The Inverse Time-dependent Coefficient **Identification Problem in Bio-Heat Transient Flow Equation**

Dumitru Trucu¹ and Daniel Lesnic^2

¹Centre for Computational Fluid Dynamics, University of Leeds, Leeds LS2 9JT. United Kingdom. ²Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom. E-mail: ¹D. Trucu@leeds.ac.uk and ²amt5ld@maths.leeds.ac.uk

Abstract

The governing equation for the heat transfer process within the human body tissue, namely

$$\Delta T - P_f T + S = \frac{\partial T}{\partial t}, \qquad (1)$$

has important applications in many biomedical investigations. Among other theoretical aspects

that we are concerned with regard to this equation, the perfusion coefficient P_f receives a particularly important interest because of its physical meaning, that is $P_f = \frac{w_b c_b \mathcal{L}^2}{k_t}$, where w_b is the perfusion coefficient of blood, c_b is the heat capacity of blood, \mathcal{L}^2 is the characteristic dimension of the tissue and k_{\star} is the thermal conductivity of the tissue.

In all of our analysis we consider the non-steady state time-dependent case with P_f dependent on time, as well as S dependent both on space and in time.

Within this context, the following inverse problem focuses our interest:

Find the temperature T(x,t), as a function in $\mathscr{C}^{2,1}(\Omega \times (0,t_f]) \cap \mathscr{C}^{1,0}(\overline{\Omega} \times [0,t_f])$, and the perfusion time-dependent coefficient $P_f(t) > 0$, $\forall t > 0$, satisfying both one and two dimensional bio-heat equation

$$\Delta T - P_f(t)T = \frac{\partial T}{\partial t} \tag{2}$$

where, besides the standard smooth enough initial conditions and Dirichlet boundary conditions, we consider the mass measurement

$$\int_{\Omega} T(x,t)dx = E(t), \quad \forall t \in (0,t_f].$$
(3)

At the conference the robustness of the solution of this inverse problem will be presented both from analytical and numerical stand point.

Acknowledgement

The first author would like to acknowledge the European Union, European Research Commission, that is fully supporting the research work and attendance at this conference through the award of a Marie Currie Research Fellowship in the Centre for Computational Fluid Dynamics at The University of Leeds.