A variational model for urban planning with traffic congestion

Guillaume CARLIER ^a, Filippo SANTAMBROGIO ^b

July 11, 2006

Vancouver, Summer School, July 2006.

^aUniversity Paris Dauphine

^bSNS, Pisa

Introduction

 Ω : city, open bounded connected subset of \mathbb{R}^2 with a smooth boundary, μ , ν : probability measures on $\overline{\Omega}$, with:

 μ : distribution of residents (or consumption), ν : distribution of services (or production).

Three effects to be taken into account:

- transportation costs,
- residents are better off with a dispersed μ ,
- producers are better off with a concentrated ν (externalities say)

Introduction 3

Variational (toy) planning model:

$$\inf_{(\mu,\nu)\in\mathcal{M}_1^+(\overline{\Omega})^2} C(\mu,\nu) + G(\mu) + H(\nu)$$

with C a transportation cost term (taking into account congestion effects), G a functional penalizing concentration and H a functional penalizing dispersion.

Example: C =Wasserstein-like distance, and H with discrete measures as domain (entropy say), G with absolutely continuous measures as domain (Buttazzo-Santambrogio).

In the sequel, very simple choices of G and H:

$$G(\mu) = \begin{cases} \int_{\Omega} u^2 & \text{if } \mu = u \cdot \mathcal{L}^2, \ u \in L^2(\Omega), \\ +\infty & \text{otherwise;} \end{cases}$$

and

$$H(\nu) := \int_{\overline{\Omega} \times \overline{\Omega}} V(x, y)(\nu \otimes \nu)(dx, dy).$$

H is then an interaction-like term (e.g V(x,y) increasing function of |x-y|.)

Plan of the talk

- ① Congestion
- ② Optimality conditions
- 3 Regularity and qualitative properties
- **4** Examples

Congestion

Beckmann (1952): "A continuous model of transportation": a traffic flow field, i.e. a vector field $\mathbf{Y}:\Omega\to\mathbb{R}^2$ whose direction indicates the consumers' travel direction and whose modulus $|\mathbf{Y}|$ is the intensity of traffic (stationnary, Eulerian). Local equilibrium: in a subregion $K\subset\Omega$ the outflow of consumers equals the excess demand of K:

$$\int_{\partial K} \mathbf{Y} \cdot n \ dS = (\mu - \nu)(K).$$

this formally yields:

$$\operatorname{div} \mathbf{Y} = \mu - \nu. \tag{1}$$

together with the boundary condition (isolated city):

$$\mathbf{Y} \cdot n = 0 \text{ on } \partial\Omega. \tag{2}$$

If transportation cost per consumer is assumed to be uniform, then one may define the transportation cost between μ and ν as the value of the *minimal flow* problem:

$$\inf \left\{ \int_{\Omega} |\mathbf{Y}(x)| dx : \mathbf{Y} \text{ satisfies (1)-(2)} \right\}.$$

In fact (convex duality) the previous infimum equals the 1-Wasserstein distance between μ and ν :

$$W_1(\mu, \nu) = \inf \{ \int_{\overline{\Omega}^2} |x - y| d\gamma(x, y) : \gamma \text{ transport plan} \}$$

(γ transport plan meaning that γ has μ and ν as marginals).

congestion effects: more realistic to assume that the transportation cost per consumer at a point x depends on the intensity of traffic at x itself, $g: \mathbb{R}_+ \to \mathbb{R}_+$ nondecreasing, and assume that if the traffic flow is \mathbf{Y} then the transportation cost per consumer at x is $g(|\mathbf{Y}(x)|)$. It defines the transportation cost between μ and ν as:

$$C_g(\mu, \nu) := \inf \left\{ \int_{\Omega} g(|\mathbf{Y}(x)|) |\mathbf{Y}(x)| dx : \mathbf{Y} \text{ satisfies (1)-(2)} \right\}.$$

For the sake of simplicity, we will assume, from now on, that g(t) = t for all $t \in \mathbb{R}_+$, and define the cost:

$$C(\mu, \nu) := \inf \left\{ \int_{\Omega} |\mathbf{Y}(x)|^2 dx : \mathbf{Y} \text{ satisfies (1)-(2)} \right\}.$$
 (3)

$$X := \left\{ \phi \in H^1(\Omega) : \int_{\Omega} \phi = 0 \right\}.$$

X is a Hilbert space, when equipped with the following inner product and norm:

$$\langle \phi, \psi \rangle_X := \int_{\Omega} \nabla \phi \cdot \nabla \psi, \ \|\phi\|_X^2 := \langle \phi, \phi \rangle_X.$$

As usual, identify X and its dual X', for every $f \in X'$, there exists, unique, $\phi \in X$ such that:

$$\langle \phi, \psi \rangle_X = f(\psi) \text{ for all } \psi \in X.$$
 (4)

Note that this implies: $||f||_{X'} = ||\phi||_X$ and we shall also write (4) in the form:

$$\begin{cases}
-\Delta \phi = f & \text{in } \Omega, \\
\frac{\partial \phi}{\partial n} = 0 & \text{on } \partial \Omega, \phi \in X.
\end{cases}$$
(5)

With those definitions in mind, our cost functional given by (3) may also be written as:

$$C(\mu, \nu) = \begin{cases} \|\mu - \nu\|_{X'}^2 & \text{if } \mu - \nu \in X', \\ +\infty & \text{otherwise.} \end{cases}$$
 (6)

To sum up, the planner's (toy) program is:

$$\inf_{(\mu,\nu)\in\mathcal{M}_1^+(\overline{\Omega})^2} F(\mu,\nu) := C(\mu,\nu) + G(\mu) + H(\nu)$$

with:

$$G(\mu) = \begin{cases} \int_{\Omega} u^2 & \text{if } \mu = u \cdot \mathcal{L}^2, u \in L^2(\Omega), \\ +\infty & \text{otherwise;} \end{cases}$$

$$H(\nu) := \int_{\overline{\Omega} \times \overline{\Omega}} V(x, y)(\nu \otimes \nu)(dx, dy).$$

$$C(\mu, \nu) = \begin{cases} \|\mu - \nu\|_{X'}^2 & \text{if } \mu - \nu \in X', \\ +\infty & \text{otherwise.} \end{cases}$$

Existence is not a problem (provided V is l.s.c., bdd from below and F is not identically $+\infty$).

The problem is not convex but it is in μ for fixed ν .

Question: regularity of minimizers (all we know a priori is that $\mu \in L^2$ and $\nu \in \mathcal{M}_1^+(\overline{\Omega}) \cap X'$).

Optimality conditions

For fixed $\nu \in \mathcal{M}_1^+(\overline{\Omega}) \cap X'$, minimizing $C(\mu, \nu) + G(\mu)$ over $\mathcal{M}_1^+(\overline{\Omega}) \cap L^2$ yields the unique solution: $\mu = \phi \cdot \mathcal{L}^2$, where $\phi \in H^1(\Omega)$ is the solution of:

$$\begin{cases}
-\Delta \phi + \phi = \nu & \text{in } \Omega, \\
\frac{\partial \phi}{\partial n} = 0 & \text{on } \partial \Omega.
\end{cases}$$
(7)

we can then reformulate the problem in terms of ν only:

$$J(\nu) := \inf \{ F(\mu, \nu) : \mu \text{ probability measure on } \overline{\Omega} \}.$$

we then have:

$$J(\nu) = \begin{cases} \|\phi\|_{H^1(\Omega)}^2 + H(\nu) & (\phi \text{ the solution of (7)}) \text{ if } \nu \in X', \\ +\infty & \text{otherwise.} \end{cases}$$

Identifying $H^1(\Omega)$ and its dual $H^1(\Omega)'$ for its usual Hilbertian structure:

$$\langle \phi, \psi \rangle_{H^1(\Omega)} := \int_{\Omega} (\nabla \phi \cdot \nabla \psi + \phi \psi),$$

we may also rewrite J as:

$$J(\nu) = \begin{cases} \|\nu\|_{H^1(\Omega)'}^2 + H(\nu) & \text{if } \nu \in H^1(\Omega)', \\ +\infty & \text{otherwise.} \end{cases}$$

Finally, the minimization problem in ν reads as:

inf
$$\{J(\nu) : \nu \text{ probability measure on } \overline{\Omega} \}$$
. (8)

In what follows, for every $\nu \in H^1(\Omega)'$, we will say that $\phi \in H^1(\Omega)$ is the *potential* of ν if:

$$\langle \phi, \psi \rangle_{H^1(\Omega)} = \nu(\psi), \text{ for all } \psi \in H^1(\Omega).$$
 (9)

Put differently, the potential of ν is the weak solution of:

$$\begin{cases} -\Delta \phi + \phi = \nu & \text{in } \Omega, \\ \frac{\partial \phi}{\partial n} = 0 & \text{on } \partial \Omega. \end{cases}$$

Let us also remark that if, in addition, ν is a probability measure on $\overline{\Omega}$ and ϕ its potential, then $\phi \cdot \mathcal{L}^2$ is a probability measure on $\overline{\Omega}$ as well.

Setting:

$$C = \mathcal{M}_1^+(\overline{\Omega}) \cap H^1(\Omega)' = \left\{ \nu \in H^1(\Omega)' : \nu \ge 0 \text{ in } H^1(\Omega)', \nu(1) = 1 \right\}.$$
(10)

our aim is to study the problem:

$$\inf_{\nu \in \mathcal{C}} J(\nu) := \|\nu\|_{H^1(\Omega)'}^2 + \int_{\overline{\Omega} \times \overline{\Omega}} V(x, y)(\nu \otimes \nu)(dx, dy).$$

In general the quadratic functional J is not convex over C, however it is in the *small* case, i.e. when either V or Ω is small.

Optimality conditions

Assume that $V \in C^0(\overline{\Omega} \times \overline{\Omega}, \mathbb{R})$, set $V^s(x,y) := (V(x,y) + V(y,x))/2$. Given $\nu \in \mathcal{C}$, let ϕ be the potential of ν and let T^s_{ν} be defined, for all $x \in \Omega$, by:

$$T_{\nu}^{s}(x) := \nu(V^{s}(x,.)) = \int_{\overline{\Omega}} V^{s}(x,y)\nu(dy).$$

If ν is a solution of (8), then there exists a constant m such that:

$$\phi + T_{\nu}^{s} \ge m, \ \phi + T_{\nu}^{s} = m \ \nu \text{-a.e.}$$
 (11)

Regularity

Under the assumption:

Vdiod (V depends increasingly on distances): V is a function of the form $V(x,y) = v(|x-y|^2)$ for a C^2 strictly increasing function v with v'(s) > 0 for s > 0.

one has an L^{∞} estimates in the convex case

Theorem 1 Suppose that Ω is a bounded, regular and strictly convex open subset of \mathbb{R}^2 and that **Vdiod** holds. Then, every minimizer $\bar{\nu}$ of J is an absolutely continuous measure with an L^{∞} density.

Idea of the proof= approximation: fix a minimizer $\bar{\nu}$ of J,

$$J_{\varepsilon}(\nu) = J(\nu) + \varepsilon W_2^2(\nu, \nu_{\varepsilon}) + \delta_{\varepsilon} \|\nu\|_{L^2(\Omega)}^2,$$

 $(\nu_{\varepsilon})_{\varepsilon}$, a sequence of absolutely continuous measures with a strictly positive density, approximating $\bar{\nu}$ in the W_2 distance, and δ_{ε} is a small parameter ensuring minimizers of J_{ε} converge to $\bar{\nu}$.

Write down the optimality condition for the approximated problem:

$$\bar{\nu}_{\varepsilon} = \frac{1}{\delta_{\varepsilon}} \left(c_{\varepsilon} - \phi_{\varepsilon} - T_{\bar{\nu}_{\varepsilon}} - \frac{\varepsilon}{2} \psi_{\varepsilon} \right)_{+}.$$

get an uniform estimate by maximum principle type arguments and let $\varepsilon \to 0^+$.

This implies that the corresponding μ is $W^{2,p}$ for all p hence $C^{1,\alpha}$ too. In the latter case, we also have:

Proposition 1 The L^{∞} density of any optimal measure ν coincides almost everywhere in spt ν with a continuous function.

Under special assumptions, we also have some qualitative properties:

Proposition 2 Suppose, that V = V(x - y) with V strictly convex. Then the support of ν has non-empty interior.

Proposition 3 Suppose, that V = V(x - y) with V strictly subharmonic, i.e. $\Delta V > 0$. Then the support of ν is simply connected.

Weaker regularity holds in the case of a non convex domain Ω . Let us write $\partial\Omega = \Gamma_1 \cup \Gamma_2$, where $\Gamma_1 = \partial\Omega \cap \partial (\cos\Omega)$ and $\Gamma_2 = \partial\Omega \setminus \partial (\cos\Omega)$.

Theorem 2 Suppose that Γ_1 is a strictly convex regular boundary and that **Vdiod** holds. Then any optimal measure $\bar{\nu}$ for J can be expressed as $\bar{\nu} = \bar{\nu}^a + \bar{\nu}^s$, with $\bar{\nu}^a \in L^{\infty}(\Omega)$ and $\bar{\nu}^s$ a singular measure supported on $\overline{\Gamma}_2$.

Examples

- The unidimensional case: uniqueness provided V = V(x y) is convex (displacement convexity arguments and convexity properties of the Green function),
- The case of a (small) ball and $V(x,y) = |x-y|^2$, explicit radial solution,
- The case of a (small) crown $B_2 \setminus B_1$ and $V(x,y) = |x-y|^2$: the optimal ν has a singular part on ∂B_1 .