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Outline

1. Satellite/reanalysis views of tropical clouds (MODIS, ISCCP,
Bony et al.)

2. Basics: Moist thermodynamics, buoyancy, CAPE, mixing
diagrams, conditional/slice instability

3. Impact of clouds on large scale fields (Q1, Q2, mass flux
models)

4. Equilibrium coupling of shallow and deep convection: one cell
model

5. Entrainment, detrainment, buoyancy sorting

6. What controls convective cloud top height?
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Walker circulation Webster and Chang, 1988
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Tropical SST: Sep 2003-Aug. 2005 Kubar, Hartmann, Wood, 2007
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Cloud histograms, 2003-2005

Optical depth/cloud top
temperature histograms in the
Western, Central and Eastern
Pacific (Kubar et al., 2007)
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ISCCP: 1983-2004 (Rossow et al., 2005)

20 year tropical cloud climatology, six “weather states”

WS1=most convectively active, WS6=least convectively active
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ISCCP: 1983-2004 (Rossow et al., 2005)

Geographic distribution of weather states:
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ISCCP: 1983-2004 (Rossow et al., 2005)

Wavelet analysis of most convective active weather state (WS1)
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ISCCP simulator intercomparison (Wyant et al., 2006)

Missing middle cloud compensated by excess high cloud.
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Simple two-box model Bony et al., 2006

A variety of one, two and three
cell models idealize the observed
circulation:

(e.g. Sarachik (1978), Betts and
Ridgway (1987), Pierrehumbert
(1995), Miller (1997), Larson et
al. (1999))
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Conditional sampling on ω

ERA-40, GPCP
and ERBE data
for 1985-1989,
30◦ N - 30◦ S
(Bony et al., 2006)
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Feedback uncertainties in GCMs (Bony et al., 2006)

Sensitivity of
tropical (30◦ N -
30◦) cloud radiative
forcings for 15 AR4
coupled models
(Bony et al., 2006)
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Some thermodynamics: static energy h

first law:
du

dt
= q − p

dα

dt
(1)

enthalpy: k = u + pα = cpT (2)

first law:
dk

dt
= q + α

dp

dt
(3)

Use the hydrostatic approximation1

dp

dt
= −ρg

dz

dt
⇒ ∂zp = −ρg (4)

(moist) static energy: h = k + gz (5)

first law:
dh

dt
= q (6)

1see Madden and Robitaille, 1970, Betts, 1974
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moist, liquid and dry static energy (following Emanuel 1994, chap. 4)

Total enthalpy: K = mdk = mdkd + mvkv + mlkl (7)

Introduce the enthalpy of evaporation (latent heat):

lv = kv − kl (8)

and rearrange (7) to get

k = (cpd + rtcl)T + lv rv

where the vapor and liquid mixing ratios are rv = mv/mc ,
rl = ml/md and rt = rv + rl .
If rt is constant then (3) becomes:

dq = (cpd + rtcl)dT + d(lv rv )− αddp (9)
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So for an adiabatic process in a hydrostatic atmosphere dq = 0
and the moist static energy

h = (cpd + rtcl)T + lv rv + (1 + rt)gz

and liquid water static energy

hl = (cpd + rtcpv )T − (lv rl) + (1 + rt)gz

are both conserved.
If rl = 0 then hl reduces to the dry static energy

hd = (cpd + rvcpv )T + (1 + rv )gz

and if the parcel is saturated with vapor mixing ratio rs then the
saturated moist static energy is

hs = (cpd + rscpv )T + lv rs + (1 + rs)gz
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Approximate entropy

Dividing (9) by T gives:

ds =
qdt

T
≈ cp

T
dT + d

(
lv
T

rv

)
− Rd

pd
dpd

Define the equivalent potential temperature θe as

cp ln θe ≡ s + Rd ln p0

where the reference pressure p0 is taken to be 100 hPa.
Using this definition:

θe = T

(
p0

pd

)Rd
cp

exp

[
lv rv
cpT

]
= θ exp

[
lv rv
cpT

]
and similarly to the liquid water static energy hl :

θl = θ exp

[
−lv rl
cpT

]
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Basic tephigram
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A conditionally unstable atmosphere

p z

p-dp

p+dp z-dz

z+dz

T0

T

T1

Te = T1-Γddz

Tc = T0-Γmdz

Note that Γm < −dT

dz
< Γd
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Mixing and evaporation: conserved variables
Betts and Albrecht (1987):
FGGE soundings
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FGGE soundings, cont.
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Buoyancy and CAPE

Define CAPE as the amount of potential energy of a parcel lifted
from level i to its level of neutral buoyancy:

CAPEi =

∫ LNB

i
Bdz

where B is the buoyancy:

B = −g

(
ρp − ρe

ρp

)
= g

(
αp − αe

αe

)
= g

(
Tvp − Tve

Tve

)
So that, assuming hydrostatic equilibrium:

CAPEi =

∫ LNB

i
g

(
αp − αe

αe

)
dz =

∫ pi

pn

(αp − αe)dp =∫ pi

pn

Rd(Tvp − Tve)d ln p
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CAPE example source: Bechtold, Jakob and Gregory, 2006

source: Bechtold, Jakob and Gregory, 2006
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CAPE in θe , q coordinates, source: Bechtold, Jakob and Gregory, 2006

source: Bechtold, Jakob and Gregory, 2006
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A slice through a modeled cloud at 1612 m, in θl , qt coordiates
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A reminder
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Slice method (Bjerknes, 1938, Randall, 2006)

Divide a domain into N vertical columns of fractional area σi with
vertical velocity wi and static energy hi . Then

N∑
i=1

σi = 1;
N∑

i=1

σiwi = w ;
N∑

i=1

σihi = h

static energy flux: Fh = ρwh − ρwh =
N∑

i=1

ρσi (wi − w)(hi − h)

The fraction of columns of convective cloud (c)/environment (e):

σc =
∑

{cloudy}

σi and σe = 1− σc

Conditional averages:

wc =

∑
{cloudy} σiwi

σc
and hc =

∑
{cloudy} σihi

σc
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A conditionally unstable atmosphere

p z

p-dp

p+dp z-dz

z+dz

T0

T

T1

Te = T1-Γddz

Tc = T0-Γmdz

Note that Γm < −dT

dz
< Γd
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Slice method . . .

σcwc + σewe = w (10a)

σchc + σehe = h (10b)

Since we < 0 both Tc and Te are increasing:

∂tTc = wc(Γ− Γm) > 0

∂tTe = we(Γ− Γd) > 0

and using (10a):

wc = w + (1− σc)(wc − we)

we = w − σc(wc − we)
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Slice method . . .

Which can be combined to give the rate of increase of convection:

∂t(Tc − Te) = wc(Γ− Γm)− we(Γ− Γd) =

w(Γd − Γm) + (wc − we) [(1− σc)(Γ− Γm) + σc(Γ− Γd)]

so that convection is favored for a rapidly ascending narrow
updraft and a wide sinking environment (σc → 0):
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Energy and moisture tendencies (Bechtold, Jacob and Gregory, 2006)

Given the dry static energy: hd = cpT + gz and the specific
humidity q decomposed into φ = φ + φ′:

∂thd = −VH · ∇hd − w∂zhd︸ ︷︷ ︸
I

+

Q1︷ ︸︸ ︷
L(c − e)︸ ︷︷ ︸

II

− ∂zw ′h′
d︸ ︷︷ ︸

III

+ cpQR︸ ︷︷ ︸
IV

(11)

∂tq = −VH · ∇q − w∂zq︸ ︷︷ ︸
I

−

Q2︷ ︸︸ ︷(c − e)︸ ︷︷ ︸
II

+ ∂zw ′q′︸ ︷︷ ︸
III

 (12)

where
I=resolved scale transport
II=large-scale condensation/evaporation
III=subgrid-scale transport (turbulence + convection)
IV=radiation
Q1=apparent heat source, Q2=apparent moisture sink
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Q1 and Q2 from a CRM
(Caniaux, Redelsperger, Lafore, J. Atmos. Sci., 1994)

where Q∗ = L(c − e),Q = (c − e), Q1 = 1
cp

(Q∗ − ∂zw ′h′
d)

and Q2 = Q + ∂zw ′q′

What can we say about the two eddy terms ∂zw ′h′
d and ∂zw ′q′?
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Mass flux approximation (BJG, 2006)

We can use a simple mass flux approximation to get some physical
insight into Q1 and Q2.
Recall (10): if σc � 1 then he ≈ h and

h = σhc + (1− σ)he (13)

w ′h′ = wh − wh = σ(1− σ)(wc − we)(hc − he) (14)

and since wc � we

Fh = ρw ′h′ = ρσwc(hc − h) = Mc(hc − h)

where Mc = ρσwc is the convective mass flux.
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Mass flux continued
How does the cloud ensemble Mc depend on height? Try a simple
entraining/detraining plume:

∂Mc

∂z
= ε− δ

∂(Mchdc)

∂z
= εhd − δhdc + Lc

so that the apparent heat source Q1:

Q1 = L(c − e)− ∂zw ′h′
d = L(c − e)− ∂z(Mc(hdc − hd))

Q1 = Mc
∂hd

∂z︸ ︷︷ ︸
I

+ δ(hcd − hd)︸ ︷︷ ︸
II

− Le︸︷︷︸
III

where term I represents the warming of the environment due to
compensating subsidence, II is detrainment and III is evaporation
of cloud and precipitation.
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Q1 and Q2 diagnosed with plume model (Nitta, 1977)

static energy terms: specific humidity terms:

Small clouds cool and moisten at cloud top, large clouds moisten
and heat through compensating subsidence. (Note that this model
include downdrafts).
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Heating/moistening for 4 cloud sizes

Note that the in the tropics the boundary layer fluxes, subsidence
and radiation are all tightly coupled.
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One cell model (Betts and Ridgway, 1988)

Some constraints:

I Free tropospheric temperature is horizontally uniform

I Convection is in equilbrium with large scale forcing

I Subsidence balances radiative cooling in the descending branch

w
dθ

dz
= QR
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WTG approximation (Caldwell and Bretherton (2007))
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One cell model, continued

Betts and Ridgway 1988: balances for the boundary layer (left)
and entire troposphere (right)

Need models of column radiation and cloud/humidity profiles get
∆N.
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Evidence for buoyancy sorting (Paluch, 1979)

In-cloud observations appear to be formed by mixing between two
distinct levels

In fact, the cloud parcels are moving to their level of neutral
buoyancy
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Buoyancy sorting in shallow clouds
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Spectral entraining plumes
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Episodic mixing/buoyancy sorting
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Buoyancy sorting vs. entraining plume
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Detrainment and the cloud size distribution Zhao and Austin,

2003
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Mass flux decreases with height Siebesma, 2005

1

M

∂M

∂z
= ε− δ
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and CRMs indicate the mass flux is sensitive to relative humidity

(Derbyshire et al. 2004)
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Why do clouds detrain before they hit the tropopause?
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Is cloud top determined by sub-cloud θe?

source: Bechtold, Jakob and Gregory, 2006
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Little water vapor above 200 hPa
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Larsen and Hartmann, 2001

Can mass convergence at 200 hPa promote detrainment?
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Kubar, Hartmann and Wood (2007)
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c.f. poor correlation between anvil temperature and adiabatic cloud
top
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Linking cloud fraction to inversion strength (Wood and

Bretherton, 2006)
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