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Summary. We solve the optimal portfolio problem in continuous time from the
point of view of a corporation, acting on behalf of risk neutral shareholders. Our
model fits for example the case of a commercial bank. Risk aversion is generated
endogenously by financial frictions, and increases when the value of the firm’s
assets decrease. We find a remarkably simple investment policy: invest a multiple
of the firm’s equity into the risky asset, keep the rest as cash reserves, and distribute
dividends when the value of the firm exceeds some threshold. As a consequence,
the firm locally behaves as a Von Neumann-Morgenstern investor with constant
relative risk aversion.
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1 Introduction

More than thirty five years ago, Merton [11] provided an elegant solution to the
dynamic portfolio problem in continuous time for an individual investor. By using
stochastic optimal control techniques, he showed in particular that the basic intu-
itions provided by the Capital Asset Pricing Model could be extended to a dynamic
context, at least when security returns are independently and identically distributed
across time. One major insight obtained by Merton was that, due to the continuous
times framework, the instantaneous objective function of the investor was essen-
tially quadratic, implying a constant composition of the risky part of the portfolio,
the only adjustments being due to possible changes in the investor’s intertemporal
risk aversion index.
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The objective of this article is to solve Merton’s problem for a corporation,
instead of an individual investor. The main example we have in mind is that of a
bank, financed by deposits and equity, that has to decide on how much to invest
in risky loans and securities, and how much to keep as cash reserves. Our model
can also be applied, with some precautions, to the case of an industrial firm that
has to decide on how much to invest in a risky technology. For tractability reasons,
and also to keep in line with the assumptions of the Merton model, we rule out any
frictions in the investment technology. We assume indeed that the volume of invest-
ment in risky assets can be continuously adjusted at negligible cost, like is the case
for a bank that only invests in marketable securities. Our model also applies to bank
loans, provided we neglect the costs of origination and securitization. Of course,
this is just a first pass at the corporate portfolio management problem, since most
investment technologies involve some degree of irreversibility, and adjustments
costs have then to be taken into account. However we feel that the case of perfectly
adjustable investment is a useful benchmark for further analysis.1 Its advantage is
to lead to an explicit, remarkably simple investment and financial policies: invest
a multiple of equity in the risky asset, keep the rest as cash reserves, and distribute
dividends whenever the value of assets exceeds some threshold.

The other contribution of this paper is to give a tractable formulation of corpo-
rate risk aversion in the presence of financial frictions. A large academic literature
has tried to fill the gap between the theoretical benchmark of perfect capital mar-
kets [13] and the practical importance of liquidity and risk management have been
explored for explaining why widely held firms appear to exhibit some form of risk
aversion: managerial risk aversion [17], tax optimization [16], cost of financial
frictions ([18], [4]).2 However, none of these articles provide a simple, tractable,
measure of how the risk aversion of a corporation varies with its financial situation.

The model we use, a variant of the model first studied by [7] (see also [14],
or [12]), captures financial frictions in a simple way, by assuming that the firm is
liquidity constrained: it is not able to issue more debt or equity in the future, and
is forced to close when the value of its assets falls below the value of its liabili-
ties. Jeanblanc and Shirayev [7] show that in order to mitigate the risk of closure,
the firm’s optimal financial policy is to accumulate liquid reserves up to a certain
threshold, and only distribute dividends when reserves exceed this threshold. We
extend their analysis by introducing flexibility of investment. In our model, the
optimal financial policy of the firm has the same flavor: dividends are distributed
only when the value of the firm’s assets is above a certain threshold. However, due
to the flexibility of investment, there is an intermediate region in which the firm
does not have to hold any cash reserves: all the assets are optimally invested in the
risky technology.

The remainder of the paper is organized as follows:

• The model is presented in Section 2.
• The optimal investment policy is characterized in Section 3.

1 Leland [8] considers a polar case where the volume of investment is fixed, but assets returns are
selected by the firm.

2 Froot and Stein [5] have applied the Froot, Scharfstein and Stein model to study capital budgeting
and capital structure decisions for a financial institution.
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• Section 4 discusses the economic implications of our results in terms of cor-
porate risk aversion and liquidity management.

• Section 5 concludes by suggesting possible extensions.
• All mathematical proofs are given in the appendix.

2 The model

We consider a firm characterized at each date t by the following balance sheet:

It D

Mt Xt

– It represents the investment3 in the productive technology, characterized by
stochastic returns.

– Mt represents the amount of cash reserves, remunerated at rate r (the risk free
rate).

– D, which is assumed to be fixed, represents the volume of debt that the firm has
issued. It is also remunerated at the risk free rate4 r. In the case of a commercial
bank, D can be interpreted as the volume of deposits collected by the bank.

– Finally, Xt represents the book value of equity.

To give a rigorous formulation of the optimization problem that will be solved
in this paper, we start with a probability space (Ω,F ,P) equipped with a filtra-
tion (Ft)t≥0 which represents the information available at time t. We consider a
Ft-Brownian motion (Wt)t≥0 and assume that the random returns on the risky asset
(or the productive technology) evolve according to µdt+σdWt. Consequently, the
book value of equity of the firm evolves according to the following dynamics:

dXt = It{µdt+σdWt}+ r(Mt −D)dt−dZt, (1)

where the term between brackets is the return on risky assets, and the second term
represents net financial income (or expenses when negative). Finally, Zt represents
the cumulated process of dividends paid to the shareholders of the firm.

A control policy is described by a two-dimensional stochastic process (It, Zt).
Each control variable of the firm is Ft -adapted, meaning that every decision of
the firm at date t is made conditionally on the information available at date t. It

corresponds to the amount invested in the risky technology: we assume that it can
be continuously adjusted at no cost. On the other hand, the control It is restricted
to lie in the interval [0,Xt +D] where Xt +D = It +Mt is the total of the bal-
ance sheet of the firm. This restriction means in particular that cash reserves Mt

3 For the ease of exposition, we restrict ourselves to the case of a unique risky asset. The case of
multiple risky assets, with i.i.d. returns, is a trivial extension.

4 We assume that the firm’s debt does not bear any default spread. This is justified by the fact that, in
our model, the firm never defaults on its debt (see Section 3).
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cannot be negative. Zt is restricted to be a non decreasing process starting from 0,
which means that dividends are always non negative, i.e. that shareholders cannot
be required to inject new capital in the firm.

In fact, we capture financial frictions in a simple way by assuming that the firm
is not allowed to issue more equity or more debt in the future. When Xt hits 0, the
firm is liquidated (at no cost) and the debtholders are repaid D. The (random) liqui-
dation date is denoted τ . The dynamics of Xt, which we take as our state variable,
is given by:

dXt = It{µdt+σdWt}+ r(Xt − It)dt−dZt. (2)

Shareholders are risk neutral and discount the future at rate ρ. We denote by Π the
set of two-dimensional controls satisfying the above restrictions. The value function
of a firm starting at X0 =x is thus:

V ∗(x)= max
(It,Zt)∈Π

E

[∫ τ

0
e−ρtdZt

]
. (3)

We assume that ρ>µ>r. This means that in the absence of debt, shareholders
would prefer to consume immediately rather than to invest in the risky technology.5

However, leverage provides shareholders with an opportunity to operate the firm at
their profit. To see why, consider for example the case where Zt is not restricted to
be increasing (i.e. shareholders are not cash constrained: they can inject new funds
at any time). If the current book value of equity is x, the optimal strategy of the firm
would be to distribute x immediately as dividends while investing the debt value
D in the risky technology (It =D for every t≥0) and offset profits and losses by
payments to or from shareholders. The dividend control process corresponding to
this strategy is given by:

dZt =D{µdt+σdWt}− rDdt

Shareholder value would then be:

VFB(x)=x+
µ− r

ρ
D

where the notation VFB stands for the “first best” value of the firm. Notice that
VFB(x) is composed of two terms: x represents the immediate dividend paid to
shareholders, while µ−r

ρ D represents the expected present value of investing the

5 When µ > ρ, the problem does not have a well defined solution: shareholders are better off by
reinvesting all the profits in the productive technology and let the book value of equity increase without
limit. To see this, take It =Xt and Zt =

∫ t
0 δXtdt with 0<δ <µ−ρ. The evolution of the book value

of equity is

dXt =(µ− δ)Xtdt+σXtdWt.

Xt follows a geometric Brownian motion, and therefore the liquidation date is infinite. Thus,

V (x)≥ δx

∫ ∞

0
e(µ−ρ−δ)t dt=∞.
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amount D (that is borrowed from debtholders and remunerated at rate r) in the
productive technology (which has an expected return of µ). Thus if shareholders
were not cash constrained, they would maintain a constant investment D in the
risky technology, keep no reserves, distribute all gains immediately as dividends,
and cover all losses by reinjecting funds when needed.

The problem becomes more interesting when shareholders are cash constrained.
Jeanblanc and Shirayev [7] have studied the particular case where D=0, r=0 and
It is restricted to be constant. The solution then consists in accumulating cash
reserves up to some threshold and distributing dividends above this threshold. We
now examine the general case where It is flexible, and D and r are positive.

3 Characterizing the optimal policy of the firm

This section characterizes the optimal policy of the firm. Recall that it consists of
two elements: the investment process It and the cumulated dividend process Zt.
The main difficulty is that It is a bounded process (since it is restricted to lie in the
interval [0,Xt +D]), while Zt can be any non decreasing process, not necessarily
with bounded variations, as illustrated by [7]. The control problem of the firm is
thus a mixed singular/regular control problem of the type studied by Fleming and
Soner [3] who prove the following result:

Theorem 1. If the value function V ∗ defined by (3) is C2, it satisfies the following
variational inequalities:

∀x>0, max
[

max
0≤I≤x+D

L(I)V (x), 1−V ′(x)
]

=0, (4)

where

L(I)V (x)≡{µI + r(x− I)}V ′(x)+
σ2

2
I2V ′′(x)−ρV (x), (5)

with the initial condition

V (0)=0. (6)

Theorem 1 gives an analytical characterization of the value function in terms of
the Hamilton-Jacobi-Bellman differential equation. However, it is difficult in gen-
eral to prove that there is an unique solution to (4) and (6) in a classical sense. In
order to use the analytical characterization, we have to be guided by economic intu-
ition. The impossibility to obtain external finance leads shareholders to accumulate
cash reserves in order to reduce the risk of being forced to liquidate. However,
the marginal value of these reserves is likely to decrease (as the level of reserves
increases) since liquidation then becomes less likely. This speaks for a concave
value function. The concavity of the value function, together with a marginal value
bounded below by one, yields that shareholders will distribute dividends when the
marginal value of the firm is exactly one. Therefore, we claim the existence of a
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threshold x1 above which the firm distributes all the surplus as dividends. This
means that

V ′(x)≡1, V ′′(x)≡0 for x>x1, (7)

and we prove the following verification theorem:

Theorem 2. a) Assume there exists a twice continuously differentiable concave
function V and a constant x1 such that

∀x≤x1 max
0≤I≤x+D

(L(I)V (x))=0 and V
′
(x)≥1, (8)

∀x≥x1 V
′
(x)=1 and max

0≤I≤x+D
(L(I)V (x))≤0 (9)

together with the initial condition:

V (0)=0, (10)

then V =V ∗.
b) Furthermore, let I∗ be the maximizer in (8) and �t(x1) the local time6 at the
level x1 of the diffusion process

dXt = I∗(Xt)(µdt+σdWt)+ r(Xt − I∗(Xt))dt,

then V ∗(x)=E
∫ τ0
0 e−rsd�s(x1), where

τ0 =inf{t ≥0, Xt ≤0}.

We shall construct a concave function, denoted V , satisfying the conditions of
Theorem 2. Note that for x≥x1, we have

L(I)V (x)=(µ− r)I + rxV ′(x)−ρV (x),

Because µ>r, L(I)V (x) is increasing with respect to I and thus the optimal invest-
ment is I∗(x)=x+D. By continuity there exists a second threshold x0 ∈ [0, x1[
such that I∗(x)= (x+D) on [x0, x1]. The first order condition corresponding to
the optimal investment choice is:

(µ− r)V ′(x)+σ2V ′′(x)I = 0 if I ∈]0, x+D[
≥ 0 if I =x+D

≤ 0 if I =0.

Suppose that I∗(x) is interior on (0, x0). This means that

I∗(x)=
µ− r

σ2

(
− V ′

V ′′ (x)
)

,

6 The interpretation is that Xt is reflected at x1. The local time �t(x1) is the process that ensures
the reflection. We refer to [9], Section 3.6, for a rigorous presentation of the notion of local time.
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a formula reminiscent of [11]. Therefore, V satisfies the nonlinear differential equa-
tion:

0<x<x0 : ρV (x)= rxV ′(x)− 1
2

(
µ− r

σ

)2 V ′2
V ′′ (x), (11)

together with the boundary condition

V (0)=0. (12)

A key feature of our model is that the solution of (11), (12) is explicit:

Lemma 1. Any concave increasing C2 function V that satisfies (11) and (12) has
the following expression:

V (x)=K1x
a1 ,

where a1 ∈ (0,1) is the smallest solution of

ra2 −
(

r +ρ+
1
2

(
µ− r

σ

)2
)

a+ρ=0,

and K1 is a positive constant.

The corresponding investment strategy is thus linear in x:

I∗(x)=
(

µ− r

σ2

)
x

1−a1
≡ x

k
. (13)

Since k <1 (this will be established in Lemma 2 in the Appendix), x0 is deter-
mined by the equality x0

k =x0 +D, which gives x0 explicitly:

x0 =
kD

1−k
. (14)

Consider now the interval (x0, x1), on which I∗(x)=x+D. Using (4) and (5) we
see that V satisfies, on this interval, a linear differential equation:

ρV (x)= [µx+(µ− r)D]V ′(x)+
σ2

2
(x+D)2V ′′(x). (15)

On this interval, the solution is not explicit. Nevertheless, by the Cauchy-
Lispchitz theorem, we know that for all u, there exists a unique solution Vu of
(15) that satisfies the boundary conditions:

V ′′
u (u)=0, V ′

u(u)=1. (16)

We are now in a position to state the main result of this paper:

Theorem 3. There exist an unique real number x1 > x0 and a unique concave
increasing C2 function V =Vx1 from R+ to R that satisfies (8), (9). It is charac-
terized by the following properties:
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a) V (x)=K1x
a1 for 0≤x≤x0.

b) ρV (x)= [µx+(µ− r)D]V ′(x)+ σ2

2 (x+D)2V ′′(x) for x0 <x<x1.

c) V (x)=x+ µ−r
ρ D − ρ−µ

ρ x1 for x≥x1,

where K1 is uniquely determined.

The idea behind the proof of Theorem 3 (given in the Appendix) is that there
exists a unique value of x1 such that the solution of (15), (16) can be “patched”,
in a C2 fashion, with an isoelastic function V (x)=K1x

a1 defined on the interval
[0, x0].

4 Economic implications

In this section, we derive several economic implications from Theorem 3. In Sub-
section 4.1 we establish that the optimal investment of the firm essentially consists
in investing a multiple of the firm’s equity into the risky asset. In Subsection 4.2
we prove that the firm’s optimal financial policy consists in distributing dividends
whenever the book value of equity exceeds a certain threshold x1. Finally, Subsec-
tion 4.3 studies the determinants of the firm’s risk aversion.

4.1 Investment policy

We have established that the optimal investment policy of the firm was relatively
simple:

I∗(x)=min
(x

k
,x+D

)
. (17)

That is, it consists of investing a multiple 1
k of the firm’s equity Xt, up to a point

x0 where this exhausts cash reserves. Above x0, the firm invests everything in the

risky technology. k can be interpreted as a minimum capital ratio
(

equity
investment

)
as

in bank solvency regulations. However, this minimum capital ratio is not imposed
by regulators, it corresponds to the optimal investment policy for shareholders.
Whenever x≤x0, the minimum capital ratio is binding. When x>x0, the capital
ratio of the firm is above the minimum value k.

The following proposition characterizes the comparative statics properties of
the minimal capital ratio k, as a function of the cost of capital ρ− r, the volatility
σ of assets and the expected excess return µ− r on these assets.

Proposition 1. Other things being equal, the target capital ratio k optimally cho-
sen by the firm satisfies the following properties:

a) It decreases with the cost of capital (ρ− r).
b) It increases with the volatility of assets σ.
c) It is single peaked with respect to the expected excess return on assets (µ− r).
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Properties a) and b) are intuitive, but c) is more surprising, since one could
have expected a capital ratio that decreases with the profitability of the technology,
measured by the expected excess return on assets. Proposition 1 c) confirms that
very profitable firms should invest a lot (i.e., k is small when µ− r is large) but,
surprisingly, the same is true when µ is close to zero. The reason is that, when µ
is close to r, the risk aversion coefficient of the firm, namely 1−a1, converges to
zero (see Proposition 2). Moreover it does so faster than µ−r, which explains why
k itself converges to zero.

4.2 Financial policy

Shareholder value V (x) is a concave function of the book value of equity x. This
means that financial frictions (captured here by the assumption that the firm cannot
obtain external finance) generate a simple form of risk aversion. Above x1, inter-
preted as the optimal level of equity for the firm, the firm becomes risk neutral: the
marginal value of additional cash is one, and dividends can be distributed.

We were not able to establish the comparative statics properties of the target
level of capital x1, as a function of the model’s parameters. The reason is that x1
is only determined implicitly as the solution to a free boundary problem. However,
we conjecture that x1 has the same properties as k (see Proposition 1), namely that
it should decrease with the cost of capital (ρ− r), increase with the volatility of
assets σ and be single peaked with respect to (µ− r). In a companion paper [15],
we prove these properties for the fixed investment model of [7]. They remain to be
established for the flexible investment model studied here.

The following figure illustrates the value function and the investment policy.

4.3 Corporate risk aversion

As we already mentioned, one of the implications of our results is that a liquid-
ity constrained firm behaves (in the region where its investment policy is not
constrained) like a Von Neumann-Morgenstern investor with constant Relative
Risk Aversion. The next proposition establishes the way in which the risk aver-
sion coefficient of the firm varies with the cost of capital, the volatility of assets,
and the profitability of the firm.

Proposition 2. Other things being equal, the risk aversion coefficient of the firm
satisfies the following properties:

a) It decreases with the cost of capital (ρ− r).
b) It decreases with the volatility of assets σ.
c) It increases with the expected excess return on assets (µ− r).

Proposition 2 thus endogenizes the (implicit) risk aversion coefficient of the
firm as a function of three parameters: the cost of capital, ρ−r, the volatility σ and
the expected excess return µ−r on the risky technology. The fact that risk aversion
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Figure 1. Shareholder value V (x) as a function of x, the book value of equity. I∗ is the investment
policy. M∗ is the level of cash reserves

decreases with the cost of capital (Proposition 2 a) is not surprising: The higher
the remuneration demanded by shareholders, the higher the risk taken by the firm
(remember however that the firm’s investment policy is such that the firm never
fails). The variation of the firm’s (implicit) risk aversion associated with changes in
the net profitability (µ− r) and the volatility σ of the risky asset has to be viewed
in relation with Proposition 1. Remember that in the region [0, x0] where the firm
chooses to keep some liquid reserves (and thus investment I in the risky asset is
not maximum) the capital ratio of the firm is equal to:

k =
1−a1
µ−r
σ2

,

where (1−a1) is the (relative) risk aversion coefficient of the firm, and µ−r
σ2 is the

Sharpe ratio of the risky asset. Comparing Propositions 1 b (and 2 b) shows that
k increases with σ, but less rapidly that σ2. Similarly, comparing Propositions 1 c
(and 2 c) shows that (1−a1) increases with (µ−r) but not at a constant rate, since
k is single peaked with respect to this variable.

5 Conclusion

This paper has studied the corporate version of the continuous-time portfolio prob-
lem solved by Merton [11] for an individual investor. We have considered a cor-
poration, owned by risk neutral shareholders, that can continuously adjust, at a
negligible cost, the composition of its assets portfolio. Even if shareholders are risk
neutral, they are liquidity constrained. Thus the corporation exhibits risk aversion,
generated endogenously by the possibility of closure whenever the value of the
firm’s assets falls below the value of liabilities, assumed here to be constant.
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Shareholder value is maximized when the firm adjusts its share of risky assets
proportionally to its net wealth, effectively eliminating the risk of failure. Thus the
firm exhibits constant relative risk aversion, up to the point where all its assets are
invested in the risky technology.

Several directions of extension seems fruitful. First it would be interesting to
introduce frictions in the investment technology: we have in mind a situation where
some fraction of the investment in risky assets is fixed, while the remaining fraction
can be adjusted, possibly at a cost. Consider for example a bank who has to decide
whether or not to securitize a fraction of its loans, and replace them by marketable
assets. Several interesting questions appear, notably which loans to securitize and
also when to do so.

Another useful extension would be to introduce liability risk, either in the form
of random withdrawals (for a bank) or indemnity risk (for an insurer). This would
add an hedging motive to the choice of assets by the firm, as in [10]. Finally, it would
be important to introduce the possibility of costly external financing, by allowing
the firm to issue new debt or equity when needed. Froot, Scharfstein and Stein [4] do
this by assuming a convex cost of external financing. Another possibility would be
to endogenize financial frictions by introducing problems of moral hazard or cash
flow verifiability, like for example in [1]. In such a model, the liability structure of
the firm would be endogenized, and the liquidation decision would form part of an
optimal contract between the owners of the firm and outside financiers.

Appendix: Mathematical proofs

Proof of Theorem 2. The following proof is an adaptation of the proof of Proposi-
tion 3.2 p. 171 by Hojgaard and Taksar (1999). Fix a policy (It, Zt) and write the
process Zt =Zc

t +Zd
t where Zc

t is the continuous part of Zt and Zd
t is the pure

discontinuous part of Zt. Let:

dXt = It(µdt+σdWt)+ r(Xt − It)dt−dZt,

be the dynamic of equity under the policy (It, Zt), and let us define:

τε =inf{t≥0, Xt ≤ε}.

Using the generalized Ito formula (see Dellacherie and Meyer Theorem VIII.27),
we can write:

e−r(t∧τε)V (Xt∧τε) = V (x)+
∫ t∧τε

0
e−ρsL(Is)V (Xs)ds

+
∫ t∧τε

0
e−ρsV

′
(Xs)σdWt −

∫ t∧τε

0
e−ρsV

′
(Xs)dZc

s

+
∑

s≤t∧τε

e−ρs(V (Xs)−V (Xs−)),

Because V satisfies (8) and (9) the second term of the right hand side is negative.
Since V is concave and increasing, 0≤V

′
(Xs)≤V

′
(ε) and thus the third term is
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a centered square integrable martingale. Taking expectations, we get

E
(
e−r(t∧τε)V (Xt∧τε)

)
≤ V (x)−E

∫ t∧τε

0
e−ρsV

′
(Xs)dZc

s

+E
∑

s≤t∧τε

e−ρs(V (Xs)−V (Xs−)).

By concavity and sinceV
′
(x)≥1, we getV (Xs)−V (Xs−)≤Xs −Xs− =−(Zs −

Zs−). Therefore,

V (x)≥E
(
e−ρ(t∧τε)V (Xt∧τε)

)
+E

∫ t∧τε

0
e−ρs dZs.

The end of the proof consists in getting rid of the first term of the right hand side
which needs several steps.

Step 1: We shall first give an uniform bound for the second moment of the con-
trolled diffusion

dXt =(rXt +(µ− r)It)dt+ ItσdWt.

Since 0≤ It ≤D +Xt we can write using Cauchy-Schwarz inequality

|Xt|2 ≤ 2

(
x2 +

(∫ t

0
rXs +(µ− r)Isds

)2

+
(∫ t

0
σIsdWs

)2
)

≤ 2

(
x2 +

∫ t

0
µ2X2

s ds+(µ− r)2D2t+
(∫ t

0
σIsdWs

)2
)

.

Now take T >0 fixed, Doob’s inequality yields

E

[
sup
t≤T

|Xt|2
]

≤
(
2x2 +(µ− r)2D2T+E

∫ T

0
µ2X2

s ds+4
∫ T

0
σ2(X2

s +D2)ds

)
.

Let

f(T )=E

[
sup
t≤T

|Xt|2
]

we deduce that

f(T )≤2

(
x2 +((µ− r)2 +4σ2)D2T +

∫ T

0
(µ2 +4σ2)f(s)ds

)
.

Thus, Gronwall lemma yields for all T >0,

E

[
sup
t≤T

|Xt|2
]

<+∞.
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Step 2: The process (
∫ t
0 σIsdWs) is a square integrable martingale for t≥ 0. In-

deed,

E

∫ t

0
σ2I2

s ds≤σ2
E

∫ t

0
(X2

s +D)ds<∞,

according to Step 1. Thus, taking expectations in

Xt =x+
∫ t

0
(rXs +(µ− r)Is)ds+

∫ t

0
σIsdWs,

we get:

E(Xt)≤x+µ

∫ t

0
E(Xs)ds+(µ− r)Dt.

Once again, Gronwall lemma yields:

E(Xt)≤ (x+(µ− r)Dt)(1+eµt).

Because ρ>µ, we finally

lim
t→∞ E

[
e−ρtXt

]
=0.

We are now in a position to conclude. Because τε converges to τ0 as ε decreases to
0 and V (0)=0, we have

lim
ε↓0

E
[
e−ρt∧τεV (Xt∧τε)

]
= E

[
e−ρt∧τ0V (Xt∧τ0)

]

= E

[
e−ρtV (Xt)11{τ0>t}

]
.

By concavity of V , we have that V (x)≤K(1+x) for some constant K. Thus

E

[
e−ρtV (Xt)11{τ0>t}

]
≤KE(e−ρt(Xt +1)).

Using Step 2, we conclude by letting t→∞ that

lim
t→∞ lim

ε→0
E
(
e−ρ(t∧τε)V (Xt∧τε)

)
=0.

Let I∗ be the maximizer of (8) and �t(x1) the local time defined in Theorem 2. It is a
direct consequence of Proposition 3.2 p. 171 in [6] that the control (I∗(Xt), �t(x1))
is optimal.

Proof of Lemma 1. Let V be a solution of equation (11) on the interval [0, x0], and
define

u(x)=x
V ′(x)
V (x)

for x in ]0, x0].

We have that:

V ′(x)=
u(x)V (x)

x
,
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and thus:

V ′′(x)=
[
u(x)V (x)

x

]′
=

xu′(x)−u(x)
x2 V (x)+

u(x)V ′(x)
x

.

Using again the fact that V ′(x)= u(x)V (x)
x , we can write:

V ′′(x)=
[
xu′(x)−u(x)+u2(x)

x2

]
V (x),

and thus:

V
′2

(x)
V

′′(x)
=

u2(x)
xu′(x)−u(x)+u2(x)

V (x). (A1)

Thus if we divide equation (11) by V (x), we find that:

ρ= ru(x)− tu2(x)
xu′(x)+u2(x)−u(x)

, (A2)

where

t≡ 1
2

(
µ− r

σ

)2
.

This is equivalent to:

(ru(x)−ρ)[xu′(x)+u2(x)−u(x)]= tu2(x),

or:

xu′(x)[ru(x)−ρ] = −u(ru2 − (ρ+ r + t)u+ρ)
= −ru(x)[u(x)−a1][u(x)−a2], (A3)

where a1 and a2 (with 0<a1 <1< ρ
r <a2) are the solutions of

ra2 − (ρ+ r + t)a+ρ=0.

By separating variables and integrating, we can see that the solutions of ( A1) are
all such that

[|u(x)−a1|]α1 [|u(x)−a2|]α2 =λ
u(x)

x
, (A4)

where

α1 =
a2 −1
a2 −a1

, α2 =
1−a1
a2 −a1

and λ is a constant. λ is determined by the initial condition V (0)=0, which implies
that

lim
x→0

u(x)
x

= lim
x→0

V ′(x)
V (x)

=+∞.



Corporate portfolio management 239

Moreover, concavity of V implies by (A1) and (A2) that u(x)≤ ρ
r . Thus when we

take the limit of (A4) for x→ 0, we see that the left-hand side remains bounded
(since α1 >0 and α2 >0), while u(x)

x →∞. This implies that λ=0 and thus that
u(x)≡a1 or a2. a2 is excluded since a2 > ρ

r (this would contradict the concavity
of V ). Thus u(x)≡a1 is the only possibility. This gives

V (x)=K1x
a1 ,

where K1 is a positive constant, and the proof of Lemma 1 is complete.

Lemma 2. The target capital ratio

x

I∗(x)
=k =

1−a1
µ−r
σ2

is less than 1.

Proof of Lemma 2. Remember that a1 is the smallest root of

ϕ(a)= ra2 − (r +ρ+ t)a+ρ=0.

We want to establish that k <1, which is equivalent to a1 >1− µ−r
σ2 .

Thus we have to prove that

δ ≡ϕ

(
1− µ− r

σ2

)
>0.

Now:

δ = r

[
1− µ− r

σ2

]2
− [r +ρ+ t]

[
1− µ− r

σ2

]
+ρ

= −t+
µ− r

σ2

[
−2r + r +ρ+ t+

r

σ2 (µ− r)
]
.

But t= 1
2

(
µ−r

σ

)2
. Thus:

δ =
µ− r

2σ2

[
−µ+ r −2r +2ρ+2t+

2r

σ2 (µ− r)
]

,

or:

δ =
µ− r

2σ2

[
2ρ−µ− r +2t+

2r

σ2 (µ− r)
]

.

Since ρ>µ>r, δ >0 and the proof is complete.
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Proof of Theorem 3. We already know that for all x1 >x0, there exists a unique
function Vx1(x) that satisfies b) on (x0, x1), and such that:

V ′
x1(x1)=1, V ′′

x1(x1)=0.

If this function is extended to [x1,∞[ as in c), it is indeed C2 at x1. Notice that

ρVx1(x1)=µx1 +(µ− r)D.

We have to prove the existence and uniqueness of a couple (K1, x1) such that,
if Vx1 is extended to [0, x0] as in a), it is also C2 at x0. Two conditions need to be
satisfied:

Vx1(x0)=K1x
a1
0 , V ′

x1(x0)=a1K1x
a1−1
0 .

Clearly, K1 = Vx1 (x0)

x
a1−1
0

. This leaves one last equation for finding the last un-

known x1:

V ′
x1(x0)=a1

Vx1(x0)
x0

. (A5)

We now prove that this equation has a unique solution x1 >x0. We first need
to establish the following lemma:

Lemma 3. For all x<u, the mapping u→Vu(x) is decreasing, and the mapping
u→V ′

u(x) is increasing.

Proof of Lemma 3. Let θ(x)≡Vu(x)−Vv(x) for any x<u<v. By definition:

θ(u)=
µu+(u− r)D

ρ
−Vv(u)≥0.

Moreover:

θ′(u)=V ′
u(u)−V ′

v(u)=1−V ′
v(u)≤0,

and

θ′′(u)=V ′′
u (u)−V ′′

v (u)=−V ′′
v (u)≥0.

Let F = {x∈ (0, u) such that θ′(x)=0}. We are going to show by contradic-
tion that F is empty. Suppose indeed F �= ∅ and take y =supF . By construction
θ′(y)=0 and θ′(x)<0 for all x in (y, u). Thus θ′′(y)≤0 and also θ(y)>θ(u)≥0.

But now equation (15) implies:

ρθ(y)=
σ2

2
(y +D)θ′′(y)≤0,

which gives a contradiction.
We have thus established that θ′(x)≤ 0 for every x in (0, u). Since θ(u)≥ 0,

we also have θ(x)≥0 for all x in (0, u). This ends the proof of Lemma 3.
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Consider now condition (A5) as x1 varies on [x0,∞[. Lemma 3 shows that
x1 → Vx1(x0) is decreasing. Thus the right-hand side of (A5) decreases in x1.
Moreover

Vx1(x1)−Vx1(x0)=
∫ x1

x0

V ′
x1(u)du≥ (x1 −x0)

since V ′
x1(u)≥V ′

x1(x1)=1. Therefore

Vx1(x0)≤Vx1(x1)− (x1 −x0)=
µx1 +(µ− r)D

ρ
− (x1 −x0).

Since µ< 0, this converges to −∞ when x1 →∞. Lemma 3 also shows that
x1 →V ′

x1(x0) increases in x1. Uniqueness of the solution to ( A5) is thus guaran-
teed. Existence of a solution x1 >x0 is then established if we can prove that

V ′
x0(x0)<a1

Vx0(x0)
x0

.

But V ′
x0(x0)=1, while Vx0(x0)= µx0+(µ−r)D

ρ .
Thus we are left to prove that

H ≡a1

[
µ+(µ− r)

D

x0

]
−ρ>0.

But

D

x0
=

1
k

−1=
µ− r

σ2(1−a1)
−ρ.

Thus

H = a1

[
µ+

(
µ− r

σ

)2 1
1−a1

−µ+ r

]
−ρ

=
1

1−a1
[ra1(1−a1)+2ta1 −ρ+ρa1] .

Remember that, by definition of a1:

ra2
1 +ρ=(r +ρ+ t)a1.

Thus

H =
1

1−a1
[(r +2t+ρ)a1 − (r +ρ+ t)a1]=

ta1
1−a1

>0.
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Proof of Proposition 1. By definition,

k =
(1−a1)σ2

µ− r
,

where a1 is the smallest root of the quadratic equation:

ra2 −
[
r +ρ+

1
2

(
µ− r

σ

)2
]

a+ρ=0.

After straightforward computations, we obtain:

k =
(µ− r)

ρ− r + 1
2

(
µ−r

σ

)2
+

√[
ρ− r + 1

2

(
µ−r

σ

)2
]2

+4tr

.

Therefore it is clear that k decreases with the cost of capital (ρ−r) and increases
with the volatility of assets σ. To see that it is single-peaked with respect to µ− r,
it suffices to notice that

1
k

=
ρ− r

µ− r
+

µ− r

2σ2 +

√
2r

σ2 +
(

ρ− r

µ− r
+

µ− r

2σ2

)2

which is an increasing function of

y =
ρ− r

µ− r
+

µ− r

2σ2 .

Since y is itself a U -shaped function of µ− r, k is single peaked in µ− r, and
the proof of Proposition 1 is complete.

Proof of Proposition 2. As we saw in the proof of Proposition 1, the risk aversion
coefficient of the firm can be written as:

1−a1 =
2

ρ−r
t +1+

√
4r
t +

(
ρ−r

t +1
)2

,

where t= 1
2

(
µ−r

σ

)2
. Thus 1−a1 is a decreasing function of (ρ−r) and an increas-

ing function of t. The proof of Proposition 2 a results immediately.
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3. Fleming W.H., Soner M.: Controlled markov processes and viscosity solutions. Berlin Heidelberg

New York: Springer, 1993
4. Froot, K., Scharfstein, D., Stein, J.: Risk management: coordinating corporate investment and

financing policies. Journal of Finance 48, 1629–1658 (1993)



Corporate portfolio management 243

5. Froot, K., Stein, J.: Risk management, capital budgeting and capital structure policy for financial
institutions: an integrated approach. Journal of Financial Economics 47(1), 55-82 (1998)

6. Hojgaard, B., Taksar, M.: Controlling risk exposure and dividends pay-out schemes: Insurance
company example. Mathematical Finance 9, 153-182 (1999)

7. Jeanblanc, M., Shirayev, A.N.: Optimization of the flow of dividends, Uspekhi Mathem. Naut. 50,
25-46 (in Russian) [translated in Russian Mathematical Surveys 50, 257-277 (1995)]

8. Leland, H.: Agency cost, risk management and capital structure. Journal of Finance 53, 1213-1252
(1998)

9. Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus. Berlin Heidelberg New York:
Springer, 1991

10. Mello, A., Parsons, J.: Hedging and liquidity. The Review of Financial Studies 8(3), 743-771 (2000)
11. Merton, R.: Lifetime portfolio selection under uncertainty: the continuous-time case, Review of

Economics of Statistics 51, 247-257 (1969)
12. Milne, A., Robertson, D.: Firm behavior under the threat of liquidation, Journal of Economic

Dynamics and Control 20, 1427–1449 (1996)
13. Modigliani, F., Miller, M.: The cost of capital, corporate finance and the theory of investment.

American Economic Review 48(3), 261-297 (1958)
14. Radner, R., Shepp, L.: Risk vs. profit-potential: A model for corporate strategy. Journal of Eco-

nomics Dynamics and Control 20, 1373-1396 (1996)
15. Rochet, J.C.,Villeneuve, S.: Liquidity risk and corporate demand for hedging and insurance. Mimeo,

Toulouse University (2004)
16. Smith, C., Stulz, R.: The determinants of firms’ hedging policies. Journal of Financial and Quanti-

tative Analysis 20, 391-405 (1985)
17. Stulz, R.: Optimal hedging policies. Journal of Financial and Quantitative Analysis 19, 127-140

(1984)
18. Stulz, R.: Managerial discretion and optimal financing policies. Journal of Financial Economics

26, 3-27 (1990)


