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The Pacific Institute for the Mathematical Sciences 
(PIMS) sponsors and coordinates a wide assortment 
of educational activities for the K-12 level, as well 
as undergraduate, graduate students, women and 
minorities. PIMS is dedicated to increasing public 
awareness of the importance of mathematics in 
the world around us. We want young people to see 
that mathematics is a subject that opens doors to 
more than just careers in science. Many different 
and exciting fields in industry are eager to recruit 
people who are well prepared in this subject.

PIMS believes that training the next generation 
of mathematical scientists and promoting 
diversity within mathematics cannot begin too 
early. We believe numeracy is an integral part of 
development and learning.

From its inception, PIMS has supported a series of 
educational initiatives, including:

Changing the Culture
This is a one-day conference held in Vancouver 
which explores issues surrounding how 
mathematics is taught in schools. This conference 
is free of charge to teachers and mathematics 
educators. Topics discussed in recent conferences 
included, ‘How to convince our students that 
you cannot learn mathematics by just watching 
somebody else do it,’ ‘ Changing the Culture of 
Homework’ and ‘Using Cognitive Load Theory 
Principles to Construct Calculus Exam Questions’.

(Available on mathtube.org)

For more information visit www.pims.math.ca and 
click on the ‘Education’ tab.

Math Central, beginning its 17th year, Math 
Central (http://mathcentral.uregina.ca/) 
continues to be a successful resource. This site 
includes teacher resources, useful links, a popular 
problem of the month and information about 
mathematicians and careers in mathematics.

Taste of Pi, The program consists of monthly 
Saturday morning meetings at Simon Fraser 
University, during which students will have an 
opportunity to hear talks given by distinguished 
faculty members about their research, about new 
and exciting developments in the mathematical 
sciences, and about contemporary applications of 
mathematics. 

“A Taste of Pi” is designed to provide students 
in grades 10 and 11, who have demonstrated 
a talent and a strong interest for mathematics, 
with enrichment activities in a fun and rewarding 
environment.

For more information visit  
http://www.math.sfu.ca/K-12/atasteofpi

Alberta Summer Mathematics Institute 
(ASMI), this is an annual math summer school 
held at the University of Alberta, Edmonton.

For more information on our education programs, 
please contact one of our hardworking Education 
Coordinators.

Melania Alvarez, UBC, Vancouver, BC  
melania@pims.math.ca

Malgorzata Dubiel, SFU, Burnaby, BC  
dubiel@cs.sfu.ca

David Leeming, UVic, Victoria,BC  
leemingd@uvic.ca

Andy Liu, U of Alberta, Edmonton, AB 
aliu@math.ualberta.ca

Eva Nosal, U of Calgary, AB
nosale@math.ucalgary.ca

Harley Weston, U of Regina, SK
weston@math.uregina.ca

Welcome to  
Pi in the Sky!

Please take a moment to complete our short 
survey included with this magazine or  
online at http://goo.gl/xhD4T. We appreciate 
your feedback.

Pi in the Sky is available online at  
www.pims.math.ca. Click on the  
Publications tab.
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Each of n friends has a juicy piece of gossip, and is eager to share with all the others. In each hour, 
pairs of friends engage in phone conversations. Each conversation involves exactly two friends, 
and each friend is involved in at most one conversation in each hour. In each conversation, the two 
participants tell each other every piece of gossip known so far. What is the minimum number f (n) of 
hours for every friend to know every piece of gossip? 

If there is only 1 person, no calls need to be made, so that f (1) = 0. If there are two friends, one call is 
both necessary and sufficient. Hence f (2) = 1. Suppose there are three friends A, B and C. In the first 
hour, two of them exchange gossip, say A and B. In the second hour, one of them, say B, calls C. Now 
both B and C know everything, but A does not. So we need a third hour during which one of B and C, 
say C, calls A. Hence f (3) = 3. 

One might expect that f (4) to be at least 3. However, we have f (4) ≤ 2. Let the friends be A, B, C 
and D. In the first hour, A calls B and C calls D. In the second hour, A calls C and B calls D. Then 
everyone knows everything. Similarly, f (8) ≤ 3. Let the additional friends be E, F, G and H. In the 
first two hours, they follow the moves of A, B, C and D. In the third hour, A calls E, B calls F, C 
calls G and D calls H. Again, everyone knows everything. These two upper bounds are actually exact 
values, and we can generalize to the following result. 

Theorem 1. If n = 2k for some non-negative integer k, then f (n) = k. 

Proof: 
Each friend starts with 1 piece of gossip. In an hour, the number of pieces can double at most. Thus it 
takes at least k hours to learn all n pieces. The task may be accomplished in k hours. In the first hour, 
form pairs of two friends and have them call each other. In the second hour, form quartets of two pairs 
and have the two friends in one pair call the two friends in the other pair. In the third hour, form octets 
of two quartets and have the four friends in one quartet call the four friends in the other quartet. This 
process is continued until the k-th hour, when the friends in one half call the friends in the other half. 

Consider now values of n lying between two powers of 2, say for some non-negative 
integer k. The following examples show that f (5) ≤ 4, f (6) ≤ 3 and f (7) ≤ 4. In each chart, we list the 
calls hour by hour, and the pieces of gossip known to each friend. 

Hour 1 2 3 4

Calls AB
CD

BC
DE

CD
EA AB

A AB AB ABCDE

B AB ABCD ABCD ABCDE

C CD ABCD ABCDE

D CD CDE ABCDE

E E CDE ABCDE

Spreading Gossip Andy Liu, PIMS Education Coordinator, 
University of Alberta
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Hour 1 2 3

Calls
AB
CD
EF

BC
DE
FA

CD
EF
AB

A AB EFAB ABCDEF

B AB ABCD ABCDEF

C CD ABCD ABCDEF

D CD CDEF ABCDEF

E EF CDEF ABCDEF

F EF EFAB ABCDEF

Hour 1 2 3 4

Calls
AB
CD
EF

BC
DE
FG

CF
DG
EA

BF
DE
AG

A AB AB ABCDEF ABCDEFG

B AB ABCD ABCD ABCDEFG

C CD ABCD ABCDEFG

D CD CDEF CDEFG ABCDEFG

E EF CDEF ABCDEF ABCDEFG

F EF EFG ABCDEFG

G G EFG CDEFG ABCDEFG

As it turns out, these lower bounds are also exact values. They suggest that we should treat separately 
the case where n is odd and the case where n is even. Since these constructions are rather ad hoc, we 
give more general ones below. 

Theorem 2. If 2k < n < 2k+1 for some non-negative integer k, then f (n) = k + 2 if n is odd. 

Proof: 
The argument in Theorem 1 shows that in k hours, nobody knows every piece of gossip. In the  
(k + 1)-st hour, someone must sit out and still does not know everything. Hence k + 2 hours are 
necessary. To show that k + 2 hours are sufficient, let m = n – 2k. Then m < 2k . Choose m special 
friends. In the first hour, each special friend calls one of the other 2k friends. These 2k friends are in 
possession of all pieces of gossip. In the next k hours, using the construction in Theorem 1, every 
one of them will know everything. In the last hour, those who were called by special friends call the 
special friends back and tell them everything. 
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Theorem 3. If 2k < n < 2k+1 for some non-negative integer k, then f (n) = k + 1 if n is even. 

Proof: 
The argument in Theorem 1 shows that in k hours, nobody knows every piece of gossip. Hence k + 1 
hours are necessary. To show that k + 1 hours are sufficient, let n = 2m so that 2k–1 < m < 2k. 
Label the friends A

1
, A

2
, . . . , A

m
, B

1
, B

2
 , . . . , B

m
. For 1≤ i ≤ k, let A

1
 call  in the i-th hour. In the  

(k + 1)-th hour, A
1
 calls B

1
 again. Whenever A

1
 calls B

j
 , A

2
 will call B

j +1
, A

3
 will call B

j +2
, and so on, 

with the indices reduced modulo m if necessary. By symmetry, if A
1
 knows all pieces of gossip, so 

will the other As. Since each A calls a different B in the last hour, all the Bs will know everything too. 
Thus we only need to focus on A

1
, and by extension B

1
 .

Denote the pair of gossips known to A
j
 and B

j
 by P

j
 , 1 ≤ j ≤ m. After talking to B

1
 , A

1
 knows P

1
. 

After talking to B
2
 , A

1
 also knows P

2
. After talking to B

4 
, A

1
 will know P

3
 and P

4
. After talking to B

8
 

A
1
 will also know P

5
 , P

6
 , P

7
 and P

8
. By the time A

1
 has talked to  A

1
 will know all of P

1
 to 

Meanwhile, after talking to A
1 
, B

1
 will be talking to A

m 
, A

m
 
– 2

 , A
m – 6

 , . . . ,  and will learn 

gossips P
m
 , P

m –1
 , P

m–2
 , . . . ,  Note that m

 
– 2 k –1 + 2 ≤ 2 k –1 + 1 since m < 2k . Hence A

1
 and 

B
1
 will know everything between them when they talk for the second time. 

We give an illustration with the case n = 14. The chart below shows the calls made during each hour. 
By the third hour, A

1
 knows P

1
 from B

1
, P

2
 from B

2
, and P

3
 and P

4
 from B

4
, while B

1
 knows P

1
 from 

A
1
, P

7
 from A

7
, and P

5
 and P

6
 from A

5
. 

Friends A1    A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7

First Hour B1 B2 B3 B4 B5 B6 B7 A1  A2 A3 A4 A5 A6 A7

Second Hour B2 B3 B4 B5 B6 B7 B1 A7 A1 A2 A3 A4 A5 A6

Third Hour B4 B5 B6 B7 B1 B2 B3 A5 A6 A7 A1 A2 A3 A4

Fourth Hour B1 B2 B3 B4 B5 B6 B7 A1 A2 A3 A4 A5 A6 A7

For special cases of our result, see the references below. 
[1] Dennis Shasha, The Puzzling Adventures of Dr. Ecco, Dover Publications Inc., Mineola NY, 
1998, pp. 62–64 and 156. 

[2] Peter Taylor, International Mathematics Tournament of the Towns 1980–1984, Australian 
Mathematics Trust, Canberra, 1993, pp. 31–32, 37 and 40–41.
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Reflection Symmetry 
in the Game of Daisy  
By Karen Wang, Lynbrook High School

Symmetry has interesting applications in the 
world of mathematics—more specifically, the 
area of mathematics involving game analysis. 
Let’s explore an example of reflection symmetry 
in the form of the Daisy game.

This game requires two players and a thirteen-
petal flower (Fig. 1). The rules are as follows: 
each player can choose to remove either one or 
two adjacent petals on his or her turn. Players 
alternate turns, and the person to remove the 
last petal wins. Seems simple enough, but the 
question is: what if you could guarantee a win 
every time?

Let’s call the two players Alice and Bob; 
Alice gets the first move. If the rules allowed 
players to pick only one petal at a time, this 
game would be too easy! Since there is an odd 
number of petals, Alice would always win. 
However each player can choose either one or 
two, thus complicating matters. The truth is that 
in the game of Daisy, if Bob, the second player, 
knows what he is doing, Alice cannot win.

We’ll examine the game from Bob’s point of 
view. Alice makes the first move—we’ll assume 
that she removed one petal (Fig. 2).

Fig. 1

Fig. 2

Now Bob is looking at the remaining twelve 
petals, thinking, I have a chance to turn the 
tables in my favor! But which petals, and how 
many, should I pick? Well, if Bob picks one 
petal at a time, Alice will win no matter what. 
Thus, Bob wants to choose petals in such a way 
as to leave an even amount remaining. Easier 
said than done; since he can only pick two 
petals that are adjacent to each other, he might 
end up in a situation where there is an even 
number of petals on his turn, but all of them are 
not adjacent to any other petal. Consider Figure 
3 below, which we will observe as an artbitrary 
but possible outcome of playing out the game. 
In this situation, Bob cannot pick two petals at 
once, since the rules dictate that the two petals 
must be adjacent.
 

Fig. 3
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In this case Bob would have no choice but to 
create an odd remainder of petals, beginning 
his spiral into doom. But he shouldn’t despair! 
The truth is, as the second player, Bob has an 
advantage— he can control the consequences 
of Alice, the first player’s actions. No matter 
what Alice does, Bob wants to be able to 
create an even number of petals on his turn 
and eventually force Alice to create an odd 
remainder. This is where the interesting 
properties of reflection symmetry come into 
play. Let me demonstrate.

Let’s say Alice chooses one petal on her first 
move. Then let Bob choose two petals—the two 
petals directly opposite of Alice’s (Fig. 4).
 

By doing this, Bob has reconfigured the 
structure of the game. The daisy is now divided 
into two equal sections, with five available 
petals remaining in each section (Fig. 5).

Now that the game has a symmetrical 
configuration, what should Bob’s next move 
be? If you think about it, a system in reflection 
symmetry allows him to do one thing: maintain 
the symmetry by mirroring any disturbances 
that are caused to the balance. These 
disturbances are, of course, the moves of the 
first player, Alice. Whatever Alice does, whether 
she chooses one or two petals, and whether 
she chooses them on the left or right side Bob 
can maintain the symmetry by mirroring her 
movements. That is, Bob will now choose the 
same number of petals directly opposite Alice’s 
previous move. For example, Figure 6 below 
illustrates Alice’s possible arbitrary selection of 
two petals, and Bob’s subsequent mirroring of 
her movement.

Eventually, Alice will reach her turn and face 
a situation in which there are only two non-
adjacent petals remaining (Fig. 7), or two non-
adjacent pairs of petals, one pair on either side.

Since she can only remove one petal at a time in 
this case, Bob is guaranteed to remove the last 
petal.

Fig. 5

Fig. 6Fig. 4

Fig. 7



9

Issue 15

Of course this is all based on the assumption 
that Alice, the first player, removes one petal 
first. But even if Alice removes two, the second 
player’s win is still guaranteed. He just needs 
to create symmetry by removing the single 
petal opposite the ones Alice has chosen. The 
main goal is to create a flower with reflection 
symmetry; the order of petals removed at first 
doesn’t matter. The rest is the same process.

So why does reflection symmetry work? 
Basically, the second player, Bob, wants to 
divide the daisy into two equal “sides”, and he 
aims to force Alice to empty one of the sides 
first. 

After Bob establishes the symmetry, Alice will 
be able to take petals from either the right or 
left side of the daisy. But by mimicking Alice’s 
moves, Bob can still maintain the concept of 
two equal “sides”. He maintains the balance, 
so to speak, and force Alice to disrupt the 
symmetry. The remainder will always be even, 
so eventually Alice will have no choice but to 
empty one of the sides. When Bob makes the 
symmetric move, he will automatically take the 
last petal and win the game. 

As a final thought, try to find a winning strategy 
for a 14-petal daisy!

Here are two geometric problems submitted 
by readers. 

This one is based on a suggestion of  
Terence Coates. 

In a narrow alley 
a 35 foot ladder is 
placed up against 
one wall with its 
base touching the 
opposite wall. A 
29 foot ladder is 
placed against the 
second wall with its 
base touching the 
first wall. The two 

ladders cross 11 2/3 feet above the ground 
(see the Figure). How wide is the alley?

And this one was suggested by 
Gregory Akulov. 

The roof of a house is in flat parts with three 
different slopes: 7, m and 1 (the first three 
from left to right). If the the angle between 
each pair of slopes is the same (as shown in 
the figure), what is m? 
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ABSTRACT Based on the analysis of three cases of mathematical problem solving, this paper shows how we 
should deal with the circumstances arising during the process of problem solving in order to succeed when we face 
difficulties, mistakes and failures.

Key WoRdS Difficulty; mistake; failure; success; problem solving; analysis 

In our problem solving experiences, we actually encounter difficulties, mistakes, and failures much more often 
than the excitement of success. However, difficulties, mistakes and failures should not only leave us with negative 
results. When we face difficulties, we should adjust the problem-solving orientation to resolve difficulties or 
challenge ourselves to overcome the difficulties. When we face mistakes, we must know how to discover and 
correct them promptly; when we face failure, it is necessary to find the reasons and turn failure into success. Here, 
we will demonstrate how to succeed from difficulties, mistakes and failures by illustrating the process of analyzing 
three common mathematical problem solving techniques.

Case 1: Resolve and overcome dIFFICULTIeS

Example 1. Find the value of 

Attempted solution from students:

It seems difficult to further simplify this term. Facing difficulties, we may adjust the direction of 
problem solving to resolve difficulties, and then observe the pattern of the numbers in the expression 
again. Observing that

 we have the following solution:

*Author affiliations: LuoQi(1964—), Chinese, associate professor; Main research directions: Mathematics education
Corresponding author. Tel: + 86-0773-2148282; Fax: + 86-0773-2148282
Email address: luoqi67@163.com

FROM DIFFICULTIES, 
MISTAKES, AND FAILURES 
TO Success 
EXAMPLES OF ADJUSTMENTS IN THE PROCESS OF MATHEMATICAL  
PROBLEM SOLVING By Luo Qi*

The Mathematics department of Guilin Normal College, Guilin, Guangxi, P.R. China 541002
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If we had manipulated the original expression into  then observed that

 we could similarly find the answer 
quickly. Here faced with a difficult situation, we solve the problem easily by adjusting our problem-
solving direction. As we say: Take a step back in order to move forward!

However, the understanding of a problem is different for different people, so that multiple solutions 
can be presented. Did the first exploration really not work? In fact, as soon as we realize we have done 
nothing wrong, we should be able to obtain correct results. All roads lead to Rome! Let us continue 
the original method for solving:

We change  to trigonometric product form and have

 20
( )

20
( )

20

( )
20

( )
20

.

cos
cos sin

cos
cos sin cos

cos

cos sin cos
cos

cos sin sin
cos

cos cos sin
cos

cos sin
cos

10 1 10 2 10 1 2 5 5

2 10 5 5 2 10˚ 5 85 2 10 2 4
20

4 10 40˚
20

22 2

2

˚
˚

˚
˚ ˚

˚

˚ ˚
˚

˚
˚

˚ (          5˚
˚

˚
˚

=
–

=
–

=
–

=
–

=

=

2 sin80˚ – sin20˚ 2 ˚ ˚

˚ ˚ 40˚)

Noting that  and  we multiplied the expression by 

and get    

            

We observe that although the process is more complicated, we can still find the answer! Moreover, 
we need to rely on our courage and daring to deal with difficulties and we do not give up easily when 
facing them. As the saying goes: take a further step and you will see unlimited scenery!

Case 2: Discover and correct mISTAKeS

Example 2. If  are the sums of the first n items of the arithmetic sequences { }an  and  
respectively and  for all n ≥ 1 then find 

Solution from students: First  so we suppose

(2 3), ' (3 2) .S k n S k nandn n= + = +  
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Therefore, 

Hence, the final solution is 

The above process of problem solving appears to be faultless. Reviewing the problem solving 
process we can find no use of the conditions of arithmetic sequences. Is the condition of an arithmetic 
sequence redundant? And  has nothing to do with n! Therefore we use one particular value 
to test this:

Let n = 1 therefore 

There is a conclusion which conflicts with the given condition! Where does the mistake appear? 
We carefully reflect on each step of the problem solving process and find nothing wrong with the 
operations. Therefore, the error could only lie in the assumption:

Suppose 

Recall the formula for the sum of the first n terms of an arithmetic sequence. Since the correct formula 

for  we can see that S
n 
 is not a linear function of n but a quadratic function 

of n . Here, the fundamental mistake is to suppose that S
n
 is a linear function of n.

According to the problem conditions, it can be assumed that:

How can we eliminate the parameters k and b in the expression? What other conditions can be used? 

We return to the formula for S
n
 again, 

With careful observation of the formula it can be found that S
n
 is not only a quadratic function, 

but also a function passing through (0,0). Hence, we substitute (0,0) into the expression, 
 and get b = 0.

The solution is: 
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Here the incorrect assumption leads us to assume  neglecting the 
original condition. Copying and applying methods mechanically without carefully analyzing the 
specific conditions results in mistakes! By reflection we find the mistake, correct the errors in essence, 
make up for glitches and consolidate our basic knowledge.

If we consider the general term formula of an arithmetic sequence  we have
  
                                                                   (1)

For finding  what we need simply is to determine  with the same letters.

We substitute  into the given expression  directly and 
get:

  

+ -
+ -2 1 2 3

2 1 3 2' ' ( ) '

( )

( ) '
( ) ( ).S

S
na n n d

na n n d
a n d
a n d

n
n

2
1

2
1

2
n

n

1

1

1

1=
+ –
+ –

= = +
+

'

What should we do next? We are looking for the relationship of 

We noted that (2) is valid for all the natural numbers, therefore, we can consider specific cases to deal 

with this. Let n = 1,2,3 so that  Solving this set of equations, 

we get                                                  (3)

Substituting (3) into (1) we have 

Here, in order to avoid discussing S
n
 and S

n
‘, we used the formula for the sum of the first n terms and 

the general term of the arithmetic sequence directly. This method is also suitable when we change 
from an arithmetic sequence to a geometric sequence!

Case 3: From  FAILURe to success

Example 3. Find the minimum of the function 

Solution from students: Transforming the function, we get

 The minimum is 2.

(2)
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But the equality holds only when  This is contrary with the known 

condition a > 1. Hence, the minimum of the function is not less than 2, but we cannot deduce from 
this that the minimum actually is 2.

Now that we understand the reasons for failure, we will try to satisfy the condition by adjusting the 
coefficient of inequality to attain equality. How do we adjust it? We use the method of undetermined 
parameters to solve it.

Suppose 

Therefore, using the arithmetic-geometric mean inequality, we get

Here, the conditions to make the inequalities achieve equality at the same time are:

Therefore, the minimum of the function is:  Simplifying we get 

In the same way if we suppose

  

inequalities achieve equality at the same time are 

We can now see that minimum 

Of course, we may also find other ways to solve the problem after the failure of the direct use of the 
basic inequality. The use of the monotonicity of a function is a common method of solving extreme 
value problems. Then, how do we tell whether the given function a monotonic function? We use 
derivatives to judge.

We find the derivative of the known function, 

Taking note that  so that  when  The function is a continuous monotone decreasing 
function when 

Similarly  when  Of course, we can also use the definition of monotonicity to prove it.

so that the conditions to make



15

Issue 15

Therefore the minimum of the function is the function value when x = 0.

The solution is 

The method of completing the square is also an important method for solving extreme value problems 
of a function. Can we solve the problem with this method?

It is therefore clear that, although failure is inevitable, it does not mean what we have done is worth 
nothing. There is maybe just one little step between failure and success. The next step might be 
successful so long as we strive on with confidence. In many cases, truth comes from error; success 
from failure. Even when we have really failed, we can still learn a good lesson from those failures and 
make them the mother of success!
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Analytical Geometric 
Characterizations of 
Parabolas Ali Astaneh, Prince of Wales Secondary, Vancouver, B.C.

The main objective of this article (The Theorem) is to present two closely related analytical geometric 
characterizations of parabolas, as represented by quadratic functions. The first characterization simply 
asserts that for any two points A (a, f (a) ) and B (b, f (b) ) on the graph of a parabola, the slope of 
the secant segment AB is always the average between the slopes of the tangent lines at A and B to 
the curves. The second characterization is that the two such described tangent lines always meet 
(horizontally) right midway between A and B. These two closely related properties, when written in 
the form of algebraic relations between a and b, turns out to generalize to an interesting assertion 
(The Proposition) regarding how slopes of two intersecting tangent lines to the graph of a general 
differentiable function are related to the abscissa of the point of their intersection. 

THEOREM:  Let f (x) be a nonlinear differentiable function over the real number line. Then the 
following conditions are equivalent:

( I )  f (x) is a quadratic function; that is f (x) represents a parabola.

( II ) For any two points A (a, f (a) ) and B (b, f (b) ) on the graph of f (x), the slope of the secant 
segment AB is the average between the slopes of the two tangent lines to the graph of f (x) at A and 
B. In algebraic form this means for any two points A (a, f (a) ) and B (b, f (b) ) on graph of f (x) the 
following relation holds:

                            (1)

( III ) For any distinct points A (a, f (a) ) and B (b, f (b) ) on the graph of f (x), the x-coordinate of the 
point of intersection of the two tangent lines to the graph of f (x) at points (a, f (a) ) and (b, f (b) ) is 
exactly the average (a + b)/2 of the two x-coordinates of the points (a, f (a) ) and (b, f (b) ). 

PROOF: ( I ) ( II )  Verification of this part is only a routine algebraic manipulation. Let the points  
A (a, f (a) ) and B (b, f (b) ) be on the graph of a quadratic function  Then 

 and we have,
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Therefore

which shows the two sides of (1) are identical, and thus ( II ) follows.

( II )  ( III ) Let f (x) be a nonlinear differentiable function satisfying the assertion ( II ). Then, 
given any two points A (a, f (a) ) and B (b, f (b) ) on the graph of f (x), the respective equations of the 
tangent lines at these two points are as follows,

In order to find the x-coordinate of the point of intersection of the two tangent lines we need to solve 
the above system of linear equations for x. A simple calculation shows that

Since by assumption of part ( II ), (1) holds, and since we can first rewrite (1) in the form

upon substitution of the above right hand side for [ f (b) – f (a)] in the numerator of the fraction in (2) 
we get

which means ( III ) follows.

(III)  ( I ) To this end, assume f (x) is a differentiable function  satisfying assertion ( III ).

(2)
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Then, again, for two arbitrary points A (a, f (a) ) and B (b, f (b) ) on the graph of f (x), equations of the 
tangent lines at these two points are,

   

Since by assumption of part ( III ) the x-coordinate of the point of intersection of the above two lines 
is x = (a + b)/2 , when substituting this abscissa in the above two equations, the two right hand sides 
should be identical. That is,

   
or

   

Or

                  (3)

Since (3) should hold for any two real numbers a and b,  we can keep the parameter a fixed, say a = 0 
and let b = x vary over all nonzero real numbers. Then (3) becomes

   

Using the usual notations y = f (x) and y' = f (x) we obtain a linear differential equation as follows

   – –y x2 0– =' ( ) ( ) .xy f f2 0'

We now divide both sides of this last equation by x3, and write the equation as follows

   ' 2 (0) 2 (0) .x
x y xy

x
f

x
f2

4 2 3
– = – –'

Or

   ( ) (0) 2 (0) ,dx
d

x
y

x
f

x
f

2 2 3= – –'

which (upon integration of both sides) implies

   = +(0) (0) .x
y

x
f

x
f C2 2 +'

Multiplying both sides by x2 implies that y = f (x) must be the quadratic function     
   

This completes the proof of the theorem.

Note that in the above proof C can not be zero, otherwise the function will be linear, contrary to the 
assumption of the theorem.
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REMARK Equivalence of parts ( II ) and ( III ) in the above theorem can be generalized into the 
following interesting skew-type property between two tangent lines to the graph of any function, 
when they intersect. Here I take the point of view that the number (a + b)/2 in part (III) and the 
number  in part ( II ) are only one of the zillions corresponding  linear combinations 
of the respective numbers a and b in part ( III ) and of numbers f '(a) and f '(b) in part ( II ). 

PROPOSITION Let f (x) be a differentiable function and A(a, f (a) ), B(b, f (b) ) be arbitrary points 
on its graph, with their respective intersecting tangent lines T

a
 and T

b
. If c denotes the abscissa of the 

point of intersection of T
a
 and T

b
, then for any given real number s, the relation c = sa + (1 – s)b holds 

if and only if 

   

This means the same linear combination expressing the slope of the secant segment AB in terms 
of the respective slopes f '(a) and f '(b) of T

a
 and T

b
 will determine how the abscissa of the point of 

intersection of the lines T
a
 and T

b
 can be expressed in terms of a and b (in a skew manner as seen 

above).

PROOF: Since (as we saw in the proof ( II )( III ) of the Theorem) the abscissa of the point of 
intersection of T

a
 and T

b
 is

   

the relation

   

can be cross-multiplied and rearranged to be converted into

   

Since all the steps of the above proof are reversible, the assertion “if and only if” of the proposition 
follows.

The above proposition provides an indirect way of finding the point of intersection of two intersecting 
tangent lines to a differentiable function, once you know the slopes of the tangent lines at the two 
points, as seen in the following example.

EXAMPLE: Let  and consider the two points A (a, f (a) ) = (1,e), B b( , ( )) , )f b e2 2= (  on 
the graph of this function. Here,  and . Noting that the graph of f (x) obviously 
suggests that T

a
 and T

b
 intersect, and since
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with  the proposition implies the abscissa of the point of intersection of T
a
 and T

b
 should

be the skewed-corresponding combination  

Therefore (e/(e – 1), e2 /(e-1)) would be the point of intersection of T
a
 and T

b
. This fact can also be 

confirmed by directly solving the following system of linear equations.
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Stay In Control with Math 
monique Chyba, michael Andonian, Geoff Patterson, John Rader: University of Hawaii at manoa, 
SUPeR-m (A GK-12 program funded by the National Science Foundation) 

1 Introduction
We live in an era of exciting scientific advances such as discovering new planets and black holes far 
away in the universe or gaining a better understanding of our own biological system. Unsurprisingly, 
mathematics plays a dominant role in almost all of them. Indeed, mathematics is the appropriate 
language and framework to formulate scientific questions and to analyze them. Beautiful mathematics 
is used every day by physicists, engineers, astronomers, biologists and other scientists. Almost 
the entire spectrum of mathematics can be found in the work of scientists. Let us focus here on 
one specific field: control theory. Control theory models, analyzes and synthesizes the behavior of 
dynamical systems. Those systems are described by sets of ordinary differential equations that include 
an additional parameter referred to as the ‘control’. It can be viewed as the ship’s wheel of the system 
in analogy to the navigation of a boat. A vast area of work takes place in optimal control theory. 
Indeed, since by using different controls we can achieve the same goal, optimization with respect to a 
given cost such as energy or time becomes a primary interest. Optimal control is an extension of the 
calculus of variations which can be viewed as an advanced version of the calculus taught at the high 
school level. The three specific examples described in the next sections provide concrete applications 
of control theory. Extremely sophisticated mathematics, ranging from differential geometry to 
computational mathematics, is involved in the study of each of these applications. On the other side, 
these applications are the perfect platform to push further our mathematical theories.

2 Biological Mysteries of our Brain
From a single fertilized egg, all life on Earth takes its own unique shape and characteristics. One of 
the big questions in the field of biology is how, from a single cell, that the complex structures of the 
body can arise. Uninterrupted, a mass of cells would prefer a compact, spherical shape. From this 
mass, how do the organs and the body take shape?

In modeling the development of the brain from stem cells, it has been shown that the cells themselves 
produce certain chemicals, called growth factors, that diffuse in the extra-cellular space around the 
cells. Other types of cellular structures that are created by the cells, named fractones, absorb the 
growth factor from the surrounding environment, and once the concentration of growth factor has 
reached a given threshold they signal to an attached cell to undergo mitosis.

Modeling equations for this fundamental 
biological process have been developed using 
control theory. They are structured to capture 
the most significant aspects of the underlying 
biological process such as how growth factor 
diffuses or how the mass of cells takes shape 
postmitosis. The original question, though, 
remains: how does the model explain how 

the body takes shape? In this model, a user has the ability to control when and where a fractone will 
appear. The location of a fractone in the space dictates the direction in which new cells will eventually 
form, hence giving the ability to break away from the spherically symmetric mass of cells and create 
potentially any connected shape we want. Biologically, the body is programmed by the DNA to do 
this efficiently, hence for the model, there is the question of how to create a given cellular structure by 
placing the fractones optimally.

FIGURE 1: CAPTURE OF BROBLAST GROWTH FACTOR-2 (FGF-2) BY 
FRACTONES IN A MOUSE EMBRYO.
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3 Reaching the Outer Space World
The seemingly vast emptiness of space surrounding the Earth is not actually as empty as one may 
think. In fact, there are large amounts of rocks and other space materials that regularly pass by Earth 
on their journey across the universe. There is some evidence that suggests that frequently some of this 
debris gets caught by the Earth’s gravitational pull and ends up in orbit around the Earth for months. 
These orbiting rocks can be called Natural Earth Satellites (NES). If we could obtain a sample of a 
NES, we could have access to rock material that has travelled from the far reaches of space, a perhaps 
unprecedented accomplishment. So, we pose the question: could we design a spacecraft mission to an 
NES?

To have any hope of accomplishing this, we need to study how objects move in space. First, any 
object in space attracts other objects in space with a force proportional to its mass. These attractions 
can be described using mathematical equations, and more specifically, can be described as a 
dynamical system using an area of calculus known as Differential Equations.

The gravities of the planets are not the only forces acting 
on our spacecraft. Naturally, we can also control the 
movement of the spacecraft with some type of thrusters. 
We would like the spacecraft to be able to steer itself to 
the NES automatically, which means we can rephrase our 
original question to be: How do we program the spacecraft 
to autonomously pilot itself to the NES? More specifically, 
when should the spacecraft fire which thrusters? We could 
also ask: which thrusters do we fire to get to the NES using 
as little fuel as possible? This type of problem is another 
example of an optimal control problem.

4 Exploring the Unknowns of the Underwater World
In the hostile waters of the earth lie scientific questions yet to be answered. As an attempt to study 
some of these questions, Autonomous Underwater Vehicles (AUVs) have allowed researchers to 
explore these underwater environments, too hostile and dangerous for man or manned vehicles. AUVs 
are basically robotic submersibles capable of navigating through treacherous environments, some with 
little to no human interaction. But AUVs sent into hazardous environments face the reality that there 
is a good chance they will become damaged. In such situations, it is not uncommon for the AUV to 
lose the ability to control any number of its thrusters. In which case, how can we be sure the AUV 
can continue its mission or even return home? This vital question can be answered through some 
beautiful mathematics. Using techniques from a branch of mathematics called differential geometry, 
we can describe precisely the motions capable for an AUV that has experienced thruster failure. 
From there, concatenating a series of permissible motions allows us to determine practical paths the 

underactuated AUV may follow. The techniques that have been 
developed have allowed us to simulate AUV missions in a variety 
of underactuated scenarios and environments, from surveying an 
underwater volcano, Loihi, to tranversing along the largest river in 
Colombia.

FIGURE 2: A TWO-DIMENSIONAL MODEL OF THE 
EARTH, OUR SPACECRAFT, AND AN NES ALONG WITH 
ITS TRAJECTORY. THE SPACECRAFT BEGINS ON THE 
GEOSTATIONARY ORBIT (GSO), AND THRUSTS IN THE 
POSITIVE OR NEGATIVE U1 OR U2 DIRECTIONS IN 
ORDER TO RENDEZVOUS WITH THE NES.

FIGURE 3: GENERATED IMAGE BASED ON A REAL AUV. BELOW ARE THE GEOMETRIC 
EQUATIONS OF MOTION USED TO DESIGN EFFICIENT CONTROL STRATEGIES.
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2010 MATH CHALLENGE solutioNs 
SOLUTIONS TO THE PROBLEMS PUBLISHED IN THE ISSUE 14 OF PI IN THE SKY 

PROBLEM 1. 
Find all the real pairs  such that

       (*) 

Solution: 
We should have  then the Arithmetic Geometric Mean Inequality gives 

   

Since  the inequality (*) holds if and only if simultaneously  and 
 hence  where k is any integer.

If  then again, by using the Arithmetic Geometric Mean Inequality we obtain 

   
or

   

Since  the given inequality holds for  Therefore the requested 
pairs are 

PROBLEM 2.
Determine all the triples (a, b, c) of integers such that 

Solution: 
For any integer k, we have  is not congruent to 4 (mod 9). On the 
other hand since  we conclude that the equation does not have any integral solution. 

PROBLEM 3.
In the decimal representation the number  has m digits while  has n digits. Find m + n.

Solution:
If the number A has p digits and  and hence 
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Thus

   
and therefore

   

PROBLEM 4.
Find all the polynomials  with real coefficients such that 

Solution:
We first remark that  are solutions of the problem. Let us prove that there is 
no other solution.

If  is a solution of the problem then 

If we take  we get . Now if we take  and then  therefore we 
get two of the above already mentioned solutions. 

Let us assume for a contradiction that there is a polynomial  of degree at least 2 that is a solution 
to the problem. We present two arguments showing this is impossible. 

For this first, since P is a polynomial, it has only finitely many roots in [ – 1, 1], say n roots. Then in 
any interval  can have at most 2n roots since on an interval of length 1, sin x can take 
each value at most twice.

On the other hand, since  is of degree at least 2, we have   the 
derivative, being a polynomial of degree at least 1). In particular, there is an interval [s, s + 1] on 
which 

By the mean value theorem,  Hence the interval between 
 contains at least  multiples of  Using the intermediate value theorem  

takes on at least  values that are multiples of  on the interval  guaranteeing that 
 has at least  roots on this interval.

Since  and sin(P(x)) have different numbers of roots on  they cannot be equal.

The second argument is as follows (assuming again that P is a polynomial of degree at least 2). We 
must have
   

Hence, for all  such that 

   

For each pair of integers  let us define the following sets of real numbers: 
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Since  we conclude that at least one set  should be infinite, otherwise  

would be a countable set while  is not.

If  has infinitely many elements then at least one of the two equations 
 has infinitely many roots. This is 

impossible since neither of the polynomials  is constant.

PROBLEM 5.
The interior of an equilateral triangle of side length 1 is covered by eight circles of the same radius r. 

Prove that 

Solution:
If we divide each side of the triangle in seven equal parts and draw parallel lines through all these 
points to the sides of the triangle we get 49 equilateral triangles of side 1/

7
 . The number of vertices 

of the configuration that is obtained is 1 + 2 + ... + 8 = 36. Since  we obtain that there are five 
vertices which should stay inside (or on) at least one circle of the eight circles. Since the smallest 
radius of a circle that contains five points of the configuration is  we obtain that 

PROBLEM 6.
Prove that in a convex hexagon of area S there exist three consecutive vertices A, B and C such that 
    

Solution:

If the diagonals AD, BE and CF of the hexagon ABCDEF intercept at the point O then the area of at 

least one of the quadrilaterals OABC, OCDE or OEFA is  If for example Area(OABC)  then 

at least one of the triangle OAB and OBC has area  For example, if we assume that Area(OAB) 

 then we immediately conclude that the area of the triangle FAB or CAB is  as 

requested.

If the diagonals  then 

     

therefore the area of at least one of the quadrilaterals ABNF, BCDM or EDLF is  For example, if 

we assume that Area(EDLF)  then the area of at least one of the triangles FEL or EDL is  For 

example if we assume that Area(LEF)  we find that at least one of the triangles AFE and DFE has 

area less or equal to the area of the triangle LEF (since the distance from L to FE is greater or equal to 

the minimum of the distances from A and D to FE) and consequently there exists at least one triangle 

of area  made with three consecutive vertices of the hexagon.
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PROBLEM 1
The decimal part of  contains 2007 consecutive 9’s. Find the first 2011 

decimal digits of 

PROBLEM 2
How many pairs of positive integers sum to 2011 and have a product that  

is a multiple of 2011? 

PROBLEM 3
Find all triplets  of real numbers such that  

and 

PROBLEM 4
Let a be a fixed integer. Find all the functions  such that for any  

   

(Here  denotes the set of all integers while  denotes the set of positive integers).

PROBLEM 5
Given a set of 2n distinct points in the plane, prove that there exist n line segments joining 

pairs of these points such that no two of them intersect. 

PROBLEM 6
Let  be an equilateral triangle, and suppose EF is parallel to BC ,  

where  and  Let O be the centroid of  and M be the midpoint of 

(EC). Find the angle 






