Uniqueness for discontinuous coefficients in an inverse problem for the heat equation

Olivier Poisson¹

<u>ABSTRACT</u>

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected open set that satisfies a natural geometric condition. Let Ω_0 and Ω_1 be two non-empty open subsets of Ω such that $\Omega_0 \subset \subset \Omega$ and $\Omega_1 = \Omega \setminus \overline{\Omega_0}$. We denote by $S = \overline{\Omega_0} \cap \overline{\Omega_1}$ the interface. We consider the heat equation with a discontinuous diffusion coefficient c at the interface S:

$$\partial_t y - \nabla \cdot (c \nabla y) = 0 \quad \text{in } (0, T) \times \Omega$$
$$y(t, x) = h(t, x) \quad \text{in } (0, T) \times \delta \Omega$$
$$y(0, x) = y_0 \quad \text{in } \Omega$$

We assume that the diffusion coefficient c is smooth in each domain Ω_j and that we can measure both the normal flux $\partial_n \partial_t y$ on $\gamma \subset \partial \Omega$ on the time interval (t_0, T) and y in Ω at time $T' \in (t_0, T)$.

But we do not know the interface S which is an unknown in this inverse problem.

We shall prove uniqueness for S and the diffusion coefficient c with only one given boundary condition.

 $^{^1\}mathrm{LATP},$ CMI, 39 rue Joliot–Curie, F–13453 Marseille Cedex 13, France; poisson@latp.univ-mrs.fr