PERTURBATION METHODS

Kenneth L. Judd

Hoover Institution and NBER

June 28, 2006

Local Approximation Methods

- Use information about $f: R \to R$ only at a point, $x_0 \in R$, to construct an approximation valid near x_0
- Taylor Series Approximation

$$f(x) \doteq f(x_0) + (x - x_0) f'(x_0) + \frac{(x - x_0)^2}{2} f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} f^{(n)}(x_0) + \mathcal{O}(|x - x_0|^{n+1})$$

= $p_n(x) + \mathcal{O}(|x - x_0|^{n+1})$

• Power series: $\sum_{n=0}^{\infty} a_n z^n$

- The radius of convergence is

$$r = \sup\{|z|: | \sum_{n=0}^{\infty} a_n z^n| < \infty\},$$

 $-\sum_{n=0}^{\infty} a_n z^n$ converges for all |z| < r and diverges for all |z| > r.

• Complex analysis

 $-f: \Omega \subset C \to C$ on the complex plane C is *analytic* on Ω iff

$$\forall a \in \Omega \;\; \exists r, c_k \left(\forall \, \|z - a\| < r \left(f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k \right) \right)$$

- A singularity of f is any a s. t. f is analytic on $\Omega \{a\}$ but not on Ω .
- If f or any derivative of f has a singularity at $z \in C$, then the radius of convergence in C of $\sum_{n=0}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$, is bounded above by $||x_0 z||$.

- Example: $f(x) = x^{\alpha}$ where $0 < \alpha < 1$.
 - One singularity at x = 0
 - Radius of convergence for power series around x = 1 is 1.
 - Taylor series coefficients decline slowly:

$$a_k = \frac{1}{k!} \frac{d^k}{dx^k} (x^\alpha)|_{x=1} = \frac{\alpha(\alpha - 1) \cdots (\alpha - k + 1)}{1 \cdot 2 \cdots k}.$$

Table 6.1 (corrected): Taylor Series Approximation Errors for $x^{1/4}$

	Taylor series error					$x^{1/4}$
x	N:	5	10	20	50	
3.0		5(-1)	8(1)	3(3)	1(12)	1.3161
2.0		1(-2)	5(-3)	2(-3)	8(-4)	1.1892
1.8		4(-3)	5(-4)	2(-4)	9(-9)	1.1583
1.5		2(-4)	3(-6)	1(-9)	0(-12)	1.1067
1.2		1(-6)	2(-10)	0(-12)	0(-12)	1.0466
.80		2(-6)	3(-10)	0(-12)	0(-12)	.9457
.50		6(-4)	9(-6)	4(-9)	0(-12)	.8409
.25		1(-2)	1(-3)	4(-5)	3(-9)	.7071
.10		6(-2)	2(-2)	4(-3)	6(-5)	.5623
.05		1(-1)	5(-2)	2(-2)	2(-3)	.4729

Implicit Function Theorem

- Suppose $h: \mathbb{R}^n \to \mathbb{R}^m$ is defined in $H(x, h(x)) = 0, H: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^m$, and $h(x_0) = y_0$.
 - Implicit differentiation shows

$$H_x(x, h(x)) + H_y(x, h(x))h_x(x) = 0$$

- At $x = x_0$, this implies

$$h_x(x_0) = -H_y(x_0, y_0)^{-1}H_x(x_0, y_0)$$

if $H_y(x_0, y_0)$ is nonsingular. More simply, we express this as

$$h_x^0 = - \left(H_y^0\right)^{-1} H_x^0$$

- Linear approximation for h(x) is

$$h^{L}(x) \doteq h(x_{0}) + h_{x}(x_{0})(x - x_{0})$$

• To check on quality, we compute

$$E = \hat{H}(x, h^L(x))$$

where \hat{H} is a unit free equivalent of H. If $E < \varepsilon$, then we have an ε -solution.

• If $h^{L}(y)$ is not satisfactory, compute higher-order terms by repeated differentiation. $-D_{xx}H(x,h(x)) = 0$ implies

$$H_{xx} + 2H_{xy}h_x + H_{yy}h_xh_x + H_yh_{xx} = 0$$

- At $x = x_0$, this implies

$$h_{xx}^{0} = -\left(H_{y}^{0}\right)^{-1}\left(H_{xx}^{0} + 2H_{xy}^{0}h_{x}^{0} + H_{yy}^{0}h_{x}^{0}h_{x}^{0}\right)$$

– Construct the quadratic approximation

$$h^{Q}(x) \doteq h(x_{0}) + h^{0}_{x}(x - x_{0}) + \frac{1}{2}(x - x_{0})^{\top}h^{0}_{xx}(x - x_{0})$$

and check its quality by computing $E = H(x, h^Q(x))$.

Regular Perturbation: The Basic Idea

- Suppose x is an endogenous variable, ε a parameter
 - Want to find $x(\varepsilon)$ such that $f(x(\varepsilon), \varepsilon) = 0$
 - Suppose x(0) known.
- Use Implicit Function Theorem
 - Apply implicit differentiation:

$$f_x(x(\varepsilon),\varepsilon)x'(\varepsilon) + f_\varepsilon(x(\varepsilon),\varepsilon) = 0$$
(13.1.5)

- At $\varepsilon = 0, x(0)$ is known and (13.1.5) is linear in x'(0) with solution

$$x'(0) = -f_x(x(0), 0)^{-1} f_\varepsilon(x(0), 0)$$

- Well-defined only if $f_x \neq 0$, a condition which can be checked at x = x(0).
- The linear approximation of $x(\varepsilon)$ for ε near zero is

$$x(\varepsilon) \doteq x^{L}(\varepsilon) \equiv x(0) - f_{x}(x(0), 0)^{-1} f_{\varepsilon}(x(0), 0)\varepsilon$$
(13.1.6)

- Can continue for higher-order derivatives of $x(\varepsilon)$.
 - Differentiate (13.1.5) w.r.t. ε

$$f_x x'' + f_{xx} (x')^2 + 2f_{x\varepsilon} x' + f_{\varepsilon\varepsilon} = 0$$
(13.1.7)

– At $\varepsilon = 0$, (13.1.7) implies that

$$\begin{aligned} x''(0) &= -f_x(x(0), 0)^{-1} \left(f_{xx}(x(0), 0) \ (x'(0))^2 \right. \\ &+ 2f_{x\varepsilon}(x(0), 0) \ x'(0) + f_{\varepsilon\varepsilon}(x(0), 0)) \end{aligned}$$

– Quadratic approximation is

$$x(\varepsilon) \doteq x^{Q}(\varepsilon) \equiv x(0) + \varepsilon x'(0) + \frac{1}{2}\varepsilon^{2}x''(0)$$
(13.1.8)

- General Perturbation Strategy
 - Find special (likely degenerate, uninteresting) case where one knows solution
 - * General relativity theory: begin with case of a universe with zero mass: ε is mass of universe
 - * Quantum mechanics: begin with case where electrons do not repel each other: ε is force of repulsion
 - * Business cycle analysis: begin with case where there are no shocks: ε is measure of exogenous shocks
 - Use local approximation theory to compute nearby cases
 - * Standard implicit function may be applicable
 - * Sometimes standard implicit function theorem will not apply; use appropriate bifurcation or singularity method.
 - Check to see if solution is good for problem of interest
 - \ast Use unit-free formulation of problem
 - \ast Go to higher-order terms until error is reduced to acceptable level
 - * Always check solution for range of validity

Single-Sector, Deterministic Growth - canonical problem

• Consider dynamic programming problem

$$\max_{c(t)} \int_0^\infty e^{-\rho t} u(c) dt$$
$$\dot{k} = f(k) - c$$

- Ad-Hoc Method: Convert to a wrong LQ problem
 - McGrattan, JBES (1990)
 - * Replace u(c) and f(k) with approximations around c^* and k^*
 - \ast Solve linear-quadratic problem

$$\max_{c} \int_{0}^{\infty} e^{-\rho t} \left(u(c^{*}) + u'(c^{*})(c - c^{*}) + \frac{1}{2}u''(c^{*})(c - c^{*})^{2} \right) dt$$

s.t. $\dot{k} = f(k^{*}) + f'(k^{*})(k^{*} - k) - c$

* Resulting approximate policy function is

$$C^{McG}(k) = f(k^*) + \rho(k - k^*) \neq C(k^*) + C'(k^*)(k - k^*)$$

* Local approximate law of motion is $\dot{k} = 0$; add noise to get

$$dk = 0 \cdot dt + dz$$

* Approximation is *random walk* when theory says solution is stationary

- Fallacy of McGrattan noted in Judd (1986, 1988); point repeated in Benigno-Woodford (2004).

• Kydland-Prescott

- Restate problem so that \dot{k} is linear function of state and controls
- Replace u(c) with quadratic approximation
- Note 1: such transformation may not be easy
- Note 2: special case of Magill (JET 1977).
- \bullet Lesson
 - Kydland-Prescott, McGrattan provide no mathematical basis for method
 - Formal calculations based on appropriate IFT should be used.
 - Beware of $ad\ hoc$ methods based on an intuitive story!

Perturbation Method for Dynamic Programming

- Formalize problem as a system of functional equations
 - Bellman equation:

$$\rho V(k) = \max_{c} \ u(c) + V'(k)(f(k) - c)$$
(1)

-C(k): policy function defined by

$$0 = u'(C(k)) - V'(k)$$

$$\rho V(k) = u(C(k)) + V'(k)(f(k) - C(k))$$
(2)

- Apply envelope theorem to (1) to get

$$\rho V'(k) = V''(k)(f(k) - C(k)) + V'(k)f'(k)$$
(1_k)

– Steady-state equations

$$\begin{aligned} c^* &= f(k^*) & \rho V(k^*) = u(c^*) + V'(k^*)(f(k^*) - c^*) \\ 0 &= u'(c^*) - V'(k^*) & \rho V'(k) = V''(k)(f(k^*) - c^*) + V'(k)f'(k) \end{aligned}$$

– Steady State: We know $k^*,\ V(k^*),\ C(k^*),\ f'(k^*),\ V'(k^*):$

$$\rho = f'(k^*), \quad C(k^*) = f(k^*), \quad V(k^*) = \rho^{-1}u(c^*), \quad V'(k^*) = u'(c^*)$$

– Want Taylor expansion:

$$C(k) \doteq C(k^*) + C'(k^*)(k - k^*) + C''(k^*)(k - k^*)^2/2 + \dots$$
$$V(k) \doteq V(k^*) + V'(k^*)(k - k^*) + V''(k^*)(k - k^*)^2/2 + \dots$$

. .

- Linear approximation around a steady state
 - Differentiate $(1_k, 2)$ w.r.t. k:

$$\rho V'' = V'''(f - C) + V''(f' - C') + V''f' + V'f''$$
(1_{kk})

$$0 = u''C' - V'' \tag{2k}$$

– At the steady state

$$0 = -V''(k^*)C'(k^*) + V''(k^*)f'(k^*) + V'(k^*)f''(k^*)$$

$$(1^*_k)$$

- Substituting (2_k) into (1_k^*) yields

$$0 = -u''(C')^2 + u''C'f' + V'f''$$

– Two solutions

$$C'(k^*) = \frac{\rho}{2} \left(1 \pm \sqrt{1 + \frac{4u'(C(k^*))f''(k^*)}{u''(C'(k^*))f'(k^*)f'(k^*)}} \right)$$

– However, we know $C'(k^*) > 0$; hence, take positive solution

- Higher-Order Expansions
 - Conventional perception in macroeconomics: "perturbation methods of order higher than one are considerably more complicated than the traditional linear-quadratic case" – Marcet (1994, p. 111)
 - Mathematics literature: No problem (See, e.g., Bensoussan, Fleming, Souganides, etc.)
- Compute $C''(k^*)$ and $V'''(k^*)$.
 - Differentiate $(1_{kk}, 2_k)$:

$$\rho V''' = V''''(f - C) + 2V'''(f' - C') + V''(f'' - C'')$$

$$+ V'''f' + 2V''f'' + V'f'''$$

$$0 = u'''(C')^2 + u''C'' - V'''$$

$$(2_{kk})$$

- At k^* , (1_{kkk}) reduces to

$$0 = 2V'''(f' - C') + 3V''f'' - V''C'' + V'f'''$$

$$(1^*_{kkk})$$

– Equations $(1^*_{kkk}, 2^*_{kk})$ are LINEAR in unknowns $C''(k^*)$ and $V'''(k^*)$:

$$\begin{pmatrix} u'' & -1 \\ V'' - 2(f' - C') \end{pmatrix} \begin{pmatrix} C'' \\ V''' \end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

– Unique solution since determinant -2u''(f' - C') + V'' < 0.

• Compute $C^{(n)}(k^*)$ and $V^{(n+1)}(k^*)$.

- Linear system for order n is, for some A_1 and A_2 ,

$$\begin{pmatrix} u'' & -1 \\ V'' - n(f' - C') \end{pmatrix} \begin{pmatrix} C^{(n)} \\ V^{(n+1)} \end{pmatrix} = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$$

- Higher-order terms are produced by solving linear systems
- The linear system is always determinate since -nu''(f' C') + V'' < 0
- Conclusion:
 - Computing first-order terms involves solving quadratic equations
 - Computing higher-order terms involves solving linear equations
 - Computing higher-order terms is easier than computing the linear term.

Accuracy Measure

Consider the one-period relative Euler equation error:

$$E(k) = 1 - \frac{V'(k)}{u'(C(k))}$$

- Equilibrium requires it to be zero.
- E(k) is measure of optimization error
 - $-\ 1$ is unacceptably large
 - Values such as .00001 is a limit for people.
 - -E(k) is unit-free.
- Define the L^p , $1 \le p < \infty$, bounded rationality accuracy to be

 $\log_{10} \parallel E(k) \parallel_p$

• The L^{∞} error is the maximum value of E(k).

Global Quality of Asymptotic Approximations

- Linear approximation is very poor even for k close to steady state
- Order 2 is better but still not acceptable for even k = .9, 1.1
- Order 10 is excellent for $k \in [.6, 1.4]$

Bifurcation Methods

• Suppose $H(h(\varepsilon), \varepsilon) = 0$ but H(x, 0) = 0 for all x.

- IFT says

$$h'(0) = -\frac{H_{\varepsilon}(x_0, 0)}{H_x(x_0, 0)}$$

-H(x,0) = 0 implies $H_x(x_0,0) = 0$, and h'(0) has the form 0/0 at $x = x_0$.

- l'Hospital's rule implies, if which is well-defined if $H_{\varepsilon x}(x_0, 0) \neq 0$,

$$h'(0) = -\frac{H_{\varepsilon\varepsilon}(x_0,0)}{H_{\varepsilon x}(x_0,0)}$$

Example: Portfolio Choices for Small Risks

- Simple asset demand model:
 - safe asset yields R per dollar invested and risky asset yields Z per dollar invested
 - If final value is $Y = W((1 \omega)R + \omega Z)$, then portfolio problem is

 $\max_{\omega} E\{u(Y)\}$

- Small Risk Analysis
 - Parameterize cases

$$Z = R + \varepsilon z + \varepsilon^2 \pi \tag{1}$$

- Compute $\omega(\varepsilon) \doteq \omega(0) + \varepsilon \omega'(0) + \frac{\varepsilon^2}{2} \omega''(0)$.around the deterministic case of $\varepsilon = 0$.
- Failure of IFT: at $\varepsilon = 0$, Z = R, and $\omega(\varepsilon)$ is indeterminate, but we know that $\omega(\varepsilon)$ is unique for $\varepsilon \neq 0$

• Bifurcation analysis

– The first-order condition for ω

$$0 = E\{u'(WR + \omega W(\varepsilon z + \varepsilon^2 \pi))(z + \varepsilon \pi)\} \equiv G(\omega, \varepsilon)$$
(2)

$$0 = G(\omega, 0), \quad \forall \omega.$$
(3)

– Solve for $\omega(\varepsilon) \doteq \omega(0) + \varepsilon \omega'(0) + \frac{\varepsilon^2}{2} \omega''(0)$. Implicit differentiation implies

$$0 = G_{\omega}\omega' + G_{\varepsilon} \tag{4}$$

$$G_{\varepsilon} = E\{u''(Y)W(\omega z + 2\omega\varepsilon\pi)W(z + \varepsilon\pi) + u'(Y)\pi\}$$
(5)

$$G_{\omega} = E\{u''(Y)(z + \varepsilon\pi)^2\varepsilon\}$$
(6)

 $- \operatorname{At} \, \varepsilon = 0, \, G(\omega, 0) = G_{\omega}(\omega, 0) = 0 \text{ for all } \omega.$

– No point $(\omega, 0)$ for application of IFT to (3) to solve for $\omega'(0)$.

- We want $\omega_0 = \lim_{\varepsilon \to 0} \omega(\varepsilon)$.
 - Bifurcation theorem keys on ω_0 satisfying

$$0 = G_{\varepsilon}(\omega_0, 0)$$

= $u''(RW)\omega_0\sigma_z^2W + u'(RW)\pi$ (7)

which implies

$$\omega_0 = -\frac{\pi}{\sigma_z^2} \frac{u'(WR)}{Wu''(WR)} \tag{8}$$

- -(8) is asymptotic portfolio rule
 - * same as mean-variance rule
 - * ω_0 is product of risk tolerance and the risk premium per unit variance.
 - * ω_0 is the limiting portfolio share as the variance vanishes.
 - * ω_0 is not first-order approximation.

- To calculate $\omega'(0)$:
 - differentiate (2.4) with respect to ε

$$0 = G_{\omega\omega}\omega'\omega' + 2G_{\omega\varepsilon}\omega' + G_{\omega}\omega'' + G_{\varepsilon\varepsilon}$$
⁽⁹⁾

where (without loss of generality, we assume W = 1)

$$G_{\varepsilon\varepsilon} = E\{u'''(Y)(\omega z + 2\omega\varepsilon\pi)^2(z + \varepsilon\pi) + u''(Y)2\omega\pi(z + \varepsilon\pi) + 2u''(Y)(\omega z + 2\omega\varepsilon\pi)\pi\}$$

$$G_{\omega\omega} = E\{u'''(Y)(z + \varepsilon\pi)^3\varepsilon\}$$

$$G_{\omega\varepsilon} = E\{u'''(Y)(\omega z + 2\omega\varepsilon\pi)(z + \varepsilon\pi)^2\varepsilon + u''(Y)(z + \varepsilon\pi)2\pi\varepsilon + u''(Y)(z + \varepsilon\pi)^2\}$$

 $- \operatorname{At} \varepsilon = 0,$

$$G_{\varepsilon\varepsilon} = u'''(R)\omega_0^2 E\{z^3\} \qquad G_{\omega\omega} = 0$$

$$G_{\omega\varepsilon} = u''(R)E\{z^2\} \neq 0 \qquad G_{\varepsilon\varepsilon\varepsilon} \neq 0$$

– Therefore,

$$\omega' = -\frac{1}{2} \frac{u'''(R)}{u''(R)} \frac{E\{z^3\}}{E\{z^2\}} \omega_0^2.$$
(10)

- Equation (10) is a simple formula.
 - * $\omega'(0)$ proportional to $u^{'''}/u^{''}$
 - * $\omega'(0)$ proportional to ratio of skewness to variance.
 - * If u is quadratic or z is symmetric, ω does not change to a first order.
- We could continue this and compute more derivatives of $\omega(\varepsilon)$ as long as u is sufficiently differentiable.

- Other applications see Judd and Guu (ET, 2001)
 - Equilibrium: add other agents, make π endogenous
 - Add assets
 - Produce a mean-variance-skewness-kurtosis-etc. theory of asset markets
 - More intuitive approach to market incompleteness then counting states and assets