Equilibrium structure of a bidimensional
asymmetric city

Guillaume CARLIER 2, Ivar EKELAND P

July 11, 2006

Vancouver, Summer School, July 2006.

@ University Paris Dauphine
bUniversity of British Columbia, PIMS, Vancouver

/1



Introduction 2

Introduction I

Firms and individuals compete for land use. Structure of cities:
way land is shared between those uses in terms of densities.

Competitive equilibrium models where structure results from
rational behaviour : Fujita and Ogawa (1980, 1982),
Fujita-Smith (1987), Fujita (1989), Lucas and Rossi-Hansberg
(2002).

Existence of an equilibrium but these are one-dimensional

models. Our main departure from the Lucas-Rossi-Hansberg

model : monetary cost as in Berliant et al. (2002).
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driving forces for concentration: production externalities,

transportation costs,

driving forces for dispersion: agents value space,

constraints: land market, rents.
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Plan of the talk 4

‘Plan of the talk'

@® Model

@ Rational behavior

@ Definition of equilibria

@ Optimal transportation

® Existence of equilibiria: sketch of proof

® Concluding remarks
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‘ The model I

The city: Q, bounded domain of R?. Three kinds of actors:
agents, firms and landowners. A single good is consumed and

produced in €.

Agents: identical, utility U(c, S), ¢ consumption, S surface,

strictly concave, increasing in each argument,

Firms: identical, production f(z,n), z productivity, n

employment, continuous strictly concave in n, increasing in each

argument,

Landowners: no role (absentee landlords) except they extract
all the surplus.
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Production externalities:

Given employment density v(y)dy in the city, the productivity

function is:

X(/Q p(x,y)v(y)dy) for allx € Q (1)

With p a continuous positive kernel and y a continuous
increasing function such that x(Ry) C [z,Z] C (0, +00).

Open city model: population size is not fixed (but the utility of
agents is).

The model /2



Agents 7

‘ Agents I

At equilibrium all agents have the same utility w. If available
revenue at = € € is p = (x), and denoting () the rent, one gets:

e =V(Q) =min{c+ QS : U(c,S) > u} (2)

Using Q = V~1(¢) one gets c(p) and S(p).

Number of residents per unit of surface used for residential use:

note that (Q(y) is the rent for residential use.
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Firms '

If, at y € (Q, productivity is z and wage is ¢ the firm solves

a(z, %) == max f(z,n) — ¥ - n (3)

n>0

q(z,1) is then the rent for business use. Employment n(z,):
the solution of (3).
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‘ Landowners I

At x € Q, if productivity is z, wage is ¢ and residents is ¢ : two

rents ¢(z,1) (business) and Q(p) (residence). Landowners

determine the fraction of surface devoted to business use.
Consider two cases:

Land is allocated to the highest bidder
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Zoning restrictions

Rules out purely business or purely residentials areas and

discontinuities. Landowners’ program:

max 0q(z, 1) + (1 = 0)Q(¢) — g(6). (6)
0<[0,0]

With 1 > 6 > 0 > 0 and g strictly convex increasing. Denote by
6(z,1, @) the solution of (6).

Remark When # and ¢ "small" and 6 close to 1: continuous

approximation of the (discontinuous) highest bidder case .
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‘ Densities I

Zoning case

Density of residents

(2,1, @) == (1= 6(z,9,9))N(p)

Density of employment

v(z,%,0) == 02,9, p)n(z,7)
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‘Free mobility of labor'

monetary commuting cost ¢(x,y), residents maximize wage net

of commuting. Conjugacy relations between wage 1(.) and

revenue ¢(.):

w@%=i£¢@)—d%y%Vx€Q (9)

inf p(z) +c(z,y), Vy € & (10)
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Transportation plans

v(A x B) = number of agents living in A and working in B. If
(u,v) are the densities of residents and employment (at
equilibrium, they must have the same total mass), obviously,
ands v are the marginals of v (notation: v € II(u,v)). Besides,
an individual living at x chooses is job location in

argmax, {$(y) — c(z,y)}. (11)

Similarly, a firm located at y hires workers from:

argmin, {¢(x) + c(z, y) - (12)

In view of (9) and (10), this means:

V(y) — p(z) = c(z,y) -a.e.
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‘ Equilibrium I

(1, v, 1, ) continuous and > 0 on €2, and ~ € II(u, v) such that

1. leu:fQV’
2. for all z € Q:

plx) = p(Zy(2), Y(x), p(z)), and v(z)

3. (v, ) satisfies the conjugacy relations (9), and (10),

4. for v-almost every (x,y) € Q x Q:

Equilibrium /1



Equilibrium 15

Pure equilibria

Equilibria such that agents with the same address do the same
thing. Definition is the same as before except that the
commuting plan v is supported by the graph of a commuting

map s (given x the conditional probability of job location is
then 5s(x))

e s(x) is the job location of agents living at =z,

e s is a measure preserving map between p and v.
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Optimal transportation I

Given two nonnegative measures y and v with the same total

mass, requirements 3 and 4 exactly mean that v solves the

Monge-Kantorovich problem:

M) int{ [ clapinen) v enn} 9

and that (1, @) solve its dual:

(Duv) 335{/%— /sodu: D(y) — () < clz,y), (z,y) € Q*}.

Under additional conditions, optimal plans are supported by
graphs of transport maps (McCann-Gangbo).
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‘ Assumptions I

For the sake of simplicity (in this talk), we assume that 2 is

either smooth or convex, that the cost is of the form:

c(z,y) = |z —y|™.

with ng > 0. For the sake of simplicity again, we make the
following Cobb-Douglas specifications:

f(z,n) = 2z"°n%,

Ue,S) = cPogl=ho

with v > 0, By € (O, 1) and ag € (O, 1)
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Explicit computations yield then:

n(znﬁ) ((1072'70> 1-ag |

N(p) = go/(l_ﬁo)ﬂ_l/(l—ﬁo)9050/(1—50)

&0

— a0 Oé 1—04()
(1 — ag)z70/A—a0) (JO) |

N 1/(1-80)
(1 — Bo) <60ﬂ90>
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‘ Existence I

Under the assumptions above, we then have:

Theorem 1 1. strictly convex case: if ng > 1 and
ag > 1/2 then there exists at least one equilibrium and

every equilibrium 1is pure,

2. sublinear case: if 0 <ng <1 andny > 2(1 — ), then

there exists at least one equilibrium.
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Sketch of proof: start with densities (u, ) with same positive

total mass

Step 1:

z := 7, determine wages and revenues (1, ¢) conjugate by

solving (D, ).
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Step 2:

Determine a constant A such that

/Q A(Z, (@), () + A, o(z) + Ndz =

Lﬁ(Z,,(a:), v(x)+ A p(x) + N)dx

finally set:
T(p,v) = (1(Zv, v + X0+ A),v(Zo, ¥ + X o+ A)).

equilibria are associated to fixed-points of 1" and one establishes

the existence of such fixed-points by using Schauder’s Theorem.
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Variants and extensions

We may use the same method to prove existence of equilibria in
the following cases:

e no zoning restriction: land is allocated to the highest bidder

(proceed by approximation),

e more general utilities and production functions,

e more general externalities.
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Concluding remarks I

to our knowledge this is the first existence result in

dimension 2,

if the problem is radially symmetric (as in
Lucas-Rossi-Hansberg), there exists symmetric (radial)

equilibria, are there nonsymmetric ones 7

on costs : if costs are convex transporation plans are carried

by the graph of a transport map,

externalities (and the fact that the boundary of the city is

given) imply that equilibrium necessarily involves

commuting.
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Open questions and perspectives

e uniqueness, comparative statics, population size at

equilibrium,

qualitative properties (polycentric vs monocentric...),

numerical methods,
welfare analysis,

endogenous city shape.
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