Inertias of Zero-Nonzero Patterns

In-Jae Kim Mathematics and Statistics, University of Victoria injaekim89@hotmail.com

Abstract

An n by n zero-nonzero pattern \mathcal{A} is a matrix with entries in $\{*, 0\}$ where * denotes a nonzero real number. If \mathcal{A} allows all $\frac{(n+1)(n+2)}{2}$ possible inertias, then \mathcal{A} is inertially arbitrary. It is shown that there exists a reducible n by n inertially arbitrary zero-nonzero pattern with 2n-1 nonzero entries for each $n \geq 6$; and that for n = mt with $t \geq 6$ and $m \geq 1$, there exists a reducible n by n inertially arbitrary zerononzero pattern with 2n-m nonzero entries. These reducible inertially arbitrary zero-nonzero patterns are direct sums of irreducible zerononzero patterns, one of which is not inertially arbitrary. Furthermore, for these inertially arbitrary zero-nonzero patterns, it is shown that a superpattern need not be inertially arbitrary, these zero-nonzero patterns do not allow all possible spectra, and there are no inertially arbitrary sign patterns having these zero-nonzero patterns.