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• Flux and Backreaction
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• Strominger System and Heterotic Flux as a Torsion
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• Global Issues: Index Counting, Smoothness, etc
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Geometry and Holonomy
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Parallel Transport



Parallel Transport = Covariant Derivative = Connection



Parallel Transport = Covariant Derivative = Connection



Riemannian Geometry = Parallel Transport + Preservation of Lengths



Riemannian Geometry = Parallel Transport + Preservation of Lengths

*

* must assume that        is
symmetric under the exchange 
of the two lower indices. 



Riemannian Geometry = Parallel Transport + Preservation of Lengths

d x d Identity matrix

?



Riemannian Geometry = Parallel Transport + Preservation of Lengths

orthonormal frame = “vielbein”



Loops



Collection of rotation elements                   along closed loops
starting and ending at the same point form a group. Each loop
rotates a vector and doing it twice in succession defines 
a multiplication



Holonomy Groups: Collection of all                   ‘s from 
closed loops with a base point; different choice of the
base point gives a conjugation so that the group remain 
isomorphic to each other.



Holonomy Groups: Collection of all                   ‘s from 
closed loops with a base point; different choice of the
base point gives a conjugation so that the group remain 
isomorphic to each other.

depends on path chosen between 1 and 2
but the holonomy groups themselves are insensitive.



Riemannian Geometry ~ Holonomy Group = SO(d)

“Vielbein” and “spin connections” play special roles
since they are the natural representation of SO holonomy

SO(d) valued 1-form



Example of Reduce Holonomy: Kaehler Geometry

tangent space 1

smaller set of                  ’s? 



What to expect from
complex manifolds?



projections



holomorphic

anti-holomorphic



Emulate complex vector space           :

90 degree rotation:

lengths preserved:

robust under parallel transport:

= almost complex structure

= Hermiticity

= integrability + Kaehler

metric-independent:
the existence of  

metric-dependent



“multiplication by       ” should be constant  :

= integrability + Kaehler

metric-independent metric-dependent



With the metric connection     , the partial derivatives may 
be covariantized, so that                   implies integrability.

The integrability condition can be formulated as vanishing of

for arbitrary pair of vectors V and W.  
This defines the Nijenhuis tensor as



Kaehler Condition: 
Compatibility of (Anti)Holomorphic Decomposition with Metric 

tangent space 2

tangent space 1



Kaehler Condition: U(d/2) Holonomy Group



Kaehler Condition: U(d/2) Holonomy Group



Reduced Holonomy Group = Existence of Parallel Tensor(s)

GL(d,R)

SO(d,R)Riemann
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Reduced Holonomy Group = Existence of Parallel Tensor(s)
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Reduced Holonomy Group = Existence of Parallel Tensor(s)
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Reduced Holonomy Group = Existence of Parallel Tensor(s)
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Reduced Holonomy Group = Existence of Parallel Tensor(s)

GL(d,R)

SO(d,R)

U(d/2)
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symplectic 2-form

Sp(d/4)
holomorphic symplectic
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Riemann
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Supersymmetry, Spinors, and Calabi-Yau

Simple Compactification with unbroken SUSY:



is a matter of notational convention.
Both denote the covariant derivative
with respect to the same connection. 
The former acts on spinors and the 
latter acts on tensors.





Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold



Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold

from Fierz Indentity and



Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold



Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold

SU(d/2) Holonomy:
Calabi-Yau Manifold



Calabi-Yau = SU(d/2) Holonomy = Ricci Flat Kaehler



Alternatively

This reduces the holonomy group from U(d/2) to SU(d/3) because

under any holonomy in U(d/2). The determinant of any element
of the U(d/2) holonomy group has to be unit, which means that we
actually have SU(d/2) holonomy. 



Cohomologies (More about this from deWolfe later in this school)

d=4

d=6



The number of metric deformation preserving the same SUSY

geometric moduli fields

add moduli from other gravity multiplet fields

( d=6 )

add moduli from R-R sector tensor fields



d=8



Flux and Backreaction

Ricci Flat = Solution to 
empty Einstein Equation

Can we ignore other bosonic field strengths 
which can contribute to the energy-momentum tensor ?





(1) Can we turn on various tensor field strengths while 
maintaining vacuum condition (= minimum energy) ?



(1) Can we turn on various tensor field strengths while 
maintaining vacuum condition (= minimum energy) ?

Yes. 
Guaranteed if the field strengths involve topological flux.
Also give (partial) stabilization of moduli fields.

moduli directions



(2) Can we turn on various tensor field strengths 
while maintaining unbroken supersymmetries ?

(1) Can we turn on various tensor field strengths while 
maintaining vacuum condition (= minimum energy) ?

Yes. 
Guaranteed if the field strengths involve topological flux



(2) Can we turn on various tensor field strengths 
while maintaining unbroken supersymmetries ?

(1) Can we turn on various tensor field strengths while 
maintaining vacuum condition (= minimum energy) ?

Yes. 
Guaranteed if the field strengths involve topological flux

Yes. 
Provided that the geometry can backreact and reshape 
the local form of the flux to be of a definite “chiral” type. 



Example 1: IIB on Calabi-Yau with F_3 and H_3 flux



Topological Flux in CY3 Background:

Ignoring backreactions, how can we minimize energy 
incurred by such topological (thus quantized) fluxes?



metric independent metric dependent
and nonnegative



This quick and dirty computation produces
an effective potential for Calabi-Yau metrics

An approximate vacuum can be found if the metric can be
chosen such that the topological F_3 and H_3 potentials 
combines (with axi-dilaton) to make imaginary anti-self-dual 
part of G_3 vanishes.

But what if we have chosen to decompose it differently and 
obtained a potential in terms of imaginary self-dual part of G_3?



Backreaction of IIB Compactification to F_3 and H_3 flux



When H_3 and F_3 has no explicit electric or magnetic sources,
the string metric, after backreaction, is still simple:

some Calabi-Yau

whose warp factor is related to F_5 as, 



Net effect of these backreactions to G_3 is to modifiy the energy
functional of the compactification from (with constant axi-dilaton)



Net effect of these backreactions to G_3 is to modifiy the energy
functional of the compactification from (with constant axi-dilaton)

to



Minimization of the energy functional can be done in 2 steps:

is a harmonic representative of 
the cohomology

Therefore,

And the failure of minimizing the energy functional can be encoded
in the finite number of Calabi-Yau moduli.



must belong to



IIB Flux compactifications are most widely 
used for application to real world so far, including

• Explicit solutions (Klebanov-Strassler)
• General form of low energy 4D theory with 

Gukov-Vafa-Witten superpotential + Nonperturbative corrections
• Complete fixing of moduli (…………)
• Construction of de Sitter vacua (KKLT)
• SUSY breaking phenomenology (Anomaly-Gravity Mediation Mixed)
• Inflationary cosmology (KKLMMT, DBI, D3-D7,….)
• Hierarchy generating geometry (Stringy realization of Randall-Sundrum I)
• Existence of Landscape (Stable and Semistable Vacua)

Some of which will be covered by Oliver’s lecture next week.



Example 2: Flux Compactification of M Theory to 2+1 Dimensions

Calabi-Yau 4-fold

Primitive (2,2) Flux

K.Becker+M.Becker 1996



Tadpole Condition



The energy functional of the compactification is similar to 
that of IIB on CY3



Disallowed part of G_4 is then 

Supersymmetry is more restrictive and allows only (2,2) “primitive” part. 



Supersymmetry is actually more restrictive:

(2,2) :

Primitivity :

(2+1 Minkowski Assumed)

(Haack+Louis)



Flux chooses a Calabi-Yau, and gravity backreacts and dresses the Calabi-Yau



Addendum 1:

Complete classification of the holonomy group is known. Apart from 
those shown, i.e., generic SO(d), Kaehler U(d/2)=U(1)xSU(d/2), 
Calabi-Yau SU(d/2), symplectic Sp(d/2), and hyperKaehler Sp(d/4),
we also have quarternionic Sp(1)x Sp(d/4).

There are two more special cases. A 7-manifold can have 
G_2 holonomy, and a 8-manifold can have Spin(7) holonomy. 
However, the other exceptional groups of F_4, E_6, E_7, E_8 
do not appear as a holonomy group associated with Levi-Civita
connection (=the connection associated with Christoffel symbols). 

is a matter of notational convention. Both denote 
the covariant derivative with respect to the same connection. 
The former notation is used on spinors exclusively. That is,
we write            and               but the same connection   is used.

Addendum 2:



Excursion: Primitivity of Differential Form in Complex Geometry
(from an Appendix of Gukov, Vafa, and Witten)



Outline: Part II

• Geometry and Holomony

• Supersymmetry, Spinors, and Calabi-Yau

• Flux and Backreaction

• Energetics of Heterotic Flux Compactification

• Strominger System and Heterotic Flux as a Torsion

• A Supersymmetric Solution to Heterotic Flux Compactification

• Global Issues: Index Counting, Smoothness, etc



Energetics of Heterotic Flux Compactification

with

we will ignore these
for a while



Cardoso, Curio, Dall’Agatha, Luest, 2003

Assume existence of a complex structure     ,
and try to see heuristically what would be the analog of 
the compactification energy functional in the Heterotic case.

Generally one can decompose the square of the gauge field strength

So that the last two terms in the energy functional are organized into



Assuming that the rest of the terms also combine into total derivatives
and complete squares, we find that minimization of energy functional 
requires,



Terms neglected above are those involving dilaton and the metric only,
And these can also be made into complete squares. Vanishing of these 
sqaured terms demand that

= Nijenhuis tensor

justifying the computation above after assuming a complex
structure, and also

which is also known as the conformal balancing condition.



Inclusion of R^2 term would have given constraints

which would have implies again a Ricci flat metric, except that 
these equations are not trustworthy because it came from a 
higher order terms. We will see later how this is precisely fixed
by supersymmetry. 



Gradient of Dilaton ~ Derivative of J

Flux ~ Gradient of Dilaton + Derivative of J

Heterotic flux compactification
gives complex 6-manifolds which
are NEVER Kaehler !!!!!!



Strominger System and Heterotic Flux as a Torsion

We will start with the nontrivial observation by Strominger that
in string frame, the warp factor is absent when SUSY is required.

The backreaction of the geometry to the flux will be all encoded
in the geometry of the six-dimensional internal manifold which is
no longer Calabi-Yau



Supersymmetric Compactification of Heterotic Superstring without H



Supersymmetric Compactification of Heterotic Superstring with H

definite constants

simplificiation is possible by making use of the gravitino variation
and dilatino variations together.



Supersymmetric Compactification with H

Rescale            by



Supersymmetric Compactification with H

This piece can be removed by a
conformal transformation of the metric
by an exponentiated dilaton factor.

However, the nontrivial fact here is that
this piece disappears already in the string 
frame. 



Supersymmetric Compactification with H

the connection is 
twisted by a torsion





Despite this twist, the metric is still covariantly constant:

=0 by antisymmetric nature of H

In particular, this allows raising and lowering of indices by metric



is a matter of notational convention.
Both denote the covariant derivative
with respect to the same connection. 
The former acts on spinors and the 
latter acts on tensors.





Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold



Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold

from Fierz Indentity and



Is J an integrable complex strujcture ? 
No longer an automatic consequence of covariantly constant J !

?

is demonstrated by making use of dilatino variation,
which we will refer to Strominger’s original work. 



Parallel Spinors Parallel Tensors

Reduced Holonomy U(d/2):
Kaehler Manifold

Reduced Holonomy SU(d/2):
Calabi-Yau



Calabi-Yau = SU(d/2) Holonomy with Torsion = Ricci Flat Kaehler



SU(3) Holonomy
Ricci Scalar with Torsion

A traced form of a gravity equation, showing how the geometry 
reacts to energy-momentum tensor due to fluxes.



Likewise



A General Solution for H:



A General Solution for H: Need to invert the condition



A General Solution for H: Need to invert the condition

Hermiticity + Integrability



A General Solution for H: Need to invert the condition

antisymmetrize indices to decouple 



A General Solution for H: Need to invert the condition

or equivalently

antisymmetrize indices to decouple 



How to relate the dilaton to H ?



How to relate the dilaton to H ?



How to relate the dilaton to H ?

constract with           and take the imaginary part 



How to relate the dilaton to H ?

constract with           and take the imaginary part 



How to relate the dilaton to H ?

constract with           and take the imaginary part 



How to relate the dilaton to H ?

constract with           and take the imaginary part 



no warp factor in string frame !

Summary of the Strominger System for Heterotic Flux Compactification:

SU(3) holonomy with torsion



Integrable complex structure

Hermitian metric

Conformal balancing with Dilaton



General form of the solution:

= Bismut torsion



General form of the solution:

Combining the two reproduce the energy minimizing condition: 

= Bismut torsion

solving E.O.M.



General form of the solution:

Finally the Bianchi indentity must be solved in favor of J

Combining the two reproduce the energy minimizing condition: 

= Bismut torsion

solving E.O.M.



Solutions are difficult to find. 

So far, only one family of reasonably explicit 
and smooth solutions is found, in 2006.

This family of solutions has been expected 
based on U-duality to F-theory for several years.



A smooth and supersymmetric solution 
to heterotic flux compactification



fibrebase conformally balanced metric

well-defined holomorphic bundle

Hermitian YM bundle



fibrebase

The Bianchi Identity

is now a nonlinear partial differential equation for dilaton



=24 nonnegative by SUSY



Fu and Yau states that the Bianchi identity

can be solved for a smooth dilaton, when the tadpole condition

is satisfied, provided that the base K3 is sufficiently large.



Recall IIB/F Theory on
O7 + 4D7



U-Dual Story: Heterotic Type I F/IIB 



IIB on                            with H_3 and F_3 Fluxes

= Orientifold Limit of F-Theory with Flux on 

Type I on         fibered over         with F_3 Fluxes

Heterotic on         fibered over         with       Fluxes



Duality Dictionary for Branes:

IIB Type I Heterotic

O7-D7’s on K3 O9-D9’s gauge bundle

mobile D3’s D5 on fivebranes on

the other D7’s the other D5’s the other fivebranes

D3 instantons
D1 instantons

D5 instantons

worldsheet instantons

fivebrane instantons



Calibrating fivebranes under Flux 
& application to BBFTY Solution



Usual calibration in a Calabi-Yau background without Flux
= volume minimization to a specific topological bound

with

a topological bound & BPS bound

energy (per unit Minkowski volume)

supercharge







energy of wrapped fivebrane under Flux ?

the rest mass per unit 3-volume 

the magnetic potential energy per unit 3-volume:

not closed;
may not be topological



Is                 a supersymmetry condition ? Yes !

It follows from adapting the generalized calibration for M5 branes
Gutowski,Papadopoulos & Townsend, 1999



calibrated by

by SUSY fundamental 2-form     for 



BBFTY Geometry has

closed/
topological
bound

similar to usual calibration, except that the calibrating 
2-form is degenerate in the full manifold 





A necessary condition:

for any 4D hyperKaehler/Calabi-Yau

holomorphic embedding

is point-like in K3

is a holomorphic surface in K3 



is point-like in K3

is a holomorphic surface in K3 

must wraps the fibre completely
regardless of its position on K3

moduli space = K3

can be lifted into the full manifold only if 
the restriction of the bundle to the 2-cycle is trivial

the no-winding lift gives T^2 worth of moduli space



Duality Dictionary for Branes:

IIB Type I Heterotic

O7-D7’s on K3 O9-D9’s gauge bundle

mobile D3’s D5 on fivebranes on

the other D7’s the other D5’s the other fivebranes

D3 instantons
D1 instantons

D5 instantons

worldsheet instantons

fivebrane instantons



Other D7’s wrapping a cycle in K3, 
Fills T^2 and carries Wilson lines

IIB/F side O7 + 4D7

D3: transverse to all,
mobile in K3



fivebrane wrapping T^2,
pointlike and mobile in K3

fivebranes wrapping 
a cycle in K3

heterotic side



is point-like in K3

must wraps the fibre completely
regardless of its position on K3

moduli space = K3 = moduli space of D3

fivebrane wrapping fibre T^2 completely



Note that the fibre T^2 has a cyclic homotopy: 
Each circle is Hopf fibred over a 2-cycle in K3, 
as in S^1 fibered over S^2 giving rise to S^3/Z_n.

This is also related to the fact that the base K3 does
not represent a homology cycle either.

The n-wrapped fivebrane is stable entirely due to a dynamical
reason: competition of tension energy and magnetic energy.

But, what about the tadpole condition?



?







when  the manifold is written as a T^2 bundle over K3



is a holomorphic surface in K3 

can be lifted into the full manifold only if 
the restriction of the bundle to the 2-cycle is trivial

the no-winding lift gives T^2 worth of moduli space

= Wilson lines of the other D7

fivebranes wrapping 
a 2-cycle in K3 is
pointlike in fibre



SUSY requirement:

Integral cohomology element

For insertion of one such fivebrane, we fix one “complex” moduli.

When this procedure is carried out maximally and fixed the
holomorphic 2-form completely, the resulting K3 is “attractive,”
saturating the bound 

#[ Complex Moduli from K3 ] <  20



Other D7’s wrapping a cycle in K3, 
Fills T^2 and carries Wilson lines

IIB/F side O7 + 4D7



Global Issues

• 4 Dimensional Gauge Spectra and Index Counting

• Smooth Compactification, and Gauge Bundle

• Gauge moduli and Geometric Moduli

• Near Calabi-Yau Regime ?



Torsion, Torsion, and Gauge Zero Modes

exists for      only

Stabilizer of
= Unbroken Gauge GroupMatter sectorGauge Bundle



There should be a single zero mode for

zero mode counts the number of chiral matter fermions

Zero modes along             estimates the gauge bundle moduli



Without Torsion,

With Torsion,



Consider this:

minus the Laplacian with a torsion

after a little algebra with Dirac matrices



Similarly:



Comments on Index counting:

Generally, torsion can be understood as an innocuous continuous 
deformation if the Dirac operator defines a Fredholm operator with gap. 
The Index will be then determined by the metric and the gauge bundle 
only. However, the metric backreact to torsion strongly, so we cannot
rely on old computations.

Explicit computation of index density with torsion have been carried out
largely in the context of 4D spacetime, where torsion terms are shown 
to organize themselves into a total derivative. 

Higher dimensional computation is available for the case of 
where the usual characteristic class form of index densities holds 
provided that the curvature 2-form replace 
by the curvature 2-form of 

With                 , the index densities are unlikely to be given by 
the familiar characteristic classes, although we could anticipate
corrections by at most a total derivative.

Mavromatos 1988;
Bismut 1988

Peeters+Waldron 2000



“Minimal Embedding”

Do we gain something in this special limit ?
For instance, take a look at

with an SU(3) holonomy condition

and





No massless gaugino in 4 dimensions ? 
This cannot be so, unless SUSY is broken !

Formal positivity

must be wrong in heterotic compactification with              and 

Consider



?



If the manifold is either open or singular somewhere



If the manifold is either open or singular somewhere



If the manifold is either open or singular somewhere

flux compactification under the approximation

is necessarily singular
Ivanov+Papadopoulos 2001



Recall that, with minimal embedding without Flux and the breaking of
the gauge group

the counting of charged matter fermions gives a universal formula

In extending this to “minimal” Flux compactification
with

all bets are off since we are forced into singular internal manifold; 
total derivative terms (due to torsion contributions) and 
the boundary condition must be reconsidered carefully. 



Smooth Compactifications and Approximations

:  size of the internal 6-manifold

large torsion, singularities

small torsion, smooth solutions

small torsion, singularities



order of magnitudes favorable for supergravity approach

also



warp factor

~ also, a warp factor equation of motion
simplified by 

For general background without such restriction, this  generalizes to

with



double divergences
of Ricci tensors or

potential no-go theorem 
against smooth compactificatin

negative tadpole contribution from         
overcome the potential no-go theorem 

under SUSY



The fact that 

controls/resolves singularities of the manifold suggest that 
the singularities are related BPS objects with negative fivebrane charges,

reminiscent of type IIB compactifications where singularities 
due to fluxes are realized as orientifold planes of some RR fields.  



Summary
• Supersymmetry demands special geometric structure on the internal manifold. In 

some special cases, such as some limiting cases of type IIB theory and the Heterotic
theory, the holonomy group reduces to SU(3). In type IIB without fivebrane sources, 
the geometry is a Calabi-Yau up to a conformal  factor, while in the Heterotic case the 
torsion, or H flux, preserves SU(3) holonomy group while destroying Kaehler property 
of the metric.

• Effect of the flux, in general, is to introduce additional potential to minimize. This in 
general reduces the number of massless scalar fields, alleviating the moduli problems 
with conventional string theory compactifications.

• As with type II theories, the heterotic flux compactification is also plagued by a 
gravitational tadpole condition which can render the geometry singular. The situation 
is worse than type II in that we do not have orientifold plane description of such 
singular places, but is better in that we can make the geometry smooth by going 
beyond the “minimal embedding” of the gauge bundle.

• Global issues in flux compactification remain largely unsolved, and must be 
investigated further. No general tools for addressing glocal problems are 
available at the moment.



Prospects

• More solutions and model building in the Heterotic theory
(De Sitte vacua; Hierarchy; Inflation; Axion; Cosmological constant; 
Standard model vacua;………….)

• Duality maps between type IIA, IIB, and Heterotic Theories
(Mirror; Heterotic dual to non-GKP IIB; Complete fixing of moduli on the 
Heterotic side)]

• New Physics in the Heterotic-M with Flux? 

• Landscape of the Heterotic String Theory


	String Theory Compactification �with/without Torsion
	Outline: Part I
	references
	references
	Geometry and Holonomy
	Example of Reduce Holonomy: Kaehler Geometry
	Kaehler Condition: �Compatibility of (Anti)Holomorphic Decomposition with Metric 
	Kaehler Condition: U(d/2) Holonomy Group 
	Kaehler Condition: U(d/2) Holonomy Group 
	Supersymmetry, Spinors, and Calabi-Yau
	Flux and Backreaction
	IIB Flux compactifications are most widely �used for application to real world so far, including
	Excursion: Primitivity of Differential Form in Complex Geometry�(from an Appendix of Gukov, Vafa, and Witten)
	Outline: Part II
	Energetics of Heterotic Flux Compactification
	Strominger System and Heterotic Flux as a Torsion
	A smooth and supersymmetric solution �to heterotic flux compactification
	Global Issues
	Summary
	Prospects

