Atmospheric Convection

Phil Austin

July 30, 2007

source: Bony et al., 2006

Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- 2. Basics: Moist thermodynamics, buoyancy, CAPE, mixing diagrams, conditional/slice instability
- 3. Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- Equilibrium coupling of shallow and deep convection: one cell model
- 5. Entrainment, detrainment, buoyancy sorting
- 6. What controls convective cloud top height?

Outline 2/63

References

General material:

- Atmospheric Convection, Kerry A. Emanuel, 1994: Canada, US, used
- ► ECMWF training Convection II, Bechtold, Jacob, Gregory, Khain
- ▶ Dave Randall's General Circulation text (Chapter 6)

Articles:

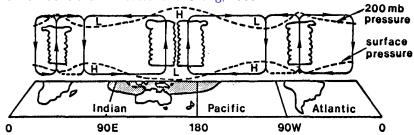
- ► Stevens, B., 2005: Atmospheric Moist Convection
- References tbd

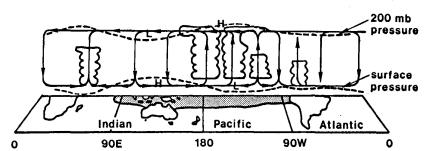
and of interest:

- Kerry Emanuel's tropical meteorology course
- ► Roland Madden MJO lecture

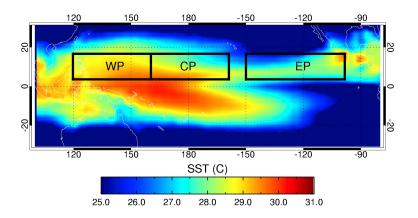
References 3/63

Walker circulation Webster and Chang, 1988



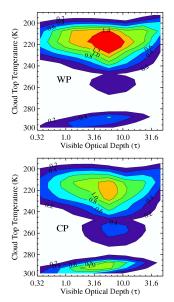


Tropical SST: Sep 2003-Aug. 2005 Kubar, Hartmann, Wood, 2007

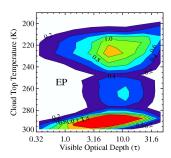


cloud characteristics 5/63

Cloud histograms, 2003-2005



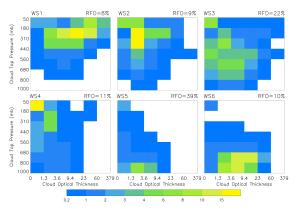
Optical depth/cloud top temperature histograms in the Western, Central and Eastern Pacific (Kubar et al., 2007)



cloud characteristics 6/63

ISCCP: 1983-2004 (Rossow et al., 2005)

20 year tropical cloud climatology, six "weather states"

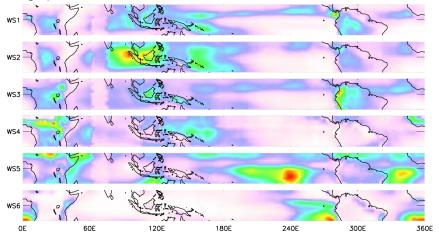


WS1=most convectively active, WS6=least convectively active

cloud characteristics 7/63

ISCCP: 1983-2004 (Rossow et al., 2005)

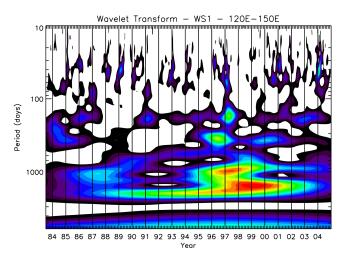
Geographic distribution of weather states:



cloud characteristics 8/63

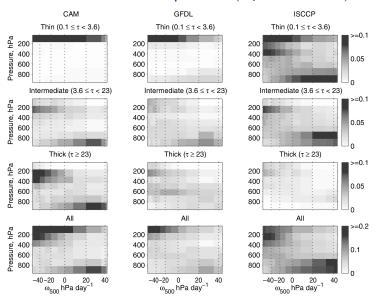
ISCCP: 1983-2004 (Rossow et al., 2005)

Wavelet analysis of most convective active weather state (WS1)



cloud characteristics 9/63

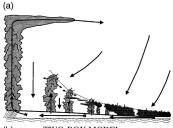
ISCCP simulator intercomparison (Wyant et al., 2006)



Missing middle cloud compensated by excess high cloud.

cloud characteristics 10/63

Simple two-box model Bony et al., 2006



(b) TWO-BOX MODEL

Tropopause

Convective
Region
Inversion

Sea Surface

Warm Pool

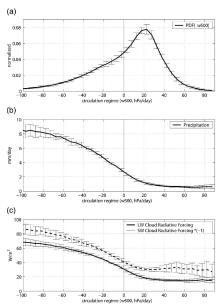
Cold Pool

A variety of one, two and three cell models idealize the observed circulation:

(e.g. Sarachik (1978), Betts and Ridgway (1987), Pierrehumbert (1995), Miller (1997), Larson et al. (1999))

cloud characteristics 11/63

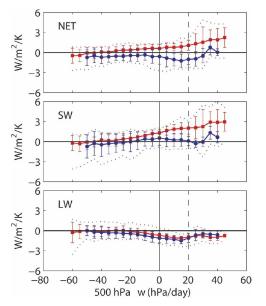
Conditional sampling on ω



ERA-40, GPCP and ERBE data for 1985-1989, 30° N - 30° S (Bony et al., 2006)

cloud characteristics 12/63

Feedback uncertainties in GCMs (Bony et al., 2006)



Sensitivity of tropical (30° N -30°) cloud radiative forcings for 15 AR4 coupled models (Bony et al., 2006)

cloud characteristics 13/63

Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- ⇒ Basics: Moist thermodynamics, buoyancy, CAPE, conditional/slice instability
- 3. Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- Equilibrium coupling of shallow and deep convection: one cell model
- 5. Entrainment, detrainment, buoyancy sorting
- 6. What controls convective cloud top height?

cloud characteristics 14/63

Some thermodynamics: static energy h

first law:
$$\frac{du}{dt} = q - p \frac{d\alpha}{dt}$$

enthalpy: $k = u + p\alpha = c_p T$ (2) first law: $\frac{dk}{dt} = q + \alpha \frac{dp}{dt}$ (3)

Use the hydrostatic approximation
$$dt = dt + dt$$

$$\frac{dp}{dt} = -\rho g \frac{dz}{dt} \Rightarrow \partial_z p = -\rho g$$

(moist) static energy:
$$h = k + gz$$

first law:
$$\frac{dh}{dt} = q$$

(1)

(4)

(5)

q (6)

¹see Madden and Robitaille, 1970, Betts, 1974 Thermodynamics

moist, liquid and dry static energy (following Emanuel 1994, chap. 4)

Total enthalpy:
$$K = m_d k = m_d k_d + m_v k_v + m_l k_l$$
 (7)

Introduce the enthalpy of evaporation (latent heat):

$$I_{V} = k_{V} - k_{I} \tag{8}$$

and rearrange (7) to get

$$k = (c_{pd} + r_t c_l)T + l_v r_v$$

where the vapor and liquid mixing ratios are $r_v = m_v/m_c$, $r_l = m_l/m_d$ and $r_t = r_v + r_l$. If r_t is constant then (3) becomes:

$$dq = (c_{pd} + r_t c_l)dT + d(l_v r_v) - \alpha_d dp$$
(9)

Thermodynamics 16/63

So for an adiabatic process in a hydrostatic atmosphere dq=0 and the moist static energy

$$h = (c_{pd} + r_t c_l)T + l_v r_v + (1 + r_t)gz$$

and liquid water static energy

$$h_I = (c_{pd} + r_t c_{pv})T - (I_v r_I) + (1 + r_t)gz$$

are both conserved.

If $r_l = 0$ then h_l reduces to the dry static energy

$$h_d = (c_{pd} + r_v c_{pv})T + (1 + r_v)gz$$

and if the parcel is saturated with vapor mixing ratio r_s then the saturated moist static energy is

$$h_s = (c_{pd} + r_s c_{pv})T + l_v r_s + (1 + r_s)gz$$

Thermodynamics 17/63

Approximate entropy

Dividing (9) by T gives:

$$ds = \frac{qdt}{T} \approx \frac{c_p}{T}dT + d\left(\frac{l_v}{T}r_v\right) - \frac{R_d}{\rho_d}d\rho_d$$

Define the equivalent potential temperature θ_e as

$$c_p \ln \theta_e \equiv s + R_d \ln p_0$$

where the reference pressure p_0 is taken to be 100 hPa. Using this definition:

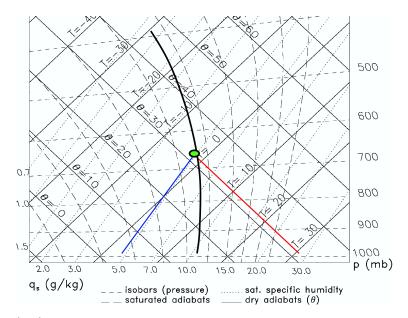
$$\theta_e = T \left(\frac{p_0}{p_d} \right)^{\frac{R_d}{c_p}} \exp \left[\frac{I_v r_v}{c_p T} \right] = \theta \exp \left[\frac{I_v r_v}{c_p T} \right]$$

and similarly to the liquid water static energy h_l :

$$\theta_I = \theta \exp\left[\frac{-I_v r_I}{c_p T}\right]$$

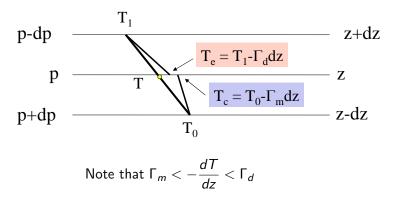
Thermodynamics 18/63

Basic tephigram



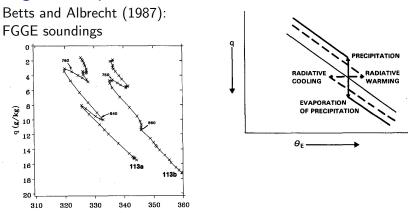
Thermodynamics 19/63

A conditionally unstable atmosphere



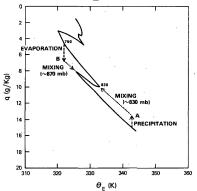
Thermodynamics 20/63

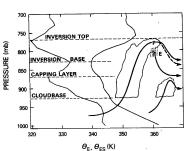
Mixing and evaporation: conserved variables



Thermodynamics 21/63

FGGE soundings, cont.





Thermodynamics $\theta_{\rm E}, \theta_{\rm ES}({\rm K})$ 22/63

Buoyancy and CAPE

Define CAPE as the amount of potential energy of a parcel lifted from level *i* to its level of neutral buoyancy:

$$CAPE_i = \int_i^{LNB} Bdz$$

where B is the buoyancy:

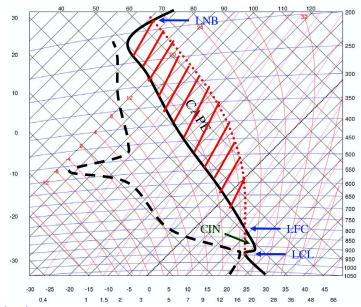
$$B = -g\left(\frac{\rho_p - \rho_e}{\rho_p}\right) = g\left(\frac{\alpha_p - \alpha_e}{\alpha_e}\right) = g\left(\frac{T_{vp} - T_{ve}}{T_{ve}}\right)$$

So that, assuming hydrostatic equilibrium:

$$CAPE_{i} = \int_{i}^{LNB} g\left(\frac{\alpha_{p} - \alpha_{e}}{\alpha_{e}}\right) dz = \int_{p_{n}}^{p_{i}} (\alpha_{p} - \alpha_{e}) dp = \int_{p_{n}}^{p_{i}} R_{d}(T_{vp} - T_{ve}) d \ln p$$

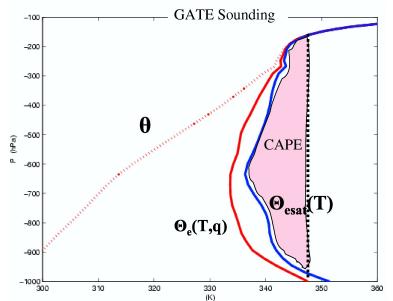
Thermodynamics 23/

CAPE example source: Bechtold, Jakob and Gregory, 2006



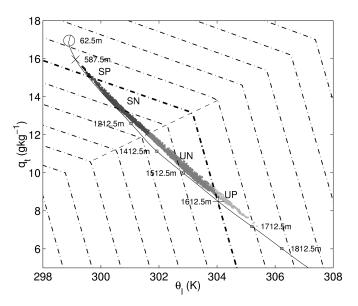
24/63

CAPE in θ_e , q coordinates, source: Bechtold, Jakob and Gregory, 2006



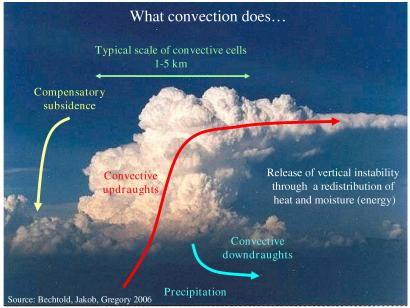
Thermodynamics 25/63

A slice through a modeled cloud at 1612 m, in θ_I , q_t coordiates



Thermodynamics 26/63

A reminder



Thermodynamics 27/63

Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- 2. Basics: Moist thermodynamics, buoyancy, CAPE, conditional/slice instability
- 3. \Rightarrow Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- Equilibrium coupling of shallow and deep convection: one cell model
- 5. Entrainment, detrainment, buoyancy sorting
- 6. What controls convective cloud top height?

Slice method (Bjerknes, 1938, Randall, 2006)

Divide a domain into N vertical columns of fractional area σ_i with vertical velocity w_i and static energy h_i . Then

$$\sum_{i=1}^{N} \sigma_i = 1; \ \sum_{i=1}^{N} \sigma_i w_i = \overline{w}; \ \sum_{i=1}^{N} \sigma_i h_i = \overline{h}$$

static energy flux:
$$F_h = \rho \overline{wh} - \rho \overline{w} \overline{h} = \sum_{i=1}^N \rho \sigma_i (w_i - \overline{w}) (h_i - \overline{h})$$

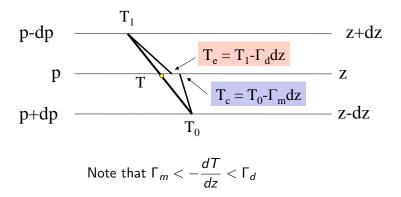
The fraction of columns of convective cloud (c)/environment (e):

$$\sigma_{c} = \sum_{\{cloudy\}} \sigma_{i} \text{ and } \sigma_{e} = 1 - \sigma_{c}$$

Conditional averages:

$$w_c = \frac{\sum_{\{cloudy\}} \sigma_i w_i}{\sigma_c}$$
 and $h_c = \frac{\sum_{\{cloudy\}} \sigma_i h_i}{\sigma_c}$

A conditionally unstable atmosphere



Slice method ...

$$\sigma_c w_c + \sigma_e w_e = \overline{w}$$

$$\sigma_c h_c + \sigma_e h_e = \overline{h}$$
(10a)

Since $w_e < 0$ both T_c and T_e are increasing:

$$\partial_t T_c = w_c(\Gamma - \Gamma_m) > 0$$

 $\partial_t T_e = w_e(\Gamma - \Gamma_d) > 0$

and using (10a):

$$w_c = \overline{w} + (1 - \sigma_c)(w_c - w_e)$$

 $w_e = \overline{w} - \sigma_c(w_c - w_e)$

Slice method ...

Which can be combined to give the rate of increase of convection:

$$\partial_t (T_c - T_e) = w_c (\Gamma - \Gamma_m) - w_e (\Gamma - \Gamma_d) = \overline{w} (\Gamma_d - \Gamma_m) + (w_c - w_e) [(1 - \sigma_c)(\Gamma - \Gamma_m) + \sigma_c (\Gamma - \Gamma_d)]$$

so that convection is favored for a rapidly ascending narrow updraft and a wide sinking environment ($\sigma_c \rightarrow 0$):

Energy and moisture tendencies (Bechtold, Jacob and Gregory, 2006)

Given the dry static energy: $h_d = c_p T + gz$ and the specific humidity q decomposed into $\phi = \overline{\phi} + \phi'$:

$$\partial_{t}\overline{h_{d}} = \underbrace{-\overline{\mathbf{V}}_{H} \cdot \nabla \overline{h_{d}} - \overline{w}\partial_{z}\overline{h_{d}}}_{I} + \underbrace{\underbrace{L(\overline{c} - \overline{e})}_{II} - \underbrace{\partial_{z}\overline{w'h'_{d}}}_{III} + \underbrace{c_{p}Qk_{1}}_{IV} 11)}_{Q2}$$

$$\partial_{t}\overline{q} = \underbrace{-\overline{\mathbf{V}}_{H} \cdot \nabla \overline{q} - \overline{w}\partial_{z}\overline{q}}_{I} - \underbrace{\left(\overline{c} - \overline{e}\right) + \underbrace{\partial_{z}\overline{w'q'}}_{III}\right)}_{I}$$

$$(12)$$

where

I=resolved scale transport

II=large-scale condensation/evaporation

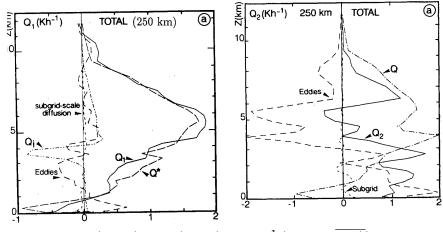
III=subgrid-scale transport (turbulence + convection)

IV=radiation

 Q_1 =apparent heat source, Q_2 =apparent moisture sink

Q_1 and Q_2 from a CRM

(Caniaux, Redelsperger, Lafore, J. Atmos. Sci., 1994)



where
$$Q^* = L(\overline{c} - \overline{e})$$
, $Q = (\overline{c} - \overline{e})$, $Q_1 = \frac{1}{c_p}(Q_* - \partial_z \overline{w'h'_d})$

and $Q_2 = Q + \partial_z \overline{w'q'}$

What can we say about the two eddy terms $\partial_z \overline{w'h'_d}$ and $\partial_z \overline{w'q'}$?

Mass flux approximation (BJG, 2006)

We can use a simple mass flux approximation to get some physical insight into Q_1 and Q_2 .

Recall (10): if $\sigma_c \ll 1$ then $h_e \approx \overline{h}$ and

$$\overline{h} = \sigma h_c + (1 - \sigma) h_e \tag{13}$$

$$\overline{w'h'} = \overline{wh} - \overline{w}\overline{h} = \sigma(1-\sigma)(\overline{w_c} - \overline{w_e})(\overline{h_c} - \overline{h_e})$$
 (14)

and since $\overline{w_c} \gg \overline{w_e}$

$$F_h = \rho \overline{w'h'} = \rho \sigma w_c (\overline{h_c} - \overline{h}) = M_c (\overline{h_c} - \overline{h})$$

where $M_c = \rho \sigma w_c$ is the convective mass flux.

Mass flux continued

How does the cloud ensemble M_c depend on height? Try a simple entraining/detraining plume:

$$\frac{\partial M_c}{\partial z} = \epsilon - \delta$$

$$\frac{\partial (M_c \overline{h_{dc}})}{\partial z} = \epsilon \overline{h_d} - \delta \overline{h_{dc}} + Lc$$

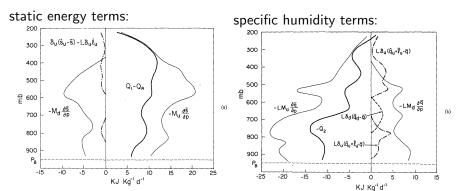
so that the apparent heat source Q_1 :

$$Q_{1} = L(\overline{c} - \overline{e}) - \partial_{z} \overline{w' h'_{d}} = L(\overline{c} - \overline{e}) - \partial_{z} (M_{c}(\overline{h_{dc}} - \overline{h_{d}}))$$

$$Q_{1} = M_{c} \frac{\partial \overline{h_{d}}}{\partial z} + \underbrace{\delta(\overline{h_{cd}} - \overline{h_{d}})}_{II} - \underbrace{Le}_{III}$$

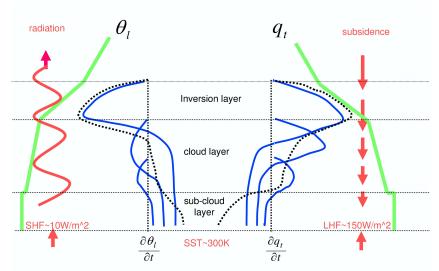
where term I represents the warming of the environment due to *compensating subsidence*, II is detrainment and III is evaporation of cloud and precipitation.

Q1 and Q2 diagnosed with plume model (Nitta, 1977)



Small clouds cool and moisten at cloud top, large clouds moisten and heat through compensating subsidence. (Note that this model include downdrafts).

Heating/moistening for 4 cloud sizes

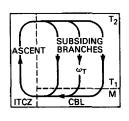


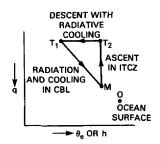
Note that the in the tropics the boundary layer fluxes, subsidence and radiation are all tightly coupled.

Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- 2. Basics: Moist thermodynamics, buoyancy, CAPE, conditional/slice instability
- 3. Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- ⇒ Equilibrium coupling of shallow and deep convection: one cell model
- 5. Entrainment, detrainment, buoyancy sorting
- 6. What controls convective cloud top height?

One cell model (Betts and Ridgway, 1988)



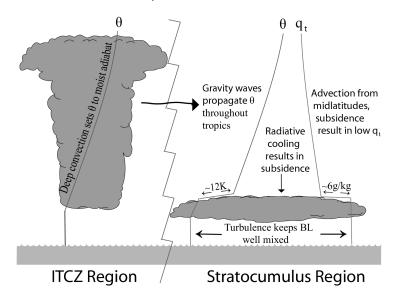


Some constraints:

- ► Free tropospheric temperature is horizontally uniform
- Convection is in equilbrium with large scale forcing
- ▶ Subsidence balances radiative cooling in the descending branch

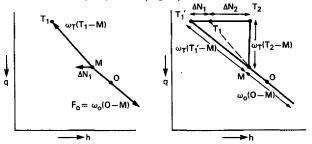
$$w\frac{d\theta}{dz}=Q_R$$

WTG approximation (Caldwell and Bretherton (2007))



One cell model, continued

Betts and Ridgway 1988: balances for the boundary layer (left) and entire troposphere (right)



Need models of column radiation and cloud/humidity profiles get ΔN .

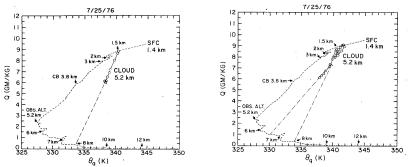
Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- 2. Basics: Moist thermodynamics, buoyancy, CAPE, conditional/slice instability
- 3. Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- 4. Equilibrium coupling of shallow and deep convection: one cell model
- 5. ⇒ Entrainment, detrainment, buoyancy sorting
- 6. What controls convective cloud top height?

Cloud mixing 43/63

Evidence for buoyancy sorting (Paluch, 1979)

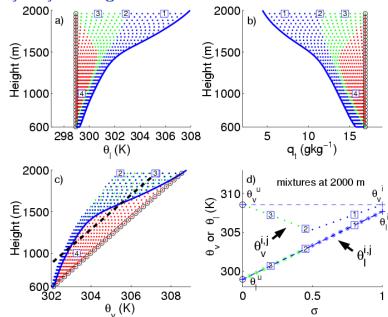
In-cloud observations appear to be formed by mixing between two distinct levels



In fact, the cloud parcels are moving to their level of neutral buoyancy

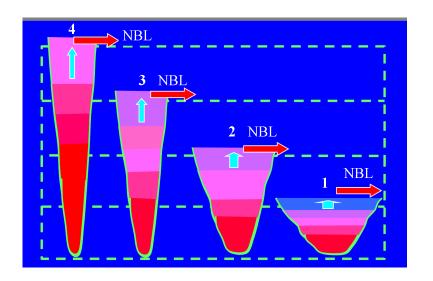
Cloud mixing 44/63

Buoyancy sorting in shallow clouds



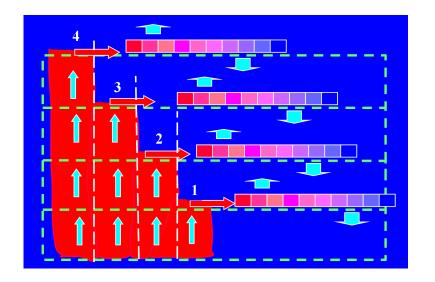
Cloud mixing 45/63

Spectral entraining plumes



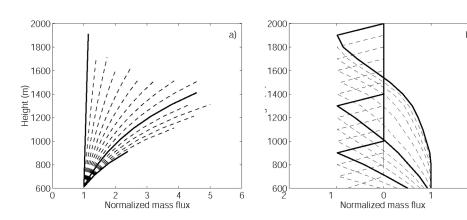
Cloud mixing 46/63

Episodic mixing/buoyancy sorting



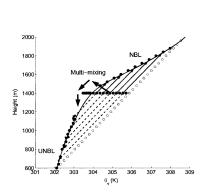
Cloud mixing 47/63

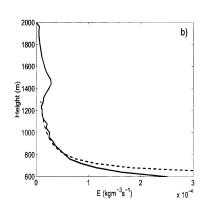
Buoyancy sorting vs. entraining plume



Cloud mixing 48/63

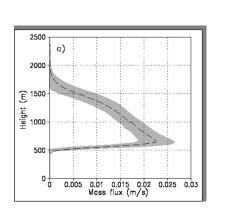
Detrainment and the cloud size distribution Zhao and Austin, 2003

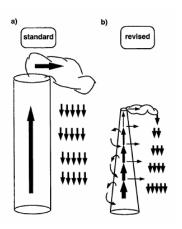




Cloud mixing 49/63

Mass flux decreases with height Siebesma, 2005

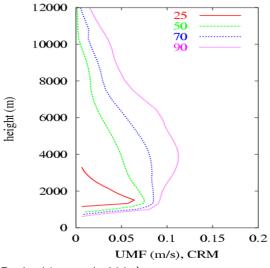




$$\frac{1}{M}\frac{\partial M}{\partial z} = \epsilon - \delta$$

Cloud mixing 50/63

and CRMs indicate the mass flux is sensitive to relative humidity



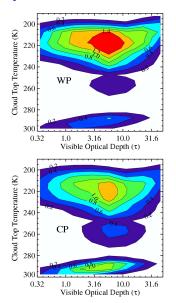
(Derbyshire et al. 2004)

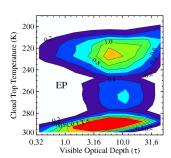
Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- 2. Basics: Moist thermodynamics, buoyancy, CAPE, conditional/slice instability
- 3. Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- Equilibrium coupling of shallow and deep convection: one cell model
- 5. Entrainment, detrainment, buoyancy sorting
- 6. ⇒ What controls convective cloud top height?

Anvil detrainment 52/63

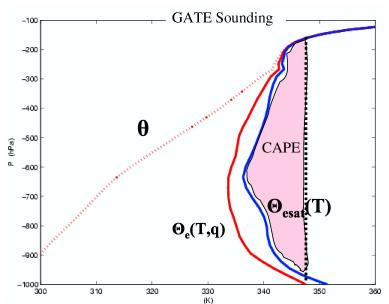
Why do clouds detrain before they hit the tropopause?





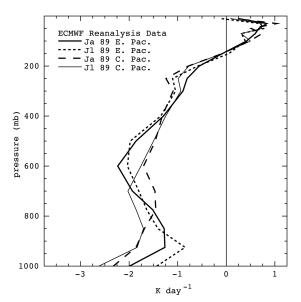
Anvil detrainment 53/63

Is cloud top determined by sub-cloud θ_e ?



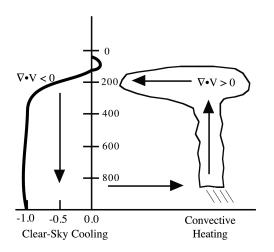
Anvil detrainment 54/63

Little water vapor above 200 hPa



Anvil detrainment 55/63

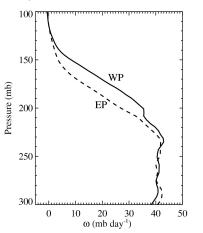
Larsen and Hartmann, 2001

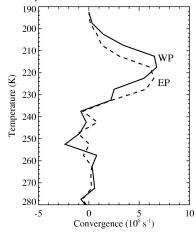


Can mass convergence at 200 hPa promote detrainment?

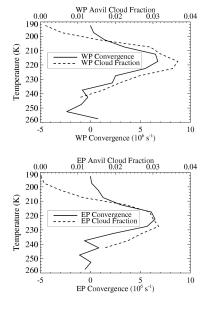
Anvil detrainment 56/63

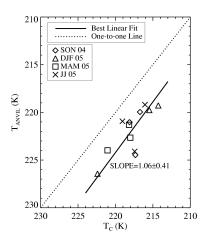
Kubar, Hartmann and Wood (2007)





Anvil detrainment 57/63





Anvil detrainment 58/63



c.f. poor correlation between anvil temperature and adiabatic cloud top

Anvil detrainment 59/63

Outline

- Satellite/reanalysis views of tropical clouds (MODIS, ISCCP, Bony et al.)
- 2. Basics: Moist thermodynamics, buoyancy, CAPE, mixing diagrams, conditional/slice instability
- 3. Impact of clouds on large scale fields (Q_1 , Q_2 , mass flux models)
- Equilibrium coupling of shallow and deep convection: one cell model
- 5. Entrainment, detrainment, buoyancy sorting
- 6. What controls convective cloud top height?

Outline 60/63

Linking cloud fraction to inversion strength (Wood and Bretherton, 2006)

