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Geometry and Holonomy
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Parallel Transport

VE(s) = O(v(s))"a V"



V=0,
Parallel Transport = Covariant Derivative = Connection




Riemannian Geometry = Parallel Transport + Preservation of Lengths

UV (9agV (8)*V(8)?) = UM|(V0ugag) |V (5)*V (s)?




Riemannian Geometry = Parallel Transport + Preservation of Lengths

d

S

(gaﬁV(S)&V(S)ﬁ) = Ut (V,ugcxﬁ)

V(s)*V(s)? =0

everywhere

% must assume that [ s

symmetric under the exchange
of the two lower indices.

(E?SQAH + Ougrg — aigﬁﬁ)

OV 4+ T85V7




Riemannian Geometry = Parallel Transport + Preservation of Lengths

d
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(908V (£)°V(9)7) = UM|(Vugap) V()*V(s)” = 0

=0 everywhere

VH(s) = O(v(s)HHV®
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OTIdO — I, dxd Identity matrix



Riemannian Geometry = Parallel Transport + Preservation of Lengths

d

S

(908V (£)°V(9)7) = UM|(Vugap) V()*V(s)” = 0

=0 everywhere

VE(s) = O(v(s))" aV*"

a_ b

d
V=" V%el
a=1 Juv = 5{1-5'5,[;,61;

orthonormal frame = “vielbein”
d Gab — ‘5ab
W#_ = Z Wale Eﬁeg — 5;

a=1

==

Va(s) = O(v(s)) V"



Loops

V%= 0(y(1))%,V* > 9a0% jO° ; = (0"10) 45 = I¢
a



Collection of rotation elements O(-y(1)) along closed loops
starting and ending at the same point form a group. Each loop
rotates a vector and doing it twice in succession defines

a multiplication



Holonomy Groups: Collection of all O(~(1)) ‘s from
closed loops with a base point; different choice of the
base point gives a conjugation so that the group remain
Isomorphic to each other.




Holonomy Groups: Collection of all O(~(1)) ‘s from
closed loops with a base point; different choice of the
base point gives a conjugation so that the group remain
Isomorphic to each other.

T
Hy = O15,H1012 (12 depends on path chosen between 1 and 2
but the holonomy groups themselves are insensitive.




Riemannian Geometry ~ Holonomy Group = SO(d)

“Vielbein” and “spin connections” play special roles
since they are the natural representation of SO holonomy

V;;__Vﬂ — S;LVG —I‘ wﬂab Vb

ViWa = 0uWa Hw,o” Wi

SO(d) valued 1-form

V=% veel wpab + “-",uba =0

a=1
4 de® + wl A el =0
Wﬂ-: EIW{; C’«g f 1

“ dwab—l—wa‘ff\w I}:ERQ

b dzt A dz”



Example of Reduce Holonomy: Kaehler Geometry
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What to expect from
complex manifolds?

&

Aay z:m—l—zy




Aa—y z2=x 4 1y
2
E(l:l:iJ)} =%(1:}:M)
projections f ﬁj ’uv
9
" Oz
o 1, ra1 1, .. [ .0
B 5(1 —1J) [a] = 5(1 —iJ) {_ES_J
9 1, . fe)_ 1, [.8



i 1 0 :
{adm Cm = 1,...,df2} = 5(1 —iJ) {a— o= 1,...}d} holomorphic
Z

:L»(I

{ainfm:l:---:fi/Q}:%(1+1J){8¥;:a:1?.“,d} anti-holomorphic
o



Emulate complex vector space ¢%/2

90 degree rotation: J#,J, = —§",

= almost complex structure

lengths preserved: J¥,J" g9 = gag

= Hermiticity

robust under parallel transport: V.J = O

= integrability + Kaehler

metric-independent: metric-dependent
the existence of z"?



“multiplication by £% ” should be constant : VJ —= Q

= integrability + Kaehler

metric-independent metric-dependent
[A™ 8, B"0n] = C*6y, 0 = d (JupdzH A dz¥)

[A™ 0y, B"05] = C*oy,



The integrability condition can be formulated as vanishing of

N (V,W) = Re((1 —iJ)[(1L +iJ)V, (1 +iJ)W])

for arbitrary pair of vectors V and W.
This defines the Nijenhuis tensor as

(N = (dz®, Ny (8, 00)) = 1, 050, { = 1, 9157 f

With the metric connection [ , the partial derivatives may
be covariantized, so that y7 j — () implies integrability.

(NDw = 1V g i = 1, Vg f|= 0




Kaehler Condition:
Compatibility of (Anti)Holomorphic Decomposition with Metric

ym % W
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Kaehler Condition: U(d/2) Holonomy Group

vm o, U(’T)mkvm m 0

82??1
0d/2 _, cd/2




Kaehler Condition: U(d/2) Holonomy Group

M7 £ 0
mo__
— | k=0
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VTH s U(ﬂf’)mkv?n
od/2 _, /2

RmE;{J@ 7 0
Rmk;nrj =0
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Reduced Holonomy Group = Existence of Parallel Tensor(s)

GL(d,R)
Vg=20

Riemann SO(d,R)



Reduced Holonomy Group = Existence of Parallel Tensor(s)

GL(d,R)

Vg=20

Riemann SO(d,R)

VJ =0

Kaehler U(d/2)



Reduced Holonomy Group = Existence of Parallel Tensor(s)

symplectic 2-form
GL(d,R) o — o > Sp(d/2)
v = Symplectic

Vg=20

Riemann SO(d,R)

VJ =0

Kaehler U(d/2)



Reduced Holonomy Group = Existence of Parallel Tensor(s)

symplectic 2-form
GL(d,R) o @ — g > Sp(d/2)
v = Symplectic

Vg=20

Riemann SO(d,R)

VJ =0

holomorphic symplectic
Kaehler U(d/2) » Sp(d/4)

vw(20) — o

HyperKaehler



Reduced Holonomy Group = Existence of Parallel Tensor(s)

symplectic 2-form
GL(d,R) o @ — g > Sp(d/2)
v = Symplectic

Vg=20

Riemann SO(d,R)

VJ =0
holomorphic symplectic
Kaehler U(d/2) 2.0 » Sp(d/4)
V==, =0 HyperKaehler
vQ(d/20) =g

Calabi-Yau SU(d/2)



Reduced Holonomy Group = Existence of Parallel Tensor(s)

symplectic 2-form
GL(d,R) o @ — g > Sp(d/2)
v = Symplectic

Vg=20

Riemann SO(d,R)

w(?0) = Jo +iJ3
VJ=0

holomorphic symplectic
Kaehler U(d/2) »  Sp(d/4)

vw(20) — o

HyperKaehler
vQ(d/20) =g

Calabi-Yau SU(d/2)



Supersymmetry, Spinors, and Calabi-Yau

Simple Compactification with unbroken SUSY::

tri 3+1 ] ' §)
Jou1’ = ??1-;“ dXdXT 4|g$ dyt dy

0 =YYW, = Djegy1 = ieg11
0= Wy = Dyegt1

€9+1 = €341 ® N+ c.c

1
Dy = 0y + Z"-‘-’gab’]"ab



0=25"YYw, = 0= Duy

0

v,u [WT'}/{I]_'YGQ U f}'&nn]

€941 = €341 @ N+ c.c

1
Dy = 0y + E{‘Juab’}'ab

D“ VS, vlﬂ_ is a matter of notational convention.
Both denote the covariant derivative
with respect to the same connection.
The former acts on spinors and the
latter acts on tensors.
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Parallel Spinors

Dn =20

» Parallel Tensors

Juw = inlyum VJ =0
(n'n = 1)

v

Reduced Holonomy U(d/2):
Kaehler Manifold



Parallel Spinors n » Parallel Tensors
Dn =20 T = wn gy =0
(n'n = 1)

v

Reduced Holonomy U(d/2):
Kaehler Manifold

J,uaga'ﬁjyﬁ = g - J;LQJ(IU — _{55}

from Fierz Indentity and nTn =1



» Parallel Tensors

Parallel Spinors

Dn =20 T ="Ywn gy =g

(n'n =1)

VT '1
0=mn"[Dy,Dv]n= —3:1

v

Reduced Holonomy U(d/2):
Kaehler Manifold

Ra-b,[wJ ab



Parallel Spinors

Dn =20

v

0=n'[Dy,D)]n= —i

» Parallel Tensors

Juw = inlyum VJ =0
(n'n = 1)

v

Reduced Holonomy U(d/2):
Kaehler Manifold

1

b
ZRab;wJa

v

SuU(d/2) Holonomy:
Calabi-Yau Manifold



Rapead ® = 3R, [bed]

7% + Ryepg ™ + RagepJ® = 2

]
@)

Racbd J cd

X Jaf(RiCCi)fb

Calabi-Yau = SU(d/2) Holonomy = Ricci Flat Kaehler



Alternatively

2, I
(d/2,0) — N V1 Vks " "}"fv‘d/?n

This reduces the holonomy group from U(d/2) to SU(d/3) because
Q(d/2.0) _, (pettr) ©(4/2,0)

under any holonomy U in U(d/2). The determinant of any element
of the U(d/2) holonomy group has to be unit, which means that we
actually have SU(d/2) holonomy.



Cohomologies (More about this from deWolfe later in this school)

d=4
[dimHPI(K3 = CY?2)] =

/ |

0(d/2,0)

d=6 0
[dimHP9(CY3)] =




(d=6)

The number of metric deformation preserving the same SUSY

= p11 4 2421 geometric moduli fields

add moduli from other gravity multiplet fields

2Rt + p21 4+ 1)

add moduli from R-R sector tensor fields

a(hbY 4 p21 4 1)



d

8

[dimHPI(CY 4)] =

0 (4,0)

[dimHPY(HK?2)] =




Flux and Backreaction

tri 1 ) ’ 6
93 iaizg — n%—l— dXtdxT + gigl’) dydy”

Ricci Flat = Solution to
empty Einstein Equation

Can we ignore other bosonic field strengths
which can contribute to the energy-momentum tensor ?



- 1 T 1
Liype 11 = v/ —ge~*® R—§|H3|2+4(7¢’)2 - V—QZEWpR—j}mmF
- P

string __ _3+1 ; : (6) —
Jot1 =My dX'dX? + gudy’dy” vgt B
Fitt =0

1 /
Lheterotic = V _QE_QqJ [R — §|H|2 + 4(V¢’)2 — % (t?"FQ — t?‘RQJ}

tri , . 6
g9 = pFlaxiaxd + ofddytdy’ | ve=o
H =0
F~R




(1) Can we turn on various tensor field strengths while
maintaining vacuum condition (= minimum energy) ?



(1) Can we turn on various tensor field strengths while
maintaining vacuum condition (= minimum energy) ?

Yes.
Guaranteed if the field strengths involve topological flux.
Also give (partial) stabilization of moduli fields.

v

\/ moduli directions



(1) Can we turn on various tensor field strengths while
maintaining vacuum condition (= minimum energy) ?

Yes.
Guaranteed if the field strengths involve topological flux

(2) Can we turn on various tensor field strengths
while maintaining unbroken supersymmetries ?



(1) Can we turn on various tensor field strengths while
maintaining vacuum condition (= minimum energy) ?

Yes.
Guaranteed if the field strengths involve topological flux

(2) Can we turn on various tensor field strengths
while maintaining unbroken supersymmetries ?

Yes.
Provided that the geometry can backreact and reshape
the local form of the flux to be of a definite “chiral” type.



Example 1: IIB on Calabi-Yau with F_3 and H_3 flux

VTrV7T G3|*>  |Fs|?

Einstein __ _/_ _ _
Lris™ =V =G\ Re = S T 5 (Imr) T 2

G3 = F3 — 7H3
F5 = *F5

T = C‘g—l—z’e_cb



Topological Flux in CY3 Background:

F
$ Ps

9{IH3 — (2n)2dK;

(QTT)QD{;NI

Ignoring backreactions, how can we minimize energy
incurred by such topological (thus quantized) fluxes?

E ~

e_%fd 6\/96(CY3) |G3|? = G3 A +G
> Y 96 31 — ov3 3 3



GK\G el Gﬁ@(_l_)—@(_)
cyz 3773 Ef?:}f33(3 3 )

G§P) = (G3 Fi%G3) /2

+GE) = +iG§H)

= —i G A (G — 2G5
ECYS 3N (G3 37)

—i G3NG 2'/ ¢ nG)
“Joys 3 3 H 2 cys S 3

metric independent metric dependent
and nonnegative




This quick and dirty computation produces
an effective potential for Calabi-Yau metrics

0 < Vo = 2@/ G AGH

CY3

An approximate vacuum can be found if the metric can be
chosen such that the topological F_3 and H_3 potentials

combines (with axi-dilaton) to make imaginary anti-self-dual
part of G_3 vanishes.

But what if we have chosen to decompose it differently and
obtained a potential in terms of imaginary self-dual part of G_3?



Backreaction of IIB Compactification to F_3 and H_3 flux

nstei = VTVT G3|®  |Fs|®
EEmstem — G | R~ — - .
IIB G o(Imm)2  2(Imr) 2
1 ~
- x (CaNG3 NG
dilmr * (G4 G3 N Ga)
F5:dC4—%OQﬂH3—|—%F3I\BQ Gz = F3—TH3
F3 =dCs
F5 = *FS I iB
3= 2

dFs = —F3 NH3z + - T=Co+ie®



When H_3 and F_3 has no explicit electric or magnetic sources,
the string metric, after backreaction, is still simple:

bre 341 yigvi 4 —2A(y) (6

some Calabi-Yau

whose warp factor is related to F_5 as,

F5 = (1 + %o41) [de®* @ AdXO ndx? A dX? A dX3

2
U2, 4A) — ,—6A(y) ]G3l
2ImTt



Net effect of these backreactions to G_3 is to modifiy the energy
functional of the compactification from (with constant axi-dilaton)

E ~ G2 A *G
Y3 3 3

= fws G3AGs+2i [ S RINE R

= Vetr



Net effect of these backreactions to G_3 is to modifiy the energy
functional of the compactification from (with constant axi-dilaton)

E ~ G2 A *G
Y3 3 3

— s ~ |0 (=) o A=)
= gfwsag,,\ag +23/GY3G3 AGS

to

E:4A

cCY3 Imr

. 41,1 -
= [i e G3 A @:g—)]

e

G3 A x*G3 + iG3 A (_;3]

Y3 ImTt

~ et [ () “@(_)]
cy3Imr | 2 3

= Vefr



Minimization of the energy functional can be done in 2 steps:

. 4A
o=6/ ¥ ng A Gg—)}
JCY3 ImT
4 A 4A
L» 0=d|—GS | =d|—=G§”
ImT ImT
Therefore,
cAA

G’g—} IS a harmonic representative of
I'mT the cohomology H3(CY3)

And the failure of minimizing the energy functional can be encoded
In the finite number of Calabi-Yau moduli.



H> :@ H(Z1) EB o H©3)

|

oAA e

Imrt

[G3] mustbelong to H21) o y(0.3)

[dimH»9(CY3)]=| 1




lIB Flux compactifications are most widely
used for application to real world so far, including

e Explicit solutions (Klebanov-Strassler)

* General form of low energy 4D theory with
Gukov-Vafa-Witten superpotential + Nonperturbative corrections

» Complete fixing of moduli (............ )

e Construction of de Sitter vacua (KKLT)

 SUSY breaking phenomenology (Anomaly-Gravity Mediation Mixed)

* Inflationary cosmology (KKLMMT, DBI, D3-D7,....)

» Hierarchy generating geometry (Stringy realization of Randall-Sundrum I)
« Existence of Landscape (Stable and Semistable Vacua)

Some of which will be covered by Oliver’s lecture next week.



Example 2: Flux Compactification of M Theory to 2+1 Dimensions
K.Becker+M.Becker 1996

Gro41 = H ?PW)nog1 + HY3(y)gs(w)

\

Calabi-Yau 4-fold

1 -
G4 = dC3 = —d (E) vola41 + G4 (y)

N\

Primitive (2,2) Flux

d* G4 = Ga A Gq — 15Xg(R) + M2 sources



1 2,2
Xg = (trR“—— trR?) )
8~ 192(2m)4 2

volg AVaH = G"™ A G™ — 19Xg(Rg) + S0

v

/ G AG™ 4 Nyyo = ES/ Xg Tadpole Condition
ﬂffg ﬂffg



The energy functional of the compactification is similar to
that of 1IB on CY3

8w/d8 CY4) |Go|2 = Ga A +G
’y\/94( ) |Gyl g CaN*Ga

GI\@:—'/ Ga N (G — G5
cys N4 tcy44(4 a’)

_ ~ : (=) A, A=)
—~ z/cy4G4AG4—|—2zfcy4G4 A G



Disallowed part of G_4 is then H(?’ﬂl) [ H(153) D [J A H(lal)]

1
0 0
0 %(’1 0
0 hzzl h2,1 0
[dimHPI(CY4)] = | 1] K32 h2:2 11
0 h ! h?1 0
0 hil 0
0 0
i 1

Supersymmetry is more restrictive and allows only (2,2) “primitive” part.




Supersymmetry is actually more restrictive:
(2+1 Minkowski Assumed)

(2,2) : Gm# - FA B{?.’_?dyAddeyc dyD D D&'Wcom'pie:ﬁ =0

o _ AC
Primitivity : 0= FA Ht‘ffﬁj “— DmWEkaehler = 0

Wcom,pfem(zg) — /‘M Gini A 9(4,0)(3{15)
o | 8

(Haack+Louis)

Wi aehter(p™) = ]M G A T(™) A J(p™)
8



Flux chooses a Calabi-Yau, and gravity backreacts and dresses the Calabi-Yau




Addendum 1:

Complete classification of the holonomy group is known. Apart from
those shown, i.e., generic SO(d), Kaehler U(d/2)=U(1)xSU(d/2),
Calabi-Yau SU(d/2), symplectic Sp(d/2), and hyperKaehler Sp(d/4),
we also have quarternionic Sp(1)x Sp(d/4).

There are two more special cases. A 7-manifold can have

G_2 holonomy, and a 8-manifold can have Spin(7) holonomy.
However, the other exceptional groups of F 4, E 6,E 7, E_8

do not appear as a holonomy group associated with Levi-Civita
connection (=the connection associated with Christoffel symbols).

Addendum 2;

D, vs. V is a matter of notational convention. Both denote

the covariant derivative with respect to the same connection.

The former notation is used on spinors exclusively. That is,

we write Dyn and Viudap but the same connection Wyab 1S used.



Excursion: Primitivity of Differential Form in Complex Geometry
(from an Appendix of Gukov, Vafa, and Witten)



Outline: Part Il

Energetics of Heterotic Flux Compactification
Strominger System and Heterotic Flux as a Torsion
A Supersymmetric Solution to Heterotic Flux Compactification

Global Issues: Index Counting, Smoothness, etc



Energetics of Heterotic Flux Compactification

1 /
Lheterotic = Vv _QE_2¢ R — §|H|2 + 4("’7(13)2 — &I (t?‘Fz — t?"Rz)]

/

with dH = % (trF A F —trRA R)

we will ignore these
for a while

stri 1 ; i 6
g5iving = p3HLaxtaxd + i) dytdy”



Assume existence of a complex structure J ,
and try to see heuristically what would be the analog of
the compactification energy functional in the Heterotic case.

Cardoso, Curio, Dall’Agatha, Luest, 2003
f
E ~ fdyﬁq!—ge_m [ «ﬂ(‘?’ﬁl})2 + H2 - Zt&“FQ ~+ -
Generally one can decompose the square of the gauge field strength

trF? ~ —x (JAtrF AF) 4+ |F2012 4 c|J. F|?

So that the last two terms in the energy functional are organized into

/dye

J’

H N+ H — —J AtrE A F 4+ nonnegative




!
H A «H — %J AtrE' A F' 4+ nonnegative

1
_/E—zq:
2

1 .
— 5/3_2¢H A+H — 2¢ 2% J A dH + nonnegative

1
= §/€_2¢H A xH — 2d(e—2®J) A H + total derivative + nonnegtive
= %fe—”‘ (H+ e?® 5 d(e 2®J)) A (H + 2@ d(e >P0)) + -+
Assuming that the rest of the terms also combine into total derivatives

and complete squares, we find that minimization of energy functional
requires,



Terms neglected above are those involving dilaton and the metric only,

And these can also be made into complete squares. Vanishing of these
sgaured terms demand that

0=N()), = Jfa[ﬁJy]ﬂ - Jﬁa[@Juf

= Nijenhuis tensor

justifying the computation above after assuming a complex
structure, and also

0=d(e2PATAT) « 0=V*(e2%],7)

which is also known as the conformal balancing condition.



Inclusion of R*2 term would have given constraints

R = R, J-R=0

which would have implies again a Ricci flat metric, except that
these equations are not trustworthy because it came from a

higher order terms. We will see later how this is precisely fixed
by supersymmetry.



0=V*(e*PJyp)

Gradient of Dilaton ~ Derivative of J

H=—’®x«d (€_2¢J)

Flux ~ Gradient of Dilaton + Derivative of J

Heterotic flux compactification
e
H#0 dJ 7& 0 gives complex 6-manifolds which



Strominger System and Heterotic Flux as a Torsion

We will start with the nontrivial observation by Strominger that
in string frame, the warp factor is absent when SUSY is required.

tri 1 swiawi o | (6
Jou1’ = nf;“ dXdXT 4|8 dyt dy

The backreaction of the geometry to the flux will be all encoded
in the geometry of the six-dimensional internal manifold which is
no longer Calabi-Yau



Supersymmetric Compactification of Heterotic Superstring without H
0 =262V W; = fiegq1 = diegt1

0= 62" Wy = Duegyq

1
D‘u = 8‘“, + Zwﬁaﬁb'}"ab

0= 5§USV}\ =0-€941



Supersymmetric Compactification of Heterotic Superstring with H

0 =262V W; = fiegq1 = diegt1

0= wy, = (Dy+

AH ;zcr,-'_"i’}’“'ﬁ + ByuH a_ﬁq.r"faﬁrr + EOu® + F aaq:”}“&_u

o

0 =57V A =|(GY*0a® + CHapyy™7) €941

A.B,C,E, F,G definite constants

simplificiation is possible by making use of the gravitino variation
and dilatino variations together.

€0+1



Supersymmetric Compactification with H

0= {SEUSYW” — (D“ + AHMCE,ETQB + BTH-H&;S'?HK&IST e Eaﬂd} + Fa“q:)"}"a;t) €941

0 =57V \ = (Gy*0a® + CHupyv™7) €941

0= 5;_(5“5}; (CWV, — ByuA)

0 = (Dy + AHyuapy* + E0u® + F'0%®yay) €941

Rescale €941 by e b®

0= (D,u- + AH#ﬂﬁ’yaﬁ B F’@aqi”}fg#) Eg.|.1




Supersymmetric Compactification with H

0= (DPB + AH,{L{J:,S'YHJS + Ffaacbf?'ﬂﬁﬁ} Eg—}—l
!

This piece can be removed by a
conformal transformation of the metric
by an exponentiated dilaton factor.

However, the nontrivial fact here is that
this piece disappears already in the string

=1
A4 /8 frame.

v

1 3\ -~
0= (D,ur + nga,B'Tad) €9+1



Supersymmetric Compactification with H

0= (D,u,_}_ H;Lcrﬁ’]" ‘{3) €041

0

€941 — €341 Q7N + c.c.

(+}

i

D,u,+

ﬂb"f

ab __ 1
_aﬂ-|—4

1 b
(w;mb -+ EH;mb> o

the connection is
twisted by a torsion



Wyab T+ Wypa = 0

— o 4D =

de® 4+ w'y Aeb =0

y beydy‘”’ Ady” #= 0

1
dw?y + ¥ Aw!y = SRy dat A da”

1
g’ ¢ ¢ f — 5 ?_I_)bp:ud:ﬂﬂ A d$y

dwyyy + Wiy AWy =



Despite this twist, the metric is still covariantly constant:

w—w-+ H/2

; 1 1 .
Vp,g”'ﬁ - Vgﬂ_]gaﬁ — vﬁ-gﬁﬁ + EH ?H.(Ig“;'ﬁ + EH F:rﬂ_lgagfl“.f

1
— N + 5 (\Hﬁpﬂ; + Ha_u.,-?) =040

=0 by antisymmetric nature of H

In particular, this allows raising and lowering of indices by metric



0 =65UYw, = 0=Diy

€941 = €341 @ N + c.c.

D!(«L+) = O+ "-‘*’Hab’fab+ Hﬂﬂbf}’ “
1 +),ab
= O+ wpap"

D“ VS, vlﬂ_ is a matter of notational convention.
Both denote the covariant derivative
with respect to the same connection.
The former acts on spinors and the
latter acts on tensors.

0= VH) n'Ya1Yaz -+ Yann



Vi (n'y..m) a5t (n'y..n) + 7' {’}'....,. %uﬁig)’}"jd] 4

(DﬁJr)ﬂ)T’:f---n + nT’Y---DﬁJr)ﬂ

=0
1
0, S
_ 1@ d

= J%ed (777" = 7*1%*7a)

_ 1.
~ 4 ued (2687 = 2637)

(+)
wpa.d ,},d




Parallel Spinors n » Parallel Tensors
D)y =0 Juw =0 vwn o) 7 — o
(n'n = 1)

v

Reduced Holonomy U(d/2):
—Kaehler-Manifold—



Parallel Spinors n » Parallel Tensors
D)y =0 Jpw 1-= WY () 7 — g
(n'n=1)

v

Reduced Holonomy U(d/2):
—Kaehler-Manifold—

J,uaga'ﬁjyﬁ = g - J;L&eru — _55}

from Fierz Indentity and ﬂTn =1



Is J an integrable complex strujcture ?
No longer an automatic consequence of covariantly constant J !

?
0= (NG, = Jﬁv[BJ] — J,PV 5] P

1 . -1 :
0=V§0,% = VpJ,* + SHg%J, + SH'  J5°

Q(NJ)&IB’}’ — _H&ﬁqf + BJ[;LJ;SV v v

Nj; =0 is demonstrated by making use of dilatino variation,
which we will refer to Strominger’s original work.



Parallel Spinors n » Parallel Tensors
D)y =0 Juw =M (+) 7 — o
(n'n = 1)

v

Reduced Holonomy U(d/2):
—Kaehler-Manifold—

v

abuv

v

Reduced Holonomy SU(d/2):
“Calabi-Yau



— p(+) qab _ (+)  jab (+) jab (+) jab
0= Rabcd‘}a T SRa[bcd] T+ Racbd'jﬂ + Radcb’jﬂ

_ (+) |yab (+) 7cd
o 3Ra [bed] I+ 2Racbd“}r

#= 0 x Jﬂf(Riccé)}j)

\SU(d/Z) Holonomy with Torsion\



SU(3) Holonomy E(I;;?iJCd =0

Ricci Scalar with Torsion

l /

1 1
a ab a fb
Bhyed = B = 5VieH " + ZHfH

Habc'-}rbc — ngbd)

v

1
0 =R+ 5H2 +6V2d — 8(VP)?

A traced form of a gravity equation, showing how the geometry
reacts to energy-momentum tensor due to fluxes.



Likewise
2. T
Q(4/2:0) = M Tk Vho """ Vhy oM

o(H)o(d/2,0) — g



A General Solution for H:



A General Solution for H: Need to invert the condition

I

1 1
0=viPis, = Vads, + EHMIBJ)‘,}, + SHyon A



A General Solution for H: Need to invert the condition

1 Ao 1L A
0=viPis, = Vads, + SHyap + SHaanJp
J = %J_ME dz™ A dzF  Hermiticity + Integrability

1 1
0= ViJmn+ §H Memd 5 + EHAkﬁJm%



A General Solution for H: Need to invert the condition

1 N
0=V g, = Valg, + SHrapd™ + SHaardg"

I
J =27 o da™AdZh
— E mk z T ANdz
1 A o L A
0= ViJma+ EH}.ﬁch 7T EHﬁaﬁcﬁJm
l antisymmetrize indices to decouple [

1 1 .
O =9 Jm)n — i Hiifkm) + i Himkn = eI — Higmn



A General Solution for H: Need to invert the condition

1 Ao L A
0=V Jg, = Vadg, + SHyap® + SHaarJs
_1 m —k
J = EJT”'E dz"" Ndz

1 1
0= Vidmn+ §H}.ﬁcmﬂﬁ + EHAkﬁJm%

l antisymmetrize indices to decouple [

1 1 :
0= a[kJ1?1]ﬁ + tE‘J_I*ﬁ,[ﬁc-m] - Eﬁﬂr[mk]*r_:t — a[fc‘}m]ﬁ + tJ'!T_I[.I\:’rrl]-ﬁ

|

_ _ Y
H =i(8 — 8)J orequivalently Hopy = —3J,"J5"J, V[, ],



How to relate the dilaton to H ?

0= 5:? USY}; = (G’}’aaaq) +CH aﬁq'}'am) €941



How to relate the dilaton to H ?

0= 5:? USY}; = (G’}‘aa{zq) +CH aﬁ'y'}'am) €941

Eg_l_l m— £3_|_1 X n + c.C.

0 = (7*0a® + C'Hop ™) 4



How to relate the dilaton to H ?

0= 5:? USY}; = (G’}’aaaq) +CH aﬁq'}'am) €941

l Eg_l_l m— £3_|_1 X n + c.C.
_ 0" ! o3y
0 = (7*0a® + C'Hop ™) 4

J constract with nT’}’p; and take the imaginary part

0 =" ([7u, 7100 ® + C"Ho g {y, v*7} ) m



How to relate the dilaton to H ?

0= 5:? USY}; = (G’}‘aa{zq) +CH aﬁ'y'}'am) €941
l Eg_l_l m— £3_|_1 X n + c.C.

0 = (7*0a® + C'Hop ™) 4

J constract with nT’}’p; and take the imaginary part

0 =" ([7u, 7100 ® + C"Ho g {y, v*7} ) m

= 2510y — 26} 42N 4 2574



How to relate the dilaton to H ?

0= 5:? USY}; = (G’}‘aa{zq) +CH aﬁ'y'}'am) €941
l Eg_l_l m— £3_|_1 X n + c.C.

0 = (7*0a® + C'Hop ™) 4

J constract with nT’}’p; and take the imaginary part

0 =" ([7u, 7100 ® + C"Ho g {y, v*7} ) m

l = 2510y — 26} 42N 4 2574

— 2 3
0= J,°Va® + CJg, H?



How to relate the dilaton to H ?

0= 5:? USYA — (G’}‘aa{zcb + GH aﬁ’y'}'am) €9+1
l Eg_l_l m— £3_|_1 X n + c.C.

0= ("faaqu) + O!Haﬁf;ﬂ’aﬁ’}f) n

J constract with nT’m and take the imaginary part

0 =" ([7u, 7100 ® + C"Ho g {y, v*7} ) m

l = 2510y — 26} 42N 4 2574

~ 1
0= J, Va® + CgyH, Va® = Z"TMJA@HW)“




Summary of the Strominger System for Heterotic Flux Compactification:
1 /
Lheterotic = V —Ge %% |R - §H2 + 4(V¢')2 — % (tTFz — fTR%_))]

o
dH = E(—tT‘R(_) N R(_} + trF' A F) — 5fiﬂcbrancs

Got1 =m3+1 1+ 96(¥) no warp factor in string frame !

|

SU(3) holonomy with torsion

v+ (1.1) — g

v(+H)0B.0) — g




Integrable complex structure

0= N(X,Y) = Re{(1+i))[(1—i))X,(1—i))Y]}

Hermitian metric

9(X,Y) =g(JX,JY)

Conformal balancing with Dilaton

Ozd(e_z‘r’;\.);\.))



General form of the solution:
1 3 y
_Hafﬁ“r — __J #Jﬁf J v[wjv%]

1 v 3
va,q) — ZJH-VJ}.QH’MU 4 uuv[ ]




General form of the solution:

1 3 PR
EHaﬁ“r — _EJﬂﬁJ_ﬁf Sy "V udua

1 . 3
Va® = 2 Ju Iy H" = 20"V 00,

Combining the two reproduce the energy minimizing condition:

H = —e?® xd (5_2$J) solving E.O.M. d (E_ZCDH) =0




General form of the solution:

1 3 PR
EH&BT — _Ejaﬂjﬂf J’}* v[;;‘jrzk]

1 N
Va® = ZJH-VJAQHFW — Zﬁwv[ujuu]

Combining the two reproduce the energy minimizing condition:

H = —e?® xd (E_Q{DJ) solving E.O.M. d (E_ZCDH) =0

Finally the Bianchi indentity must be solved in favor of J
!

8
dH:Z(—t?"R(_)AR(_)—|—t?“Ff\F>—|—---




Solutions are difficult to find.

So far, only one family of reasonably explicit
and smooth solutions is found, in 2006.

This family of solutions has been expected
based on U-duality to F-theory for several years.



A smooth and supersymmetric solution
to heterotic flux compactification

0 =dz+ a(K3)

>M6

T

v
rescaled by €2

K3 I 1

[dimHP9(K3)]=|[1 20

do



well-defined holomorphic bundle

J = EQQDJK'_% -+ Eﬁ' A6
< 0 = 2m\/a’ (dz + )

96 = ¢*®gxc3 +H 16/ i3 € H(K3,7)
base fibre conformally balanced metric
P = Pg3
do N Jg3 =0

H ~ —e2®x( (e_zcbﬁ' A E)
~ (0 —0)J

Hermitian YM bundle

FANJg3=0
FASQ3=0




J = EQQDJK'_J} + %6’ A6

H o _o2® 20, 7
96282¢9K3+|9[2 e *d(e 9/\9)

~ (0 —0)J
base fibre
The Bianchi ldentity
!
dH = 2109 (e*®) Jxz+ -+ = &Z (—trRA R+ trF A F)

IS now a nonlinear partial differential equation for dilaton



f
dH = %(-wRaR+anF)

|

!
f Jhde/ Jh[i(—tTRﬂR-I-trFf\F)
Me e 4

!

= ondn %(—terﬁR—FtrFﬂF)

Mg 2

o/
volr2 [ 3 (=trRAR+trF A F)

[ 1482 = [ p1(53)] - [—Sp1(Gauge)|

=24 nonnegative by SUSY



Fu and Yau states that the Bianchi identity

f
%(—trﬁtf\ R4 trF A F)

dH =

can be solved for a smooth dilaton, when the tadpole condition

[{{3Idﬁ|2 — [_%PI(KE’)] — [—%pl(Gauge)

Is satisfied, provided that the base K3 is sufficiently large.



O7 + 4D7
Recall IIB/F Theory on

R3 1>< ) TQ/ZQ

Gg — Ffipv + 'THE';MJ

K35



U-Dual Story: Heterotic < Type | <F/IIB



lIB on TQ/ZQ X K3 with H 3 and F_3 Fluxes
= QOrientifold Limit of F-Theory with Flux on K3 X K3

T-duality on T2

v

Type | on T2 fibered over K3 with F_3 Fluxes

S-duality

Heterotic on T2 fibered over K3 with H Fluxes




Duality Dictionary for Branes:

[IB Type |
O7-D7’s on K3 09-D9’s
. , 2
mobile D3’s D5o0n 1’
the other D7’s the other D5’s

D1 instantons
D3 instantons

D5 instantons

Heterotic
gauge bundle
fivebranes on T2
the other fivebranes

worldsheet instantons

fivebrane instantons



Calibrating fivebranes under Flux
& application to BBFTY Solution

Mg




Usual calibration in a Calabi-Yau background without Flux
= volume minimization to a specific topological bound

0<Q2 = /Zmz _ /z*(Q) with  dQ = 0
A=) = [T17() - T5(R) = [ Bio*(d2) =0
a topological bound & BPS bound
supercharge

energy (per unit Minkowski volume)









Ez — energy of wrapped fivebrane 2_ X R3TL under Flux 2

| /Z €_2¢v052 the rest mass per unit 3-volume

_ [Z* (1:;»2) the magnetic potential energy per unit 3-volume:
* 0=d (28_2¢ %941 H) = ddBg = (ddB5) N volz 41

l

By = e 2%

0< &y = /Z e=2®y0ly — /z* (e2%)

not closed,;
may not be topological



Is £ — () a supersymmetry condition ? Yes !

It follows from adapting the generalized calibration for M5 branes
Gutowski,Papadopoulos & Townsend, 1999

A®/3a22, + e 2%/3Gy
/322, 4 2% 3g¢ 4 ¢2%/3,

G1041

*10_|_1d03 —_ déﬁ — déﬁ

Fus = /z voly "+ Avolg {9+ - / = x R¥1|7 () = M5 Awoll 4

/N |

E—QK’D/'BHDIE E—4¢*;’3U0£g+1 (Bz + dA) ﬁvﬂ'-'.'3+1



calibrated by

15 > [ (@ = e 2%ehye — voll ;- C)
i

d$) = O by SusY fundamental 2-form.J for 96

Q)2 =g® - [ =" () =&x >0



BBFTY Geometry has

_ 7 _
96 = > Pgr3 +10/? e 2$J:JK3+EE 2Po N0

_ LT - & ,
SZ E O «— fze 2¢)UOE—[Z (56 Qq}ghﬂ) 2]2 (J;{gh)

closed/
topological

i G L bound
similar to usual calibration, except that the calibrating

2-form is degenerate in the full manifold

>*(Jg3) #0

>*(Jg3) =0



f S*(Jx3) = / (meX)* (Jxc3)

> Mg

0 =dz+ a(K3)

T
\ 4
rescaled by 2%
K 3 [ 1
0 0
dimHP9(K3)] = |1 20 1
[




A necessary condition: / Z’Uﬂf = /(W*Z)*(JKB)
T

>*(Jg3) =0

>*(Jg3) # 0

A

voly = \/|=*Q(20)2 4 |£* J|2
for any 4D hyperKaehler/Calabi-Yau

v

(ms2) _('.'2(2 9 =0

holomorphic embedding

% 2— is point-like in K3

2 IS a holomorphic surface in K3



>*(Jg3)=0 T+ 2_ is point-like in K3

must wraps the fibre completely
Es- = 0O regardless of its position on K3
moduli space = K3

>*(Jg3) #0 mx2 is a holomorphic surface in K3

can be lifted into the full manifold only if
the restriction of the bundle to the 2-cycle is trivial

/ d6 =0
T 2
the no-winding lift gives T"2 worth of moduli space



Duality Dictionary for Branes:

[IB Type |
O7-D7’s on K3 09-D9’s
. , 2
mobile D3’s D5o0n 1’
the other D7’s the other D5’s

D1 instantons
D3 instantons

D5 instantons

Heterotic
gauge bundle
fivebranes on T2
the other fivebranes

worldsheet instantons

fivebrane instantons



IIB/F side o O7 + 4D7

2
Z >) T</Z>
“ D3: transverse to all,
mobile in K3

Other D7’s wrapping a cycle in K3,
Fills TA2 and carries Wilson lines




heterotic side

fivebrane wrapping T/2,
0 =dz+ a(K3) pointlike and mobile in K3

fivebranes wrappi
a cycle in K3



>*(Jg3)=0 Tx2- is point-like in K3

must wraps the fibre completely

Es~ = 0 regardless of its position on K3

moduli space = K3

= moduli space of D3

> fivebrane wrapping fibre TA2 completely




Note that the fibre T2 has a cyclic homotopy:
Each circle is Hopf fibred over a 2-cycle in K3,
as in S™1 fibered over S”2 giving rise to S*3/Z_n.

This is also related to the fact that the base K3 does
not represent a homology cycle either.

volpz ~ dO Ad = d (9 A dﬁ) — exact 4-form

The n-wrapped fivebrane is stable entirely due to a dynamical
reason: competition of tension energy and magnetic energy.

But, what about the tadpole condition?



dH = o (trRAR—trFAF) — 5fi’uebrane

?\A / dH = [af" (trRAR—trFAF) — 5}'?11}551"@?1&}

K3 K3



dH = o (trRAR—trFAF) — 5fi’uebrane

eoranc



dH =o' ({trRAR—trFAF) — O fivebrane

v

mwebrane

Ju

JNdH = J N
Mg

[Dﬁf (trRAR—trFAF) — afiﬂebrane]




dH = o (trRANR—trFAF) — 5fivebrane

mwebrane

v

A JInaH= [ I [/ (¢trR A R = trF A F) = 8 fjucbranc)

when the manifold is written as a T2 bundle over K3

v

1
o Jx3 |'f55'|2 + M fivebranes on T2| = p1(K3) — p1(Gauge Bundle on K3)




> *(Jg3) #0 72 is a holomorphic surface in K3

can be lifted into the full manifold only if
the restriction of the bundle to the 2-cycle is trivial

f d9 = 0
T 2

the no-winding lift gives [T*2 worth of moduli space

= Wilson lines of the other D7

fivebranes wrapping
a 2-cycle in K3 is
pointlike in fibre




SUSY requirement:

[

J’]’T*Z

2,0 __
QKS o

./K 3

[ 2]

l

(2,0)
NS253

Integral cohomology element

For insertion of one such fivebrane, we fix one “complex” moduli.

When this procedure is carried out maximally and fixed the
holomorphic 2-form completely, the resulting K3 is “attractive,”

saturating the bound r .1 (HQ(K&Z) N H1=1(K3,R)) < 20

#[ Complex Moduli from K3 ] < 20



IB/F side o 07 + 4D7

C > T2/ Z

“

Other D7’s wrapping a cycle in K3,
Fills TA2 and carries Wilson lines




Global Issues

4 Dimensional Gauge Spectra and Index Counting
Smooth Compactification, and Gauge Bundle
Gauge moduli and Geometric Moduli

Near Calabi-Yau Regime ?



Torsion, Torsion, and Gauge Zero Modes

1
¥ Dg(w; A)x + Eﬂabﬁ‘lbﬂx = F,v* (dilatino/gravitino)

7" Da(w + H/6; A)x
exists for F only
Eg@® EgorSO(32)«——— G=FB Qb H

/ l \ Stabilizer of Fp

Gauge Bundle Matter sector = Unbroken Gauge Group

¥*Dg(w + H/6)xH = 0 ”ya’Da(w—FH/ﬁ;AQ)XQ =0



There should be a single zero mode for XH

XQ zero mode counts the number of chiral matter fermions

Zero modes along X F estimates the gauge bundle moduli



Without Torsion,

v —_ > = €

With Torsion,

V' Dq(w + H/6)x1 =0

vtil_l_)ES'US}" =0

v

XH 7 €SUSY

1 a
Do(w+ H/6) = EE” (8??1 + i(“—*‘mab + Hipap/6)7 b)



Consider this:

(Y*Da(w + H/6))? =

after a little algebra with Dirac matrices

'Ta']f'hDan + Ta[Dch "}’hIDb

9% Do Dy, + 4 Da, 71Dy, + [ Da, Dy

" +H 1
v’( +Hf6}‘lv{(lw+ /6) + EHabc’}’tha + 'Tab[Dfl: Db]

minus the Laplacian with a torsion

144

abed f

. 2_ 1 (ga 1 (wtH/6
u (Habchfbc) 10 (VH ) ,},b-:: + gR({“‘ / )mab’}ﬁd




Similarly:

— (v*Da(w + H/6,A0))? =| —V(w™), 40)*V (w1, 40)a

{
+Va + S Fan™

L

1 1 1
Vig = —R — —H? — —dH yp.qy™c?
H 4 8 24 abed”Y



Comments on Index counting:

Generally, torsion can be understood as an innocuous continuous
deformation if the Dirac operator defines a Fredholm operator with gap.
The Index will be then determined by the metric and the gauge bundle
only. However, the metric backreact to torsion strongly, so we cannot
rely on old computations.

Explicit computation of index density with torsion have been carried out
largely in the context of 4D spacetime, where torsion terms are shown
to organize themselves into a total derivative. Peeters+Waldron 2000

Higher dimensional computation is available for the case of dH = 0

where the usual characteristic class form of index densities holds ;. romatos 1988:
provided that the curvature 2-form replace Bismut 1988

by the curvature 2-form of w + H

With dH #= 0 | the index densities are unlikely to be given by
the familiar characteristic classes, although we could anticipate

corrections by at most a total derivative.



“Minimal Embedding”

dH = 0
trRANR =trF AN F

Do we gain something in this special limit ?
For instance, take a look at

11,
Voy = —R— —H
=27 8

1
with an SU(3) holonomy condition 0 = R + 5H2 + 6V2d — 8(VP)?

and 0 =x(JAdH)



0=JAdH = e2®d (e_m’J A H) —e2®de?®* A H

= %4 (E_EQ}J AT A K) — H? A volg
= 2dK A*J — H? A volg

= (-V2® +2(Ve)? — H?) Avolg

1 1
Kq = gHachbc = Engbcb

1

1

2
3 | Hpri?mtive| > 0

H primitive = H—-JNK




No massless gaugino in 4 dimensions ?
This cannot be so, unless SUSY is broken !

Formal positivity
—V24+V>V>0

must be wrong in heterotic compactification with H 7= 0 and dH = O

Consider

*(J AN dH) = 2 (—VQq:) 4 Q(vcb)? _ %HQ) —0

o2 2 _ 2,20

—



/ﬂa’g

E—ECDHQ — vQE—QCD — 0
Mg



/’ e—:zq:Hz:/ v2,2% /g
Mg Mg

If the manifold is either open or singular somewhere



/. E_Qq:HZ‘:f V25'2¢7Z0
Mg Mg

If the manifold is either open or singular somewhere

_Tzz/ 2‘/ Y f Vx|2 >0
‘/‘wﬁ XVoX -ﬂa-fﬁlvm ‘ﬂrfﬁv (X X)% jwﬁl =



/’ 2P 2 ' v2,2® L g
Mg Mg

If the manifold is either open or singular somewhere

72 :/ 2_/ \V4 TV ] v 250
,/% V= [ VX = [ (x"Vx) e VX122

flux compactification under the approximation
/
o}
H? > «(J ANdH) = ~J NArRAR —trF A F)

IS necessarily singular

Ivanov+Papadopoulos 2001



Recall that, with minimal embedding without Flux and the breaking of
the gauge group Es — SU(3) & Eg

the counting of charged matter fermions gives a universal formula

| Euler Number
#Family = Index {X(3__2?)} — Index {X(.’?,Q'?)] = 2

In extending this to “minimal” Flux compactification
with Eg — SU(4) @ SO(10)

all bets are off since we are forced into singular internal manifold;
total derivative terms (due to torsion contributions) and
the boundary condition must be reconsidered carefully.



Smooth Compactifications and Approximations

L : size of the internal 6-manifold

o /L% < 1
1 5 . . "
3 ~ H* > %(JANdH) large torsion, singularities
1 2 . .
72 >» H* ~x(J AdH) small torsion, smooth solutions

1
2
3> Ho> *(JAdH) small torsion, singularities



order of magnitudes favorable for supergravity approach

{{:_

Rabed ~ E o

/

Hgm*(JﬁdH)Na’Jn(tTRﬂH—trFﬁF)N%

also

!

o'
R(‘-‘-’ + H }abcd — Raped ™~ F < Rgped



nstei — —b /2
GgEfftmnze ¢f2?}3_|_1—|—€ / 96

|

warp factor
e ?P s (JAdH) =

2_—29¢ —2P 742 ~ also, a warp factor equation of motion
V — H< =20
© © simplified by dH = O

For general background without such restriction, this generalizes to

d 1 )
0= LSTb - EGAgéG,AB] /ﬁheterot:&c

with

B 1 o
Lhoterotic = V/—Ge 2P {R - 5HZ’ + 4(VP)? — 2 (trF2 - trRi)]



i 1
2 =2 —2¢ 2 ! 2 2
V~<e e -H 4+ ZCE (t*rF — t'rR_|_)]

_op | 1
= ¢ °°¢ _HQ—I—E&" (tng—tTRQ)] H NQ’Q/LG

potential no-go theorem ~ *%(J NdH) |

against smooth compactificatin under SUSY double divergences
of Ricci tensors or

negative tadpole contribution from dH # O RdH

overcome the potential no-go theorem HHR
HHdH

HHHH



The fact that
dH

controls/resolves singularities of the manifold suggest that
the singularities are related BPS objects with negative fivebrane charges,

reminiscent of type IIB compactifications where singularities
due to fluxes are realized as orientifold planes of some RR fields.



Summary

Supersymmetry demands special geometric structure on the internal manifold. In
some special cases, such as some limiting cases of type 1B theory and the Heterotic
theory, the holonomy group reduces to SU(3). In type IIB without fivebrane sources,
the geometry is a Calabi-Yau up to a conformal factor, while in the Heterotic case the
torsion, or H flux, preserves SU(3) holonomy group while destroying Kaehler property
of the metric.

Effect of the flux, in general, is to introduce additional potential to minimize. This in
general reduces the number of massless scalar fields, alleviating the moduli problems
with conventional string theory compactifications.

As with type |l theories, the heterotic flux compactification is also plagued by a
gravitational tadpole condition which can render the geometry singular. The situation
is worse than type Il in that we do not have orientifold plane description of such
singular places, but is better in that we can make the geometry smooth by going
beyond the “minimal embedding” of the gauge bundle.

Global issues in flux compactification remain largely unsolved, and must be
investigated further. No general tools for addressing glocal problems are
available at the moment.



Prospects

More solutions and model building in the Heterotic theory
(De Sitte vacua; Hierarchy; Inflation; Axion; Cosmological constant;
Standard model vacua,;............. )

Duality maps between type IIA, 1B, and Heterotic Theories
(Mirror; Heterotic dual to non-GKP [IB; Complete fixing of moduli on the
Heterotic side)]

New Physics in the Heterotic-M with Flux?

Landscape of the Heterotic String Theory
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