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The Pacific Institute for the Mathematical Sciences 
(PIMS) sponsors and coordinates a wide assortment 
of educational activities for the K-12 level, as well 
as for undergraduate and graduate students and 
members of underrepresented groups. PIMS is 
dedicated to increasing public awareness of the 
importance of mathematics in the world around us. 
We want young people to see that mathematics is a 
subject that opens doors to more than just careers 
in science. Many different and exciting fields in 
industry are eager to recruit people who are well 
prepared in this subject.

PIMS believes that training the next generation 
of mathematical scientists and promoting 
diversity within mathematics cannot begin too 
early. We believe numeracy is an integral part of 
development and learning.

MATHEMATICS 0F 
PLANET EARTH 2013

Mathematics of Planet Earth 
2013 is a worldwide initiative 
meant to showcase and 
develop the fundamental 
role played by mathematics 
in a huge variety of 

planetary contexts. These include not only 
geophysical aspects connected to the structure of 
the planet, but also the multiple complex systems 
designed or impacted by humans. Climate change, 
sustainability, diseases and epidemics, management 
of resources and risk analysis are important aspects 
of all this. Mathematics plays a key role in these 
and many other processes affecting Planet Earth, 
both as a fundamental discipline and as an essential 
component of multidisciplinary research.

Pi in the Sky is happy to feature special articles as 
part of MPE 2013. 

We invite interested readers to consult the website 
www.mpe2013.org for more information on this 
exciting initiative.

For more information on our education programs, 
please contact one of our hardworking Education 
Coordinators.

Melania Alvarez, UBC, Vancouver, BC  
melania@pims.math.ca

Malgorzata Dubiel, SFU, Burnaby, BC  
dubiel@cs.sfu.ca

Alfonso Gracia-Saz, UVic, Victoria, BC  
alfonso@uvic.ca

Andy Liu, U of Alberta, Edmonton, AB 
aliu@math.ualberta.ca

Eva Nosal, U of Calgary, AB
nosale@math.ucalgary.ca

Harley Weston, U of Regina, SK
weston@math.uregina.ca

Welcome to  
Pi in the Sky!

Pi in the Sky is available online at  
www.pims.math.ca. Click on the  
Publications tab.

Please take a moment to complete our short 
survey online at http://goo.gl/xhD4T. We 
appreciate your feedback.
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Have you ever noticed that solar noon, namely 
the mid-point between sunrise and sunset, is not 
always at the same time depending on the period 
of the year? The difference between solar noon 
and mean noon (or standard noon) is called time 
equation. We will see that this phenomenon has 
two causes, one with a period of a year and the 
other with a half-year period.

On the internet we can find the time of sunrise 
and sunset in Vancouver for all days of the year. 
To obtain comparable data, we will always 
consider Pacific Standard Time. This means we 
will subtract one hour from Pacific Daylight 
Times between the first Sunday of November and 
the first Sunday of March. Here are a few data:

DATE SUNRISE SUNSET SOLAR NOON

January 1st 7:51 16:37 12:14

February 1st 7:31 17:17 12:25

March 1st 6:48 17:58 12:23

April 1st 5:50 18:40 12:15

May 1st 4:48 19:18 12:08

June 1st 4:25 19:53 12:09

July 1st 4:26 20:04 12:15

August 1st 4:55 19:38 12:16

September 1st 5:32 18:48 12:10

October 1st 6:10 17:50 12:00

November 1st 6:52 16:57 11:54

December 1st 7:32 16:28 12:00

The data show oscillations of 31 minutes 
between 11:54 on November 1st and 12:25 on 
February 1st, even in this limited sample. You 
may say that solar noon is almost always after 
12:00 pm in Vancouver. This comes from the fact 
that Vancouver is located to the east of the center 
of its time zone.

We see that we have two different ways of 
giving the time. The true solar time (or apparent 
solar time) is obtained by dividing the interval 
between two consecutive solar noons into 24 
hours. The mean solar time (the official one at a 
given position) is the time given by a clock that 
is set such that the average time of true solar 
noon is 12:00 pm over a year. We then introduce 
the quantity 

solar time − standard time.

This quantity is called the equation of time. (In 
ancient astronomy, the word “equation” was used 
to denote a correction to be added to an averaged 
value to get a true value.)

We want to understand the shape of the graph of 
the equation of time over a year, and why this 
graph is nonzero. Let us first wonder why we 
expect solar noon to always be at the same time. 
We make two hypotheses:

(H1) The Earth rotates around its axis at a 
constant speed in the positive direction, and that 
its axis is oriented upwards.

(H2) The Earth rotates around the Sun at 
constant speed in the positive direction.

Using these hypotheses, the length of the day, 
namely 24 hours, should be the amount of time 
between two consecutive times where the Sun 
is at the zenith at a given point on the Earth. If 
we take into account the rotation of the Earth 
around the Sun, this length is a little more than 
the period of the Earth around its axis, since the 
Earth makes 366 rotations around its axis in 365 
days.

THE EQUATION OF TIME
By Christiane Rousseau , Université de Montréal
In recognition of the Mathematics of Planet Earth 2013, a French version of this article has also been featured 
in Accromath (http://accromath.uqam.ca).
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FIRST REASON: THE ELLIPTICITY OF 
THE EARTH ORBIT AROUND THE SUN.
The second hypothesis is false! Indeed, by 
Kepler’s first law, we know that the orbit of 
the Sun is an ellipse with the Sun at a focus. 
Kepler’s second law says that the vector joining 
the Sun to the Earth sweeps out equal rays in 
equal interval of times (Figure 1).Hence, the 
closer the Earth to the Sun, the higher its speed. 

In 2013, the Earth will be at the perihelion (i.e. 
closest to the Sun) on January 2, and at the 
aphelion (i.e. farthest from the Sun) on July 5. 
Since the Earth has its highest speed close to 
the perihelion, the solar days are longer than 24 
hours. As a consequence, from one day to the 
other, the solar noon gets later and later. This 
phenomenon gives us the first periodic cycle  
of 365 days, but how can we calculate the 
effective time shift? We will return to this at 
the end when we explain how to calculate the 
equation of time?
 

SECOND REASON: THE OBLIQUITY OF 
THE AXIS OF THE EARTH.
Modeling this second cause is more difficult! 
In our reasoning above, we have not taken into 
account the fact that the axis of the Earth makes 
an angle of 23.5 degrees with the ecliptic plane, 
namely the plane of the orbit of the Earth around 
the Sun. The direction of this axis is fixed during 
the Earth’s revolution (see Figure 2).

Depending of the period of the year, the 
obliquity of the axis changes the time of the solar 
noon. To be able to compute this effect easily, 
we will need to strategically choose our point 
of view. To simplify, we will work under the 
hypotheses (H1) and (H2) above.

We will choose a system of axes with origin 
at the center of the Earth and for which the 
horizontal plane is that of the Equator and the 
vertical axis is the axis of rotation of the Earth 
passing through the poles. Let us imagine that 
we are at the center of an immense sphere, the 
celestial sphere on which lie the Sun and the 
stars. Then, we see the Sun orbiting around 
the Earth. If the Earth’s axis was not slanted, 
then the Sun would rotate on the equator of the 
celestial sphere at a constant speed. We call this 
movement the mean Sun. But since the Earth’s 
axis is slanted, the Sun travels around a great 
circle of the celestial sphere in the ecliptic plane 
which makes an angle of 23.5 degrees with the 
equatorial plane, also at constant speed  
(see Figure 3).

These two planes intersect along the vernal 
axis, and the intersection points of the two 
circles correspond to the positions of the Sun 
at the equinoxes. Let Vm be the vector joining 
the center of the sphere to the mean Sun and Va 
the vector joining the center of the sphere to the 
true (apparent) Sun. Now, we need to introduce 
the fact that the Earth rotates around its axis. 
Let us consider the meridian half-plane trough 
a point of the sphere: it is a vertical half-plane 
containing the Earth’s axis. 

Figure 1: Kepler’s second law: all sectors have equal areas. The Earth travels 
along the corresponding arc of the ellipse in equal times.

Figure 3: The two systems of axes in the geocentric point of view.

Figure 2: Revolution of the Earth around the Sun.
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This half-plane cuts the Earth along a meridian. 
Our main observation is the following:

IT IS SOLAR NOON ALONG A MERIDIAN 
IF THE SUN, AND HENCE ALSO THE 
VECTOR V

a
, ARE INCLUDED IN THE 

MERIDIAN HALF-PLANE.

Let us now project the vector Va on the equatorial 
plane which we will observe from above 
(Figure 4). 

Let va be the projection of Va on that plane. This 
vector is also in the meridian half-plane. The 
angle α between the vector Vm and the vector 
va corresponds to the shift between the mean 
(standard) noon and the solar noon. If α is 
negative, since the Earth rotates in the positive 
direction, then a point of the Earth reaches 
the true noon before reaching the mean noon. 
Hence, the true noon is sooner than the mean 
noon. This is the case during spring and fall. In 
summer and winter α is positive and we have the 
contrary. The angle α vanishes four times a year, 
namely at the solstices and equinoxes.

What is the shift between the solar noon and the 
mean noon? 

Since the Earth makes one rotation of 360 
degrees in 24 hours, it rotates by 15 degrees per 
hour, which gives one degree in four minutes. 
Hence, the shift in minutes is four times the 
value of the angle in degrees. We only need to 
calculate α.

Computation of α
For this purpose we will use two orthonormal 
frames (Figure 3). In the first frame, the x- and 
y-axes are located in the equatorial plane. The 
x-axis is the vernal axis oriented towards the 
spring equinox. The y-axis is oriented towards 
the summer solstice and the z-axis is vertical and 
oriented upwards. In the second frame, the axes 
x’- and y’-axes are located in the ecliptic plane. 
The x’-axis is also the vernal axis. We consider 
the celestial sphere to be of radius 1.

The mean Sun rotates at a speed of 360 degrees 
per year. If the unit of time is the year, then its 
position at time t is given by

(x,y,z) = (cos 360t,sin 360t, 0).

By the same argument, the position of the true 
Sun in the second frame is given by

(x’, y’, z’) = (cos 360t, sin 360t, 0).                 (1)

Let i’, j’ and k’ be the unit vectors of the first 
frame, frame, and and  those of the second 
frame. We have

Also

and

Let us compute the scalar product of va and Vm:

 We also have . Hence,

from which we can deduce α when taking into 
account its sign discussed above. The shift of 
time in minutes is given by four times α, where α 
is in degrees. Its graph is given in Figure 5.

x

y

vernal axis

d

va

Vm

Figure 4: The projection of Figure 3 on the equatorial 
(horizontal) sphere. 
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HOW TO COMBINE THE TWO EFFECTS: 
ELLIPTICITY AND OBLIQUITY?
The combined effect is slightly different from 
the sum of the two shifts of time, but the sum 
is a good approximation of it. It suffices to 
modify slightly our previous reasoning on the 
implication of the obliquity. The only thing that 
changes is the equation (1). Indeed, since the 
speed of the sun varies, we need to replace 360t 
by the angle θ(t) of the Sun on its apparent orbit 
at time t. The rest of the computation is identical, 
but the computation of θ(t) can only be done 
numerically. In fact, it is easier to compute the 
inverse function t = t(θ). Note that the angular 
velocity of the Sun around the Earth in the  
(x’, y’)-plane is the same as the angular velocity 
of the Earth around the Sun!

COMPUTATION OF THE ANGULAR 
VELOCITY OF THE EARTH ALONG  
ITS ORBIT.
The calculation is easy if we consider the 
equation of the elliptic orbit in polar coordinates 
in a frame centered at a focus of the ellipse. Let 
us suppose that the half-line joining the origin 
to the second focus makes an angle θ0 with the 
positive horizontal semi-axis and let (r, θ) be the 
polar coordinates of a point on the ellipse. 

Then we must have

where e is the eccentricity of the ellipse (Let us 

recall that if a and b are the ellipse’s semi-axes 

and if a > b, then .

 

Let us consider a small sector swept by the 
vector joining the Sun to the Earth of angle 
dθ. It is easy to be convinced that its area is 

approximately . Since , the area 

is approximately . For this area to be 

proportional to t, we need  to be constantly 

equal to C. Hence,
 

which is a differential equation with separable 
variables. To find its solution, we write it in the 
form

 

and we integrate both sides. If θ(0) = 0, then this 
yields

 

The eccentricity of the Earth varies slowly. 
Currently, we have approximately  0, 017. 
Which A and C should we take if we want the 
period to be one year? Since 

 

we take  

Hence, we finally have the graph of the equation 
of time in Figure 6, which sums up the whole 
phenomenon over a year.
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Figure 5: The graph of the equation of time for a circular orbit of 
the Earth, with t = 0 corresponding to spring equinox.
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Filling up the Gasoline Tank
By Shivam Bharadwaj, C. Leon King High School, Florida & Netra Khanal, The University of Tampa, Florida

Abstract
This paper aims to solve several fundamental issues in deciding whether it is beneficial to deviate 
from one’s path to fill gasoline for a lower price. We analyze the role played by factors such as 
distance, gas price, tank size and gas mileage.

Key Words
Effective price per gallon, Savings, break-even, gasoline price.

Introduction
As a result of today’s economic downturn, people are trying to save as much money as possible. 
Gasoline has always been a hot commodity; it is often referred as “black gold” because it is versatile 
and can be easily transported. It is not surprising that, as the price is skyrocketing, people try to 
decrease their spending on this product. This is done by buying fuel efficient cars, carpooling or 
simply not driving at all. The United States uses about 132 billion gallons of gasoline per year, 
consuming, per capita, more than any other nation. Combining this ever-growing demand for gasoline 
and a constantly decreasing supply, results in an increase in price over time.

In this paper, we consider the following story: In an effort to save money on gasoline, Jacob alters his 
usual route to fill up his tank at a cheaper price. Sophia, decides to stay on path and pays the higher 
gasoline price. We use the variable p1 for the price per gallon that Sophia pays at the gasoline station 
on her route and p2 for the lower gasoline price per gallon that Jacob pays going out of his way. The 
distance in miles that Jacob travels, one way, is denoted by d. The situation is similar to the one 
described by the Figure 1.

We also take into account the type of cars 
that each of them drives, along with their 
gasoline mileage (in miles per gallon) and 
tank size (in gallons). We assume that 
Sophia drives a car that gives G1 miles per 
gallon, on average, with a tank size of T1 
gallons and Jacob has a vehicle that gives 
G2 miles per gallon with a tank size of T2 
gallons. We carefully choose the types of 
car Jacob and Sophia drive in such a way 
that they provide contrast. Sports cars 
give less gasoline mileage in general, so 
it is more beneficial to look for cheaper 
gasoline price for sports cars than the other 
fuel-efficient cars. 

Figure 1: Pictorial description of the problem.
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Our goal here is to present, to the greatest extent, Jacob’s benefit of travelling the extra distance, in 
order to better compare the two options.

This paper is organized as follows: In the next section, we discuss effective price per gallon for the 
type of cars they drive at some specific prices per gallon. The final section discusses several saving 
plans for Jacob and the maximum distance that he can travel to hunt for cheaper prices that remain 
economical for him. 

Effective Price per Gallon
To decide whether Sophia or Jacob gets a better deal, we introduce a concept called effective price per 
gallon. The effective price per gallon, denoted by E, is given by the formula

                                                           
 (2.1)

where p is the price of the gasoline per gallon, T is the tank size in gallons and S is the number of 
gallons one uses to go out of his or her way to fill the tank. Sophia stays on route the entire trip, so her 
effective price per gallon, denoted by E1, is simply p1. Jacob travels a distance of d, one way, to fill up 
his tank consuming  gallons of gasoline. Therefore, the effective price per gallon for Jacob is given 
by the equation 

(2.2)

We assume that Sophia drives a 2012 Toyota Camry that gives 28 miles per gallon with a tank size 
of 17 gallons. We consider different brand of cars for Jacob, each with different gas mileages and 
different tank sizes. The list goes from a car giving comparatively less mileage than a Camry to one 
that gives comparable mileage. The reason for choosing different cars for Jacob is to analyze what 
price is significant for which brand of car, by traveling a given distance from the normal route. The 
car details given here are obtained from official company websites. The following table gives the 
summary of cars considered for our study:

Car Brand Size Mileage
Toyota Camry 17 gallons 28 miles/gallon

Corvette Coupe 18 gallons 16 miles/gallon

BMW 328i Sedan 15.8 gallons 23 miles/gallon

Ford Fusion 17.5 gallons 25 miles/gallon

Honda Accord Sedan 18.5 gallons 27 miles/gallon

The gas price of $3.50 per gallon is considered based on the price at one specific gasoline station at Tampa, 
Florida in June, 2012. Sophia does not go out of her way, so her effective price per gallon is $3.50. 

Table 1: Types of vehicles considered



10

We now test different prices that Jacob 
can pay and distances that he can travel 
for the types of vehicles considered. 
Distances tested vary from 1 mile to 
20 miles and gas prices will vary from 
$3.50 to $3.20 at intervals of $0.10. As 
a consequence, we find the results as 
shown in Figures 2, 3 and 4.

From the graphs, we see that as the price 
decreases per gallon, Jacob can drive 
farther to fill up his tank and still get a 
better deal for the type of car he drives. 
The horizontal red line is the effective 

cost if one decides not to go out of his/her 
way for gas. If the car that Jacob drives 
has results below the horizontal line at the 
distance to the gas station, he gets a better 
deal by going out of his way, whereas if it 
is above the horizontal, it costs Jacob more. 
However, a more fuel effcient car (Honda 
Accord in this case), is more cost-effective 
than any other car that Jacob opts to drive.

Break-Even Point
There is a certain break-even point at 
which the effective price per gallon for 
Sophia and Jacob is equal. For every extra 
mile traveled, there must be a maximum 
price below which Jacob gets a better 
deal than Sophia. The information given 
in Table 2 shows the maximum price 
(in dollars) he should consider so that it 
becomes beneficial to drive out of his way 
to fill up the tank at various distances for 
different vehicles.

The values presented in Table 2 are 
calculated by using the equation (2.2). The 
tank size T2 and mileage G2 are supplied 
from the data given in Table 1. The 
effective price per gallon E2 is considered 
as $3.499 and we calculate the price p2 per 
gallon producing this E2 -value, which will 
be the point at which the trip for Jacob 
becomes worthwhile. The distance varies 
for each experiment to get the price p2 
documented in Table 2.

Figure 2: Effective price at $3.40 per gallon

Figure 3: Effective price at $3.30 per gallon

Figure 4: Effective price at $3.20 per gallon
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For the break-even point, the 
relationship between the price of 
the gasoline and the distance that 
Jacob can travel is shown by the 
scatter diagram given in Figure 
5. The relationship is linear with a 
correlation coefficient R2 = 0.9996. 
This shows that for every extra 
mile Jacob has to travel one-way, 
his option will only be more cost-
effective if he decreases the price 
by a certain constant each time. The 
functional relationships between p 
and d for Honda, Ford, BMW and 
Corvette are given by p = −0.014d + 
3.5, p = −0.016d + 3.5, p = −0.0193d 
+ 3.5 and p = −0.0243d + 3.5 
respectively.

Savings and Max Distance
Another factor we consider is how 
much Jacob wants to save and how 
far he needs to travel in order to be 
satisfied. Jacob’s effective price per 
gallon, as a function of price and 
distance, is given by the equation 
(2.2). We can express the relationship 
of the price that Jacob pays in terms 
of effective price per gallon and 
distance as follows:  

For Corvette Coupe: 

; 

For BMW 328i Sedan: 
; 

For Ford Fusion: 
 ; 

For Honda Accord: 
.

Table 2: Effective prices for break-even

Figure 5: Scatter Diagram between the price and distance at the break-even

d Honda Ford BMW Corvette

1 3.49 3.48 3.48 3.48

2 3.47 3.47 3.46 3.45

3 3.46 3.45 3.44 3.43

4 3.44 3.44 3.42 3.4

5 3.43 3.42 3.4 3.38

6 3.42 3.4 3.38 3.35

7 3.4 3.39 3.37 3.33

8 3.39 3.37 3.35 3.31

9 3.37 3.36 3.33 3.28

10 3.36 3.34 3.31 3.26

11 3.35 3.32 3.29 3.23

12 3.33 3.31 3.27 3.21

13 3.32 3.29 3.25 3.18

14 3.3 3.28 3.23 3.16

15 3.29 3.26 3.21 3.14

16 3.28 3.24 3.19 3.11

17 3.26 3.23 3.17 3.09

18 3.25 3.21 3.15 3.06

19 3.23 3.20 3.13 3.04

20 3.22 3.18 3.11 3.01
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We want to investigate the farthest distance 
that Jacob should travel to obtain different 
saving plans. 

If Jacob desires to obtain 0%, 5%, 10%, 
15%, or 20% savings, his effective prices 
per gallon are going to be 3.50, 3.325, 3.15, 
2.975 and 2.8 respectively for each vehicle.

The graphs in Figure 6 and 7 show the 
relationship between the price and distance 
for the certain percentage of savings 
desired for Corvette Coupe and Honda 
Accord:

As of now, we have only considered 
situations where one variable has been 
fixed, effective price per gallon or price, 
but what if both E and p are fixed? We 
want the effective price per gallon for 
Jacob to be less than $3.50 and p2 to vary 
from $3.45 to $3.10. We consider equations 
derived before for different cars in order 
to find what distance d fits each of the 
equations; thus telling us the maximum 
distance at which the chosen values remain 
economical to travel. The following graph 
best describes the situation:

It suggests that Jacob can travel, using 
his BMW, around 20 miles one way if the 
price of the gasoline is $3.10 per gallon 
and have it still remain economical to 
travel the extra distance. We find that with 
the cars that are more fuel efficient, Jacob 
will be able be drive a greater distance for 
the discounted gas price. 

Figure 6: Saving Plans for Corvette Coupe

Figure 7: Saving Plans for Honda Accord

Figure 8: Maximum distance to travel for making effective price per gallon less than $3.50



13

Issue 16

Rock-Paper-Scissors: 
A Game Theoretic Approach
By Victor Xu, Lynbrook High School, California

Introduction
Game theory is fascinating in its universal applicability. Its versatility spans economics, biology, 
computer science, sociology and even everyday life. Let us envision a scenario where we have all 
been before: engaged in a game of rock-paper-scissors.

You eyeball your opponent, taking a quick moment 
to ogle the last slice of pepperoni pizza before 
deciding on what to play. Perhaps you personally 
believe that people open with rock most often, 
and so you tend to find success playing paper on 
the first round. Where it gets interesting is when 
you play other people who share your mindset. Do 
you play scissors because they’ll be likely to play 
paper? Do you play rock because you know they’ll 
try to be thinking one step ahead? Do you play 
paper because they might try to psych you out by 
playing rock? This chain of reasoning can go on 
and on, and at some point you begin wondering if 
there is indeed a way to gain a competitive edge 
mathematically.

Formalization
Before I continue, let us formalize our interpretation by introducing some terminology. Classic rock-
paper-scissors is a two-player, zero sum game: a game between two people in which anything that one 
player gains is exactly balanced by what the other player loses. For example, when two people play 
rock-paper-scissors, the number of rounds the first person has won is equal to the number of rounds 
the second person has lost. Let us measure each round through quantities of utility and the outcome 
of each round as a payoff where the winner gains one utility and the loser loses one utility. The payoff 
matrix considering all scenarios of play is displayed as follows in the form of pairs with the first 
coordinate being Player 1’s payoff and the second being Player 2’s payoff.

  P
la

y
e

r 
1

Player 2

Rock Paper Scissors

Rock (0,0) (–1,+1) (+1,–1)

Paper (+1,–1) (0,0) (–1,+1)

Scissors (–1,+1) (+1,–1) (0,0)

Table 1: Payoff matrix for both players
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Let us define a strategy as a function that tells you what to do in every possible situation. For 
example, a strategy that states Given A, perform B and Given X, perform Y maps A to B and X to Y. 
Let us define a rational opponent as someone who plays according to the best available strategy at any 
given point in time. Finally, for the analytical purposes of this paper, assume that all games are played 
over an infinite number of rounds and factors of reality such as human psychology and statistical 
biases are unimportant. As we examine gameplay in the upcoming cases, we will be looking for 
strategies in which our expected utility is maximized.

Playing A Rational Opponent
Let us examine the case in which you are matched against a being who plays perfectly at every 
step. In other words, your opponent is not only clever enough to always figure out the strategy you 
are using, but will also then formulate an optimal counterstrategy in response, constantly updating 
throughout the game. For example, if you begin with the strategy of always playing rock, your 
opponent will immediately develop the strategy of always playing paper. If you then change your 
strategy to mirror whatever your opponent played the previous round, they will then play whatever 
defeats the move they made the previous round. 
 
In essence, any deterministic strategy that takes an input and gives an output will explicitly fail 
against your opponent because they can determine what that output is faster than you can and adjust 
their play to beat it. It appears that our superhuman opponent, always able to counter our strategy 
cannot be defeated by regular means. Is there another strategy out there to ensure that the rational 
agent cannot get a competitive edge on you, regardless of his or her strategy? The answer is yes. Let 
pr represent the probability of playing rock, pp the probability of playing paper, and ps the probability 
of playing scissors, the best strategy is just to play randomly with a probability distribution of 

. An example of how to do this would be rolling a uniformly weighted six-
sided die before every round to determine your next move with 1 and 4 representing rock, 2 and 5 
representing papers and 3 and 6 representing scissors. A key aspect of this is that you yourself have 
no idea what you will play until you play it, and if you don’t know what you are going to play, neither 
does your superhuman opponent, thus taking away their competitive edge. In this manner, no matter 
how rationally superior your opponent is, he or she cannot gain any sort of advantage whatsoever if 
you randomly choose rock, paper, or scissors with equal probability. Intuitively, this makes a lot of 
sense, but let us try to find a mathematical analog for this to properly explain what is going on.

Utility Breakdown
Perhaps the best way of expressing game outcomes is through a utility function. Reverting back to the 
earlier payoff matrix, let us isolate the payoffs of Player 1 and approach the game from our rational 
opponent’s point of view.

O
p

p
o

n
e

n
t

You

Rock Paper Scissors

Rock 0 –1 +1

Paper +1 0 –1

Scissors –1 +1 0

    Table 2: Your opponent’s payoff matrix
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The utility function U will output your opponent’s payouts of playing rock, paper, or scissors 
individually taking into account any of your responses. Again, let the probability that you will 
play rock be pr , that you will play paper be pp, and that your will play scissors be ps. Clearly, 

. Looking at the row for which Agent Rationality plays rock, he receives a payoff of 
0 with probability pr , a payoff of −1 with probability pp and a payoff of 1 with probability ps. His 
overall utility from playing rock can then be expressed in the form

Likewise, his utilities from playing paper and scissors can be expressed in a similar fashion.

Plugging in the probability distribution , we find U (rock) = 0, U (paper) = 0 and 
U (scissors) = 0. It is apparent that our rational opponent’s expected utility gain for playing any move, 
whether rock, paper, or scissors is zero, thus proving that regardless of what he does, he will be 
unable to gain an advantage against the random distribution (  ). In this sense, we have found a 
“winning” strategy.

Playing A Rational Opponent II 
Suppose your rational opponent is getting frustrated and wants to change the rules. Now let us make 
things interesting. We’ll change the game so the payouts are no longer uniform but the game is still 
zero sum. If you play scissors when he plays paper, it is now equivalent to winning two rounds, or 
in other words, you gain two utility while your opponent loses two utility. Of course, your opponent, 
being perfectly rational, immediately finds the optimal strategy, but more importantly how does your 
strategy change? Do you play scissors more because a win is worth twice as much? Do you play 
paper more because your opponent may play rock more often predicting a spike in the rate you play 
scissors? Again, this chain of cyclical thought can continue for a frighteningly long time, but once 
again we can look for an answer mathematically.

As previously established, your opponent, being an embodiment of rational perfection, will 
immediately discern whatever strategy you choose and come up with an optimal counterstrategy, 
serving as the basis for why all deterministic strategies fail and why we must turn to probabilistic 
strategies. In classic rock-paper-scissors, the probability distribution ( ) that we chose worked 
because our opponent’s utility gain was not just zero, but zero for all of his possible moves. In this 
variation, the goal of our mixed strategy is to make the utilities of playing rock, paper, or scissors for 
your opponent equal. At this point, regardless of whether your opponent knows exactly what you will 
do and what your godlike opponent decides to do, he cannot improve his utility gain and thus you 
have achieved the goal of minimizing your losses and maximizing your payoffs. Let us express this 
idea with in terms of functions of utility.
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O
p

p
o

n
en

t

You

Rock Paper Scissors

Rock 0 –1 +1

Paper +1 0 –2

Scissors –1 +1 0

From this table we can determine your opponent’s utilities for playing rock, paper, or scissors. We 
obtain as follows:

Since we want these three utility values to be the same, we can equate the three expressions to obtain 
a system of equations which we can solve to find our winning probability distribution.

Rearranging, we can express the system as

We can express this as an augmented matrix and reduce it through row operations.
 
 

 

Finally, we find that the optimal probability distribution is ( ). Plugging this back into 

our utility function, we find that , and so our 

superhuman rational opponent always loses  utility regardless of whatever he plays. 

Analysis
The distribution we chose was not a coincidence at all. In fact, it was a point of equilibrium, more 
generally known as a Nash equilibrium. Loosely speaking, a Nash equilibrium occurs when two 
or more players each have an optimal strategy such that neither has anything to gain by switching 
strategies if the others’ strategies are unchanged. 

Table 3: Your opponent’s new payoff matrix
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Essentially, within a Nash equilibrium, every player involved is making the best possible decision 
and in our case, our process led us to our winning distribution, the optimal response to our opponent’s 
rationality. Nash equilibria constitute one of the pinnacles of modern game theory and their proposer, 
John Nash, was the subject of the Academy Award winning film, A Beautiful Mind.

Further insight into the reasoning and methods we used to arrive at our Nash equilibrium can be found 
through in-depth readings regarding the Minimax Theorem and the Weighted Majority Algorithm.

Closing
Phew! That was a long journey. We can now shake hands with our rational agent, call it even and both 
be on our separate ways. Now when I play rock-paper-scissors with my friends, even when I lose, I 
accept it with grace. After all, I can hold my own against any rational opponent, and now so can you!
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How can we actually eradicate 
a disease? And why aren’t we 
better at it? We have a very poor record 
of disease eradication. In the entirety of human 
history, we’ve successfully eradicated just two 
diseases: smallpox and rinderpest (the latter a 
cow disease, declared eradicated in 2011). Our 
“model” for what it means to eradicate a disease 
is thus based on what worked for these two 
diseases: a successful vaccine.

Guinea Worm Disease tells a different story and 
one that may illuminate a new way forward. 
Guinea Worm Disease is a parasitic disease, 
spread via drinking water, that has been with us 
since antiquity (it’s mentioned in the Bible and 
Egyptian mummies suffered from it). Essentially, 
the parasite attaches itself to a water flea, you 
drink the flea and your stomach acid dissolves 
the flea, leaving the parasite free to invade your 
body. Because of gravity, it usually makes its 
way to the foot, where it lives for an entire year. 
See Figure 1. 

After a year, your foot is burning and itching, so 
you put it in the water. If your village only has 
one water source, then that often ends up being 
the drinking water. At this point, the fully grown 
worm bursts out of your foot, spraying forth 
100,000 parasites and restarting the process.  
See Figure 2.

In the 1950s, Guinea Worm Disease affected 50 
million people across most of Africa, Asia and 
the Middle East. Today it’s on the verge of being 
eradicated, with less than 2000 cases, in just four 
African countries. Ghana was declared worm-
free in 2011 and the disease primarily persists 
in South Sudan, as a result of the Sudanese civil 
war. This ancient scourge is almost gone.  
See Figure 3.

So what happened? Before we reveal 
the answer, let’s think about how you might 
eradicate a water-borne disease (i.e., a disease 
transmitted through contaminated water). 

Using mathematics to 
understand disease 
eradication: Guinea Worm 
Disease points the way forward
By Robert Smith?, The Department of Mathematics, The University of Ottawa 
In recognition of the Mathematics of Planet Earth 2013, a French version of this article has also been featured 
in Accromath (http://accromath.uqam.ca).

Figure 1: The life cycle of Guinea Worm disease. Image copyright the 
United States Centers for Disease Control and Prevention.

Figure 2: A Guinea Worm.
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Possibilities are a vaccine, drugs that treat 
symptoms, chemicals that kill the parasite, better 
hygiene or education that changes people’s 
behaviour. Unfortunately, there is neither a drug 
nor a vaccine to treat Guinea Worm Disease. So 
let’s see what mathematics tells us.

Mathematical modelling of infectious diseases 
is a fairly new topic that has had significant 
success. It has been useful in programs dealing 
with malaria control, smallpox eradication, 
mosquito management, climate change and 
emergency preparedness. Where modelling 
works well is in quantifying measurable things, 
like drugs, vaccines or insecticide. Where it has 
more trouble is with messy and unpredictable 
variables, like human beings.

Incorporating human behaviour into models is 
complex and requires an understanding of  
the ethical, sociological and biomedical  
factors inherent in tackling a disease. This 
requires interdisciplinary research across the 
traditional boundaries of social, natural and 
medical sciences.
To create a mathematical model, we need to 
keep track of what comes in and what goes 

out. In the case of Guinea Worm, we divide the 
population of humans into three subcategories. 
The first category is susceptible individuals; 
three things can happen to them: they are born, 
become infected or die. The second is infected 
individuals, who either become infectious or die. 
The third, infectious individuals, either recover 
or die. We also have a population of worms: the 
parasite is born when infectious individuals put 
their foot in the drinking water (because fresh 
water produces relief) and dies shortly thereafter. 
Guinea Worm disease is not lethal, so each time 
we speak of death rate, it is the usual death rate.

Combining these, we develop a system of 
differential equations that describes the rates of 
change of every variable. This system is kind of 
an “engine of change.” With a starting key (the 
initial conditions), we can then use our engine to 
predict the future. This procedure works if we’ve 
gotten the mechanics of the interactions right.

Modelling is like map-making.
You don’t want a map to be a perfect 
representation of reality, because that would 
be too cumbersome. Instead, you want the 
salient features, scaled down to a usable size. 

Figure 3: The decline in Guinea 
Worm Disease cases over the 
past 25 years.
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So modelling isn’t trying to mimic reality, but 
instead it’s providing a useful roadmap so you 
can navigate the future. See Figure 4.

How do we know when we’ve eradicated a 
disease? Or at least when we’re moving in the 
right direction? 

This issue vexed public health officials in the 
early twentieth century when they were trying 
to eliminate malaria from places like the United 
States and Canada. Sir Ronald Ross won a Nobel 
Prize for demonstrating that malaria was spread 
by mosquitos (rather than toxic vapours, as was 
previously thought). However, this led to some 
despair, because it was realised that you couldn’t 
eliminate all the mosquitos. Nor would you want 
to, because they prop up our ecosystems. 

Ross’s breakthrough came when he realised that 
you didn’t have to kill every mosquito, but rather 
just a critical number of them.

This is essentially the “tipping point” of a 
disease: if each infected individual causes more 
than one infection, then the disease will spread. 

However, if each infected individual results in 
less than one infected individual, then the disease 
will eventually die out.

This concept is called R0, the basic reproductive 
ratio (pronounced “R nought”). R0 measures the 
average number of secondary infections that 
a single infectious individual will cause. So if 
each infected individual infects three people, 
they infect three each and so forth, meaning 
the disease spreads like wildfire. On the other 
hand, if R0 < 1 (so that ten infected people infect 
nine, those nine infect eight and so on), then the 
disease will die out on its own.

If we can estimate R0 from our mathematical 
model and then determine which parameters will 
reduce it below one, then our job is done. With 
those control measures in place, the disease will 
eventually be eradicated. R0 helps us understand 
which control measures will be helpful and how 
intensely they should be applied.

In our case, the basic reproductive ratio is

We have three factors under our control: 
increasing education (which will reduce the 
parasite birth rate γ), reducing transmission 

(which will reduce β) and 
chlorination (which will increase 
the parasite death rate µV). You 
can see how R0 depends on all 
these factors. So applying any 
one of them should reduce R0.

That isn’t the end of the story, 
however. Although we have 
identified the beneficial factors 
under our control, we don’t 
necessarily achieve eradication. 
And every parameter will vary, 
in practice, because some worms 
will give birth to more parasites 
than others or some people will 
be more likely to be infected. 

β
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Figure 4: The mathematical model. Humans can be born, become infected or 
die (from background reasons, not from the disease). Once infected, humans 
carry the worm for a year, before becoming infectious (for a few hours). The 
parasite’s birth is proportional to the number of infected individuals, while its 
death rate is proportional to the size of the population.
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So we need to account for variations in our 
parameters. Fortunately, determining parameter 
ranges is much easier than pinpointing a precise 
value. The three parameters under our control are 
γ, β and µV, so let’s vary these over large ranges 
while fixing all other parameters at their average 
values. See Figure 5.

Killing the parasite isn’t terribly 
effective. Why? Increasing the parasite 
death rate involves moving along the µV axis 
to the rear left. But the level surface is very 
shallow, so you need to move a long way to the 
back corner to get under the surface. Reducing 
transmissibility involves moving down the β 
axis. But this is on a log scale, so that takes 
much longer than it first appears. However, see 
how steep the surface is for small γ? This makes 
it very easy to move under it by a small change 
in γ. This suggests that eradication should occur 
if we stick to one strategy: reducing the parasite 
birth rate.

How can we do that?
Through education, of course!
Encouraging people not to put their infected 
limbs in the drinking water means that each 
time a worm doesn’t burst into the water, that’s 
100,000 parasites that aren’t released. 
This means that, in the final push to eradication, 
we should concentrate our efforts on reaching 
remote communities, informing them about 
the specifics of Guinea Worm Disease and its 
transmission cycle. 

In summary, eradicating a disease isn’t just a 
matter of sitting around and waiting for someone 
to invent a vaccine. We have vaccines for less 
than 2% of all diseases. Both drugs and vaccines 
are beholden to scientific breakthroughs that 
consume millions of dollars but may never 
happen. However, education is relatively cheap, 
highly effective when done right and can begin 
immediately. 

The critical element of this is getting education 
right. Done badly, it can look to developing 
countries as though the West is telling them what 
to do (e.g., people often reject messages about 
safer sex due to histories of population control). 

However, culturally specific education, carefully 
targeted towards its audience, has the potential 
to change entire societies, as it has with Guinea 
Worm Disease. 

Mathematical modelling can help us  
determine what needs to be done in advance 
and to determine which factors will have the 
greatest impact on the outcome. We are close to 
eradicating Guinea Worm Disease, one  
of humanity’s oldest diseases, thanks to 
behaviour changes and education alone. Once 
Guinea Worm Disease is eradicated, its lessons 
will apply to other diseases where education  
can be effective, not least of which is HIV. 
Messages need to be carefully positioned and 
targeted, but if done right they have the potential 
to do what no amount of treatment has managed: 
turn a global epidemic around, using the power 
of education.

Figure 5: The level surface R0 (γ, β, µV ) = 1. If you are above the surface, 
then R0 is greater than 1 and the disease will persist. If you are below, then R0 
is less than 1 and the disease will be eradicated.
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Introduction
The most authoritative reviews of climate 
change are carried out by a United Nations 
panel called the Intergovernmental Panel on 
Climate Change (IPCC). The most recent IPCC 
assessment concluded that “Most of the observed 
increase in global average temperatures since 
the mid-20th century is very likely due to the 
observed increase in anthropogenic greenhouse 
gas concentrations” (Solomon et al., 2007). But 
where does this statement come from? Is it based 
only on the opinions of climate scientists? In 
fact, it is based on analysis, drawing strongly on 
mathematics and the physical sciences. 

Observations and  
Climate Models
Determining the causes of global warming 
first requires good temperature observations. 
Climate scientists take care to select only 
observations from sites which have not been 
subject to large local changes, for example from 
urbanisation around the site, and then construct 
datasets of temperature measurements from 
around the world. Such careful analysis led to 
the conclusion in the last IPCC assessment that 
global warming is unequivocal. However, this 
does not tell us what is driving the warming. 
Ideally we would run an experiment on a 
second Earth on which everything is kept the 
same, except there would be no emissions of 
greenhouse gases or other human influence 
on climate, and then compare the evolution of 
climate with that observed here. Since this is 
not possible, instead we need physically-based 
predictions of how climate would be expected 
to change in response to, and in the absence of, 
human influence. 

In Issue 14 of Pi in the Sky, Adam Monahan 
described how mathematics and physics can 
be used to construct physically-based climate 
models (Monahan, 2010). Such models 
represent, in mathematical form, the major 
components of the climate system including 
the atmosphere and ocean, and the physical 
laws that govern their evolution. Such models 
aim to simulate realistic month-to-month and 
year-to-year climate variability in the absence 
of changes in greenhouse gases or other drivers 
(called internal variability). They can also be 
used to simulate climate evolution since pre-
industrial times in response to the evolution of 
a range of climate drivers. Besides greenhouse 
gases, the other most important drivers are 
changes in particles in the atmosphere known 
as aerosols, which primarily act to increase 
reflectivity, thereby reflecting more solar 
radiation back to space and causing cooling. 
Large volcanic eruptions inject aerosols high into 
the stratosphere, causing a cooling which lasts 
several years. Lastly, changes in the brightness 
of the sun, including with the 11-year sunspot 
cycle, also influence climate. 

Detection and Attribution
How do we pull all these pieces together to 
determine the causes of the observed changes? 
The process is called detection and attribution 
and is done using a statistical model to relate 
simulated and observed variations in climate. 
Typically we wish to avoid the assumption 
that the climate model simulates the correct 
magnitude of the response to the various climate 
drivers and we represent the observations using a 
regression model such as: 

How Do We Know That 
Humans Are Causing 
Global Warming?
By Nathan Gillett, Research Scientist, Canadian Centre for Climate Modelling and Analysis 
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Here, y is a vector of observed temperatures 
from which the mean has been subtracted. 
For example, if we had a vector consisting of 
observations of the global mean temperature for 
each decade of the last 150 years, y would be 
the vector formed by subtracting the 150 year 
mean from each of the observations - see the 
black line in Figure 1. In this case, y is a vector 
with fifteen elements, each of which is a decadal 
mean temperature anomaly.  is a similar 
vector of temperature anomalies from a climate 
model simulation of the response to greenhouse 
gas changes only (red line in Figure 1); is 
the simulated response to aerosol changes only 
(green line in Figure 1); and  is the simulated 
response to volcanoes and solar changes only 
(blue line in Figure 1). Even if our climate model 
were perfect it would not simulate the same 
day-to-day weather variations and year-to-year 
internal variations in climate as was actually 
observed and therefore, we use u to represent this 
internal variability. The regression coefficients 

,   and  in the above equation are 
scaling factors applied to the simulated responses 
to greenhouse gases, aerosols and natural drivers 
respectively, which we will estimate in order 
to give the best fit to the observations. This 
will allow us to assess what proportion of the 
observed temperature change is due to each of 
these factors. We can also write this in matrix 
form where the columns of X are ,  and 

 and . 

We can estimate the regression coefficients in 
the above regression equation using least squares 
regression: 

This is a multi-dimensional version of the 
equation that can be used to fit a straight line 
through points on a graph; it is the solution 
which minimises the sum of the squares of 
the vertical distances between the points and 
the fitted plane. Figure 2 shows the regression 
coefficients, , derived by applying this equation 
to the data shown in Figure 1.

To estimate the uncertainties in the regression 
coefficients, we require an estimate of the 
variability of climate in the absence of 
changes in drivers. A few studies acquire this 
variability estimate from long climate records 
of the preindustrial climate, such as from long 
observational records or reconstructions from 
tree ring widths. Generally, the length and 
coverage of such records is too limited, so 
estimates of climate variability in the absence 
of forced changes are taken from long control 
simulations of climate models with no changes 
in climate drivers. These are then used to derive 
uncertainty ranges on each regression coefficient. 

If we find that a particular regression coefficient 
is significantly greater than zero, this means that 
a significant response to the forcing concerned 
is present in the observations (meaning it has 
been detected). In the example shown in Figure 
2 we detect the response to greenhouse gases, 
aerosols and natural drivers, since the regression 
coefficients of all three are significantly greater 
than zero. The trend in the observations y 
can also be compared, for example, with the 
trend in , to infer the greenhouse gas 
contribution to the observed trend. The statement 
that “Most of the observed increase in global 
average temperatures since the mid-20th century 
is very likely due to the observed increase in 
anthropogenic greenhouse gas concentrations” is 
based on the results of such analyses. 

Fig. 1: 
Decadal mean 
global mean 
temperature 
anomalies from 
observations (y) 
and the average 
simulated 
responses 
,  and 

 from 
seven state-of-
the art climate 
models.
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The underlying quantitative meaning is that 
there is a greater than nine in ten chance that the 
trend in  is greater than half the trend 
in y. Thus, this statement is not purely based on 
expert opinion, but is the result of quantitative 
analysis based on mathematics and physics. 

Various refinements to this method are applied 
in practice. Rather than only using global mean 
temperature, we typically use spatial patterns of 
temperature change (which helps to distinguish 
between them), since the pattern of temperature 
response to various climate drivers is different. 
This helps to distinguish between drivers, since 
their patterns of 
temperature response 
are different. The 
simulated response 
patterns do not 
usually come from a 
single simulation, but 
from an average of 
simulations of one or 
more different climate 
models. This helps 
to reduce the effects 
of internal variability 
and model errors. 

Often signal-to-noise optimisation is used 
to weight the calculation of the regression 
coefficients towards regions with lower internal 
variability. And the regression equation shown 
above is refined to account for uncertainties in 
the simulated responses to each driver. 

Conclusions
Detection and attribution techniques were 
developed in the 1990s to answer the question 
of whether a human effect on climate was 
identifiable. Using such techniques, this question 
has now been answered for global temperature. 
More recently, these techniques have been 
applied to many other interesting questions. For 
example, is there an identifiable human influence 
on rainfall? Has the ozone hole had a significant 
effect on surface climate? Is there a detectable 
human influence on sea ice? Have CFCs and 
similar compounds changed the temperature 
of the stratosphere? Detection and attribution 
studies have found that the answer to all these 
questions is yes, but many other questions 
remain to be answered. 
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Fig. 2: Regression coefficients  and 
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By Rachel Hong, Leland High School, California

In the dynamic world of math, even constants 
are not all that constant. As my fellow math 
enthusiasts and I celebrated Pi Day, on March, 
14, this year, I heard some calling it Tau over 
Two Day instead. But pi still has many loyal 
advocates; three months and fourteen days later, 
a number of them wished me a wonderful Two Pi 
Day instead of Tau Day.

Readers of Pi in the Sky might have a preference 
for a certain familiar circle constant, which 
undoubtedly makes for a more clever publication 
title, but these readers surely recognize the need 
to investigate the interesting arguments in favor 
of tau, which is equal to 2π. The Tau Manifesto 
and The Pi Manifesto detail why their respective 
constants are supreme, but not everyone can 
readily understand the discussion once it begins 
to delve into higher mathematics. Still, it is 
important to have a basic picture of any debate 
and understand the advantages and disadvantages 
of both tau and pi in the areas where they are 
most commonly seen.

In trigonometry the unit circle is essential, while 
with pi the measured value of an angle in radians 
can be counterintuitive. For example, the angle 

of a quarter of the unit circle is  radians. But 

with tau, there is no unnecessary, pesky factor 

of two involved. A quarter of the unit circle 

matches . Half of the unit circle matches . 

And of course, one complete trip around the unit 
circle matches τ. This is easier to remember and 
much more elegant! That’s one point for tau.

If Tau works better with the unit circle, then it 
must also be the more convenient constant to use 
with the trigonometric functions sine, cosine, 
cosecant and secant. This is especially evident 
when looking at graphs of these functions, since 
their period can be written as τ instead of 2π. 

 is half of the period, 2τ is two periods and so 

on. Unfortunately, one period of the tangent and 

cotangent functions would have to be written as 

. So, perhaps it would be the most fair to give 

four points to tau and two points to pi.

Young mathematicians in elementary school 
learn about circles and their properties well 
before learning trigonometry, and the most basic 
thing that every student soon learns by heart is 
how to calculate the circumference of a given 
circle. Using pi, the equation for finding the 
circumference is C=2πr. A popular argument 
given by the proponents of tau, also known as 
tauists, is that the equation is much simpler with 
tau: C= τr.

What about area? Area is just as important as 
circumference, and A=πr2 is easier than  

. Tauists claim that tau still has the upper 
hand because , or simply a quadratic 
expression divided by two, is commonly seen in 
physics. But does this make tau that much more 
appealing? To many mathematicians, pi is still 
simpler when expressing area. When it comes to 
the circumference and area of circles, neither tau 
nor pi has the upper hand and no points can be 
awarded.

Tau has five points, while pi has two. There 
is, however, one important thing that keeps 
tau from emerging victorious: pi has been 
around for thousands of years. Its digits can be 
found on the walls of libraries and museums 
all over the world. It is the first constant every 
mathematician learns. We have all been using 
it for the entirety of our mathematical journeys, 
however long or short they may be thus far. If 
those silly tauists think that they can knock out 
the beloved circle constant that easily, they are 
mistaken.

Besides, pi gives people an excuse to eat a pie 
with fellow mathematicians on the fourteenth of 
March every year and two pies on the twenty-
eighth of June. This alone gives pi at least ten 
points!
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The first person to ever wonder about the 
geometry of physical space was German 
mathematician, Karl Friedrich Gauss. Before 
Gauss, nobody doubted that the shortest distance 
between two points is a straight line. But, 
by 1820, he asked whether we might have to 
measure this distance along an arc of a circle, 
as we do between two points on Earth, or 
must heed some other path [7]. This question 
occurred naturally to him after discovering some 
unexpected geometric properties. 

Gauss dealt with triangles on the sphere, which 
are unlike planar triangles. He looked at the 
distance between two points along the shortest 
arc of the great circle that contains them. When 
these points are not antipodal, such a circle is 
unique. Therefore three points A,B,C of the 
sphere that are not too far from each other can 
be pairwise connected by arcs of great circles (a 
section of a sphere containing a diameter of the 
sphere), thus forming a spherical triangle of sides 
a, b, c and angles  (see Figure 1). 

If you do some mental experiments with such 
triangles, you might rediscover a few interesting 
facts. Think first of a triangle with A and B on 
the equator and C at the North Pole. The arcs of 
the meridians that intersect the equator do so at 
right angles, so . Since  has some 
positive value, this means that  

. This fact is surprising because the 
sum of the angles of planar triangles is always 

, but more surprises follow. Just move A and 
B away from each other along the equator. As 
the value of the angle  increases, so the sum 
of the angles grows larger, which means that it 
is not a constant for all spherical triangles, as it 
is in the plane. In fact, it can be proved that the 
sum is always larger than . The smaller the 
triangle, the closer this sum is to , a property 
to be expected because a small spherical triangle 
is closer to being planar. There are many more 
interesting properties to discover, such as that the 
only similar triangles are congruent ones and that 
the area of the triangle depends on the value of 
the angles. 

Gauss, however, had the intuition of hyperbolic 
geometry and understood that triangles on 
the sphere of imaginary radius, now called 
hyperbolic sphere, would have the sum of their 
angles always smaller than . Moreover, he 
realized that the 2-dimensional sphere of Figure 
1 could have a 3-dimensional analog, also called 
a 3-sphere and that we could similarly consider a 
hyperbolic 3-sphere. 

Let us also consider another geometric aspect, 
namely curvature. Small spheres curve more than 
large spheres and we can express this property in 
terms of the radius, R, by the formula , 
also due to Gauss, where  denotes  
the curvature. 

ON THE GEOMETRY 
OF PHYSICAL SPACE
By Florin Diacu, Pacific Institute for the Mathematical Sciences and  
Department of Mathematics and Statistics, University of Victoria
In recognition of the Mathematics of Planet Earth 2013, a French version of this article has also been featured 
in Accromath (http://accromath.uqam.ca).

Figure 1. A spherical triangle
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In other words,  is the same at every point of 
a given sphere. But do surfaces with negative 
constant curvature exist? If we take a sphere of 
imaginary radius , where , then the 
curvature of this object would be . 
The existence of such an object became apparent 
through the work of Johann Heinrich Lambert, a 
Swiss mathematician who preceded Gauss. These 
ideas, however, were not yet crystallized and 
it took the work of two other mathematicians, 
János Bolyai, a Hungarian and Nikolai 
Lobachevski, a Russian, who independently 
reached similar conclusions in the 1830s, to 
realize that a geometry on objects such as the 
sphere of imaginary radius made sense [2], [16]. 
Today we call this field hyperbolic geometry, as 
opposed to elliptic geometry, a version of which 
takes place on the ordinary sphere. 

It is difficult to imagine these 3-dimensional 
geometric objects. We can understand them 
only through analogies and mathematical 
techniques that are beyond the scope of this 
note. Nevertheless, Gauss could not exclude 
the possibility that our universe is shaped like a 
3-sphere or a hyperbolic 3-sphere, so he wanted 
to find a way to determine the geometry of the 
ambient space. 

History is a bit murky at this point and we do 
not know for sure whether Gauss made his next 
move out of the desire to understand the physical 
space or just to fulfill his duties as director of 
the astronomical observatory in Gӧttingen [17], 
[12]. Nevertheless, in 1820 he invented the 
heliotrope, a new topographic instrument, and 
used it to measure angles of triangles between 
three mountain peaks near Gӧttingen: Inselberg, 
Brocken and Hoher Hagen [7]. He apparently 
did this in order to check whether space is 
hyperbolic or elliptic, in other words whether 
it corresponds to triangles that have the sum of 
the angles smaller or larger than , respectively. 
His experiments failed; the limitations of his 
instruments provided results too close to π to 
allow him to draw any conclusion.

We may think that for larger triangles, Gauss’s 
method could still provide an answer, but the 
scale which we would have to use for this 
purpose makes the idea impractical. We cannot 
measure the angles of triangles formed by stars 
for the simple reason that we cannot reach those 
cosmic objects. So what is the solution? 

Physicists have tried to use some experiments 
based on the cosmic background radiation, 
but they have also been inconclusive [1], 
[19]. Moreover, they make certain physical 
assumptions about our universe and we cannot be 
entirely sure that they are correct. Nevertheless, 
the consensus view today is that physical space 
is not flat. It is unknown whether the deviation 
from zero is positive or negative but we do know 
that it must be very small.

From the mathematical point of view, however, 
the case  is highly unlikely, even if 
considered in an extremely small interval 

 of possible curvatures, with . The 
probability to hit the number 0 when throwing 
a point, without aiming, inside this interval 
is 0. According to the currently accepted 
cosmological theories, the fate of the universe 
essentially depends on whether the curvature is 
positive, negative, or 0, so accepting that  is 
very close to 0 is not a satisfactory answer. But 
what else can we do?

Isaac Newton imagined gravitation to be the 
force that makes apples fall to the ground and,  
at the same time, keeps the Moon in its 
orbit around the Earth. When asking what 
mathematical expression this force has, he 
thought that it must be proportional to the 
product of the masses, but he could not quickly 
answer how this force varies with the distance. 
It was clear that the larger the distance, the 
smaller the force, but what should the exact 
mathematical relationship look like? To answer 
this question he may have thought of how the 
area, , of a sphere varies with the radius, r, 
namely  and decided that the force 
should be inversely proportional to . 
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Historically, things might not have been exactly 
like that, since his contemporary Robert Hooke 
seems to have thought about this formula 
before him and shared it with Newton. Leaving 
aside the priority dispute, they agreed that the 
force should be of the form , where 
r is the distance between the bodies,  are 
the masses and G is a constant that could be 
determined from the Moon’s orbit. 

Newton’s masterpiece, Principia, allowed the 
derivation of Kepler’s laws as a mathematical 
consequence of gravitation and gave astronomers 
the tools to compute the orbits of all celestial 
bodies. The excellent prediction of a certain 
comet’s reappearance, made by Newton’s friend 
Edmund Halley, established celestial mechanics 
at the top of the scientific pyramid [3].  

But after their discovery of hyperbolic geometry, 
Bolyai and Lobachevsky understood that there 
must be a strong connection between geometry 
and the laws of physics and asked independently 
of Gauss whether the universe could be 
hyperbolic. Therefore they suggested the study 
of gravitation in hyperbolic space [2], [16]. 
In the spirit of Newton, they proposed a force 
that should be inversely proportional with the 
area of a hyperbolic sphere, but did not pursue 
the problem beyond this point. Their great 
achievements, which stood ahead of their time, 
were not recognized by their contemporaries, 
so Bolyai and Lobachevsky felt no boost to 
continue this research direction. 

Soon after Bolyai and Lobachevsky died, 
mathematicians like Lejeune Dirichlet, Ernest 
Schering, Rudolf Lipschitz and Wilhelm Killing 
learned about these new ideas [18], [15], 
[13]. Schering found an analytic expression 
for gravitation in hyperbolic space. His 
thoughts were as follows: The area, , of a 
sphere of radius r inside the unit hyperbolic 
3-sphere is , as geometers had 
already computed, where  denotes the 
sine hyperbolic function. So the force must be 
proportional to , where  is now the 
distance between the bodies. 

Using a similar reasoning, Killing later proposed 
that, in the ordinary 3-sphere, the gravitational 
force is proportional to . The law of 
masses remained the same. 

Several mathematicians studied the motion of 
two bodies in this setting; they recovered laws 
similar to those of Kepler and found many 
other properties [14]. But recently, the study 
of the motion of more than two bodies began 
in earnest. The motivation of this research 
stemmed from the question we started with: 
what is the geometry of the physical space? If 
we can mathematically prove that certain orbits 
of celestial bodies characterize only one of the 
elliptic, flat or hyperbolic space, then we might 
be able to decide the nature of the universe 
by mere astronomical observations. If, say, a 
certain type of motion that occurs in hyperbolic 
space alone happens to be seen in the night sky, 
then space must be hyperbolic. So, the idea 
of measuring angles of triangles and therefore 
having to travel large distances to discover the 
geometry of the universe was replaced by the 
idea of sitting on Earth and making astronomical 
observations about how celestial bodies move. 

It is first necessary to make a deep mathematical 
study of the dynamics in elliptic and hyperbolic 
space, to match the understanding of celestial 
motions in flat space, which has now a history 
of more than 300 years. But a few papers have 
already appeared in this research direction and 
we will further describe some of their exciting 
conclusions [4], [5], [6], [7], [8], [9], [10], [11]. 

In the 18th century, the French mathematician 
Joseph Louis Lagrange discovered that in flat 
space, three celestial bodies can exhibit some 
intriguing orbits. Assuming that their masses 
are , then they can move as if they lie 
at the vertices of an equilateral triangle that 
rotates uniformly around its centre of mass. 
The distance between the bodies remains thus 
constant during the motion, so these orbits are 
suggestively called relative equilibria. 
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It turns out that the case of the equilateral 
triangle is very special, since for all the other 
convex regular polygons, like the square or the 
regular pentagon, the masses must be equal. Only 
for the equilateral triangle the masses can take 
any value. But Lagrangian relative equilibria 
were discovered in the solar system. The Sun, 
Jupiter and each of the asteroids belonging to the 
Trojan group form an almost equilateral triangle 
that rotates around its centre of mass. 

To appear in nature, an orbit found through 
computations has to exhibit more than 
mathematical existence: it must be also stable, 
which means that nearby orbits must stay close 
for all time. In the case we mentioned, it means 
that triangles that are almost equilateral must 
stay close to this shape and have about the same 
velocities as the Lagrangian relative equilibrium. 
It is important to note that Lagrangian orbits are 
stable only if one mass is large (the Sun) and 
another is negligibly small (the asteroid). For 
comparable masses the motion is unstable, so it 
cannot occur in the physical space (assumed here 
to be flat). 

Recent research, however, shows that in elliptic 
and hyperbolic space, Lagrangian orbits exist 
only if . This happens because the 
sphere and the hyperbolic sphere have fewer 
symmetries than the flat space. Moreover, these 
orbits are unstable when the triangles are small 
(although they become stable for large triangles), 
but this can happen only at scales that are larger 
than the known universe, so finding such orbits 
in nature is practically impossible. However, 
since Lagrangian relative equilibria exist around 
us for non-equal masses, we would be tempted 
to conclude that space is flat. This conclusion 
would be a bit premature, as the Lagrangian 
orbits we see are not exact equilateral triangles 
and we don’t know yet whether such orbits of 
non-equal masses exist in elliptic or flat space. 
So, at this point we have a hint, but not a proof, 
that space may be flat at the level of our solar 
system. Even if we had a proof, it would not 
mean much, since the solar system is like a tip of 
needle if compared to the rest of the universe. 

However, the principle of determining the nature 
of the physical space through observations 
remains valid and we cannot exclude the 
possibility of finding orbits in the future, both 
mathematical and in real space, that can disclose 
the geometry of the universe. So, understanding 
the equations that describe the motion of 
celestial bodies in flat, elliptic and hyperbolic 
space remains an important subject of research, 
which will likely keep many generations of 
mathematicians busy. In the meantime, the 
answer to the original question may spring from 
somewhere else. 

The efforts we make to understand mathematical 
questions breed other mathematical questions, 
all of which help the development of our field. 
Without such efforts, mathematics, science, 
technology, our entire culture and civilization, 
would not be where they are today. Working on 
a topic, no matter how small, finding happiness 
in this pursuit just because you want to learn the 
answer (which you may never find) is perhaps 
the highest level of inner freedom somebody can 
achieve. Only those who grasp this spirit can 
dedicate their lives to mathematical research.
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2011 MATH CHALLENGE solutioNs 
SOLUTIONS TO THE PROBLEMS PUBLISHED IN THE ISSUE 15 OF PI IN THE SKY 

PROBLEM 1.
The decimal part of x = 0.2499...975 contains 2007 consecutive . Find the first 2011 decimal digits 

of .

 
Solution:

Since   we may write  with  Then

       

 

 
Since , the only appropriate solution of the above quadratic equation is  

where  

Hence

 

where the decimal part of 0.499..975 contains 2008 consecutive 9’s.
 

On the other hand  Indeed,

 

 

Hence the first 2011 decimal digits of   are 4, 9, 9, ..9, 7, 4 with 2008 consecutive .
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Problem 2.
How many pairs of positive integers sum to 2011 and have a product that is a multiple of 2011?

Solution:
If (a, b) is a pair having the requested properties then a + b = 2011 and ab = 2011k , where k is a 
positive integer. Substituting b = 2011 − a from the first equation  into the second leads to the
quadratic equation

If this equation has integral solutions then ∆ = 2011 (2011 − 4k) should be a perfect square. This is not 
possible since 2011 is a prime number and 2011 − 4k < 2011.

Problem 3.
Find all the triplets (x, y, z) of real numbers such that 

Solution:
Consider the function  that is increasing on .  If (x, y, z) is a solution of the

 
given system then  

We claim that f (x) = x. Indeed, if we assume that f (x) < x then f (f (x)) < f (x) < x and also
f (f (f (x)))  < f (f (x))  < f (x) < x. Now, since f (f (f (x)))  = x we obtain that x < x which is a 
contradiction.  Similarly, the inequality f (x) > x does not hold. Thus we must have  
and therefore The requested triplets are: (0, 0, 0), (1, 1, 1), (−1. − 1. − 1).

Problem 4.
Let a be a fixed integer. Find all the functions  such that for any 

f (n − a) + f (n + a) ≤ 2f (n)

(Here  denotes the set of all integers while  denotes the set of positive integers).

Solution:
The given inequality can be written as 

If set  the above inequality takes the format 

from which we get 

i.e., 

Summing over k from 0 to m we obtain:
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hence 
 

and therefore, since f takes positive values, 

We conclude that , hence 
If a = 0, it is clear that any function  verifies the requested condition.
If a = 0 then f is a periodic function of period  Consequently f (n) = ck ,  
if n ≡ k(mod s), k = 0, 1, • • •, s − 1 where 
 

Problem 5.
Given a set of 2n distinct points in a plane, prove that there exist n line segments joining pairs of these 
points such that no two of them intersect.

Solution:

There are  lines generated by the given 2n points.   There exists a line
∆ that  is not orthogonal to any of these lines. Take  a system of coordinates on ∆ and let
  be coordinates  of the orthogonal projections of the given points on ∆. If

 are the points corresponding to  then  are the requested 
n line segments.

Problem 6.
Let ∆ABC be an equilateral triangle, and suppose EF  is parallel to BC , where E  (AB)  and

F  (AC ). Let O be the centroid of ∆AEF and M  the midpoint of (EC). Find the angle  .

Solution:

Let T be the intersection of EF and BM.  Since ∆MET ≡  ∆MCB we obtain that the 

quadrilateral BCTE is a parallelogram and consequently ∆CTF  is equilateral.  Also, since 

  we obtain that OB ≡ OT and .

Hence ∆BOT is isosceles and  OM is median in the isosceles triangle BOT

and thus it is also the line bisector of , hence   and therefore 
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PROBLEM 1
Find the number of primes that  are less then 100 and can be written  as a difference of 
perfect cubes.

PROBLEM 2
The sum of twenty  positive  integers is 462.  Find the largest possible common divisor of 
these numbers.

PROBLEM 3
Let a, b be real numbers and  such that the inequation 

 has at least one solution. Find P (1).

PROBLEM 4
Find the values of a for which the equation

|x| + |x − 1| + ... + |x − 2012| = a

has exactly one positive integer solution.

PROBLEM 5
In ∆ABC   and BC = 1.The incircle of ∆ABC  is tangent to AB  and AC at E and
respectively F . Find the distance from the midpoint of BC to EF .

PROBLEM 6
In ∆ABC ,   is obtuse and   and the lengths of its sides are positive integers. Find the
triangle ∆ABC of the above type with minimal perimeter.

2012 Math chAllenges
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An integral part of the PIMS mandate is to enrich public awareness of mathematics through outreach 
and to enhance mathematical training for teachers and students in K-12. PIMS is nurturing the 
pipeline  of younger generations in Western Canada, including those with First Nations backgrounds. 
PIMS promotes  numeracy as an integral part of development and learning. 

Some of PIMS’ 2012 education activities included:

Math Mania 
An event for elementary 
and middle schools in BC 
that presents a variety of  

interactive demonstrations, 
puzzles, games and art 

designed to demonstrate 
fun ways of. 7 events were 

held with approximately 200 
participants in 2012.

Math Central 
5 million hits per month 

from approximately 400,000 
visitors. Math Central 

attracts answer submissions 
from all over the world 
including Italy, Romania, 
Turkey and Indonesia. 

Changing the Culture 
A yearly one-day 

meeting that brings 
together mathematicians, 

mathematics educators and 
school teachers from all 

levels to improve teaching. 
100 participants in 2012.

Aboriginal Scholarship 
Program 

Since 2007 PIMS has 
collaborated to support 

scholarships for more than 
57 Aboriginal students in 
the BC Lower Mainland. 

Elmacon 
A yearly event for Grades 5 
to 7 students from Lower 
Mainland BC and Victoria-
area schools. ELMACON 
provides an opportunity to 
experience mathematics as 

an exciting sport.  
275 students participated 

in 2012.

Math on the Move 
Visited 7 schools in 5 
Saskatchewan school 
districts and delivered 

inquiry-based mathematics 
activities to 157 students. 
Support was provided by 
PIMS, the Faculties of  

Education and Science at 
URegina, and Math Central.

www.pims.math.ca






