Equilibrium structure of a bidimensional asymmetric city

Guillaume CARLIER ^a, Ivar EKELAND ^b

July 11, 2006

Vancouver, Summer School, July 2006.

^aUniversity Paris Dauphine

^bUniversity of British Columbia, PIMS, Vancouver

Introduction 2

Introduction

Firms and individuals compete for land use. Structure of cities: way land is shared between those uses in terms of densities.

Competitive equilibrium models where structure results from rational behaviour: Fujita and Ogawa (1980, 1982), Fujita-Smith (1987), Fujita (1989), Lucas and Rossi-Hansberg (2002).

Existence of an equilibrium but these are one-dimensional models. Our main departure from the Lucas-Rossi-Hansberg model: monetary cost as in Berliant et al. (2002).

Introduction

driving forces for concentration: production externalities, transportation costs,

driving forces for dispersion: agents value space,

constraints: land market, rents.

Plan of the talk

Plan of the talk

- ① Model
- 2 Rational behavior
- 3 Definition of equilibria
- ④ Optimal transportation
- ⑤ Existence of equilibiria: sketch of proof
- © Concluding remarks

The model

The city: Ω , bounded domain of \mathbb{R}^2 . Three kinds of actors: agents, firms and landowners. A single good is consumed and produced in Ω .

Agents: identical, utility U(c, S), c consumption, S surface, strictly concave, increasing in each argument,

Firms: identical, production f(z, n), z productivity, n employment, continuous strictly concave in n, increasing in each argument,

Landowners: no role (absentee landlords) except they extract all the surplus.

The model 6

Production externalities:

Given employment density $\nu(y)dy$ in the city, the productivity function is:

$$z(x) = Z_{\nu}(x) := \chi(\int_{\Omega} \rho(x, y)\nu(y)dy) \text{ for all } x \in \Omega$$
 (1)

With ρ a continuous positive kernel and χ a continuous increasing function such that $\chi(\mathbb{R}_+) \subset [\underline{z}, \overline{z}] \subset (0, +\infty)$.

Open city model: population size is not fixed (but the utility of agents is).

Agents

At equilibrium all agents have the same utility \overline{u} . If available revenue at $x \in \Omega$ is $\varphi = \varphi(x)$, and denoting Q the rent, one gets:

$$\varphi = V(Q) := \min \{ c + QS : U(c, S) \ge \overline{u} \}$$
 (2)

Using $Q = V^{-1}(\varphi)$ one gets $c(\varphi)$ and $S(\varphi)$.

Number of residents per unit of surface used for residential use:

$$N(\varphi) = \frac{1}{S(\varphi)}$$

note that $Q(\varphi)$ is the rent for residential use.

Firms

If, at $y \in \Omega$, productivity is z and wage is ψ the firm solves

$$q(z,\psi) := \max_{n \ge 0} f(z,n) - \psi \cdot n \tag{3}$$

 $q(z, \psi)$ is then the rent for business use. Employment $n(z, \psi)$: the solution of (3).

Landowners 9

Landowners

At $x \in \Omega$, if productivity is z, wage is ψ and residents is φ : two rents $q(z,\psi)$ (business) and $Q(\varphi)$ (residence). Landowners determine the fraction of surface devoted to business use. Consider two cases:

Land is allocated to the highest bidder

$$q(z(x), \psi(x)) > Q(\varphi(x)) \Rightarrow \theta(x) = 1, \tag{4}$$

$$q(z(x), \psi(x)) < Q(\varphi(x)) \Rightarrow \theta(x) = 0, \tag{5}$$

Landowners 10

Zoning restrictions

Rules out purely business or purely residentials areas and discontinuities. Landowners' program:

$$\max_{\theta \in [\underline{\theta}, \overline{\theta}]} \theta q(z, \psi) + (1 - \theta)Q(\varphi) - g(\theta). \tag{6}$$

With $1 > \overline{\theta} > \underline{\theta} > 0$ and g strictly convex increasing. Denote by $\theta(z, \psi, \varphi)$ the solution of (6).

Remark When $\underline{\theta}$ and g "small" and $\overline{\theta}$ close to 1: continuous approximation of the (discontinuous) highest bidder case .

Densities 11

Densities

Zoning case

Density of residents

$$\widetilde{\mu}(z,\psi,\varphi) := (1 - \theta(z,\psi,\varphi))N(\varphi) \tag{7}$$

Density of employment

$$\widetilde{\nu}(z,\psi,\varphi) := \theta(z,\psi,\varphi)n(z,\psi) \tag{8}$$

Free mobility of labor

monetary commuting cost c(x, y), residents maximize wage net of commuting. Conjugacy relations between wage $\psi(.)$ and revenue $\varphi(.)$:

$$\varphi(x) = \sup_{y \in \Omega} \psi(y) - c(x, y), \, \forall x \in \Omega$$
 (9)

$$\psi(y) = \inf_{x \in \Omega} \varphi(x) + c(x, y), \, \forall y \in \Omega$$
 (10)

Transportation plans

 $\gamma(A \times B) =$ number of agents living in A and working in B. If (μ, ν) are the densities of residents and employment (at equilibrium, they must have the same total mass), obviously, μ ands ν are the marginals of γ (notation: $\gamma \in \Pi(\mu, \nu)$). Besides, an individual living at x chooses is job location in

$$\operatorname{argmax}_{y} \{ \psi(y) - c(x, y) \}. \tag{11}$$

Similarly, a firm located at y hires workers from:

$$\operatorname{argmin}_{x} \{ \varphi(x) + c(x, y) \}. \tag{12}$$

In view of (9) and (10), this means:

$$\psi(y) - \varphi(x) = c(x, y) \text{ } \gamma\text{-a.e.}$$
 (13)

Equilibrium

 $(\mu, \nu, \psi, \varphi)$ continuous and > 0 on Ω , and $\gamma \in \Pi(\mu, \nu)$ such that

- 1. $\int_{\Omega} \mu = \int_{\Omega} \nu$,
- 2. for all $x \in \Omega$:

$$\mu(x) = \widetilde{\mu}(Z_{\nu}(x), \psi(x), \varphi(x)), \text{ and } \nu(x) = \widetilde{\nu}(Z_{\nu}(x), \psi(x), \varphi(x)),$$

- 3. (ψ, φ) satisfies the conjugacy relations (9), and (10),
- 4. for γ -almost every $(x, y) \in \Omega \times \Omega$:

$$\psi(y) - \varphi(x) = c(x, y).$$

Pure equilibria

Equilibria such that agents with the same address do the same thing. Definition is the same as before except that the commuting plan γ is supported by the graph of a commuting map s (given x the conditional probability of job location is then $\delta_{s(x)}$).

- s(x) is the job location of agents living at x,
- s is a measure preserving map between μ and ν .

Optimal transportation

Given two nonnegative measures μ and ν with the same total mass, requirements 3 and 4 exactly mean that γ solves the Monge-Kantorovich problem:

$$(\mathcal{M}_{\mu,\nu}) \inf \left\{ \int_{\Omega \times \Omega} c(x,y) d\gamma(x,y) : \gamma \in \Pi(\mu,\nu) \right\}$$
 (14)

and that (ψ, φ) solve its dual:

$$(\mathcal{D}_{\mu,\nu}) \sup_{\psi,\varphi} \left\{ \int \psi d\nu - \int \varphi d\mu : \psi(y) - \varphi(x) \le c(x,y), \ (x,y) \in \Omega^2 \right\}.$$

Under additional conditions, optimal plans are supported by graphs of transport maps (McCann-Gangbo).

Assumptions

For the sake of simplicity (in this talk), we assume that Ω is either smooth or convex, that the cost is of the form:

$$c(x,y) = |x - y|^{\eta_0}.$$

with $\eta_0 > 0$. For the sake of simplicity again, we make the following Cobb-Douglas specifications:

$$f(z,n) = z^{\gamma_0} n^{\alpha_0},$$

$$U(c,S) = c^{\beta_0} S^{1-\beta_0}$$

with $\gamma_0 > 0$, $\beta_0 \in (0,1)$ and $\alpha_0 \in (0,1)$.

Explicit computations yield then:

$$n(z,\psi) = \left(\frac{\alpha_0 z^{\gamma_0}}{\psi}\right)^{\frac{1}{1-\alpha_0}}, \tag{15}$$

$$N(\varphi) = \beta_0^{\beta_0/(1-\beta_0)} \overline{u}^{-1/(1-\beta_0)} \varphi^{\beta_0/(1-\beta_0)}$$
 (16)

and

$$q(z,\psi) = (1-\alpha_0)z^{\gamma_0/(1-\alpha_0)} \left(\frac{\alpha_0}{\psi}\right)^{\frac{\alpha_0}{1-\alpha_0}}, \qquad (17)$$

$$Q(\varphi) = (1 - \beta_0) \left(\frac{\beta_0^{\beta_0} \varphi}{\overline{u}}\right)^{1/(1 - \beta_0)}$$
(18)

Existence

Under the assumptions above, we then have:

- **Theorem 1** 1. strictly convex case: if $\eta_0 > 1$ and $\alpha_0 \ge 1/2$ then there exists at least one equilibrium and every equilibrium is pure,
 - 2. **sublinear case:** if $0 < \eta_0 \le 1$ and $\eta_0 \ge 2(1 \alpha_0)$, then there exists at least one equilibrium.

Sketch of proof: start with densities (μ, ν) with same positive total mass

Step 1:

 $z := Z_{\nu}$, determine wages and revenues (ψ, φ) conjugate by solving $(\mathcal{D}_{\mu,\nu})$.

Step 2:

Determine a constant λ such that

$$\int_{\Omega} \widetilde{\mu}(Z_{\nu}(x), \psi(x) + \lambda, \varphi(x) + \lambda) dx =$$

$$\int_{\Omega} \widetilde{\nu}(Z_{\nu}(x), \psi(x) + \lambda, \varphi(x) + \lambda) dx$$

finally set:

$$T(\mu,\nu) := (\widetilde{\mu}(Z_{\nu}, \psi + \lambda, \varphi + \lambda), \widetilde{\nu}(Z_{\nu}, \psi + \lambda, \varphi + \lambda)).$$

equilibria are associated to fixed-points of T and one establishes the existence of such fixed-points by using Schauder's Theorem.

Variants and extensions

We may use the same method to prove existence of equilibria in the following cases:

- no zoning restriction: land is allocated to the highest bidder (proceed by approximation),
- more general utilities and production functions,
- more general externalities.

Concluding remarks

- to our knowledge this is the first existence result in dimension 2,
- if the problem is radially symmetric (as in Lucas-Rossi-Hansberg), there exists symmetric (radial) equilibria, are there nonsymmetric ones?
- on costs: if costs are convex transporation plans are carried by the graph of a transport map,
- externalities (and the fact that the boundary of the city is given) imply that equilibrium necessarily involves commuting.

Open questions and perspectives

- uniqueness, comparative statics, population size at equilibrium,
- qualitative properties (polycentric vs monocentric...),
- numerical methods,
- welfare analysis,
- endogenous city shape.