. You
turn your back so that you cannot see the number, and
you ask Jessica to create a six-digit number by writing the
number alongside itself. “For example,” you explain, “If
the original number was 123, the six-digit number would
be 123123.”

Ask Jonathan to choose one of the three cards, and turn
it face up. Then ask Jessica to divide the six-digit number
by the value of the face up card, ignoring any remainder,
and to write down the result and circle it. A Jack counts
as 11, a Queen as 12, and a King as 13. You may mention
that, “Although I don’t have any idea what your result is,
I have a very strong feeling that there was no remainder.”

Ask Jonathan to choose one of the two remaining face
down cards and turn it face up. Ask Jessica to write down
the answer when the circled result is divided by the value
of the card. Surprisingly, again there is no remainder.

Ask Jessica to divide the latest result by the original
three-digit number, and to write down the result of this
calculation. This is the final result, and incredibly, there
is still no remainder.

Now review the situation for Jessica and Jonathan—
Jessica was free to choose any three-digit number whatso-
ever. Jonathan was free to choose any two of the three
face down cards. Would it not be quite a miracle if the
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final result happened to be the value of the remaining face
down card? But that is exactly what happens.

There is some chicanery involved here—the three cards
are not arbitrary. Can you figure out what they are? If
you are good at arithmetic, you should be able to do so.

How the Tricks Work

Finding a Card

Before handing the cards to Jessica, memorize the card
that is tenth from the top. This is the locator card, and
her chosen card will always be the one directly above it.

There is an interesting mathematical reason why this
works. A positive integer and the sum of its digits have
the same remainder when you divide by nine (see the box
at the end of this article). This means that if you have
multi-digit number and from it you subtract the sum of
those digits, the result must be a number that is divisible
by nine, and it has to be exactly nine if the multi-digit
number is between 10 and 19. Now recall what Jessica
does: she deals 1n cards on the table, where 1n is one of
the numbers 11, 12, 13, . . . , 19. This reverses the order of
the 1n cards. Then she picks up these cards and deals
(1 + n) of them onto the top of the deck. Since the cards
are in reverse order, she is left holding the original top
nine cards of the deck, and the tenth card—the locator
card—is now back in position on top of the deck. Jessica
shuffles the nine cards that she is holding, remembers the
bottom card, and puts everything on top of the deck. So,
the chosen card ends up directly on top of the locator card.
Now I think that’s rather neat.

A Prediction

Put the force card (the A♥) as the 43rd card from
the top of the deck. The counting method ensures that
Jonathan will put 42 cards onto the table. The chart be-
low shows why:

Face up card
Number of

face down cards

8♠
J♦
4♥

13 − 8

13 − 11

13 − 4

The total number of cards on the table at this point is
3+(13−8)+(13−11)+(13−4). Jonathan then proceeds
to deal (8 + 11 + 4) more cards, for a total of 3 + 3(13)
cards. Incidentally, when doing this trick, make sure that
Jonathan chooses his first card from the part of the deck
above the 43rd card. Do this by slowly fanning out only
the top half of the deck for him to choose from.

Two Spectators

The three cards that are placed face down must be a
seven, a Jack, and a King. The product of the values
of the three cards is 1001, and the product of the three-
digit number xyz with 1001 is xyzxyz. In other words,
xyzxyz = xyz · 7 · 11 · 13. By following your instructions,
Jessica is dividing the six-digit number by three of its fac-
tors. What’s left is the fourth factor—the value of the
remaining face down card.

If you would like to learn more about magic that is based
on simple mathematics, here are two excellent books:

Mathematical Magic by William Simon, preface by
Martin Gardner, Dover Publications, New York, 1964.

Self-Working Card Tricks by Karl Fulves, Dover Pub-
lications, New York, 1976.

Simon’s book explains the mathematics behind the
tricks quite thoroughly. Fulves’ book includes many tricks
that are not mathematically based, and you will have to
think a bit to understand the mathematics behind those
that are.

The three tricks in this article are not from these books.
Nevertheless, I would like to quote the advice given by
Bill Simon in the forward to his book: “Be sure to run
through the items you plan to use so that you can demon-
strate them with certainty, with complete understanding,
and in an entertaining manner. You will then be sure of
performing real mathematical magic!”

Dividing by 9

Suppose that xyz is a positive 3-digit number. This
means that the number is

100x + 10y + z .

Now rearrange it:

(99x + 9y) + (x + y + z) .

So, when we divide the number xyz by 9, we get the
same remainder as we do when we divide x + y + z by
9. The same reasoning works regardless of the number
of digits.

A logician at Safeway:
“Paper or plastic?”
“Not ‘not paper and not plastic’ !”
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Inequalities for
Convex Functions

(Part I)

by Dragos Hrimiuc†

1. Convex functions.
Convex functions are powerful tools for proving a large
class of inequalities. They provide an elegant and unified
treatment of the most important classical inequalities.

A real-valued function on an interval I is called convex
if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) 1

for every x, y ∈ I and λ ∈ [0, 1]; it is called strictly convex
if

f(λx + (1 − λ)y) < λf(x) + (1 − λ)f(y) 2

for every x, y ∈ I, x 6= y and λ ∈ (0, 1).

Notice: f is called concave (strictly concave) on I if −f
is convex (strictly convex) on I.

The geometrical meaning of convexity is clear: f is
strictly convex if and only if for every two points P =
(x, f(x)) and Q = (y, f(y)) on the graph of f , the point
R = (z, f(z)) lies below the segment PQ for every z be-
tween x and y.

�

��

�

�

�

x x

y y

0

P

Q P

Q

R

R

The graph of a
convex function

The graph of a
concave function

How to recognize a convex function without the graph?
We can use 1 directly, but the following criterion is often
very useful:

Test for Convexity: Let f be a twice differentiable
function on I. Then
• f is convex on I if f ′′(x) ≥ 0 for every x ∈ I.
• f is strictly convex on I if f ′′(x) > 0 for every x

in the interior of I.

Remark: If f is a continuous function on I, then it can
be proved that f is convex if and only if for all x1, x2 ∈ I

f

(

x1 + x2

2

)

≤ f(x1) + f(x2)

2
;

†Dragos Hrimiuc is a faculty member in the Department of
Mathematical Sciences at the University of Alberta.

and it is strictly convex if and only if

f

(

x1 + x2

2

)

<
f(x1) + f(x2)

2

for all x1, x2 ∈ I, x1 6= x2 (see [1]).

Here are some basic examples of strictly convex functions:
(i) f(x) = x2n, x ∈ R and n is a positive integer;
(ii) f(x) = xp, x ≥ 0, p > 1;
(iii) f(x) = 1

(x+a)p , x > −a, p > 0;

(iv) f(x) = tanx, x ∈
[

0, π
2

)

;
(v) f(x) = ex, x ∈ R.

The following are examples of strictly concave functions:
(i) f(x) = sin x, x ∈ [0, π];
(ii) f(x) = cosx, x ∈

[

−π
2 , π

2

]

;
(iii) f(x) = lnx, x ∈ (0,∞);
(iv) f(x) = xp, x ≥ 0, p ∈ (0, 1).

Notice:

1. The linear function f(x) = ax + b, x ∈ R is convex
and also concave.

2. The sum of two convex (concave) functions is a convex
(concave) function.

2. Jensen’s Inequality.
Jensen’s inequality is an extension of 1 . It was named

after the Danish mathematician who proved it in 1905.

Jensen’s Inequality: Let f : I → R be a convex
function. Let x1, . . . , xn ∈ I and λ1, . . . , λn ≥ 0 such
that λ1 + λ2 + . . . + λn = 1. Then

f(λ1x1+λ2x2 . . .+λnxn) ≤ λ1f(x1)+ . . .+λnf(xn). 3

Proof: Let’s use mathematical induction. The inequality
is true for n = 1. Now assume that it is true for n = k,
and let’s show that it remains true for n = k + 1.

Let x1, . . . , xk, xk+1 ∈ I and let λ1, . . . , λk, λk+1 ≥ 0
with λ1 + λ2 + . . . + λk + λk+1 = 1. At least one of
λ1, λ2, . . . , λk+1 must be less then 1 (otherwise the inequal-
ity is trivial). Without loss of generality, let λk+1 < 1 and

u = λ1

1−λk+1
x1 + . . . + λk

1−λk+1
xk. We have

λ1

1 − λk+1
+ . . . +

λk

1 − λk+1
= 1,

and also

λ1x1 + . . . + λkxk + λk+1xk+1 = (1− λk+1)u + λk+1xk+1.

Now, since f is convex,

f((1−λk+1)u+λk+1xk+1) ≤ (1−λk+1)f(u)+λk+1f(xk+1)

and, by our induction hypothesis,

f(u) ≤ λ1

1 − λk+1
f(x1) + . . . +

λk

1 − λk+1
f(xk).
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Hence, combining the above two inequalities, we get:

f(λ1x1 + . . . + λk+1xk+1) ≤ λ1f(x1) + . . . + λk+1f(xk+1).

Thus, the inequality is established for n = k + 1, and
therefore, by mathematical induction, it holds for any pos-
itive integer n.

Remarks:

1. For strictly convex functions, the inequality in 3
holds if and only if x1 = x2 = . . . = xn. Use mathe-
matical induction to prove it.

2. If λ1 = λ2 = . . . = λn = 1
n , then 3 becomes

f

(

x1 + . . . + xn

n

)

≤ f(x1) + . . . + f(xn)

n
. 4

3. If f is a concave function, then 3 and 4 read as

f(λ1x1 + . . . + λnxn) ≥ λ1f(x1) + . . . + λnf(xn), 3′

and

f

(

x1 + . . . + xn

n

)

≥ f(x1) + . . . + f(xn)

n
. 4′

Jensen’s Inequality has variety of applications. It can
be used to prove many of the most important classical
inequalities.

Weighted AM–GM Inequality:
Let x1, . . . , xn ≥ 0, λ1, . . . , λn > 0 such that
λ1 + . . . + λn = 1. Then

λ1x1 + . . . + λnxn ≥ xλ1

1 xλ2

2 . . . xλn

n 5

The equality holds if and only if x1 = x2 = . . . = xn.

Proof: We may assume that x1, . . . , xn > 0. Let f(x) =
lnx, x ∈ (0,∞). Since f is strictly concave on (0,∞), by
using 3′ we get:

ln(λ1x1 + . . . + λnxn) ≥ λ1 lnx1 + . . . + λn lnxn,

or, equivalently, ln(λ1x1+. . .+λnxn) ≥ lnxλ1

1 . . . xλn
n , and

hence,
λ1x1 + . . . + λnxn ≥ xλ1

1 . . . xλn
n

(since f(x) = lnx is a strictly increasing function).

By taking λ1 = λ2 = . . . = λn = 1
n in 5 , we obtain:

AM–GM Inequality:
If x1, . . . , xn ≥ 0, then

x1 + x2 + . . . + xn

n
≥ n

√
x1x2 . . . xn, 6

with equality if and only if x1 = x2 = . . . = xn.

Let x1, x2, . . . , xn, λ1, λ2, . . . , λn > 0 be such that
λ1 + . . . + λn = 1. For each t ∈ R, t 6= 0, the weighted
mean Mt of order t is defined as

Mt =

(

λ1x
t
1 + λ2x

t
2 + . . . + λnxt

n

n

)
1
t

.

Some particular situations are significant:

M1 =
λ1x1 + λ2x2 + . . . + λnxn

n

is called the weighted arithmetic mean (WAM); and

M−1 =
n

λ1

x1
+ λ2

x2
+ . . . + λn

xn

is called the weighted harmonic mean (WHM),

M2 =

√

λ1x2
1 + λ2x2

2 + . . . + λnx2
n

n

is called the weighted root mean square (WRMS).

It can be shown by using l’Hôpital’s Rule that

lim
t→0

Mt = xλ1

1 xλ2

2 . . . xλn

n .

So, if we denote M0 = lim
t→0

Mt, we see that

M0 = xλ1

1 xλ2

2 . . . xλn
n ,

which is called the weighted geometric mean (WGM).
Also, if we set

M∞ = lim
t→∞

Mt and M−∞ = lim
t→−∞

Mt,

we obtain

M∞ = max{x1, . . . , xn}, M−∞ = min{x1, . . . , xn}.

Power Mean Inequality:
Let x1, x2, . . . , xn, λ1, . . . , λn > 0 be such that
λ1+. . .+λn = 1. If t and s are non-zero real numbers
such that s < t, then

(

λ1x
s
1 + . . . + λnxs

n

n

)
1
s

≤
(

λ1x
t
1 + . . . + λnxt

n

n

)
1
t

. 7

Proof: If 0 < s < t or s < 0 < t, the inequality 7 is
obtained by applying Jensen’s Inequality 3 to the strictly
convex function f(x) = x

t
s . Indeed, if a1, a2, . . . , an, λ1,

. . . , λn > 0 and λ1 + . . . + λn = 1, then

[

λ1a1 + λ2a2 + . . . + λnan

n

] t
s

≤
λ1a

t
s
1

+ λ2a
t
s + . . . + λna

t
s
n

n
.

By choosing a1 = xs
1, . . . , an = xs

n, we immediately ob-
tain 3 .
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If s < t < 0, then 0 < −t < −s, and by applying 7 for
1
x1

, 1
x2

, . . . , 1
xn

, we get

[

λ1(
1

x1
)−t + . . . + λn( 1

xn
)−t

n

]

1
−t

≤
[

λ1(
1

x1
)−s + . . . + λn( 1

xn
)−s

n

]

1
−s

,

which can be rewritten as 7 .

Remark: If t < 0 < s, then Mt ≤ M0 ≤ Ms. Also, we
have the following classical inequality:

M−∞ ≤ M−1 ≤ M0 ≤ M1 ≤ M2 ≤ M∞.

Hölder’s Inequality: If p, q > 1 are real numbers
such that 1

p + 1
q = 1 and a1, . . . , an, b1, . . . , bn are

real (complex) numbers, then

n
∑

k=1

|ak||bk| ≤
(

n
∑

k=1

|ak|p
)

1
p
(

n
∑

k=1

|bk|q
)

1
q

. 8

Proof: We may assume that |ak| > 0, k = 1, . . . , n.
(Why?) The function f(x) = xq is strictly convex on
(0,∞), hence, by Jensen’s Inequality,

(

n
∑

k=1

λkxk

)q

≤
n
∑

k=1

λkxq
k,

where x1, . . . , xn, λ1, . . . , λn > 0 and λ1 + . . . + λn = 1.
Let A =

∑n
k=1 |ak|p. By choosing λk = 1

A |ak|p and xk =
1

λk
|ak||bk| in the above inequality, we obtain 8 .

Remarks:

1. In 8 , the equality holds if and only if x1 = x2 =
. . . = xn. That is,

|a1|p
|b1|q

=
|a2|p
|b2|q

= . . . =
|an|p
|bn|q

.

Notice that this chain of equalities is taught in the
following way: if a certain bk = 0, then we should
have ak = 0.

2. If p = q = 2, Hölder’s Inequality is just Cauchy’s
Inequality:

(

n
∑

k=1

|ak||bk|
)2

≤
(

n
∑

k=1

|ak|2
)(

n
∑

k=1

|bk|2
)

.

The equality occurs when

|a1|
|b1|

=
|a2|
|b2|

= . . . =
|an|
|bn|

.

Minkowski’s Triangle Inequality: If p > 1 and
a1, a2, . . . , an, b1, b2, . . . , bn ≥ 0, then

(

n
∑

k=1

(ak + bk)p

)
1
p

≤
(

n
∑

k=1

ap
k

)
1
p

+

(

n
∑

k=1

bp
k

)
1
p

. 9

Proof: We may assume ak > 0, k = 1, . . . , n. (Why?)

The function f(x) =
(

1 + x
1
p

)p

, x ∈ (0,∞), is strictly

concave since f ′′(x) = 1−p
p

(

1 + x
1
p

)p−2

· x
1
p
−2 < 0. By

Jensen’s Inequality,


1 +

(

n
∑

k=1

λkxk

)
1
p





p

≥
n
∑

k=1

λk

(

1 + x
1
p

k

)p

,

where x1, . . . , xn, λ1, . . . , λn > 0 and λ1 + . . . + λn = 1.

Let A =
∑n

k=1 ap
k. By taking λk =

ap

k

A and xk =
bp

k

ap

k

for

k = 1, . . . , n in the above inequality, we obtain 9 .

Remarks.

1. The equality in 9 occurs if and only if

b1

a1
=

b2

a2
= . . . =

bn

an
.

2. If p = 2 we get the so-called Triangle Inequality:
√

√

√

√

n
∑

k=1

(ak + bk)2 ≤

√

√

√

√

n
∑

k=1

a2
k +

√

√

√

√

n
∑

k=1

b2
k.

Example 1. If a, b ≥ 0 and a + b = 2, then

(

1 + 5
√

a
)5

+ (1 +
5
√

b)5 ≤ 26.

Solution: Since f(x) = (1 + 5
√

x)5 is strictly concave on
[0,∞), by using Jensen’s Inequality 4′ we get

2

(

1 +
5

√

a + b

2

)5

≥ (1 + 5
√

a)5 + (1 +
5
√

b)5.

By substituting a + b = 2, we get the required inequality.
The equality occurs when a = b = 1.

Example 2. If a, b, c > 0, then

aa · bb · cc ≥
(

a + b + c

3

)a+b+c

.

Solution: The above inequality is equivalent to

ln(aa · bb · cc) ≥ ln

(

a + b + c

3

)a+b+c

,
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or

a ln a + b ln b + c ln c ≥ (a + b + c) ln

(

a + b + c

3

)

.

Let f(x) = x lnx, x ∈ (0,∞). Since f ′′(x) = 1
x > 0, the

function f is strictly convex on (0,∞). Now, the above
inequality follows from 4 .

Example 3. If a, b, c > 0 then

a

a + 3b + 3c
+

b

3a + b + 3c
+

c

3a + 3b + c
≥ 3

7
.

Solution: Let s be a positive number and f(x) = x
s−x =

s
s−x − 1, x ∈ (0, s). The function f is strictly convex since

f ′′(x) = 2s
(s−x)3 > 0. We get:

2a

s − 2a
+

2b

s − 2b
+

2c

s − 2c
≥ 3

1
3 (2a + 2b + 2c)

s − 1
3 (2a + 2b + 2c)

,

or

a

s − 2a
+

b

s − 2b
+

c

s − 2c
≥ 3(a + b + c)

3s − 2(a + b + c)
.

If we take s = 3(a+ b+ c), the required inequality follows.

Example 4. If a1, a2, . . . , an ≥ 1, then

n
∑

k=1

1

1 + ak
≥ n

1 + n
√

a1a2 . . . an
.

Solution: Let f(x) = 1
1+ex , x ∈ [0,∞). The function f

is strictly convex since f ′′(x) = ex(ex−1)
(ex+1)3 > 0 on (0,∞).

Using 4 , we get

n
∑

k=1

1

1 + exk
≥ n

1 + e
1
n

∑

n
k=1

xk

.

By taking xk = ln ak, k = 1, . . . , n, we obtain the required
inequality.

Example 5. For a triangle with angles α, β and γ, the
following inequalities hold:

• sin α + sin β + sin γ ≤ 3
√

3
2 ;

•
√

sin α +
√

sin β +
√

sin γ ≤ 3 4

√

3
4 ;

• sin α · sin β · sin γ ≤ 3
√

3
8 ;

• cos α · cos β · cos γ ≤ 1
8 ;

• sec α
2 + sec β

2 + sec γ
2 ≥ 2

√
3.

Solution: Use the Jensen Inequality for the strictly con-
cave functions sin x,

√
sin x, ln sinx, ln cosx, and for the

strictly convex function sec x
2 , x ∈ (0, π).

Example 6. Let a1, . . . , an, λ1, . . . , λn > 0 and λ1 +
. . . + λn = 1. If aλ1

1 . . . aλn
n = 1, then

a1 + a2 + . . . + an ≥ 1

λλ1

1 . . . λλn
n

.

The equality occurs if and only if ak = λk

λ
λ1
1

...λλn
n

for k =

1, . . . , n.

Solution: By using the Weighted AM–GM Inequality, we
have

a1 + . . . + an = λ1

(

a1

λ1

)

+ . . . + λn

(

an

λn

)

≥
(

a1

λ1

)λ1

. . .
(

an

λn

)λn

= 1

λ
λ1
1

...λλn
n

.

The equality occurs if and only if

a1

λ1
=

a2

λ2
= . . . =

an

λn
.

in which case the constraint aλ1

1 . . . aλn
n = 1 leads to ak =

λk

λ
λ1
1

...λλn
n

for k = 1, . . . , n.

Example 7. If a1, . . . , an > 0 and a1a2 . . . an = 1, then

a1 +
√

a2 + . . . + n
√

an ≥ n + 1

2
.

Hint: Use the Weighted AM–GM Inequality.

Example 8.
(i) If a, b, c > 0, then

a10 + b10 + c10

a5 + b5 + c5
≥
(

a + b + c

3

)5

.

(ii) If a1, a2, . . . , an > 0 and k > p ≥ 0, then

ak
1 + . . . + ak

n

ap
1 + . . . + ap

n
≥
(

a1 + . . . + an

n

)k−p

.

Solution: (i) A particular case of (ii).

(ii) Let Mt =
(

at
1+at

1+...+at
n

n

)
1
t

. Then, by using the

Power Mean Inequality 7 , we get

ak
1 + ak

2 + . . . + ak
n = nMk

k = nMp
k Mk−p

k

≥ nMp
p Mk−p

1 by (7)

= (ap
1 + . . . + ap

n) ·
(

a1+...+an

n

)k−p
.

23



Example 9. If a1, a2, . . . , an > 0, then

(i) an+1
1 + . . . + an+1

n ≥ a1 . . . an(a1 + . . . + an),

(ii) an−1
1 + . . . + an−1

n ≥ a1 . . . an

(

1
a1

+ . . . + 1
an

)

.

Solution: (i)

an+1
1 + . . . + an+1

n = nMn+1
n+1 = nMn

n+1M
1
n+1

≥ nMn
0 M1

1 = a1 . . . an(a1 + . . . + an).

(ii) See (i).

Example 10. If a, b, c, x, y, z, n > 0, and

(an + bn + cn)n+1 = xn + yn + zn,

then
an+1

x
+

bn+1

y
+

cn+1

z
≥ 1.

Solution:

an + bn + cn =
[

an+1

x

]
n

n+1 · x n
n+1 +

[

bn+1

y

]
n

n+1 · y n
n+1

+
[

cn+1

z

]
n

n+1 · z n
n+1 .

By using Hölder’s Inequality with p = n+1
n and q = p

p−1 =

n + 1, we obtain:

an+bn+cn ≤
(

an+1

x
+

bn+1

y
+

cn+1

z

)

n
n+1

(xn+yn+zn)
1

n+1 ,

and the required inequality follows.

Example 11. If a1, . . . , an, b1, . . . , bn > 0, then

(a1 + . . . + an)n+1

(b1 + . . . + bn)n
≤ an+1

1

bn
1

+ . . . +
an+1

n

bn
n

.

Solution: By using Hölder’s Inequality with p = n + 1,
q = n+1

n , we get

a1 + . . . + an =

[

a
n+1
1

bn
1

] 1
n+1

· b
n

n+1

1 + . . . +
[

an+1
n

bn
n

]
1

n+1

· b
n

n+1
n

≤

[

a
n+1
1

bn
1

+ . . . +
an+1

n

bn
n

] 1
n+1

(b1 + . . . + bn)
n

n+1 ,

so

(a1+. . .+an)n+1 ≤
(

an+1
1

bn
1

+ . . . +
an+1

n

bn
n

)

(b1+. . .+bn)n,

from which we get the required inequality.

REFERENCE.

[1] D.S. Mitrinovich, Analytic Inequalities, Springer–
Verlag, Heidelberg 1970.

“Divide fourteen sugar cubes into three cups of coffee so that
each cup has an odd number of sugar cubes.”

“One, one and twelve.”

“But twelve isn’t odd!”

“It’s an odd number of cubes to put in a cup of coffee. . . .”

c©Copyright 2001
Sidney Harris

A mathematical biologist spends his vacation hiking in the
Scottish highlands. One day, he encounters a shepherd with a
large herd. One of these cuddly, woolly sheep would make a
great pet, he thinks. . .

“How much for one of your sheep?” he asks the shepherd.

“They aren’t for sale,” the shepherd replies.

The math biologist ponders for a moment and then says, “I
will give you the precise number of sheep in your herd without
counting. If I’m right, don’t you think that I deserve one of
them as a reward?”

The shepherd nods.

The math biologist says, “387.”

The shepherd is silent for a while, and then says, “You’re
right. I hate to lose any of my sheep, but I promised—one of
them is yours. Take your pick!”

The math biologist grabs one of the animals, puts it on his
shoulders, and is about to march on, when the shepherd says,
“Wait! I will tell you what your profession is, and if I’m right,
I’ll get the animal back.”

“That’s fair enough.”

“You must be a mathematical biologist.”

The man is stunned. “You’re right. But how could you
tell?”

“That’s easy! You gave me the precise number of sheep
without counting—and then you picked my dog. . . .”
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A group of mathematicians and a group of engineers are
traveling together by train to attend a conference on mathe-
matical methods in engineering. Each engineer has a ticket,
whereas only one of the mathematicians has one. Of course,
the engineers laugh at the unworldly mathematicians and look
forward to the moment when the conductor arrives.

Suddenly, one of the mathematicians shouts, “Conductor
coming!”

All of the mathematicians disappear into one washroom.
The conductor checks the ticket of each engineer and then
knocks on the washroom door, “Your ticket, please.”

The mathematicians stick the one ticket they have under the
door, the conductor checks it and leaves. A few minutes later,
when it is safe, the mathematicians emerge from the washroom.
The engineers are impressed.

When the conference has come to an end, the engineers de-
cide that they are at least as smart as the mathematicians and
also buy just one ticket for the whole group. This time, the
mathematicians have no ticket at all. . . .

Again one of the mathematicians shouts: “Conductor com-
ing!”

All of the engineers rush off to one washroom. One of the
mathematicians goes to that washroom, knocks at the door,
and says, “Your ticket, please. . . .”

Two math professors are sitting in a pub.
“Isn’t it disgusting,” the first one complains, “how little the

general public knows about mathematics?”
“Well,” his colleague replies, “you’re perhaps a bit too pes-

simistic.”
“I don’t think so,” the first one replies. “But anyhow, I have

to go to the washroom now.”
He leaves, and the other professor decides to use this oppor-

tunity to play a prank on his colleague. He makes a sign to the

pretty, blonde waitress to come over.

“When my friend comes back, I’ll wave you over to our table,
and I’ll ask you a question. I would like you to answer: x to
the third over three. Can you do that?”

“Sure.” The girl repeats several times: “x to the third over
three, x to the third over three, x to the third over three. . . .”

When the first professor comes back from the washroom, his
colleague says, “I still think you’re way too pessimistic. I’m
sure the waitress knows a lot more about mathematics than
you imagine.”

He makes her come over and asks her, “Can you tell us what
the integral of x squared is?”

She replies: “x to the third over three.”

The other professor’s mouth drops wide open, and his col-
league grins smugly when the waitress adds: “. . . plus C.”

Back in the old days, when slide rules were still the most
sophisticated computing equipment available to scientists and
engineers. . .

Engineering students are taking a math final. Of course,
slide rules are not allowed. And, of course, someone is cheating
and has brought a slide rule to the exam. He is hiding it under
his desk, but the student sitting to his left—who is stuck on a
difficult calculation—has noticed it.

“Hey,” he whispers. “Can you help me? What’s three times
six?”

His classmate reaches for his slide rule, and after a few sec-
onds replies, “19.”

“Are you sure?”

The other student reaches again for his slide rule, and after
another few seconds replies, “You’re right. It’s closer to 18—
18.3, to be precise.”

Sent by Gabrielle Lamoureux
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Problem 1. If a, b, c are the sides of a triangle, then

a

b + c − a
+

b

c + a − b
+

c

a + b − c
≥ 3.

Problem 2. If ABC is an acute triangle with angles
α, β and γ, and p ≥ 1, then

(i) tanp α + tanp β + tanp γ ≥ 3
√

3p.

(ii) cos α
2 cos β

2 cos γ
2 ≤ 3

√
3

8 .

Problem 3. Let a1, a2, . . . , an > 0 and s = a1 + . . .+an.
Show that

s

s − a1
+

s

s − a2
+ . . . +

s

s − an
≥ n2

n − 1
.

Problem 4. Let a1, a2, . . . , an > 0, m ≥ 0 and

A =
a1

ma1 + a2 + . . . + an
+ . . . +

an

a1 + a2 + . . . + man
.

Prove that

(i) If m ∈ [0, 1] then A ≥ n
n+m−1 ;

(ii) If m ∈ [1,∞) then A ≤ n
n+m−1 .

Problem 5. If ak, xk > 0, k = 1, 2, . . . , n, then

a1x
1

a1

1 + . . . + anx
1

an
n ≥ (a1 + . . . + an)(x1 . . . xn)

1
a1+...+an .

Problem 6. If a, b > 0, p ≥ 1 and x ∈ (0, π
2 ), then

a(sinx)
1
p + b(cosx)

1
p ≤

(

a
2p

2p−1 + b
2p

2p−1

)

2p−1

2p

.

Problem 7. If a1, a2, . . . , an ∈ R, then

sin a1 sin a2 . . . sin an + cos a1 cos a2 . . . cos an ≤ 1.

Problem 8. Let a1, a2, . . . , an > 0 be such that
a1a2 . . . an = 1, and let s = 1 + a1 + a2 + . . . an. Prove
that

1

s − a1
+

1

s − a2
+ . . . +

1

s − an
≤ 1.

Problem 9. Let f : [a, b] → R be a convex function.
Then, for every x, y, z ∈ [a, b], we have (Popoviciu’s In-
equality):

1
3 [f(x) + f(y) + f(z)] + f

(

x+y+z
3

)

≥ 2
3

[

f
(

x+y
2

)

+ f
(

y+z
2

)

+ f
(

x+z
2

)]

.

Send your solutions to π in the Sky : Math Challenges.

Solutions to the Problems Published in the June,
2001 Issue of π in the Sky:

Problem 1. (By Edward T.H. Wang from Waterloo)
Note first that the inequality

√

2

√

3

√

4 . . .
√

n < 3

makes sense only if n ≥ 2. Following the hint, we prove a more
general inequality:

√

(a + 2)

√

(a + 3)

√

4 . . .
√

(a + n) < a + 3 (1)

for all integers n ≥ 2 and for all a ∈ [0,∞).
For n = 2, the inequality is clearly true. Suppose that (1) holds for
n = k, k ≥ 2 and for all a ∈ [0,∞). By replacing a with a + 1, we
get

√

(a + 3)

√

(a + 4) . . .
√

(a + 1 + k) < a + 4. (2)

By multiplying both sides of (2) by a + 2 and taking square roots of
both sides, we get

√

(a + 2)

√

. . .
√

(a + 1 + k) <
√

(a + 2)(a + 4). (3)

Since
√

(a + 2)(a + 4) < a + 3, it follows from (3) that (1) holds for
n = k + 1 and a ∈ [0,∞).

Problem 2. (By Yuming Chen and Edward T.H. Wang from Wa-
terloo)
The inequality

(a1 + a2 + . . . + an)2 ≤ a3
1 + a3

2 + . . . + a3
n (4)

holds only if all the integers a1, a2, . . . , an are distinct. For n = 1,
we have a2

1 ≤ a3
1, which is clearly true since a1 ≥ 1. Suppose that

(4) holds for n = k; we will show that it also holds for n = k + 1.
Let a1, a2, . . . , ak+1 be distinct positive integers. We can assume
that 1 ≤ a1 < a2 < . . . < ak < ak+1. Then, clearly ak+1 ≥ k + 1,
and, by induction assumption, we have
[

∑k+1
l=1 al

]2
= (a1 + a1 + . . . + ak)2 + 2ak+1

∑k
l=1 al + a2

k+1

≤ a3
1 + a3

2 + . . . + a3
k

+ 2ak+1
∑k

l=1 al + a2
k+1.

We need to show that 2ak+1
∑k

l=1 al + a2
k+1 ≤ a3

k+1, or

2
k
∑

l=1

al + ak+1 ≤ a2
k+1. (5)

To show (5), note that an ≤ ak+1 − 1, ak−1 ≤ ak+1 − 2, . . . ,
a1 ≤ ak+1 − k, hence

k
∑

l=1

al ≤ kak+1 −
k
∑

l=1

l = kak+1 − k(k + 1)

2
,

so

2
k
∑

l=1

al + ak+1 ≤ (2k + 1)ak+1 − k(k + 1),

and therefore,

a2
k+1 − 2

∑k
l=1 al − ak+1 ≥ a2

k+1 − (2k + 1)ak+1 + k(k + 1)

= (ak+1 − k)(ak+1 − (k + 1)) ≥ 0.

Consequently, we get (4). Notice that the equality holds if and only
if {a1, a2, . . . , an} = {1, 2, . . . , n}. In this case, we obtain the well-
known inequality

(1 + 2 + . . . + n)2 = 13 + 23 + . . . + n3.
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Problem 3.

If n = 1, then the plane is divided into two parts and clearly the
statement is true. Assume that it holds for n = k, and let’s show that

it stays true for n = k+1. Any k lines divide the plane into 1+
k(k+1)

2
regions. These k lines intersect the (k+1)-th line at k distinct points
and none of these points coincides with the intersection points of
the k lines. Therefore, k + 1 new distinct regions of the plane are
obtained. The total number of regions is

1 +
k(k + 1)

2
+ (k + 1) = 1 +

(k + 1)(k + 2)

2
,

and the statement follows from PMI (Principle of Mathematical In-
duction).

Problem 4.

For n = 1, the statement is clearly true. Assume that it is true for
n = k and let’s prove it for n = k + 1. The first k circles divided the
plane into at most k2 −k +2 regions. The (k +1)-th circle intersects
the k circles at most at 2k points (two different circles intersect at
most at two points). These extra points divide the (k + 1)-th circle
into at most 2k parts and each of these parts divides the old region
into two regions. Therefore, we obtain that there can be at most

(k2 − k + 2) + 2k = (k + 1)2 − (k + 1) + 2

regions. The statement follows by PMI.

Problem 5. For n = 1, the property is clear. Assume that the
property is valid for n = k and let’s prove that it remains true for
n = k + 1. Any k circles divide the plane into parts that can be
coloured properly. Now, consider the (k + 1)-th circle and make the
following recolouring: the parts outside the circle keep their initial
colour and the parts inside it change their colours.

Problem 6. (By Edward T.H. Wang from Waterloo)
By putting n = 2 in (b) and using (a), we find that 1

f(2)
= 1

2
, so

f(2) = 2. Similarly, we find f(3) = 3, f(4) = 4, etc. We now use
PCI (Principle of Complete Induction—Math Strategies, June 2001
issue) to show that f(n) = n for all n ∈ Z+. It remains to show
that if f(1) = 1, f(2) = 2, . . . , f(k) = k for some k ≥ 2, then
f(k + 1) = k + 1. By using (b), we get

1

1 · 2
+

1

2 · 3
+ . . . +

1

k · f(k + 1)
=

k

k + 1
.

Since
1

1·2
+ 1

2·3
+ . . . + 1

(k−1)k
= (1 − 1

2
) + ( 1

2
− 1

3
) + . . . + ( 1

k−1
− 1

k
)

= 1 − 1
k

= k−1
k

.

Consequently, we get

1

k · f(k + 1)
=

k

k + 1
− k − 1

k
=

1

k(k + 1)
,

from which we obtain f(k + 1) = k + 1.

Problem 7.

a

a

b a

b

b

For n = 2, there are several
solutions.† You can see one solution
in the diagram on the left. As-
sume that the statement is true for
n = k ≤ 2. We will show that it
is also true for n = k + 1. Con-
sider k + 1 squares, choose any two
of them, and by dissection combine
them into a bigger square (see the
figure on the left). After this step,
we are left with only k squares, and
the inductive assumption applies.

† For example, see the web site at:
http://www.cut-the-knot.com/Generalization/cuttingsquare.html.

Online Dictionary of Mathematics
MathWorld Is Back! After more
than a year’s absence, Eric Weis-
stein’s MathWorld, the web’s

most extensive mathematical

resource, returns to the Internet
on November 6, 2001.

http://mathworld.wolfram.com/

Ed Pegg’s Puzzle Pages

This site celebrates math puzzles and mathematical recreations.

http://www.mathpuzzle.com/

Math Forum @ Drexel

Drexel University’s enormous collection of
educational math resources: key issues in
math, math education, math resources by
subject, math literature, discussion groups,
etc. .

http://mathforum.org/

Ivar Peterson’s MathTrek

Ivar Peterson’s weekly columns on a
large variety of mathematical topics.

http://www.maa.org/news/mathtrek.html

The Grey Labyrinth

A collection of mostly mathematical puzzles, with new ones added
about once a week.

http://www.greylabyrinth.com/index.htm
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π in the Sky at Tempo School
by Don Stanley

On October 23, 2001, five University of Alberta math-
ematicians invaded the grade 10 and 11 classes at Tempo
School in Edmonton. They came to talk about mathemat-
ics and the π in the Sky magazine.

D. Hrimiuc, W. Krawcewicz, V. Runde and D. Stanley meeting students.

Dragos Hrimiuc offered a $5 prize to anyone who could
solve the following geometry problem:

15o15o

C D

A B

X

��

��

�

�

Consider a square ABCD with a
point X inside it such that only the
marked angles are known (see the
diagram at the left). Show that tri-
angle ABX is equilateral.

Students trying hard to solve the problem.

During the visit, some hard proofs were presented to
show that math can be fun and interesting at the same
time.

Solving problems can be really enjoyable.

Some students discover π in the Sky.

Dragos Hrimiuc smiles as he realizes that he will get to keep his $5.

On behalf of the editorial board of π in the Sky , we
would like to thank the principal of Tempo School, Dr.
Kapoor, for making this visit possible.
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