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§1. Introduction

1. In the recent papers [1], [2] Radner and Shepp considered a model of the evolution
of the capital X = (X)iz0 of a company assuming that

dX, = pdt + o dW, — dZ,, (1.1)

where W = (W})i30 is a standard Wiener process, and the coefficients (u, o) can
be chosen in a predictable way as functions of the data observed, with values in an
a priori admissible set 4. The non-negative non-decreasing non-anticipating process
Z = (Z1)ez0 appearing in (1.1) characterizes a strategy of payment of dividends by
the company.

We assume that the initial capltal is non-negative, Xy =z 2 0, and after X hits
zero we have bankruptcy and dX, = dZ; = 0 for ¢t = 7, where 7 is the moment of

bankruptey.
As a criterion for optimal functioning of the company Radner and Shepp consider

the quantity

ke
V(z) =supE;[ e~MdZ;,, A>0, (1.2)
0
where E; is the mathematical expectation corresponding to X = =,
=
f eMdZ, = Z, +f e~Mdz,, (1.3)
(] (0.2}

and sup is taken over all admissible strategies from the set A and admissible
dividend processes Z = (Z;)ez0-

2. In the present paper we consider the Radner-Shepp model (1.1) assuming that
the set A is one-element, A = {(p, o)} with g > 0, o > 0. We want to find optimal
dividend processes Z = (Z;);30 under the following assumptions on their structure.
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A. Processes Z = (Z;)s»0 are such that

dZ; = u(X,)dt, Zo = Zylx), (1.4)
where v = ulz), Zy = Zp(z) are arbitrary measurable functions satisfying
D=sulz) s K <oo,0g Zp(z) £ 2. 1 _—

B. Processes 2 = (2,);2¢ are such that i

Z, =) e ylTig), (1.5) (for
iz0 b
where 0 =Ty < T} < T3 < ... are (random) moments of payments of dividends,
and jo,ji1,... are non-negative amounts of dividends paid. In addition, we assume
that there is a fee (transaction cost) ¥ > 0 for each payment and the cost function
has the form |
V(z) =supE. ) e (5 - ), (1.6) i
iz0 ! Er]

where sup is taken over all multivariant péfr?t.._;;rﬁl:ess'es (75, 3:)izo (see [3]).

C. The process £ = (Z,)s20 is an arbitrary non-negative non-decreasing non-
anticipating process, right-continuous for ¢ > 0.

The solution of the problem of finding the structure of the optimal payment
process given in [1], [2] in the general case C will be established below, making use : o
of the ideas concerned with local time and diffusion with reflection. What we do is
the same as in [1], [2], but the stochastic analysis technique is somewhat different.

The relevance of cases A and B, in addition to their natural importance, is that a

they suggest the structure of optimal solution in the general case C (by the limit
passage with K’ — oo and ¥ — 0 in A and B, respectively). c
t

The results corresponding to the three cases A, B, C are presented in §2, §3, §4
respectively.

§2. The case A

1. Let W = (Wi)iz0 be a standard Wiener process given on a filtered probability
space (0, F, (Fi)izo, P). We assume that the evolution of the company’s capital is
described by the equation

dX: = (p = u(X)) dt + o dW,, (2.1)

where © = u(zx) is an arbitrary measurable function with 0 £ u(zr) € K < oo
(K is a given constant). We note that by Zvonkin’s result [6], the stochastic dif-
ferential equation (2.1) has a unique strong solution X = (X, )szo such that X, are
F¥ = o(W,;s € t)-measurable, ¢t > 0. In this way (2.1) defines the controlled
process X = X™ by means of the control u = u(z).

Drawing on the meaning of the model described in §1 we assume that = > 0,
and if 7 = inf{t : X; = 0}, then X;(w) =0 for all t > (w) (formally, X =0 on
[r,00), see [3]). Here the equation (2.1) for X ‘exists’ up to the first instant of X

hitting zero.
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Writing (1.4) in the integré.l form
t
Zy = Zp(z) +/ u(X,)ds, (2.2)
o
we find that . , o
Xe= (2= Zo(a) + [ (u-u(X))ds + W, (23)
o
(forall0<t 7).
Let
V(eiu 20) = Zo(a) + x| € Nu(Xo) (2.4)
]
e _if{:r} = sup V{I; u; zn]. {2-53_..__ -

where sup is taken over all admissible u(z) and Zy(z) (0 < u(z) £ K,

0 £ Zo(z) £ 7).
It is clear that

V(z) {Zo(z) + Volz — Zo(z)) }, (2.6)

= max
0 Zpiz)gs

where
Vo(z) = sup V(z; u), (2.7)

and sup is taken over all admissible u; Zo(z) = 0, V(z;u) = V(z;u,0).

Clearly, the most difficult task is to find the function V5(z) and the corresponding
optimal control ug = ug(z). This is why we now assume that 25 = 0 and we return
to the general case in 6 below. To simplify the notation we denote Vy(z) by V(z),

omitting the index 0.

2. So, suppose that .
7 — f e=My(X,) dt,
1]

where sup is taken over all controls u = u(z) with 0 € u(z) € K.

Using standard techniques of stochastic control theory (see, for example, [5], [7]),
to get the required function V = V/(z) and the corresponding optimal control
u = g(z) with V(z;&) = V(z), it is sufficient to establish the following testing

properties: o
(A1) there is a function V' = V(z) such that for any admissible control u = u(z)
Viziu) $V(z), 220
£

(and so V(z) < #(z)), and
(Az) there is a control @ = #(z) such that

Vig;®) =V(z), =z20.
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Clearly, if such a function V(z) exists, then V(z) = V(z) and as optimal we can
take the control u = u(z).

The function V = V(z) and control & = %(z) can be found by means of Bellman's
equation. The verification of the properties (A;), (A2) is usually done by means of
Itd's formula using the martingale properties of stochastic integrals.

Let us realize our plan of finding V and . We introduce some operators L{u),
0 € u € K, acting on ¥ = ¥(z), z 2 0, of class C*(0, c0), given by

av 4t
L)t =(p-vw)g + EE'F

- AT, (2.8)

Suppose we have found a bounded function V € C?(0, 00) with V(0) = 0 such that
Bellman’s inequality is satisfied:

sup {L{ujf’[z] +u] < 0. (2.9)
0gus K

‘We show that then property (A,) is satisfied, that is, for any admissible control
u = u(z) we have V(z;u) £ V(z), = = 0. _
To this end we apply Ité's formula to (e V(X;))iz0 :

LAT

e-xrwn}{xm,,;=ﬁ(xn)+fwe-*'uu;ﬁ*[x,}ds+f e MoV (X,) dW,. 5
0 0 5

Hence, taking E: and taking into account Xy = = and (2.9), we find that

i}{zj = E,e—"{“""]"[‘_f{Xm,.} (2.10) :
tAT .

AT
_ —Ar 7 e —AaTrr
A fu e~ML(u)(X,)ds - Ex fn ce=M T (X,) dW,

> E.e MV (X0,)
tAT tAT = :
+Es f e=My(X,) ds — E, f ce= 2T (X,) dW,. b
[1] o .

Hence we see that if V = V(z) is such that [V"'(z)| < C for some constant C > 0,
then the stochastic integral in (2.10) is a martingale and its mathematical expec-

tation is zero.
Letting ¢t — co in (2.10) we find that

E.e~ A (Xine) = 0

(if 7 < oo, then V(X,) = 0, and if 7 = oo, then V/(X,) is bounded and e~*(*A7) 5 @

as t = oa).
Thus from (2.10) we find that

V(z) 2 V(z;u),

that is, the testing condition [)Sf_z]l is satisfied.
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3. We note that in the compucations performed in (2.10} inequality appeared as a

result of the assumption that V' = V() satisfies Bellman's inequality (2.9).
Suppose now that in (2.9) equality takes place, that is. Bellrnan's equation is

satisfied: =
sup [L(u)V(z) +u] = 0. (2.11)
I ETE

By (2.8) this equation is equivalent to

AV o* d*V ~ dV
bz +Tm ) mm f(-F)]=0 e

Hence we can see that if the function ¥ = V(z) is known, then the control
i = u(x) on which (2.12) is satisfied should be the following:

' 1V
i TRLCL (R———

- i -— III - = {zllaj

u(z) = e
dv
, l=-— <.
0 P <
Using this we find from (2.12) that for £ such that @(z) = 0 the following
equation should hold:

= : — —
uV'(z) + ‘%v"{:] - AV(z) =0, (2.14)
and if u(z) = K, then we have
s 2 _ - pil
uV'(z) + %V"{x} —AV(z) + K(1-V'(z)) =0. (2.15)

From the intuitive considerations about the structure of the optimal control
# = {i{z) we can assume that there is an T such that for * > T we have to use
u(x) = K (that is, to pay dividends with maximal possible speed if capital is
‘large’) and for £ < £ we put t(z) = 0 (that is, we do not pay a dividend if the
capital is ‘small’).

Thus, we seek the function ¥V = V(z) and the threshold ¥ of switching the
equations as a solution to the following Stefan problem with free boundary T:

pﬁ‘{z)+i';i'f"{z} — AV(z) =0, z <7, (2.16)
R K}fﬂfz)ﬂ;ﬁ"(z] -AWW(@)+ K =0, z>% (2.17)

4. For z > 0 we consider the equation

(2 - K)U'(z) + %U"{x} ~AU(z) + K =0,

¥

B AR

a4 8
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equivalent to

U'(z) +U"(z) - 5=U(2) =0. (2.18)

A
i o —
o f2 g2/2 g2/2
Clearly, in the investigation of the properties of I/(z) we can put ¢?/2 = 1 from the

very beginning, which results in replacing A, p, K by A/(22/2), p/(0?/2), K/(c?/2)
in the final result. The general solution of (2.18) (with o2/2 = 1) has the form

Ulz) =C1e?'* + Cre™* + %, (2.19)

where

K-y K —p *
M= 9 + ( 9 ) +}'|
_K-up K- p\?
e | e R

are the roots of the quadratic equation
P +(p=-Kp-2r=0

(here p1 = 0, pa < 0 since A }P}

From (2.7) it follows that V(z) £ K/A (since u(z) £ K). Hence among the
solutions in (2.19) we should choose bounded ones, which gives C; = 0. By the
interpretation of the problem the function f"{z} should be non-decreasing in z.
Therefore, the required solution ¥ (z) (for z > T ) should have the form

Ulz) = % — Be™M*, (2.19a)

where the constant (so far unknown) B = 0.
In the domain 0 < = < T the required function V' = V(z) satisfies (2.16) and so

it is of the form
U(z) = A1e™* + Aze™, (2.19b)

r;|=-;2-l+1|,|'(g)z+)|, rg.———gu (g-)z-i-).,,

Since we should have U/{0) = 0, from (2.19b) we find that 4; + A2 = 0 and so the
required solution belongs to the family

where

U(z) = Aje™T5(e2% — ¢~27),
where A, is a constant, A = -..I"{p*f?}z + A
Putting A = 2A, we see that

U(z) = Ae~ %% sinh(Az).
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Thus we have three unknown constants A, B, and I. In addition, in the domain
£ < X the representation (2.20) ‘acts’ and in £ > T we have (2.19a).

We shall seek the unknown constants A, B, T from the following supplementary
conditions at I:

U(z-) =U(z+), U'(z=) = U'(Z+), U'(z-) =U"(Z+). (2.21)

The first condition is simply the continuity of the function at the border T and
is quite natural. The second condition is the so-called (heuristic) ‘smooth gluing
condition’ (in this respect see, for example, [7]). Finally, the condition that the
second derivative be continuous at T is motivated by the requirement I/ € C?(0, ca)
for applying Itd’s formula.

We note that from (2.14) and (2.15) it is clear that the system of conditions (2.21)
is equivalent to the system

UE=-y=U(E+), U'(E-)=1, U'(F+)=1 (2.22)-

In the domain z < T from (2.20) we find that

U'(z) = Ae— §* { A cosh(Az) — g-sinh{ﬂm}} ; (2.23)
U"(z) = Ae~= { ((g)’ + a’) aili(Aa) < pai mh(m}} S
(2.24)
By (2.19a) in = > T we have
U'(z) = —Bpe®**,  U"(z) = —BpleP*=. (2.25)
Hence (2.22) takes the form |
Ae~¥¥ sinh(AF) = % — Befi®,
(2.26)

Ae-‘if{accshm'ﬂ = %sinh(ﬂ'z‘}} =1,
— Bpae™® = 1.

By the last equation Be®*% = —1/p2. Therefore, dividing the second equation
in (2.26) by the first one we find that T is a solution of

2(A + Kpa)AA :
. 2.2
p(A + Kpa) + 2Ap2 A

tanh(AZ) =

This equation was obtained under the assumption that 0 < T < co. We discuss the
question of when the solution of (2.29) really satisfies this condition.
To this end we fix the values of 2 > 0, A > 0 and let K = co. Then
A
— F !

P‘E"‘""K

¢ e e e s e S e 12

14

LT

ey
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and the right-hand side of (2.27) converges to

i/ + 44

w20

which is greater than zero (since u > 0) and less than one (since A > 0).
Thus, for large K equation (2.27) has a solution £ = I(K), which is in fact

unique, and
I(K) = 1(o0),

where T(ca) is a solution of

tanh(Az) = E%' (2.28)

with A = \/(/2)” + .
On the Eiher_ha.nd. if K = oo, then

il 1y ?
Pg—}f—z—-z}' .}|+(2),
and the right-hand side of (2.27) converges to —1. Consequently, by the properties
of tanh z, equation (2.27) does not have a positive solution for small K.
Thus it becomes clear that for the existence of a solution 0 < ¥ < oo the
parameters A, u, K should satisfy

AXNFHpEIA oy (2.29)

0<
1A+ Kp2) + 2Apz

For our purpose it is sufficient (with fixed A > 0 and u > 0) to find out for which
K. the root of the equation (2.27) becomes zero. We can see directly from (2.27)
that the condition A + Kp; = 2 should hold, that is, K. should be a root of the

equation

A
' = lp2( K., (2.30)
where
ol K-p .
m(K) = e ( 7 ) + A

(Such a number K, exists and is unique, which follows from the properties of the
functions A/K and |p2(K)|.)
Thus if K = K., then T(K,) = 0 and the function we seek is
U(z) = £ - Berloatkole
Since we should have U(0) = 0, it follows that B = K, /A, and so for K = K.

Ulz) = %{1 — g~ lealRulz) (2.31)
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Next we show that (for K = K.) the lunction U'(z) in fact coincides with the
function Vp(z) introduced in {2.7). Therefore (see (2.6)),

F(zl= 1 : Uz = Zals : 2.32

Viz) = max {Zo(2) + Ulz = Zo(x))} (2.32)
From (2.31) we deduce that in (2.32) the maximum is reached when Zy(z) = .
Thus if K = K., then it i5 appropriate to pay a dividend of the size of the available
capital z. Soin thiscase r =0, Zo(z) =z, and X, =0for ¢ > 0.

5. And so we assume that & > K,. In this case, as was shown above, the

Stefan problem (2.16)—(2.17) with boundary conditions (at Z) (2.22) (or, equiva-
lently, (2.21)) has a solution where T is defined by (2.27) and

Ae~ %% sinh(Az), = <E,
Ulr) =9 K 2.33
{J‘} !_" — Beri%, > { }
A
swhere— [ —
= LEJJ’ZE
lp2]

(from the third equation in (2.26)), and the constant A is obtained from either of
the first two equations in (2.26). To emnphasize the dependence of U/(z) on K we
shall also write U(z; K.

Now we give a proof of the fact that for K > K. the function U(z) from (2.33)
indeed coincides with the function V' (z) defined in (2.5) and, moreover, the optimal
strategy of payment of dividends is this: Zg(z) =0 for all = 0 and

= 0, =
H{I}_{K, I

Applying Itd's formula to U(z) from (2.33) we find that (cf. (2.10)) for the control
i = u(z) we have

U(z) = Eze U (X,ar) (2.34)
tAT tAT
- E,f e~ MLTU(X,)ds - E,f ge~ MU' X,)dW,
1] o
= Ege_"“{Mf]U{XM,-:I

tAr AT
+ Ezf e~ Mu(X,)ds - E=f oe MU' (X,) dW,.
o 0

Since 0 € U'(z) £ C, the mathematical expectation of the last term in (2.34) is
zero, and going to the limit as ¢ —+ oo we find that

Uz) = EI[ e MU X,) ds.
0

R Ui, SH S SR A
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Thus, given that Z5(z) = 0, we get U{z) = V(z) and the control & = u(z) is
optimal.
6. Now we consider the possibility of instantaneous payment of dividend
(Zo(z) # 0). Then by (2.6)
V(z) = ax  {Zo(z) + Ulz — Zo(z))}. (2.35)

= m
OgZy(z)==

From the properties of U(z) it follows thatif z < Z, then U'(z) 2 1and U'(Z) = 1.
Therefore, for < T the maximum in (2.35) is reached when Zg(z) = 0 and,
consequently, instantaneous payment of dividend should not be made. However, if
z > %, then U'(z) < 1and U(Z) > Z. The maximum in (2.35) is reached when
Zylz) =z —% and
Viz) = (z - Z)+ U(T). (2.36)

In other words, in the case z > T the dividend of £ — T should be paid at once
and the process X should then start from the state Xy = %.

Collecting all the results proved, we formulate them in the following assertion.
Theorem A. In the model A (see (1.4)) the optimal process of payment of dividend
and the function V = V(z) (see (1.2)) are described in the following way. Let A > 0,

p>0.
1) If K £ K., where K, is the root of equation (2.30), then having the initial

capital Xg = £ we pay the dividend Zy5(zx) = z at once and Xy =0 for all t > 0.
The function V is given by V(z) = z.
2) If K > K., then
z < Z(K),

Zo(z) = { i F(K), =2 F(K),

where T(K) is the root of (2.27). The optimal function is
_ [0, z<EK),

o) = { K, z32#K).

In addition _
Uz, K), r < I(K),

Vit UEK),K), =3 EK),
_ [ Ae"¥7sinh(Az), z < Z(K),
dtis { K _Be-lealz, 13 3(K),
and the constants 4, B are defined by (2.26). At T(K) we have
VIZE(K)) = f (2.37)

Bemark 1. Assertion (2.37) follows by continuity from (2.16) taking account of
V?E} =1and V'(Z, K)=0.

Remark 2. If KX — oo, then
I(K) = T{oa),

where F({oo) is the root of (2.28) and U(z; K) — V(z), where V(z) is defined below
in (4.5).
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§3. The case B

1. In this case the dividend payment moments 0 =T, < T} < ... and the amounts
paid 3o, 31,-.- form a multivariant point process (T}, 3;):iz0. Here

Ze= Y e T LT < ). (3.1)
iz0

We assume that (3.1) ‘acts' fort < 7 = inf{s: X, =0} and

V(z) =supE; Y _ e T3 — )T < 1), (3.2)
20
where v > 0 is interpreted as the transaction cost for each payment of dividend,

which corresponds to frequent ‘switching’ of the evolution process of the capital
X = (X{)iz0 having stochastic differential

EUE; ‘——,ud1+urdwf—d3;. {3'3]

If S'f = g(X;,5 = t), then we assume that the moments T; are Markov moments
(stopping times) with respect to (F7);3¢ and the random variables j; are
F£-measurable.

2. We shall find the function V(z) and the optimal strategy ¥ = {ﬁji];;g following
the same ideas as in §2 based on ‘testing properties'. 2

To this end we assume that a certain function V = V(z) of class C?(0,cc) is
considered as a ‘candidate’ for V(z). Then for a strategy = (with 3o = 0) and the
corresponding process X we have (r = inf{s: X, =0})

_ — tAT -
e~ MANT X, ) = V(Xe) +f (—e~*AV(X,))ds (3.4)
o

LAT 1 LAT - )
+f e VX VX, 4 5/ e~ MV X, \o% ds
o

o
+ 3 e (X - P(X,o) - AXT(X,))
D aginT
tAT

= 7(Xo) +[ e~*MLV(X,)ds +f ge= T (X,) dW,
o a

+ Y e M V(X7) - V(X )] I(Ti S tAT)
izl

iy tAT Py
= V(Xo) +f e M LV(X,)ds
1]

LAr
+[ eV (X,)dW, - 3 e HTATI (5, — 4)
0 izl
+D e V(Xp) - V(Xro) - (AXg +9)[I(T: S T A1),
izl
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where )
LV () = ui'(2) + ”-2-17‘”{;} — AV (),

and we have used the fact that AXy = —j;.
Fromn (3.4) we can see that

= tAr
Vi) = Ece~ MMy, )~ F, f e MLV(X,)ds (3.5  —}-
AT i :
- E: / ge~*V'(X,) dW, + E, Z e=ATi (Gi— 1T StAT)
a izl
~E. ) e [V(Xp) - V(X7.) - AXT, = 7] (Ti S tAT).
izl
If we assume that thE_l;l..I;'tI:.'l‘..ii.Dn f = !T'f.r} satisfes (ef. (2.9)) — k.
LV(r) <0, x>0, (3.6)
and N N
Viz) -V z(z-y)-r. =z2u (3.7)
then from (3.5) we find that 1

V(z) 2 E. ) e~ MTin7(3, — q)
izl

'ﬁ & tar 2
+ E.e~MAAIT(X,.,) - E, f ge= V' (X,) dW,. (3.8)
1]

Assuming additionally that V'(z) and V(z) are bounded, we let t = co in (3.8) to

obtain "
Vi) 2E: Y e (3 - ITi < 7). (3.9)
2]l

To make conditions (3.6), (3.7) more precise (they are necessary to find V(z)
coinciding with V(z)) we refer to the following heuristic argument suggesting the
structure of the optimal strategy = = (T3, i )izo0.

If the initial capital Xy = z is ‘large’, then it seems appropriate to pay a certain ;

dividend jo(z) at once and then to begin the observation of the evolution of X with
the initial state = — jo(z). Then it is clear that as in (2.6) we have

Viz) = Mﬁl[a::f{:“ju[r] - 7) + Valz - 30(z))},

where V5(z) is a function coinciding with the right-hand side of (3.2) but with ¢ > 1.
At the same time, the following strategy of dividend payment seems natural:
choose two thresholds a < b and when X reaches b, pay the dividend b— a, that is,

at the moments T; =
b= a. Then clearly

These considerat
V = V(z) and the !

Using the last con
the form

with A = /(u/2)

Thus we have !
‘smooth gluing’ t

— conditions at a a1

We show that a.l

the condition V'(

Let w(y; 4) =1

To show tha

Vi

VHI:




11.6)

(3.8)

L8) to
(3.0)
V()
w the

Train
with

=1,
iral:
it is,
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at the moments T; = inf{t > Ti_, : X\- = b} we have X1 =a and 3; = -AXy =
h =, Then clearly Valr) should satisfy the following condition at a and &
Talb) = Vyla) + (b= a) = .

These considerations lead us to rhe natural idea of finding the required function
V= V(x) and the thresholeds a.b as a solution of the following problem:

LV [x) =10, D<zx<h,
Vieg)=V(a)+(z=a) = . z=zbh
Vo = 1.
Using-the last condition (V'(0) = 0). the solution of the equation-LV(x) = 0 has

(3.10)

the form )
Viz) = de™"? sinh{Ax), D€xgh, (3.11)

with & = /(j/2)2 + A (cf. (2.20)).

Thus we have three unknown constants: A,a, and b. Applying the concept of
‘smooth gluing’ to the condition V(b) = V(a) + (b — a) — v, we add two more
—_——

conditions at a and b
" {a) = 1, Vb)) =1. (3.12)

\¥e show that a, b, and 4 can now be found uniquely. Since
V) - Vo) = [ V() dy,
the condition V(b)) = V(n) =(b—-n) -5 r.a.k';ﬁ the formn
/ = Py (3.13)
Let so(y; A) = 1 — V'(y). Then )
fba?{y'. A)dy=v la;d) =0, w(b; A) = 0.
To show that :his problem has a solution, we observe that (cf. (2.23), (2.24))

() = de~ ¥* {& cosh(Azx) — gsinh[r_\z} },
V*(z) = Ae™ a':{ ((‘2—‘) g™ ;_32) sinh(Az) — pa cosh(Az) }

A

@fy)
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If T is a root of the equation : since the deriv:

THY pa Vi{Xy

tanh(Az) = s ( - __)

T (p/2)2 + A2 AZ =)
L by the constru
(cf. (2.28); F = (00)), then V"(F) = 0 and So, for each
ey : F[.r
iy — -&T — i
V'(T) = Ae &mh{&’]ug*;z:’ﬂ r
} Passing to
if A> 0. !
So the function y(z; A) = 1 - V'(z) has the properties: @(z; A) L —oo as A T oo |
and w(z;4)tlas AlOforeachz 2 0.
e . sy : - = Now let z >
Thus, beginning with large 4 and decreasing it, we find unique values A,@,b
with _
i N .._.._'__ —— i
[-: wly; A)dy = =, wlaA) =0, (b A4) =0 (3.14) e the i
- " : have
Let V(z) be the function (3.11) with 4 = A. We define the strategy ™ =
{T},E{_}i;u in the fﬂuwmg way: But i}{ﬁ} L
s - It remai:
~ _Jz—a ifzzh
==5ld  weeh
T = inf{t > T X = '5}1 ] We showed
Ji=b-a i
We show that for the strategy ¥ we have constructed the corresponding value and
Vi;iF)=E ) e Gi-yITi<7) - In the «
iz0 l
: . o = l
exactly coincides with the function V(z) found, and moreover, V(z) = V(z), that sl
is, 7 is optinla.l,
To prove V(z) = V(z; 7) we use [té's formula (3.5), taking the process X defined LV(z) =
by the strategy ¥ and assuming that z < b. )
Since LV(z) = 0, in (3.5) we have since by
i Thus,
tAT _ { Finall
E,f e~ LV(X,)ds=0.
0 :
The mathematical expectation of the stochastic integral vanishes, !

AT —
a




—F

8

el i
=1
o}

(3.14)

lue

that

fined
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since the derivative V'(z) is bounded. Next, for T, < 7
V(Xr) - V(Xn-) - 8Xp —v=V(@-V@) - @-b) -v=0
by the construction of @ and b.
So, foreach t > 0

V(z) = Exe MV (Xyar) + B2 Y e TG = NI(Ti S tAT),
iz0

Passing to the limit as t —+ co we tind the required equality
Viz)=V(x7), z<b.
Now let z = b. Then by (3.10),
Viz) = V(@ +(z-a) -

At the same time, by the definition of the strategy ¥ = {ﬂ,}}jgu, for z = b we

have 25
Vi, 7)) =V(g;7) +(z—a) = ~.

But V() = V(&; 7). Therefore, V'(z) = V(z;7) for all = > b.
It remains to show that for any strategy =

V(z) 2 V(z;m).
We showed above that for this it is sufficient to verify that

LV(z) <0, z3>0, (3.15)

and _ _
Viz) -V z(z—y) -1 z 2T (3.186)
In the domain z < b we have LV (z) = 0. In the domain z = b
V(z)= V@) +(z-8) -7

and

LV(z) = =A[V(@) +(z=8)—7] +4 € =A[V(@)+(b=8) =] +p = —AV(B) +p = 0,
since by continuity from LV(z) = 0, z < b, we obtain LV (b) = 0.

Thus, (3.15) has been established.

Finally, (3.16) is equivalent to the inequality

F —
[a-7a)ausa,

which is obviously satisfied by the properties of w(u; A) = 1 — V/(u) and the way
the constant A was defined in the process of solving (3.14).
We formulate the results obtained in the following assertion.
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Theorem B. In the model B (see (1.53)) the optimal dividend payment sirntegy
and the function V = V(z) (see (3.2)) are described in the following way.
Let A > 0, up> 0, v > 0 and suppose that the constants A,G, and b are defined
by solving (3.14). N
) Ifz = b, then we make an instantaneous payment of the dividend 30 = b -
and the evolution of the capital starts with the value a.
2) Ifz < b, then Tg =0, 5p = 0 and the payment of the dividend is made when
the process X reaches the threshold b with instantaneous payment of dividend
of size b— 3, that is,

= i]’lf{f >Ti i X = El}, % =b-3
Remark 1. By (3.11) the problem (3.14) takes the following form:

A[e-‘i* sinh(Ab) — e~ 7 sinh(AG)]) = (b-8) - 7,

Ae” ':'rﬁ{&. cosh(Ag) - 3 sinhl[&a}}

e'*"{.‘.’l rush[ﬂb} - —mnh{& }

where A = 4/ {;.:('2]2 + A

Remark 2. As v = (0,

=1}
1
il
L=}
1
il

where T is a solution of

v pd
tanh(Ar) = ————— = —|.
wiian) = prfrems (= mies)
Remark 3. The following figure shows the behaviour of the function

Ae— 5= sinh{Axzx), 0£z< E,
Viz) = ~ o
(r=a) =+ e~ %% zinh(Aa), z>0b

v(x )ar

V@‘l
v(':.hﬂ

s

Q-
o=

1. We prou
payment £ =
process. \\e
Moreover, we
Zo(x) < z.

In this situ

and for ¢t > 0)

From hew
[z:]:;m on wi

i5 reached can
and ¥ — 0. re

To this ean
£{oo), which i

with A = \'/I{-;

In the case
(see Remark =

All this su;
optimal proce:
need to pay at
we place a
cach other). 1
by the visits o

2. This heuriz
of the coquatio

where 4 is =ue
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§4. The case C

1. We proceed to the general case where the (admissible) process of dividend
payment £ = (Z,;);30 is an arbitrary non-decreasing right-continuous (for ¢ > 0)
process. We assume that Z, is F¥ = o(W,,s € t)-measurable for each t > 0.
Moreover, we assume that Zy = Z3(z) is a measurable function with Z5(0) = 0 and
Zolz) € z.

In.this situation we take a process X = (X;)30 satisfying

Xo =1, Xoy = — Z4(x), (4.1)

and for t > 0
Xi = (z = Zolx)) + pt + oWy — (Z; = Zp.). (4.2)

From heuristic considerations we can expect that the optimal process £ =
{3;);;.; on which

M riz,} (4.3)

V() = sup { Za(2) + Eumzoer [
z (0.20)
is reached can be obtained by the limit passage in the cases A and B as K = ¢

and v — 0, respectively.
To this end we note that in the case A the optimal threshold F(K') converges to
Z(oo), which is a solution of the equation

fI7aY

tanh(Az) = m

with A = 1/(u/2)" + A.

In the case B the quantities & and b get closer as v — 0, converging to = Z(cq)
(see Remark 2 in §3).
All this suggests that in the general case we can expect the structure of the

optimal process Z = (Z;);20 of dividend payment to be such that when = > T we

need to pay at once the dividend z — ¥ and then ‘run’ the process X' fromn I, where
we place a reflecting barrier (since as v — oo the guantities @ and b converge to
each other). Here the accumulation of dividends will take place in local timne given
by the visits of X at the reflecting barrier T.

2. This heuristic argument can be justified in the following way. Let ¥ be the root

of the equation

iy A
Vi) = { .4c‘5*'5i11}i'[ﬂ::}, 0€z<F, (4.5)
(r—T)+ 17(T), T>E

where 4 is such that

.4e-5?{ﬂ.msh[_\.ﬂ - gslnh{if]} -
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From the considerations of §2, §3 it follows that

=AV(z) + uV'(z) + ‘;—2?"{:} =1, T < T, (4.6)
V=0, V(@ =1 V(@) =0

Clearly, V € C*(0, ). . _ .
Let z < T. Consider the solution (X, L) = (X, Li):z0 of the stochastic differ-

ential equation with reflection (see [4], Ch. IX, §2, Exercise 2.14)
Xe=z+ut+oW, =1L, (4.7)

where L = (L )iz0 is a continuous non-decreasing %W -adapted process with Ly =0
such that

; fn IR =7) dL,. ) (4.8)

It is well known that a solution (X,I) exists, T is the reflecting barrier for X, and
T is a local time determined by the process X at the boundary T.
We show that forz £ F

e [ "M 4T, = V(a), (4.9)
(i ]

where ¥ = inf{t > 0: X, = 0} and the function V(z) is defined by (4.5).
As in §2, §3, we apply Itd's formula to the semimartingale X (see [3]):

e""“"‘ﬂvf)_ﬁnr) = ?{:} + f M?f‘}'e_h?[f‘”ds
o
LAT

_ _ 1 T
+ [ VX MdxX, + 2 f a?e=MT(X,)ds. (4.10)
] 2 o

Taking (4.7) into account we get

LAT

Viz) = e‘””‘”V{EAFJ = ft':‘h LV(X,)ds
]

LAT I _ LAT R
+f e~ MV'(X,)dL, —f oe~MV'(X,)dW,, (4.11)
0 o
where
a— gﬂ_
LV =<2V +ulV + TV".

By the definition of V = V(z) and by the properties of (X, L)

AT AT, ——
E: LV(X,)ds =0, E:f e V'(X,)dW, = 0.
1] ]

There
letting t
Mow, |

Clearl:

E.
where ¥V
3. Now w»

where V(:

Let X |
we get

—AftAa

Hence it fol

?{z}=£r



(4.6)

iffer-

(4.7)

48)..

and

(4.9)

1.10)

i1}
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Therefore, taking account of ¥ (Z) = 1, we obtain the required equality (4.9) by
letting ¢ — oo in (4.11). o '
MNow, let £ > £. Then we put Zy{z) =z — T and

Z: = Zo(z)I(z > T) + L.. (4.12)

Clearly, for such a process of dividend payment we have
i SRR, ]
Ezf e MdZ, = (:: -I+ E;] g rif,) Ifz > T)
o o
¥ —
+ E,f e~ dL, - Iz £ E) = V(z), (4.13)
0

where V(z) is defined by(4.5).
3. Now we show that for any admissible dividend payment process Z = (Z;):20

VT 2r< V=), (4.14)
where V(z;Z) = E. [ e=**dZ,, T =inf{t: X, =0} and '

E,f e~MdZ, = Zo(z) +E. [ e~**dZ,.
[1]

(o,r}

Let X be the process corresponding to Z. Applying Itd's formula to e~*V(X,)
we get

e~ MV (X, 0,) = V(z) + f T 2rem V(X)) ds
o

AT i 1 AT s
+f _ef*-v‘(x._jdx,+-2~j; o?e~*V"(X,) ds

0
£ Y e VX) = VX,) - VX, )AK, )

D<aginTg

oo LAT oz AT
=V(z) —f e~ P X VdE, +/ e MLVI(X,)ds
0 1]

AT =
+/ ge 2 V'(X,) dW,

1]
+ 3 eMV(X,) - V(X,.) - V'(X,.)AX,}.

D<sg AT

Hence it follows that

V(z) ;[m— e~ dzZ, -faw e~ (1 -V'(X,.))dZ, (4.15)

LtAT ez AT
- f e=MLV(X,)ds — / ge=*V'(X,) dW,
L] 40

i Z E_}'E{V{XE}" ?{X -1.| - T’ﬂ':xx- jﬂﬁra}'ﬁ‘ﬁ_l{:ﬁr?vf};fﬁfj
O<sgine
=h+h+L+1s+ 105+ 15
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Since V'(z) = 1,
AT .
- —f eM(1 - V'(X,-)) dZ, > 0.
o

Forz < T wehave LV(z)=0,andforz > F
—LV(z) = AV(z)—p 2 AV(F) - p=-LV(Z) =0.

Therefore, .
I= -f e MLV(X,)ds 2 0.
o

If & < 3, then

8
V(8) - V(e) - V'(B)(B - a) = f (V'(y) - V'(8)) dy > 0,

since V' (y) is decreasing. Therefore,

Je = = Z E_h{Fsz} -V(X,-)-V'(X,_)AX,} > 0.
O<sgLnT

Since the derivative V (z) is bounded,
LAT
E::f e~ MV(X,)dW, = 0.
o

Next,
" lim Ege ATV (XA, ) = 1.
t—oo

Therefore, taking in (4.15) the mathematical expectation E; and letting t = oo,
we obtain

V(z) 2 Ex [ﬂ "emMdz, = Vi(; 2).

Thus the following assertion has been proved.

Theorem C. In the model C the optimal strategy of dividend payment is described
in the following way. Let A > 0, u > 0 and let T be the root of the equation
= _ _HA o YT
tanh(AT) = AT 3 where A= (2) + A

1) If z > T, then we make an instentaneous payment of dividend egual to z — F,
that is, Zg(z) =z — T.

2) If x = T, then the _t_iiuidfnd payment process L = {I;];;u and the corresponding
process A = (Xi)izo of capital evolution are solutions of a stochastic
differential eguation with reflection (4.7)-(4.8). In addition, the function
V = V(z) of optimal payment of dividends is given by (4.5).
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