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1. The Model

The following notation will be maintained throughout the paper. Time is continuous, and
labelled by t ≥ 0. Uncertainty is modelled by a complete probability space (Ω,F ,P) over
which is defined a standard Wiener process W = {Wt; t ≥ 0}. We let FW = {FW

t ; t ≥ 0} be
the P–augmentation of the filtration {σ(Ws; s ≤ t); t ≥ 0} generated by W .

A firm has a single investment project that generates random cash-flows over time. The
cumulative cash-flows R = {Rt; t ≥ 0} evolve according to an arithmetic Brownian motion
with strictly positive drift µ and volatility σ,

R0 = 0, dRt = µdt + σdWt; t ≥ 0. (1)

At each date, the project can be continued or liquidated. For simplicity, the liquidation value
is set equal to 0. The firm is held by a diffuse basis of risk-neutral equity holders, with limited
liability, and has no access to credit. As a result of this, its cash reserves must always remain
non-negative. Equity holders discount future payments at a rate ρ > 0.

At each date, the firm can retain part of its earnings, or issue new equity. As in Sethi and
Taksar (2002) or Løkka and Zervos (2005), issuing equity involves a proportional brokerage
commission. Specifically, for each dollar of new equity issued, the firm receives 1/p dollars
in cash, where p > 1 measures the proportional transaction cost. In addition, a distinctive
feature of our model is that each issue of equity involves a fixed transaction cost f > 0. As a
result of this, the firm’s issuance strategy can without loss of generality be described by an
increasing sequence (τn)n≥1 of FW–adapted stopping times representing the dates at which
equity is issued, along with a sequence (in)n≥1 of (FW

τn
)n≥1–adapted strictly positive random

variables representing the issuance proceeds. At any date t ≥ 0,

It =
∑

n≥1

in1{τn≤t} (2)

corresponds to the total issuance proceeds up to and including date t, while:

Ft =
∑

n≥1

f1{τn≤t} (3)

corresponds to the total fixed transaction costs incurred up to and including date t. We
denote by I = {It; t ≥ 0} and F = {Ft; t ≥ 0} the processes defined by (2)–(3), which are
FW –adapted by construction.

What is not retained from earnings is paid out as dividends. Let L = {Lt; t ≥ 0} be the
cumulative dividend process. It is assumed that L is FW–adapted and right-continuous, with
L0 = 0, and that it is non-decreasing, reflecting the equity holders’ limited liability. The cash
reserves M = {Mt; t ≥ 0} of the firm evolve according to:

M0− = m, dMt = rMtdt + dRt +
1
p

dIt − dFt − dLt; t ≥ 0, (4)

where r ∈ [0, ρ) is the interest earned on cash, R, I and F are defined by (1)–(3), and m ≥ 0.
Since the firm must hold non-negative cash reserves, (4) represents the dynamics of the cash
reserves up to the time:

τB = inf{t ≥ 0 |Mt < 0} (5)
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at which the firm goes eventually bankrupt. Note that we allow τB to take infinite values.
Given an issuance policy ((τn)n≥1, (in)n≥1), a dividend policy L, and cash reserves m ≥ 0,
the value of the firm can be computed as:

v(m; (τn)n≥1, (in)n≥1, L) = Em

[∫ τB

0
e−ρt (dLt − dIt)

]
,

where (τn)n≥1, (in)n≥1, I, L and τB are related by (1)–(5). Note that, by construction,

Em

[∫ τB

0
e−ρtdIt

]
= Em


∑

n≥1

e−ρτnin1{τn≤τB}


.

We define the corresponding value function as:

V ∗(m) = sup
(τn)n≥1,(in)n≥1,L

{v(m; (τn)n≥1, (in)n≥1, L)}; m ≥ 0. (6)

It is convenient to extend the value function V ∗ to (−∞, 0) by setting V ∗(m) = 0 for all
m < 0. This allows us to put no restrictions on the issuance proceeds (in)n≥1 besides that
they remain non-negative.

Remark. Our setup embeds the pure dividend distribution model of Jeanblanc-Picqué
and Shiryaev (1995) as a special case, in which the proportional cost p or the fixed cost f

assume a very large value. In this situation, issuing is not a profitable option for the firm,
which is then liquidated as soon as its cash reserves hit 0. It will be also seen that our setup
also embeds the model of Løkka and Zervos (2005) as a limit case, in which equity issuance
involves a proportional cost but no fixed cost. Note also that, in contrast with these papers,
we allow cash reserves to be remunerated.

2. The First-Best Benchmark

Before considering how issuance costs affect the firm’s issuance and dividend policy, as well
as the dynamics of stock prices, we examine a benchmark case in which such costs are absent,
that is p = 1 and f = 0. In this first-best environment, the firm’s value is simply the sum of
its cash reserves m and of the present value of its future cash-flows:

V̂ (m) = m + Em

[∫ ∞

0
e−ρt (µdt + σdWt)

]
= m +

µ

ρ
. (7)

Since cash reserves are remunerated at a rate r < ρ, it is optimal for the firm to hold no cash
reserves beyond date 0. In the absence of financial frictions, the Modigliani and Miller (1958)
logic applies, so that we have many degrees of freedom in designing issuance and dividend
processes Î = {Ît; t ≥ 0} and L̂ = {L̂t; t ≥ 0} that deliver the value (7). We shall assume
for simplicity that the total amount of dividends is constant per unit of time. Since the firm
distributes all its cash reserves m as a special dividend at date 0, this yields:

L̂t = m1{t=0} + lt; t ≥ 0, (8)

for some arbitrary l > 0. Consider now the issuance process. Allowing for share repurchases,
the requirement that cash reserves be constant and equal to 0 after date 0 yields:

dÎt = −(µ− l)dt− σdWt; t ≥ 0. (9)
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It is immediate that the pair (Î , L̂) defined by (8)–(9) delivers the first-best value (7). We
now turn to the dynamics of stock prices in this frictionless market. Let Ŝ = {Ŝt; t ≥ 0}
be the process describing the ex-dividend price of a share in the firm, and N̂ = {N̂t; t ≥ 0}
the process modelling the number of shares issued by the firm. After date 0, the market
capitalization N̂ Ŝ of the firm stays constant at a level µ/ρ. In particular, the dividend per
share and per unit of time is l/N̂ = lρŜ/µ. Therefore, at any date t ≥ 0, one has:

dÎt = d(N̂tŜt)− N̂tdŜt = −N̂tdŜt = −µ

ρ

dŜt

Ŝt

. (10)

Along with (9), (10) implies that:

dŜt

Ŝt

= ρ

(
1− l

µ

)
dt + σ

ρ

µ
dWt = ρdt + σ

ρ

µ
dWt − ρ

µ
dL̂t (11)

for all t ≥ 0. This stock price dynamics is similar to that postulated by Black and Scholes
(1973) and Merton (1973). It should be noted that, while the dividend distribution process is
indeterminate, the constancy of the volatility of stock returns in (11) is a direct implication
of the fact that the market capitalization of the firm stays constant over time.

3. The Optimal Issuance and Dividend Policies

In this section, we first derive heuristically a system of variational inequalities for the value
function V ∗. We then prove that this system has a solution satisfying appropriate regularity
conditions. Finally, a verification argument establishes that this solution coincides with V ∗,
from which the optimal issuance and dividend policies can be inferred.

3.1. A Heuristic Derivation of the Value Function

To derive the system of variational inequalities satisfied by V ∗, suppose for the moment that
V ∗ is twice continuously differentiable over (0,∞) and that for all m ≥ 0 there exists an
optimal policy that attains the supremum in (6). Fix some m > 0. The policy that consists
in distributing l ∈ (0,m) worth of dividends, and then immediately executing the optimal
policy associated with cash reserves m− l must yield no more than the optimal policy:

V ∗(m) ≥ V ∗(m− l) + l.

Subtracting V ∗(m− l) from both sides of this inequality, dividing through by l and letting l

go to 0 yields that:
V ∗′(m) ≥ 1 (12)

for all m > 0, as is usual in dividend distribution models. Next, the policy that consists in
issuing i > 0 worth of equity, and then immediately executing the optimal policy associated
with cash reserves m + i/p− f must yield no more than the optimal policy:

V ∗(m) ≥ V ∗
(

m +
i

p
− f

)
− i.

Thus, one must have:

V ∗(m) ≥ sup
m′∈[m,∞)

{
V ∗(m′ − f)− p(m′ −m)

}
(13)
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for all m > 0. Finally, consider the policy that consists in abstaining from issuing new equity
and from distributing any dividends for t∧ τB units of time, where t > 0, and then executing
the optimal policy associated to the resulting cash reserves m +

∫ t∧τB

0 [(µ + rMs)ds + σdWs].
Again, this policy must yield no more than the optimal policy:

V ∗(m) ≥ Em

[
e−ρt∧τB V ∗

(
m +

∫ t∧τB

0
[(µ + rMs)ds + σdWs]

)]
.

Using Itô’s Lemma and letting t go to 0 results in:

−ρV ∗(m) + LV ∗(m) ≤ 0 (14)

for all m > 0, where the infinitesimal generator L is defined as:

Lu(m) = (µ + rm)u′(m) +
σ2

2
u′′(m). (15)

We shall refer to (12)–(14) as the fundamental system of variational inequalities satisfied by
V ∗. To move forward, we make the following guess about the optimal strategy. Consider
first the issuance policy. Because of the fixed transaction cost associated to equity issuances,
it is natural to expect that these should be delayed as much as possible. This suggests that,
if any issuance activity takes place at all, it must be at the times when the cash reserves
hit 0 so as to avoid bankruptcy. Because of the stationarity of the model, we postulate that
the optimal issuance policy then consists in issuing a constant amount worth of equity, or in
abstaining from issuing equity altogether, which triggers bankruptcy. As a result of this, the
value of the firm when it runs out of cash is:

V ∗(0) =
[

max
i∈[0,∞)

{
V ∗

(
i

p
− f

)
− i

}]+

. (16)

Denote by i∗ a solution to the maximization problem in (16). It will turn out that i∗ is
uniquely determined at the optimum. If the firm does choose to issue equity, that is, if
V ∗(i∗/p − f) − i∗ > 0, then m∗

0 = i∗/p − f > 0 represents the post issuance cash reserves
of the firm. Consider now the dividend policy. In line with standard dividend distribution
models, it is natural to expect dividends to be distributed as soon as cash reserves hit or
exceed a boundary m∗

1 > 0. This implies that, for all m ≥ m∗
1,

V ∗′(m) = 1 (17)

Since V ∗ is postulated to be twice continuously differentiable over (0,∞), (17) implies that,
in addition, the following super contact condition holds at the dividend boundary m∗

1:

V ∗′′(m∗
1) = 0 (18)

When cash reserves lie in (0,m∗
1), no issuance or dividend activity take place, and (14) holds

as an equality. It then follows from (15) and (17)–(18) that V ∗(m∗
1) = (µ + rm∗

1)/ρ. We are
thus led to the problem of finding a function V , along with thresholds m0 ≥ −f and m1 > 0,
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that solve the following variational system:

V (m) = 0; m < 0, (19)

V (0) = [V (m0)− p(m0 + f)]+; for m0 ∈ arg max
m∈[−f,∞)

{V (m)− p(m + f)}, (20)

−ρV (m) + LV (m) = 0; 0 < m < m1, (21)

V (m) =
µ + rm1

ρ
+ m−m1; m ≥ m1. (22)

We shall then proceed as follows. First, we prove that there exists a unique solution V to
(19)–(22) that is twice continuously differentiable over (0,∞). It is then easy to check that
V satisfies the variational inequalities (12)–(14) over (0,∞). One can finally infer from this
that V coincides with the value function V ∗ for problem (6).

3.2. Solving the Variational Inequalities

We solve (19)–(22) as follows. First fix some m1 > 0, and consider the following boundary
value problem over [0,m1]:

−ρV (m) + LV (m) = 0; 0 ≤ m ≤ m1, (23)

V ′(m1) = 1, (24)

V ′′(m1) = 0. (25)

Standard existence results for linear second-order differential equations yield that (23)–(25)
has a unique solution over [0,m1], which we denote by Vm1 . By construction, this solution
satisfies Vm1(m1) = (µ + rm1)/ρ. Extending linearly Vm1 to [m1,∞) as in (22), we obtain
a twice continuously differentiable function over [0,∞), which we denote again by Vm1 . The
following lemma establishes key monotonicity and concavity properties of Vm1 .

Lemma 1. V ′
m1

> 1 and V ′′
m1

< 0 over [0,m1).

Now observe that if there exists a solution V to (19)–(22) that is twice continuously
differentiable over (0,∞), then by construction, V must coincide with some Vm1 over [0,∞)
for an appropriate choice of m1. This choice is in turn dictated by the boundary condition
(20) that V must satisfy at 0. It is therefore crucial to examine the behavior of Vm1 and V ′

m1

at 0. One has the following result.

Lemma 2. Vm1(0) is a strictly decreasing and concave function of m1, and V ′
m1

(0) is a strictly

increasing and convex function of m1.

Since limm1↓0 Vm1(0) = µ/ρ > 0 and limm1↓0 V ′
m1

(0) = 1 < p, it follows from Lemma
2 that there exists a unique m̂1 > 0 such that Vm̂1(0) = 0, and that there exists a unique
m̃1 > 0 such that V ′

m̃1
(0) = p. It is easy to verify that m̂1 > m̃1 if and only if V ′

m̂1
(0) > p.
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Lemma 1 along with the fact that V ′
m1

(m1) = 1 further implies that if m1 ≥ m̃1, there exists
a unique mp(m1) ∈ [0, m1) such that V ′

m1
(mp(m1)) = p. This corresponds to the unique

maximum over [0,∞) of the function m 7→ Vm1(m)− p(m + f). Note that, by construction,
mp(m̃1) = 0. There are now two cases to consider.

Case 1. Suppose first that:

m̂1 ≤ m̃1 or Vm̂1(mp(m̂1))− p[mp(m̂1) + f ] ≤ 0. (26)

Define a function V̂ by:

V̂ (m) =





0 m < 0,

Vm̂1(m) m ≥ 0.
(27)

Note that, by construction, V̂ (0) = 0. Furthermore, condition (26) implies that the function
m 7→ V̂ (m) − p(m + f) reaches its maximum over [−f,∞) at m̂0 = −f . It is then easy to
check that (V, m0,m1) = (V̂ , m̂0, m̂1) solves the variational system (19)–(22).

Case 2. Suppose next that:

m̂1 > m̃1 and Vm̂1(mp(m̂1))− p[mp(m̂1) + f ] > 0. (28)

One then has the following lemma.

Lemma 3. If (26) holds, there exists a unique m̄1 ∈ (m̃1, m̂1) such that:

Vm̄1(0) = Vm̄1(mp(m̄1))− p[mp(m̄1) + f ]. (29)

Define a function V̄ by:

V̄ (m) =





0 m < 0,

Vm̄1(m) m ≥ 0.
(30)

Note that Lemma 2 together with the fact that m̄1 < m̂1 implies that V̄ (0) > 0. Furthermore,
since m̄1 > m̃1, the function m 7→ V̄ (m) − p(m + f) reaches its maximum over [−f,∞) at
m̄0 = mp(m̄1). It is then easy to check that (V, m0,m1) = (V̄ , m̄0, m̄1) solves the variational
system (19)–(22).

The following proposition summarizes our findings.

Proposition 1. There exists a unique solution V to the variational system (19)–(22) that is

twice continuously differentiable over (0,∞). Moreover, V satisfies the variational inequalities

(12)–(14) over (0,∞).

3.3. The Verification Argument

In this subsection, we establish that the solution V to (19)–(22) coincides with the value
function V ∗ for problem (6). Our first result is that V is an upper bound for V ∗.

Lemma 4. For any admissible issuance and dividend policy ((τn)n≥1, (in)n≥1, L),

V (m) ≥ v(m; (τn)n≥1, (in)n≥1, L); m ≥ 0.
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We now construct an admissible policy whose value coincides with V . Given Lemma 4,
this establishes that V ∗ = V , and thereby provides the optimal issuance and dividend policy.
Define m∗

0 = m+
0 and m∗

1 = m1, where m0 and m1 are given by (19)–(22). To construct the
optimal policy, consider the following version of Skorokhod’s problem:

M∗
t = m +

∫ t

0
(µ + rM∗

s ) ds + σWt +
∑

n≥1

m∗
01{T ∗n≤t} − L∗t , (31)

M∗
t ≤ m∗

1, (32)

L∗t =
∫ ∞

0
1{M∗

s =m∗
1} ds, (33)

for all t ∈ [0, τ∗B], where τ∗B = inf{t ≥ 0 |M∗
t < 0} and the sequence of stopping times (T ∗n)n≥1

is recursively defined by:

T ∗n = inf{t ≥ T ∗n−1 |M∗
t− = 0}; n ≥ 1 (34)

where T ∗0 = 0. Standard results on Skorokhod’s problem (Tanaka (1979)) along with the
strong Markov property imply that there exists a pathwise unique solution (M∗, L∗) =
{(M∗

t , L∗t ); t ≥ 0} to (31)–(34). Condition (33) requires that L∗ increases only when M∗

hits the boundary m∗
1, while (31)–(32) express that this causes M∗ to be reflected back at

m∗
1. As for the behavior of M∗ at 0, two cases can arise. If (26) holds, m∗

0 = (−f)+ = 0,
so that τ∗B = T ∗1 P–almost surely. This corresponds to a situation in which the project is
liquidated as soon as the firm runs out of cash. By contrast, if (28) holds, m∗

0 = mp(m∗
1) > 0.

In that case, the process M∗ discontinuously jumps to m∗
0 each time it hits 0, so that τ∗B = ∞

P–almost surely. This corresponds to a situation in which an amount i∗ = p(m∗
0 + f) of new

equity is issued when the firm runs out of cash. One has the following result.

Proposition 2. The value function V ∗ for problem (6) coincides with the unique solution V

to the variational system (19)–(22) that is twice continuously differentiable over (0,∞). The

optimal issuance and dividend policy is given by ((τ∗n)n≥1, (i∗n)n≥1, L
∗), where:

τ∗n = ∞, i∗n = 0; n ≥ 1 if condition (26) holds,

τ∗n = T ∗n , i∗n = i∗; n ≥ 1 if condition (28) holds.

According to Proposition 1, the firm’s optimal dividend policy consists in retaining all its
earnings until accumulated cash reserves exceed the threshold m∗

1. When this arises, the firm
pays all the excess over m∗

1 as dividends. Regarding the firm’s issuance policy, two situations
can arise. If condition (26) holds, which intuitively arises when the issuance costs p and f

are high, the firm never resorts to outside financing. The model is then essentially equivalent
to that of Jeanblanc-Picqué and Shiryaev (1995), the only difference being that we allow for
cash remuneration. By contrast, if issuance costs are low and condition (26) holds, the firm
avoids liquidation by issuing new equity when its cash reserves are depleted. Although the
firm is never liquidated, its value V ∗(m) falls short of the first-best value V̂ (m) = m + µ/ρ

because of the presence of transaction costs. The concavity of V ∗ over [0,∞) reflects that the
value of firm reacts less to changes in the level of cash reserves when past performance has
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been high. This is because high accumulated cash reserves allow the firm to postpone the
time at which it will have to raise new equity and incur the corresponding issuance costs. By
contrast, following unfavorable cash-flow realizations, cash reserves are low, and the value of
the firm reacts strongly to performance and ensuing changes in cash reserves.

Two limiting cases of our analysis are worth mentioning. If p = 1, equity issuances involve
no proportional cost. It is then easy to see that, if f is small enough so as to ensure that
condition (28) is fulfilled, the dividend boundary m∗

1 coincides with the post issuance level of
cash reserves of the firm, m∗

0 = m∗
1. The intuition is that since issuances involve only a fixed

cost f , it is optimal for the firm to raise as much equity as possible from the market. In that
case, equity issuances are tied to dividend distribution: following an equity issuance and a
favorable cash-flow realization, the firm immediately distributes the excess of cash over m∗

1 as
dividends. By contrast, if f tends to 0, the lump sum amounts of equity issued tend to 0, and
in the limit we have V ∗′(0) = p as in the model of Løkka and Zervos (2005). In that case, the
optimal issuance policy is no longer described by an impulse control as in Proposition 2, with
discontinuous jumps in the cash reserves at 0, but rather by a singular control similar to the
dividend process. In practice, equity issuances are rarely followed by dividend distributions,
and firms undertake equity adjustments in lumpy and infrequent issues (Bazdresch (2005)).
This is consistent with a combination of fixed and proportional issuance costs such as the
one we have postulated.

The characterization of the value function V ∗ provided in Proposition 1 allows us to study
the impact of an increase in issuance costs on the sensitivity of the value of the firm to changes
in its cash reserves. To focus on an interesting case, we assume in the following result that
issuance costs remain low enough so as to guarantee that condition (28) holds and hence that
the firm does resort to outside financing at the optimum.

Corollary 1. The elasticity of the value of the firm with respect to its cash reserves,

ε∗(m) =
mV ∗′(m)
V ∗(m)

; m ≥ 0, (35)

is an increasing function of the issuance costs p and f .

The proof of this result proceeds as follows. An increase in issuance costs obviously results
in a fall in the firm’s value, which mechanically raises the elasticity (35). This fall in value is
tied to an increase in the dividend boundary m∗

1, reflecting the intuitive fact that as issuance
costs increase, the firm must accumulate more liquidities before distributing dividends. Using
the non-crossing property of the solutions to (23)–(25), it is then easy to establish that this
implies that the marginal value of cash increases with issuance costs, which further raises the
elasticity (35).

For a given firm, the concavity of V ∗ guarantees that the elasticity ε∗(m) is a decreasing
function of the level m of its cash reserves. What Corollary 1 establishes is that this effect is
magnified by issuance costs. Intuitively, the percentage change in firm value per percentage
change in cash reserves is larger when issuance costs are relatively high, because allowing the
firm to postpone a costly new equity issuance is more valuable in this situation. Conversely,
the holding of liquid assets is less important when the firm has access to cheap outside
financing. A testable implication of this is that firms’ valuations should be more responsive
to changes in their cash reserves on markets with high transaction costs. Alternatively, a
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reduction in transaction costs triggered by a capital market liberalization should reduce the
responsiveness of firms’ valuations to changes in their cash reserves.

4. Stock Prices

We are now ready to derive the implications of our theory for stock prices. To focus on the
case where the firm does resort occasionally to outside financing, we suppose thereafter that
condition (28) holds. We denote by S∗ = {S∗t ; t ≥ 0} the process describing the ex-dividend
price of a share in the firm, and by N∗ = {N∗

t ; t ≥ 0} the process modelling the number of
shares issued by the firm. Thus at any date t ≥ 0, S∗t does not include dividends distributed at
date t, while N∗

t includes new shares issued at date t. We assume that N∗ is a non-decreasing
process and we adopt the normalization N∗

0− = 1. A key observation is that issuance and
payout decisions critically depend on the amount of liquidities accumulated by the firm. As
a result of this, the stock price and the number of outstanding shares are contingent on the
current level of cash reserves. At any date t ≥ 0, the value of the firm satisfies:

V ∗(M∗
t ) = N∗

t S∗t . (36)

Now turn to the optimal issuance process I∗. At any date t ≥ 0,

dI∗t = d[V ∗(M∗
t )]−N∗

t dS∗t = d(N∗
t S∗t )−N∗

t dS∗t = S∗t dN∗
t , (37)

where the first equality reflects that part of the change in the value of the firm due to new
equity issuance is absorbed by existing shareholders, and the third inequality follows from
the fact that N∗ is an increasing process, so that d〈N∗, S∗〉t = 0. The following lemma holds.

Lemma 5. For each n ≥ 1, S∗τ∗n = S∗τ∗n−.

Lemma 5 expresses the fact that the stock price does not jump at the optimal equity
issuance dates. This is because the issuance process is predictable in our model: the firm
raises new equity as it runs out of cash, an event that is observable by all participants to
the market. The fact that the stock price does not react to new equity issuances follows
then simply from the absence of arbitrage opportunities. In particular, equity issuances do
not convey bad news about the profitability of the firm, unlike what typically happens when
firms have private information about future profitability (Myers and Majluf (1984)).

We are now ready to derive the dynamics of the processes N∗ and S∗. Our first result
is a direct implication of the fact that, when an equity issuance occurs, the value of the
firm discontinuously jumps from V ∗(0) to V ∗(m∗

0), while the stock price itself is unaffected
according to Lemma 5.

Proposition 3. The process N∗ modelling the number of outstanding shares is ponctual and

defined by:

N∗
t =





1 t ∈ [0, τ∗1 ),

[
V ∗(m∗

0)
V ∗(0)

]n

t ∈ [τ∗n, τ∗n+1).
(38)

According to (38), each time new equity is raised, the ratio of new shares to outstanding
shares is constant and equal to [V ∗(m∗

0) − V ∗(0)]/V ∗(0), which corresponds to a constant
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dilution factor. The number of shares is constant between two consecutive issuance dates.
Thus, for all n ≥ 0 and t ∈ [τ∗n, τ∗n+1), one has dS∗t = d[V ∗(M∗

t )]/N∗
τ∗n . Using Itô’s Lemma

along with (21), together with the facts that the dividend process L∗ increases only at m∗
1

and that V ∗(m∗
1) = (µ + rm∗

1)/ρ and V ∗′(m∗
1) = 1, it is easy to derive the following result.

Proposition 4. Between two consecutive issuance dates τ∗n and τ∗n+1, the stock price process

S∗ evolves according to:

dS∗t
S∗t

= ρdt + σ
V ∗′((V ∗)−1(N∗

τ∗nS∗t ))
N∗

τ∗nS∗t
dWt − ρ

µ + rm∗
1

dL∗t . (39)

Along with the characterization of the value function V ∗ provided in Section 3, this
result implies that the dynamics of the stock price S∗ differs in three important ways from
the log-normal specification postulated by Black and Scholes (1973) and Merton (1973),
and derived in equation (11) in the first-best benchmark. First, the stock price is reflected
back each time dividends are distributed, which occurs when the process V ∗(M∗) = N∗S∗

hits m∗
1. As a result of this, the stock price cannot take arbitrarily large values. Second,

since the function V ∗ is strictly increasing and strictly concave over [0,∞), the volatility
σV ∗′((V ∗)−1(N∗S∗))/(N∗S∗) of stock returns is a decreasing function of S∗, so that changes
in the volatility of stock returns are negatively correlated with stock price movements. That
is, between two consecutive issuance dates, volatility tends to rise in response to bad news,
and to fall in response to good news. Therefore our model predicts heteroscedasticity in stock
prices, as documented for instance by Black (1976), Christie (1982) and Nelson (1991). While
this “leverage effect” that ties stock returns and volatility changes cannot be attributed to
financial leverage, as our firm is 100% equity financed, one can argue following Black (1976)
that the firm has “operating leverage” as it must occasionally resort to costly outside financing
to continue its activity. When earnings fall, the likelihood that these expenses will have to be
incurred in the near future raises. As the value of the firm declines, it becomes more volatile,
as small changes in earnings result in large changes in the difference between earnings and
anticipated financial costs. Finally, the last difference between the stock price process (39) and
the standard log-normal specification is that the dynamics of stock prices is path dependent,
as it is modified by the successive equity issuances. As more stocks are issued, the number
of outstanding shares N∗ increases, which modifies both the stock price threshold m∗

1/N
∗

at which dividends are distributed and the volatility σV ∗′((V ∗)−1(N∗S∗))/(N∗S∗) of stock
returns. As more equity issuances take place, both the stock prices and the volatility on their
return tend to fall. Another testable implication of our model is that the value of the firm
is always more volatile than the cash-flows, σV ∗′((V ∗)−1(N∗S∗)) ≥ σ, with equality only at
the dividend boundary.

It should be noted that, while the stock price processes in the first-best benchmark and
in the presence of issuance costs are qualitatively very different, there is nevertheless some
formal analogy between (11) and (39). Indeed, in the absence of issuance costs, the value of
the firm as given by (7) has a slope equal to 1, the market capitalization of the firm stays
constant at µ/ρ, and the firm holds no cash reserves, which can be heuristically expressed by
saying that the dividend boundary is equal to 0. Substituting formally in (39), one retrieve
the second half of formula (11). Of course, this abstracts from the qualitative differences in
the dividend process, which is absolutely continuous in (11) and singular in (39).
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It is instructive to compare the stock price process (39) with that arising in the dynamic
agency models of Biais, Mariotti, Plantin and Rochet (2004) or DeMarzo and Sannikov
(2004). Much like in our framework, these models predict that stock return volatility tends
to increase in response to bad performance. However, the mechanism that leads to this result
is different. Agency costs typically make it optimal to liquidate the project as soon as the
firm runs short of cash. This is what generates a concavity of the firm value and of the stock
price in the level of liquidities that the firm has accumulated. In the implementation of the
optimal contract, it is never optimal to raise new funds as the firm becomes illiquid. By
contrast, time-varying volatility arises in our model precisely because there are costs to raise
new funds from the market.

In line with Corollary 1, it is easy to characterize the impact of an increase in issuance
costs on the volatility of stock returns. Again, we assume that condition (28) holds so that
the firm does resort to outside financing at the optimum.

Corollary 2. The volatility of stock returns as a function of the firm’s valuation,

σ∗(v) = σ
V ∗′((V ∗)−1(v))

v
; v ≥ V ∗(0), (40)

is an increasing function of the issuance costs p and f .

The proof follows from the fact that V ∗ is a decreasing function of p and f , while V ∗′ is
an increasing function of p and f . A testable implication of this result is that a reduction
in transaction costs triggered by a capital market liberalization should lead to a fall in the
volatility of stock returns.
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Appendix

Proof of Lemma 1. Since Vm1 is smooth over [0,m1), differentiating (23) and using the definition (15)
of L yields that −(ρ − r)V ′

m1
+ LV ′

m1
= 0 over [0,m1). Using this along with (24)–(25), we obtain

that V ′′′
m1−(m1) = 2(ρ − r)/σ2 > 0. Since V ′′

m1
(m1) = 0 and V ′

m1
(m1) = 1, it follows that V ′′

m1
< 0

and thus V ′
m1

> 1 over an interval (m1 − ε, m1) for ε > 0. Now suppose by way of contradiction that
V ′

m1
(m) ≤ 1 for some m ∈ [0,m1 − ε], and let m̃ = sup{m ∈ [0,m1 − ε] |V ′

m1
(m) ≤ 1} < m1. Then

V ′
m1

(m̃) = 1 and V ′
m1

> 1 over (m̃,m1), so that Vm1(m1) − Vm1(m) > m1 −m for all m ∈ (m̃,m1).
Since Vm1(m1) = (µ + rm1)/ρ, this implies that for any such m,

V ′′
m1

(m) =
2
σ2

[
ρVm1(m)− (µ + rm)V ′

m1
(m)

]

<
2
σ2
{ρ[m−m1 + Vm1(m1)]− (µ + rm)}

=
2
σ2

(ρ− r)(m−m1)

< 0,

which contradicts the fact that V ′
m1

(m̃) = V ′
m1

(m1) = 1. Therefore V ′
m1

> 1 over [0,m1), from which
it follows as above that V ′′

m1
< 0 over [0,m1). Hence the result. ¥

Proof of Lemma 2. Consider the solutions H0 and H1 to the linear second-order differential equation
−ρH + LH = 0 over [0,∞) that are characterized by the initial conditions H0(0) = 1, H ′

0(0) = 0,
H1(0) = 0 and H ′

1(0) = 1. We first show that H ′
0 and H ′

1 are strictly positive over (0,∞). Consider
H ′

0. Since H0(0) = 1 and H ′
0(0) = 0, one has H ′′

0 (0) = 2ρ/σ2 > 0, so that H ′
0 > 0 over an interval

(0, ε) for ε > 0. Suppose that m̃ = inf{m ≥ ε |H ′
0(m) ≤ 0} < ∞. Then H ′

0(m̃) = 0 and H ′′
0 (m̃) ≤ 0.

Since −ρH0 + LH0 = 0, it follows that H0(m̃) ≤ 0, which stands in contradiction with the facts
that H0(0) = 1 and that H0 is strictly increasing over [0, m̃]. Thus H ′

0 > 0 over (0,∞), as claimed.
The proof for H ′

1 is similar, and is therefore omitted. Note that both H0 and H1 remain strictly
positive over (0,∞). Next, let WH0,H1 = H0H

′
1 − H1H

′
0 be the Wronskian of H0 and H1. One has

WH0,H1(0) = 1 and:

W ′
H0,H1

(m) = H0(m)H ′′
1 (m)−H1(m)H ′′

0 (m)

=
2
σ2
{H0(m)[ρH1(m)− (µ + rm)H ′

1(m)]−H1(m)[ρH0(m)− (µ + rm)H ′
0(m)]}

= −2(µ + rm)
σ2

WH0,H1(m)

for all m ≥ 0, from which Abel’s identity follows by integration:

WH0,H1(m) = exp
(
−2µm + rm2

σ2

)
(41)

for all m ≥ 0. Since WH0,H1 > 0, H0 and H1 are linearly independent. As a result of this, (H0, H1) is
a basis of the 2-dimensional space of solutions to the equation −ρH +LH = 0. It follows in particular
that for any m1 > 0, one can represent Vm1 as:

Vm1 = Vm1(0)H0 + V ′
m1

(0)H1
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over [0, m1]. Using the boundary conditions Vm1(m1) = (µ + rm1)/ρ and V ′
m1

(m1) = 1, one can solve
for Vm1(0) and V ′

m1
(0) as follows:

Vm1(0) =
H ′

1(m1)(µ + rm1)/ρ−H1(m1)
WH0,H1(m1)

, (42)

V ′
m1

(0) =
H0(m1)−H ′

0(m1)(µ + rm1)/ρ

WH0,H1(m1)
. (43)

Using the explicit expression (41) for WH0,H1 along with the fact that H0 and H1 are solutions to
−ρH + LH = 0, it is easy to verify from (42)–(43) that:

dVm1(0)
dm1

= −
(

1− r

ρ

)
exp

(
2µm1 + rm2

1

σ2

)
H ′

1(m1),

d2Vm1(0)
dm2

1

= − 2
σ2

(ρ− r) exp
(

2µm1 + rm2
1

σ2

)
H1(m1),

dV ′
m1

(0)
dm1

=
(

1− r

ρ

)
exp

(
2µm1 + rm2

1

σ2

)
H ′

0(m1).

d2V ′
m1

(0)
dm2

1

=
2
σ2

(ρ− r) exp
(

2µm1 + rm2
1

σ2

)
H0(m1).

The result then follows immediately from the fact that ρ > r and that H0, H ′
0, H1 and H ′

1 are strictly
positive over R++. ¥

Proof of Lemma 3. Equation (29) can be rewritten as ϕ(m̄1) = 0, where:

ϕ(m1) = Vm1(mp(m1))− Vm1(0)− p[mp(m1) + f ].

If m̂1 > m̃1, the function ϕ is well defined and continuous over [m̃1, m̂1], while ϕ(m̃1) = −pf < 0 and
ϕ(m̂1) = Vm̂1(mp(m̂1)) − p[mp(m̂1) + f ] > 0 if the second half of condition (28) holds. Thus ϕ has
at least a zero over (m̃1, m̂1). To prove that it is unique, we show that ϕ is strictly increasing over
(m̃1, m̂1). Using the Envelope Theorem to evaluate the derivative of ϕ, this amounts to:

∂W

∂m1
(mp(m1),m1) >

∂W

∂m1
(0,m1)

for all m1 ∈ (m̃1, m̂1), where W (m,m1) = Vm1(m) for all (m,m1) ∈ [0,∞)×(m̃1, m̂1). Since mp(m1) ∈
(0, m1) for all m1 ∈ (m̃1, m̂1), all that needs to be established is that for any such m1, (∂W/∂m1)(·,m1)
is strictly increasing over [0, m1]. From (23)–(25), it is easy to check that (∂W/∂m1)(·,m1) solves the
following boundary value problem over [0,m1]:

−ρ
∂W

∂m1
(m,m1) + L ∂W

∂m1
(m,m1) = 0; 0 ≤ m ≤ m1, (44)

∂2W

∂m∂m1
(m1,m1) = 0, (45)

∂3W

∂2m∂m1
(m1,m1) = − 2

σ2
(ρ− r). (46)

We are interested in the sign of (∂2W/∂m∂m1)(m, m1) for m ∈ [0, m1). As (∂2W/∂m∂m1)(m1, m1) =
0 and (∂3W/∂2m∂m1)(m1,m1) < 0, (∂2W/∂m∂m1)(·,m1) > 0 over an interval (m1−ε,m1) for ε > 0.
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Now suppose by way of contradiction that (∂2W/∂m∂m1)(m,m1) ≤ 0 for some m ∈ [0,m1 − ε], and
let m̃ = inf{m ∈ [0,m1 − ε] | (∂2W/∂m∂m1)(m,m1) ≤ 0}. Then (∂2W/∂m∂m1)(m̃,m1) = 0 and
(∂2W/∂m∂m1)(m, m1) > 0 for all m ∈ (m̃, m1), so that (∂W/∂m1)(m,m1) < 0 for all m ∈ (m̃,m1)
as (∂W/∂m1)(m1,m1) = −(ρ− r)/ρ < 0 by (44)–(46). This implies that for any such m,

∂3W

∂2m∂m1
(m,m1) =

2
σ2

[
ρ

∂W

∂m1
(m,m1)− (µ + rm)

∂2W

∂m∂m1
(m,m1)

]
< 0,

which contradicts the fact that (∂2W/∂m∂m1)(m̃,m1) = (∂2W/∂m∂m1)(m1,m1) = 0. Therefore
(∂2W/∂m∂m1)(·,m1) > 0 over [0,m1), and the result follows. Note for further reference that the
above argument shows that (∂W/∂m1)(·, m1) < 0 over [0, m1]. ¥

Proof of Proposition 1. We first establish uniqueness. As explained in the text, any solution V to
(19)–(22) that is twice continuously differentiable over (0,∞) must coincide with some Vm1 over [0,∞).
Since V (0) must be non-negative by (20), one must have m1 ≤ m̂1. Suppose first that m̂1 ≤ m̃1, and
that m1 < m̂1. Then V (0) = Vm1(0) > 0. But since m1 < m̃1, one has V ′

+(0) = V ′
m1

(0) < p. It
follows that the maximum of the mapping m 7→ V (m)−p(m+f) over [f,∞) is either attained at −f ,
for a value of 0, or at 0, for a value of V (0) − pf . In either case, this is inconsistent with condition
(20). It follows that m1 = m̂1, and thus V = V̂ as given by (27). Suppose next that m̂1 > m̃1. The
above argument can be used to show that necessarily m1 > m̃1. Two cases must be distinguished.
If Vm̂1(mp(m̂1)) − p[mp(m̂1) + f ] > 0, then Lemma 3 establishes the uniqueness of a value m̄1 of
m1 ∈ (m̃1, m̂1) consistent with condition (20). It follows that m1 = m̄1, and thus V = V̄ as given by
(30). Suppose finally that Vm̂1(mp(m̂1))− p[mp(m̂1) + f ] ≤ 0. Defining ϕ as in the proof of Lemma
3, and using the fact that ϕ is strictly increasing over (m̃1, m̂1), we obtain that ϕ has no zeros over
(m̃1, m̂1). Thus condition (20) cannot be satisfied for m0 = mp(m1) and m1 ∈ (m̃1, m̂1). It follows
that the maximum of the mapping m 7→ V (m)− p(m + f) over [f,∞) must be attained at −f , for a
value of 0. The only choice of m1 that is then consistent with (20) is m1 = m̂1, and thus V = V̂ as
given by (27).

We now verify that our solution V to (19)–(22) satisfies the variational inequalities (12)–(14) over
(0,∞). Inequality (12) follows from (22) and Lemma 1, while inequality (14) follows from (21)–(22)
along with the fact that ρ > r. As for (13), two cases must be distinguished. Suppose first that
m̂1 ≤ m̃1, and hence V ′

+(0) ≤ p. For any m ≥ 0, the mapping m′ 7→ V (m′ − f) − p(m′ −m) is then
strictly decreasing over [m,∞), and thus (13) holds as V (m) ≥ V (m − f) for any such m. Suppose
next that m̂1 > m̃1, and hence V ′

+(0) > p. If m ≥ mp(m1) + f , the same reasoning as above applies
and (13) holds. If mp(m1) + f > m ≥ 0, the maximum of the mapping m′ 7→ V (m′ − f)− p(m′ −m)
over [m,∞) is attained at mp(m1) + f , and we must therefore check that:

V (m)− pm ≥ V (mp(m1))− p[mp(m1) + f ] (47)

for any such m. The mapping m 7→ V (m) − pm is strictly increasing over [0,mp(m1)], and strictly
decreasing over [mp(m1),mp(m1) + f ]. Thus we need only to check that (47) holds at m = 0 and at
m = mp(m1) + f . The latter point is immediate. For the former, two cases must be distinguished. If
(26) holds, then m1 = m̂1, and (47) holds at m = 0 since the right-hand side is non-positive while the
left-hand side is equal to 0 as V̂ (0) = 0. If (28) holds, then m1 = m̄1, and (47) holds as an equality
at m = 0 as V̄ (0) = V̄ (mp(m̄1))− p[mp(m̄1) + f ]. The result follows. ¥

Proof of Lemma 4. Fix an admissible policy ((τn)n≥1, (in)n≥1, L), from which processes I, F and
M and the bankruptcy date τB can be obtained as in (2)–(5). Let us decompose the process L as
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Lt = Lc
t + ∆Lt for all t ≥ 0, where Lc is the pure continuous part of L. The generalized Itô’s formula

(Dellacherie and Meyer (1982, Theorem VIII.27)) yields:

e−ρT∧τBV (MT∧τB
) = V (m) +

∫ T∧τB−

0

e−ρt[−ρV (Mt) + LV (Mt)] dt

+ σ

∫ T∧τB−

0

e−ρtV ′(Mt) dWt −
∫ T∧τB−

0

e−ρtV ′(Mt) dLc
t (48)

+
∑

t∈[0,T∧τB ]

e−ρt[V (Mt)− V (Mt−)]

for all T ≥ 0. Since V satisfies (12) by Proposition 1, it follows that for each t ∈ [0, T ∧ τB ],

V (Mt)− V (Mt−) = V

(
Mt− +

∆It

p
−∆Ft −∆Lt

)
− V (Mt−)

≤ V

(
Mt− +

∆It

p
−∆Ft

)
−∆Lt − V (Mt−).

Plugging into (48) and using again inequality (12) yields:

e−ρT∧τBV (MT∧τB ) ≤ V (m) +
∫ T∧τB−

0

e−ρt[−ρV (Mt) + LV (Mt)] dt

+ σ

∫ T∧τB−

0

e−ρtV ′(Mt) dWt −
∫ T∧τB−

0

e−ρt dLt

(49)

+
∑

n≥1

e−ρτnin1{τn≤T∧τB}

+
∑

n≥1

e−ρτn

[
V

(
Mτn− +

in
p
− f

)
− in − V (Mτn−)

]
1{τn≤T∧τB}.

Since V ′ is bounded over (0,∞), the third term of the left hand side of (49) is a square integrable
martingale. Using inequalities (13) and (14) along with the fact that V is non-negative by construction,
we can take expectations in (49) to obtain:

V (m) ≥ Em

[∫ T∧τB−

0

e−ρt(dLt − dIt)

]
, (50)

from which the result follows by letting T go to ∞. ¥

Proof of Proposition 2. Assume that (28) holds, so that τB = ∞ P–almost surely, and suppose without
loss of generality that m ∈ [0,m∗

1]. The process M∗ has paths that are continuous except at the dates
(τ∗n)n≥1 at which new equity is issued, in which case V (M∗

τ∗n
) − V (M∗

τ∗n−) = V (m∗
0) − V (0) = i∗ by

construction. Proceeding as in the proof of Proposition 1, we obtain that:

Em
[
e−ρT V (MT )

]
= V (m)− Em

[∫ T−

0

e−ρtV ′(M∗
t ) dL∗t

]
+ Em


∑

n≥1

e−ρτ∗n i∗1{τ∗n≤T}




(51)

= V (m)− Em

[∫ T−

0

e−ρt (dL∗t − dI∗t )

]
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for all T ≥ 0, where the process I∗ = {I∗t ; t ≥ 0} is defined as in (2) with i∗n = i∗ for all n ≥ 1, and the
second inequality follows from (33) along with the fact that V ′(m∗

1) = 1. To conclude the proof, we
need only to check that limT→∞ Em[e−ρT V (MT )] = 0 in (51). Since V is non-negative with bounded
derivatives, one has:

0 ≤ e−ρT V (MT ) ≤ e−ρT C(1 + M∗
T ) ≤ e−ρT C(1 + m∗

1)

for some positive constant C, where the second and third inequality follow from the fact that the
process M∗ never leaves the interval [0,m∗

1]. Taking expectations and letting T go to ∞ yields the
result. The proof for the case in which (26) holds is similar, and therefore omitted. ¥

Proof of Corollary 1. To establish this result, we show that V ∗ is a decreasing function of p and f , and
that V ∗′ is an increasing function of p and f . To prove the first claim, start without loss of generality
from a situation in which p and f are such that condition (28) holds, and consider the impact of a
decrease in p or f , p′ ≤ p and f ′ ≤ f with at least one strict inequality. Then the firm can keep the
same dividend policy L∗, while adjusting its issuance policy so as to maintain the same dynamics for
cash reserves (31) as when the issuance costs are p and f . Indeed, to do so, it needs only to issue
amounts i′ = p′(m∗

0 + f ′) worth of equity instead of i∗ = p(m∗
0 + f), at the same dates (τ∗n)n≥1.

That is, the new issuance and dividend policy of the firm is ((τ∗n)n≥1, (i′n)n≥1, L
∗) with i′n = i′ < i∗

for all n ≥ 1. Since the dividend policy and the dynamics of cash reserves are the same as in the
initial situation, while the amounts of equity issued are strictly lower, this policy yields a strictly
higher value for the firm than in the initial situation. Thus V ∗ is a decreasing function of p and f , as
claimed. Now, using the notation of the proof of Lemma 3, one has V ∗ = W (·, m∗

1) over R+. Since
(∂W/∂m1)(·,m1) < 0 over [0,m1], the above argument implies that an increase in either p or f leads
to an increase in m∗

1. Since (∂2W/∂m∂m1)(·,m1) > 0 over [0,m1), it follows that V ∗′ is an increasing
function of p and f . Hence the result. ¥

Proof of Lemma 5. Proposition 2 along with (36) implies that for each n ≥ 1,

S∗τ∗nN∗
τ∗n
− S∗τ∗n−N∗

τ∗n− = V ∗(M∗
τ∗n

)− V ∗(M∗
τ∗n−) = V ∗(m∗

0)− V ∗(0) = p(m∗
0 + f) = i∗. (52)

Next, it follows from (37) that the issuance proceeds at date τ∗n are given by:

i∗ = I∗τ∗n − I∗τ∗n− = S∗τ∗n(N∗
τ∗n
−N∗

τ∗n−). (53)

It then follows immediately from (52)–(53) that S∗τ∗n = S∗τ∗n−, as claimed. ¥
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