Inverse Problem for the Schrödinger Operator in an Unbounded Strip

Laure Cardoulis* Michel Cristofol[†] Patricia Gaitan[‡]

The question of the identification of a diffusion coefficient c, is studied for the Schrödinger problem in an unbounded strip Ω in \mathbb{R}^2 . Let $\Omega = \mathbb{R} \times (-\frac{d}{2}, \frac{d}{2})$ be an an unbounded strip of \mathbb{R}^2 with a fixed width d. We will consider the Schrödinger equation

(1)
$$\begin{cases} Hq := i\partial_t q + \nabla \cdot (c(x,y)\nabla q) = 0 & \text{in } Q = \Omega \times (0,T), \\ q(x,y,t) = b(x,y,t) & \text{on } \Sigma = \partial\Omega \times (0,T), \\ q(x,y,0) = q_0(x,y) & \text{on } \Omega, \end{cases}$$

where $c(x,y) \in C^3(\overline{\Omega})$ and $c(x,y) \geq c_{min} > 0$. Moreover, we assume that c and all its derivatives up to order three are bounded. The aim of this paper is to give a stability and uniqueness result for the coefficient c(x,y). We prove a global Carleman estimate and an energy estimate for the operator H with a boundary term on Γ^+ . Then using these estimates and following the method developed by Imanuvilov, Isakov and Yamamoto for the Lamé system, we give a stability and uniqueness result for the diffusion coefficient c(x,y).

We denote by ν the outward unit normal to Ω on $\Gamma = \partial \Omega$. We denote $\Gamma = \Gamma^+ \cup \Gamma^-$, where $\Gamma^+ = \{(x,y) \in \Gamma; \ y = \frac{d}{2}\}$ and $\Gamma^- = \{(x,y) \in \Gamma; \ y = -\frac{d}{2}\}$.

Our problem can be stated as follows:

Is it possible to determine the coefficient c(x,y) from the measurement of $\partial_{\nu}(\partial_t q)$ on Γ^+ ?

Let q (resp. \tilde{q}) be a solution of (1) associated with (c, b, q_0) (resp. \tilde{c}, b, q_0)) satisfying some regularity properties:

- $\partial_t \widetilde{q}$, $\nabla(\partial_t \widetilde{q})$ and $\Delta(\partial_t \widetilde{q})$ are bounded.
- q_0 is a real valued function in $C^3(\Omega)$.
- q_0 and all its derivatives up to order three are bounded.

Our main result is

$$|c - \widetilde{c}|_{H^1(\Omega)}^2 \le C|\partial_{\nu}(\partial_t q) - \partial_{\nu}(\partial_t \widetilde{q})|_{L^2((-T,T) \times \Gamma^+)}^2,$$

where C is a positive constant which depends on (Ω, Γ, T) .

^{*}Université de Toulouse 1, MIP/Ceremath, Place Anatole France, 31000 Toulouse, France, laure.cardoulis@univ-tlse1.fr

[†]Université de Provence, CMI,UMR CNRS 6632, 39, rue Joliot Curie,13453 Marseille Cedex 13 France, Université Paul Cézane, IUT de Marseille, France, cristo@cmi.univ-mrs.fr

[‡]Université de Provence, CMI,UMR CNRS 6632, 39, rue Joliot Curie,13453 Marseille Cedex 13, France, Université de la Méditerranée, IUT dÁix en Provence, France, gaitan@cmi.univ-mrs.fr