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Introduction 2

Introduction I

Q) : city, open bounded connected subset of R? with a smooth

boundary, u, v: probability measures on €, with:

u : distribution of residents (or consumption), v : distribution

of services (or production).

Three effects to be taken into account :
e transportation costs,
e residents are better off with a dispersed ,

e producers are better off with a concentrated v (externalities

say)
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Variational (toy) planning model:

inf _ Clu,v) + Glu) + Hw)
(n,v)EMT ()2

with C a transportation cost term (taking into account
congestion effects), G a functional penalizing concentration and
H a functional penalizing dispersion.

Example: ' =Wasserstein-like distance, and H with discrete

measures as domain (entropy say), G with absolutely

continuous measures as domain (Buttazzo-Santambrogio).
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In the sequel, very simple choices of G and H:

Jqu® ifp=u-L? ue L*(Q),

+00 otherwise;

G(p) =

H(v) : /ﬁxﬁ Viz,y) (v ®v)(de, dy).

H is then an interaction-like term (e.g V' (x,y) increasing

function of |z — y|.)
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Plan of the talk 5

‘Plan of the talk.

@® Congestion
@ Optimality conditions
@ Regularity and qualitative properties

@ Examples
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Congestion I

Beckmann (1952): "A continuous model of transportation": a
traffic flow field, i.e. a vector field Y : Q — R? whose direction

indicates the consumers’ travel direction and whose modulus

Y| is the intensity of traffic (stationnary, Eulerian). Local

equilibrium: in a subregion K C 2 the outflow of consumers
equals the excess demand of K:

8KY-ndS: (n—v)(K).

this formally yields:
divY = u —v.
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together with the boundary condition (isolated city):
Y -n =0 on 09. (2)

If transportation cost per consumer is assumed to be uniform,
then one may define the transportation cost between 4 and v as
the value of the minimal flow problem:

infd [ [Y(2)|dz: Y satisfies (1)-(2) \.
U, |

In fact (convex duality) the previous infimum equals the
1-Wasserstein distance between y and v:

Wi(p,v) = inf{/_ |z — y|dvy(x,y) : ~ transport plan}
QQ

(v transport plan meaning that v has p and v as marginals).
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congestion effects: more realistic to assume that the
transportation cost per consumer at a point x depends on the
intensity of traffic at x itself, g : R, — R, nondecreasing, and
assume that if the traffic low is Y then the transportation cost
per consumer at z is g(|Y(z)|). It defines the transportation

cost between y and v as:

C,(p,v) = inf{ /Q (Y (@)D|Y (2)|dz : Y satisfies (1)-(2)}.

For the sake of simplicity, we will assume, from now on, that
g(t) =t for all t € R, and define the cost:

Clu,v) = inf{/Q Y (2)]°dx : Y satisfies (1)-(2)}. (3)
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;X:{¢€H%Q%UL¢:O}

X is a Hilbert space, when equipped with the following inner
product and norm:

(6,8} = /Q VoV, [61% = (6,

As usual, identify X and its dual X', for every f € X', there
exists, unique, ¢ € X such that:

(0,1) x = f(¥) for all ¢ € X.

Note that this implies: ||f||x = ||¢||x and we shall also write
(4) in the form:

—A¢p=f in ),

L on 0%, ¢ € X.
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With those definitions in mind, our cost functional given by (3)
may also be written as:

lp—v|% ifpu—veX,

Clu,v) = (6)

+00 otherwise.
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To sum up, the planner’s (toy) program is:

inf — F(:uv V) = O(,LL, V) + G(,UJ) + H(V)
(u,v)EMT (02)2

Jqu® ifp=u-L% ue L*Q),

+00 otherwise;

/_ Viz,y)(vev)(de,dy).
Q%

lw—v|% ifpu—veX,

+00 otherwise.

Congestion /6



Congestion 12

Existence is not a problem (provided V is l.s.c., bdd from below
and F is not identically +o0).

The problem is not convex but it is in u for fixed v.

Question : regularity of minimizers (all we know a priori is that
p€ L?and v € M7 ()N X).
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Optimality conditions I

For fixed v € M7 (Q) N X', minimizing C(u,v) + G(u) over
M7 (Q) N L? yields the unique solution: pu = ¢ - L2, where
¢ € H'(Q) is the solution of:

—Ap+¢=v in (),

% — on Of).

we can then reformulate the problem in terms of v only:

J(v) :=inf {F(,UJ, V) : p probability measure on Q } :
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we then have:

quH%Il(Q) + H(v) (¢ the solution of (7)) if v € X',

+00 otherwise.

J(v) =

Identifying H'(Q) and its dual H'(Q)’ for its usual Hilbertian
structure:

(6 ) e = [ (V- Vo +00).

we may also rewrite J as:

)= W11y + H(v) it v e HY(Q),

+00 otherwise.

Finally, the minimization problem in v reads as:

inf {J(v) : v probability measure on Q }. (8)
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In what follows, for every v € H*(Q)’, we will say that
¢ € H'(Q) is the potential of v if:

(6, 0) 1 () = v (1), for all ¢ € H'(Q).

Put differently, the potential of v is the weak solution of:

—Ap+¢p=v in (),

%:O on Of).

Let us also remark that if, in addition, v is a probability
measure on ) and ¢ its potential, then ¢ - £? is a probability

measure on {2 as well.
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Setting:

C=M7(ONH Q) ={ve H(Q) : v>0in H(Q), v(1)

our aim is to study the problem:

it J) = [l + [ Vi) v)ds,dy).
veC Q%O

In general the quadratic functional .J is not convex over C,
however it is in the small case, i.e. when either V or () is small.
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Optimality conditions I

Assume that V € C°(Q x Q,R), set
Vi(x,y):= (V(x,y)+V(y,x))/2. Given v € C, let ¢ be the
potential of v and let T be defined, for all x € €2, by:

TS (2) = (V¥ (x,.)) = /_ VS (2, y)v(dy).

Q

If v is a solution of (8), then there exists a constant m such that:

d+T;>m, p+T, =m v-ae.. (11)
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Regularity I

Under the assumption:

Vdiod (V' depends increasingly on distances): V is a function of

the form V(z,y) = v(|z — y|*) for a C? strictly increasing

function v with v'(s) > 0 for s > 0.

one has an L°° estimates in the convex case

Theorem 1 Suppose that ) is a bounded, reqular and strictly
convez open subset of R? and that Vdiod holds. Then, every

minimizer U of J 1s an absolutely continuous measure with an
L density.
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Idea of the proof= approximation: fix a minimizer v of J,

J.(v) = J() +eWi(v,v.) + 5€HVH2L2(Q),

(ve)e, a sequence of absolutely continuous measures with a
strictly positive density, approximating v in the W5 distance,
and 0. is a small parameter ensuring minimizers of .J. converge

to V.

Write down the optimality condition for the approximated

problem:
1 €

o= L (e o=~ S0

get an uniform estimate by maximum principle type arguments
and let ¢ — 0.
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This implies that the corresponding p is W2 for all p hence

C'1® too. In the latter case, we also have:

Proposition 1 The L density of any optimal measure v

coincides almost everywhere in spt v with a continuous function.

Under special assumptions, we also have some qualitative

properties:

Proposition 2 Suppose, that V =V (x —y) with V strictly
convex. Then the support of v has non-empty interior.

Proposition 3 Suppose, that V =V (x —y) with V strictly
subharmonic, i.e. AV > 0. Then the support of v is simply

connected.
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Weaker regularity holds in the case of a non convex domain ().
Let us write 92 =T'; UT'5, where I'y = 002N 0 (co?) and
[ =00\ 0(cof?).

Theorem 2 Suppose that I'1 is a strictly convex reqular
boundary and that Vdiod holds. Then any optimal measure v
for J can be expressed as v = v + v°, with v* € L*°(Q)) and v°

a singular measure supported on I's.
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‘ Examples I

e The unidimensional case: uniqueness provided
V =V (x —y) is convex (displacement convexity arguments
and convexity properties of the Green function),

e The case of a (small) ball and V(z,y) = |z — y|?, explicit

radial solution,

e The case of a (small) crown By \ By and V(z,y) = |z — y|? :
the optimal v has a singular part on 0B;.
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