Russian Math. Surveys 50:2 257-277

. HE WHEREAST

Optimization of the flow of dividends

M. Jeanblanc-Picqué and A. N. Shiryaev

Contents

§1. Introduction	257
§2. The case A	258
§3. The case B	267
§4. The case C	273
Bibliography	277

§1. Introduction

1. In the recent papers [1], [2] Radner and Shepp considered a model of the evolution of the capital $X = (X_t)_{t \ge 0}$ of a company assuming that

$$dX_t = \mu dt + \sigma dW_t - dZ_t, \qquad (1.1)$$

where $W=(W_t)_{t\geqslant 0}$ is a standard Wiener process, and the coefficients (μ,σ) can be chosen in a predictable way as functions of the data observed, with values in an a priori admissible set A. The non-negative non-decreasing non-anticipating process $Z=(Z_t)_{t\geqslant 0}$ appearing in (1.1) characterizes a strategy of payment of dividends by the company.

We assume that the initial capital is non-negative, $X_0 = x \ge 0$, and after X hits zero we have bankruptcy and $dX_t = dZ_t = 0$ for $t \ge \tau$, where τ is the moment of bankruptcy.

As a criterion for optimal functioning of the company Radner and Shepp consider the quantity

$$V(x) = \sup E_x \int_0^\infty e^{-\lambda t} dZ_t, \qquad \lambda > 0,$$
 (1.2)

where E_x is the mathematical expectation corresponding to $X_0 = x$,

$$\int_0^\infty e^{-\lambda t} dZ_t = Z_0 + \int_{(0,\infty)} e^{-\lambda t} dZ_t, \qquad (1.3)$$

and sup is taken over all admissible strategies from the set A and admissible dividend processes $Z = (Z_t)_{t \ge 0}$.

2. In the present paper we consider the Radner-Shepp model (1.1) assuming that the set A is one-element, $A = \{(\mu, \sigma)\}$ with $\mu > 0$, $\sigma > 0$. We want to find optimal dividend processes $Z = (Z_t)_{t \ge 0}$ under the following assumptions on their structure.

A. Processes $Z = (Z_t)_{t \ge 0}$ are such that

$$dZ_t = u(X_t) dt$$
, $Z_0 = Z_0(x)$, (1.4)

where $u=u(x),\ Z_0=Z_0(x)$ are arbitrary measurable functions satisfying $0 \le u(x) \le K < \infty,\ 0 \le Z_0(x) \le x.$

B. Processes $Z = (Z_t)_{t \ge 0}$ are such that

$$Z_t = \sum_{i \ge 0} e^{-\lambda T_i} \mathfrak{z}_i I(T_i \le t), \tag{1.5}$$

where $0=T_0 < T_1 < T_2 < \dots$ are (random) moments of payments of dividends, and $\mathfrak{z}_0,\mathfrak{z}_1,\dots$ are non-negative amounts of dividends paid. In addition, we assume that there is a fee (transaction cost) $\gamma>0$ for each payment and the cost function has the form

$$V(x) = \sup \mathsf{E}_x \sum_{i \ge 0} e^{-\lambda T_i} (\mathfrak{z}_i - \gamma), \tag{1.6}$$

where sup is taken over all multivariant point processes $(T_i, \mathfrak{z}_i)_{i \geq 0}$ (see [3]).

C. The process $Z=(Z_t)_{t\geqslant 0}$ is an arbitrary non-negative non-decreasing non-anticipating process, right-continuous for t>0.

The solution of the problem of finding the structure of the optimal payment process given in [1], [2] in the general case C will be established below, making use of the ideas concerned with local time and diffusion with reflection. What we do is the same as in [1], [2], but the stochastic analysis technique is somewhat different.

The relevance of cases A and B, in addition to their natural importance, is that they suggest the structure of optimal solution in the general case C (by the limit passage with $K \to \infty$ and $\gamma \to 0$ in A and B, respectively).

The results corresponding to the three cases A, B, C are presented in §2, §3, §4 respectively.

§2. The case A

1. Let $W=(W_t)_{t\geqslant 0}$ be a standard Wiener process given on a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geqslant 0}, \mathsf{P})$. We assume that the evolution of the company's capital is described by the equation

$$dX_t = (\mu - u(X_t)) dt + \sigma dW_t, \qquad (2.1)$$

where u=u(x) is an arbitrary measurable function with $0 \le u(x) \le K < \infty$ (K is a given constant). We note that by Zvonkin's result [6], the stochastic differential equation (2.1) has a unique strong solution $X=(X_t)_{t\geqslant 0}$ such that X_t are $\mathcal{T}_t^{\mathcal{W}}\equiv\sigma(W_s;s\leqslant t)$ -measurable, t>0. In this way (2.1) defines the controlled process $X=X^u$ by means of the control u=u(x).

Drawing on the meaning of the model described in §1 we assume that $x \ge 0$, and if $\tau = \inf\{t : X_t = 0\}$, then $X_t(\omega) = 0$ for all $t \ge \tau(\omega)$ (formally, X = 0 on $[\tau, \infty)$, see [3]). Here the equation (2.1) for X 'exists' up to the first instant of X hitting zero.

we

(for

wl 0

D.

с

Writing (1.4) in the integral form

atisfying

(1.5)

iividends, we assume function

(1.6)

sing non-

payment making use of we do is different. nee. is that

. \$2. §3, §4

robability
rapital is

(2.1)

 $K < \infty$ hastic difhat X_t are controlled

hat $x \ge 0$, X = 0 on stant of X

$$Z_t = Z_0(x) + \int_0^t u(X_s) ds,$$
 (2.2)

we find that

$$X_{t} = (x - Z_{0}(x)) + \int_{0}^{t} (\mu - u(X_{s})) ds + \sigma W_{t}$$
(2.3)

(for all $0 \leqslant t \leqslant \tau$).

Let

$$V(x; u; Z_0) = Z_0(x) + \mathsf{E}_{x-Z_0(x)} \int_0^\tau e^{-\lambda t} u(X_t) \, dt, \tag{2.4}$$

$$-V(x) = \sup V(x; u; Z_0),$$
 (2.5)

where sup is taken over all admissible u(x) and $Z_0(x)$ (0 \leq u(x) \leq K, $0 \leq Z_0(x) \leq x$).

It is clear that

$$V(x) = \max_{0 \le Z_0(x) \le x} \{ Z_0(x) + V_0(x - Z_0(x)) \}, \tag{2.6}$$

where

$$V_0(x) = \sup V(x; u), \tag{2.7}$$

and sup is taken over all admissible u; $Z_0(x) \equiv 0$, V(x; u) = V(x; u, 0).

Clearly, the most difficult task is to find the function $V_0(x)$ and the corresponding optimal control $u_0 = u_0(x)$. This is why we now assume that $Z_0 \equiv 0$ and we return to the general case in 6 below. To simplify the notation we denote $V_0(x)$ by V(x), omitting the index 0.

2. So, suppose that

$$V(x) = \sup \mathsf{E}_x \int_0^\tau e^{-\lambda t} u(X_t) \, dt,$$

where sup is taken over all controls u = u(x) with $0 \le u(x) \le K$.

Using standard techniques of stochastic control theory (see, for example, [5], [7]), to get the required function V=V(x) and the corresponding optimal control $\widetilde{u}=\widetilde{u}(x)$ with $V(x;\widetilde{u})=V(x)$, it is sufficient to establish the following testing properties:

 (A_1) there is a function $\widetilde{V}=\widetilde{V}(x)$ such that for any admissible control u=u(x)

$$V(x;u) \not\geqslant \tilde{V}(x), \qquad x \geqslant 0$$

(and so $V(x) \leqslant \tilde{V}(x)$), and

 (A_2) there is a control $\widetilde{u}=\widetilde{u}(x)$ such that

$$V(x; \tilde{u}) = \tilde{V}(x), \quad x \ge 0.$$

Clearly, if such a function $\tilde{V}(x)$ exists, then $\tilde{V}(x) = V(x)$ and as optimal we can take the control $\tilde{u} = \tilde{u}(x)$.

The function $\widetilde{V} = V(x)$ and control $\widetilde{u} = \widetilde{u}(x)$ can be found by means of Bellman's equation. The verification of the properties $(A_1), (A_2)$ is usually done by means of Itô's formula using the martingale properties of stochastic integrals.

Let us realize our plan of finding \widetilde{V} and \widetilde{u} . We introduce some operators L(u), $0 \le u \le K$, acting on $\Psi = \Psi(x)$, $x \ge 0$, of class $C^2(0, \infty)$, given by

$$L(u)\Psi = (\mu - u)\frac{d\Psi}{dx} + \frac{\sigma^2}{2}\frac{d^2\Psi}{dx^2} - \lambda\Psi. \tag{2.8}$$

Suppose we have found a bounded function $\tilde{V} \in C^2(0,\infty)$ with $\tilde{V}(0) = 0$ such that Bellman's inequality is satisfied:

$$\sup_{0 \leqslant u \leqslant K} \left[L(u) \widetilde{V}(x) + u \right] \leqslant 0. \tag{2.9}$$

We show that then property (A_1) is satisfied, that is, for any admissible control u = u(x) we have $V(x; u) \leq \tilde{V}(x), x \geq 0$.

To this end we apply Itô's formula to $(e^{-\lambda t}\tilde{V}(X_t))_{t\geq 0}$:

$$e^{-\lambda(t\wedge\tau)}\widetilde{V}(X_{t\wedge\tau})=\widetilde{V}(X_0)+\int_0^{t\wedge\tau}e^{-\lambda s}L(u)\widetilde{V}(X_s)\,ds+\int_0^{t\wedge\tau}e^{-\lambda s}\sigma\widetilde{V}'(X_s)\,dW_s.$$

Hence, taking E_x and taking into account $X_0 = x$ and (2.9), we find that

$$\widetilde{V}(x) = \mathbb{E}_x e^{-\lambda(t \wedge \tau)} \widetilde{V}(X_{t \wedge \tau})$$
 (2.10)
 $-\mathbb{E}_x \int_0^{t \wedge \tau} e^{-\lambda s} L(u) \widetilde{V}(X_s) ds - \mathbb{E}_x \int_0^{t \wedge \tau} \sigma e^{-\lambda s} \widetilde{V}'(X_s) dW_s$
 $\geqslant \mathbb{E}_x e^{-\lambda(t \wedge \tau)} \widetilde{V}(X_{t \wedge \tau})$
 $+\mathbb{E}_x \int_0^{t \wedge \tau} e^{-\lambda s} u(X_s) ds - \mathbb{E}_x \int_0^{t \wedge \tau} \sigma e^{-\lambda s} \widetilde{V}'(X_s) dW_s.$

Hence we see that if $\tilde{V} = \tilde{V}(x)$ is such that $|\tilde{V}'(x)| \leq C$ for some constant $C \geq 0$, then the stochastic integral in (2.10) is a martingale and its mathematical expectation is zero.

Letting $t \to \infty$ in (2.10) we find that

$$E_x e^{-\lambda(t \wedge \tau)} \widetilde{V}(X_{t \wedge \tau}) \to 0$$

(if $\tau < \infty$, then $\tilde{V}(X_{\tau}) = 0$, and if $\tau = \infty$, then $\tilde{V}(X_t)$ is bounded and $e^{-\lambda(t \wedge \tau)} \to 0$ as $t \to \infty$).

Thus from (2.10) we find that

$$\widetilde{V}(x) \geqslant V(x; u),$$

that is, the testing condition (Ag) is satisfied.

3. We note that in the computations performed in (2.10) inequality appeared as a result of the assumption that $\tilde{V} = \tilde{V}(x)$ satisfies Bellman's inequality (2.9).

Suppose now that in (2.9) equality takes place, that is, Bellman's equation is satisfied:

$$\sup_{0 \le u \le K} \left[L(u) \widetilde{V}(x) + u \right] = 0. \tag{2.11}$$

By (2.8) this equation is equivalent to

$$\left(\mu \frac{d\tilde{V}}{dx} + \frac{\sigma^2}{2} \frac{d^2 \tilde{V}}{dx^2} - \lambda \tilde{V}\right) + \sup_{0 \leqslant u \leqslant K} \left[u \left(1 - \frac{d\tilde{V}}{dx}\right)\right] = 0. \tag{2.12}$$

Hence we can see that if the function $\tilde{V}=\tilde{V}(x)$ is known, then the control $\tilde{u}=\tilde{u}(x)$ on which (2.12) is satisfied should be the following:

$$\tilde{u}(x) = \begin{cases} K, & 1 - \frac{d\tilde{V}}{dx} \ge 0, \\ 0, & 1 - \frac{d\tilde{V}}{dx} < 0. \end{cases}$$
(2.13)

Using this we find from (2.12) that for x such that $\widetilde{u}(x)=0$ the following equation should hold:

$$\mu \tilde{V}'(x) + \frac{\sigma^2}{2} \tilde{V}''(x) - \lambda \tilde{V}(x) = 0, \qquad (2.14)$$

and if $\widetilde{u}(x) = K$, then we have

$$\mu \tilde{V}'(x) + \frac{\sigma^2}{2} \tilde{V}''(x) - \lambda \tilde{V}(x) + K(1 - \tilde{V}'(x)) = 0.$$
 (2.15)

From the intuitive considerations about the structure of the optimal control $\widetilde{u}=\widetilde{u}(x)$ we can assume that there is an \widetilde{x} such that for $x\geqslant\widetilde{x}$ we have to use $\widetilde{u}(x)=K$ (that is, to pay dividends with maximal possible speed if capital is 'large') and for $x<\widetilde{x}$ we put $\widetilde{u}(x)=0$ (that is, we do not pay a dividend if the capital is 'small').

Thus, we seek the function $\widetilde{V} = \widetilde{V}(x)$ and the threshold \widetilde{x} of switching the equations as a solution to the following Stefan problem with free boundary \widetilde{x} :

$$\mu \tilde{V}'(x) + \frac{\sigma^2}{2} \tilde{V}''(x) - \lambda \tilde{V}(x) = 0, \qquad x < \tilde{x}, \qquad (2.16)$$

$$(\mu - K)\widetilde{V}'(x) + \frac{\sigma^2}{2}\widetilde{V}''(x) - \lambda \widetilde{V}(x) + K = 0, \qquad x > \widetilde{x}. \tag{2.17}$$

4. For x > 0 we consider the equation

$$(\mu - K)U'(x) + \frac{\sigma^2}{2}U''(x) - \lambda U(x) + K = 0,$$

equivalent to

$$\frac{\mu - K}{\sigma^2/2}U'(x) + U''(x) - \frac{\lambda}{\sigma^2/2}U(x) + \frac{K}{\sigma^2/2} = 0.$$
 (2.18)

Clearly, in the investigation of the properties of U(x) we can put $\sigma^2/2 = 1$ from the very beginning, which results in replacing λ , μ , K by $\lambda/(\sigma^2/2)$, $\mu/(\sigma^2/2)$, $K/(\sigma^2/2)$ in the final result. The general solution of (2.18) (with $\sigma^2/2 = 1$) has the form

$$U(x) = C_1 e^{\rho_1 x} + C_2 e^{\rho_2 x} + \frac{K}{\lambda}, \tag{2.19}$$

where

$$\rho_1 = \frac{K - \mu}{2} + \sqrt{\left(\frac{K - \mu}{2}\right)^2 + \lambda},$$

$$\rho_2 = \frac{K - \mu}{2} - \sqrt{\left(\frac{K - \mu}{2}\right)^2 + \lambda}$$

are the roots of the quadratic equation

$$\rho^2 + (\mu - K)\rho - \lambda = 0$$

(here $\rho_1 > 0$, $\rho_2 < 0$ since $\lambda > 0$).

From (2.7) it follows that $V(x) \leq K/\lambda$ (since $u(x) \leq K$). Hence among the solutions in (2.19) we should choose bounded ones, which gives $C_1 = 0$. By the interpretation of the problem the function $\tilde{V}(x)$ should be non-decreasing in x. Therefore, the required solution $\widetilde{V}(x)$ (for $x > \widetilde{x}$) should have the form

$$U(x) = \frac{K}{\lambda} - Be^{\rho_2 x}, \qquad (2.19a)$$

where the constant (so far unknown) $B \ge 0$.

In the domain $0 < x < \tilde{x}$ the required function $\tilde{V} = \tilde{V}(x)$ satisfies (2.16) and so it is of the form

$$U(x) = A_1 e^{r_1 x} + A_2 e^{r_2 x}, (2.19b)$$

where

$$r_1 = -\frac{\mu}{2} + \sqrt{\left(\frac{\mu}{2}\right)^2 + \lambda}, \quad r_2 = -\frac{\mu}{2} - \sqrt{\left(\frac{\mu}{2}\right)^2 + \lambda}.$$

Since we should have U(0) = 0, from (2.19b) we find that $A_1 + A_2 = 0$ and so the required solution belongs to the family

$$U(x) = A_1 e^{-\frac{\mu}{2}x} (e^{\Delta x} - e^{-\Delta x}),$$

where A_1 is a constant, $\Delta = \sqrt{(\mu^2/2)^2 + \lambda}$. Putting $A = 2A_1$ we see that

$$U(x) = Ae^{-\frac{\mu}{2}x} \sinh(\Delta x). \tag{2.20}$$

con seco for

is c

In

Ŧ

(2.18)

I from the $K/(\sigma^2/2)$ e form

(2.19)

mong the
). By the
sing in x.

(2.19a)

6) and so

(2.19b)

nd so the

(2.20)

Thus we have three unknown constants A, B, and \tilde{x} . In addition, in the domain $x < \tilde{X}$ the representation (2.20) 'acts' and in $x > \tilde{x}$ we have (2.19a).

We shall seek the unknown constants A, B, \tilde{x} from the following supplementary conditions at \tilde{x} :

$$U(\widetilde{x}-) = U(\widetilde{x}+), \quad U'(\widetilde{x}-) = U'(\widetilde{x}+), \quad U''(\widetilde{x}-) = U''(\widetilde{x}+).$$
 (2.21)

The first condition is simply the continuity of the function at the border \tilde{x} and is quite natural. The second condition is the so-called (heuristic) 'smooth gluing condition' (in this respect see, for example, [7]). Finally, the condition that the second derivative be continuous at \tilde{x} is motivated by the requirement $U \in C^2(0, \infty)$ for applying Itô's formula.

We note that from (2.14) and (2.15) it is clear that the system of conditions (2.21) is equivalent to the system

$$U(\tilde{x}-) = U(\tilde{x}+), \quad U'(\tilde{x}-) = 1, \quad U'(\tilde{x}+) = 1.$$
 (2.22)

In the domain $x < \tilde{x}$ from (2.20) we find that

$$U'(x) = Ae^{-\frac{\mu}{2}x} \left\{ \Delta \cosh(\Delta x) - \frac{\mu}{2} \sinh(\Delta x) \right\}, \tag{2.23}$$

$$U''(x) = Ae^{-\frac{\mu}{2}x} \left\{ \left(\left(\frac{\mu}{2} \right)^2 + \Delta^2 \right) \sinh(\Delta x) - \mu \Delta \cosh(\Delta x) \right\}. \tag{2.24}$$

By (2.19a) in $x > \tilde{x}$ we have

$$U'(x) = -B\rho_2 e^{\rho_2 x}, \qquad U''(x) = -B\rho_2^2 e^{\rho_2 x}.$$
 (2.25)

Hence (2.22) takes the form

$$Ae^{-\frac{\mu}{2}\tilde{x}}\sinh(\Delta\tilde{x}) = \frac{K}{\lambda} - Be^{\rho_2\tilde{x}},$$

$$Ae^{-\frac{\mu}{2}\tilde{x}} \left\{ \Delta \cosh(\Delta\tilde{x}) - \frac{\mu}{2} \sinh(\Delta\tilde{x}) \right\} = 1,$$

$$-B\rho_2 e^{\rho_2\tilde{x}} = 1.$$
(2.26)

By the last equation $Be^{\rho_2\tilde{x}}=-1/\rho_2$. Therefore, dividing the second equation in (2.26) by the first one we find that \tilde{x} is a solution of

$$\tanh(\Delta \tilde{x}) = \frac{2(\lambda + K\rho_2)\Delta}{\mu(\lambda + K\rho_2) + 2\lambda\rho_2}.$$
 (2.27)

This equation was obtained under the assumption that $0 < \tilde{x} < \infty$. We discuss the question of when the solution of (2.29) really satisfies this condition.

To this end we fix the values of $\mu > 0$, $\lambda > 0$ and let $K \to \infty$. Then

$$\rho_2 \sim -\frac{\lambda}{K-\mu},$$
 $\frac{K}{2} = \frac{K}{4} - \lambda$

$$0 = \sqrt{-16}$$

$$0 =$$

and the right-hand side of (2.27) converges to

$$\frac{\mu\sqrt{\mu^2+4\lambda}}{\mu^2+2\lambda},$$

which is greater than zero (since $\mu > 0$) and less than one (since $\lambda > 0$).

Thus, for large K equation (2.27) has a solution $\tilde{x} = \tilde{x}(K)$, which is in fact unique, and

$$\tilde{x}(K) \to \tilde{x}(\infty)$$
,

where $\tilde{x}(\infty)$ is a solution of

$$tanh(\Delta x) = \frac{\mu \Delta}{2\Delta^2 - \lambda}, \quad (2.28)$$

with $\Delta = \sqrt{\left(\mu/2\right)^2 + \lambda}$. On the other hand, if $K \to \infty$, then

$$\rho_2 \to r_2 = -\frac{\mu}{2} - \sqrt{\lambda + \left(\frac{\mu}{2}\right)^2},$$

and the right-hand side of (2.27) converges to -1. Consequently, by the properties of tanh x, equation (2.27) does not have a positive solution for small K.

Thus it becomes clear that for the existence of a solution $0 < \tilde{x} < \infty$ the parameters λ, μ, K should satisfy

$$0 < \frac{2(\lambda + K\rho_2)\Delta}{\mu(\lambda + K\rho_2) + 2\lambda\rho_2} < 1.$$
 (2.29)

For our purpose it is sufficient (with fixed $\lambda > 0$ and $\mu > 0$) to find out for which K. the root of the equation (2.27) becomes zero. We can see directly from (2.27) that the condition $\lambda + K\rho_2 = 2$ should hold, that is, K_{\bullet} should be a root of the equation

$$\frac{\lambda}{K_{\bullet}} = |\rho_2(K_{\bullet})|, \qquad (2.30)$$

where

$$\rho_2(K) = \frac{K - \mu}{2} - \sqrt{\left(\frac{K - \mu}{2}\right)^2 + \lambda}.$$

(Such a number K. exists and is unique, which follows from the properties of the functions λ/K and $|\rho_2(K)|$.)

Thus if $K = K_*$, then $\tilde{x}(K_*) = 0$ and the function we seek is

$$U(x) = \frac{K_*}{1} - Be^{-|\rho_2(K_*)|x}.$$

Since we should have U(0) = 0, it follows that $B = K_*/\lambda$, and so for $K = K_*$

$$U(x) = \frac{K_*}{\lambda} (1 - e^{-|\rho_2(K_*)|x}).$$
 (2.31)

Ne: functi

From Thus capita

5. A Stefa: lently

wher

(fron the f shall N indee strat

App $\tilde{u} =$

Sinc zero Next we show that (for $K = K_*$) the function U(x) in fact coincides with the function $V_0(x)$ introduced in (2.7). Therefore (see (2.6)),

$$V(x) = \max_{0 \le Z_0(x) \le x} \{Z_0(x) + U(x - Z_0(x))\}. \qquad (2.32)$$

From (2.31) we deduce that in (2.32) the maximum is reached when $Z_0(x) = x$. Thus if $K = K_*$, then it is appropriate to pay a dividend of the size of the available capital x. So in this case $\tau = 0$, $Z_0(x) = x$, and $X_t = 0$ for t > 0.

5. And so we assume that $K > K_{\bullet}$. In this case, as was shown above, the Stefan problem (2.16)-(2.17) with boundary conditions (at \tilde{x}) (2.22) (or, equivalently, (2.21)) has a solution where \tilde{x} is defined by (2.27) and

$$U(x) = \begin{cases} Ae^{-\frac{\mu}{2}x} \sinh(\Delta x), & x < \widetilde{x}, \\ \frac{K}{\lambda} - Be^{\rho_2 x}, & x \geqslant \widetilde{x}. \end{cases}$$
 (2.33)

where-

$$B = \frac{1}{|\rho_2|} e^{|\rho_2|\tilde{x}}$$

(from the third equation in (2.26)), and the constant A is obtained from either of the first two equations in (2.26). To emphasize the dependence of U(x) on K we shall also write U(x;K).

Now we give a proof of the fact that for $K > K_*$ the function U(x) from (2.33) indeed coincides with the function V(x) defined in (2.5) and, moreover, the optimal strategy of payment of dividends is this: $Z_0(x) = 0$ for all $x \ge 0$ and

$$\widetilde{u}(x) = \begin{cases} 0, & x < \widetilde{x}, \\ K, & x \geqslant \widetilde{x}. \end{cases}$$

Applying Itô's formula to U(x) from (2.33) we find that (cf. (2.10)) for the control $\tilde{u} = \tilde{u}(x)$ we have

$$U(x) = \mathbb{E}_x e^{-\lambda(t \wedge \tau)} U(X_{t \wedge \tau})$$

$$- \mathbb{E}_x \int_0^{t \wedge \tau} e^{-\lambda s} L(\widetilde{u}) U(X_s) ds - \mathbb{E}_x \int_0^{t \wedge \tau} \sigma e^{-\lambda s} U'(X_s) dW_s$$

$$= \mathbb{E}_x e^{-\lambda(t \wedge \tau)} U(X_{t \wedge \tau})$$

$$+ \mathbb{E}_x \int_0^{t \wedge \tau} e^{-\lambda s} \widetilde{u}(X_s) ds - \mathbb{E}_x \int_0^{t \wedge \tau} \sigma e^{-\lambda s} U'(X_s) dW_s.$$
(2.34)

Since $0 \le U'(x) \le C$, the mathematical expectation of the last term in (2.34) is zero, and going to the limit as $t \to \infty$ we find that

$$U(x) = \mathsf{E}_x \int_0^\tau e^{-\lambda s} \widetilde{u}(X_s) \, ds.$$

in fact

(2.28)

perties

oc the

(2.29)

which

(2.27) of the

(2.30)

f the

:31)

Thus, given that $Z_0(x)=0$, we get U(x)=V(x) and the control $\widetilde{u}=\widetilde{u}(x)$ is optimal.

6. Now we consider the possibility of instantaneous payment of dividend $(Z_0(x) \neq 0)$. Then by (2.6)

$$V(x) = \max_{0 \le Z_0(x) \le x} \left\{ Z_0(x) + U(x - Z_0(x)) \right\}. \tag{2.35}$$

From the properties of U(x) it follows that if $x < \tilde{x}$, then $U'(x) \ge 1$ and $U'(\tilde{x}) = 1$. Therefore, for $x < \tilde{x}$ the maximum in (2.35) is reached when $Z_0(x) = 0$ and, consequently, instantaneous payment of dividend should not be made. However, if $x > \tilde{x}$, then U'(x) < 1 and $U(\tilde{x}) > \tilde{x}$. The maximum in (2.35) is reached when $Z_0(x) = x - \tilde{x}$ and

$$V(x) = (x - \tilde{x}) + U(\tilde{x}). \tag{2.36}$$

In other words, in the case $x > \tilde{x}$ the dividend of $x - \tilde{x}$ should be paid at once and the process X should then start from the state $X_0 = \tilde{x}$.

Collecting all the results proved, we formulate them in the following assertion.

Theorem A. In the model A (see (1.4)) the optimal process of payment of dividend and the function V = V(x) (see (1.2)) are described in the following way. Let $\lambda > 0$, $\mu > 0$.

- If K ≤ K_{*}, where K_{*} is the root of equation (2.30), then having the initial capital X₀ = x we pay the dividend Z₀(x) = x at once and X_t = 0 for all t > 0.
 The function V is given by V(x) = x.
 - 2) If K > K., then

$$Z_0(x) = \left\{ \begin{array}{ll} 0, & x < \widetilde{x}(K), \\ x - \widetilde{x}(K), & x \geqslant \widetilde{x}(K), \end{array} \right.$$

where $\tilde{x}(K)$ is the root of (2.27). The optimal function is

$$\widetilde{u}(x) = \left\{ \begin{array}{ll} 0, & x < \widetilde{x}(K), \\ K, & x \geqslant \widetilde{x}(K). \end{array} \right.$$

In addition

$$V(x) = \left\{ \begin{array}{ll} U(x,K), & x < \widetilde{x}(K), \\ (x - \widetilde{x}(K)) + U(\widetilde{x}(K),K), & x \geqslant \widetilde{x}(K), \end{array} \right.$$

where

$$U(x,K) = \left\{ \begin{array}{ll} Ae^{-\frac{\mu}{2}x} \sinh(\Delta x), & x < \widetilde{x}(K), \\ \frac{K}{\lambda} - Be^{-|\rho_2|x}, & x \geqslant \widetilde{x}(K), \end{array} \right.$$

and the constants A, B are defined by (2.26). At $\tilde{x}(K)$ we have

$$V(\tilde{x}(K)) = \frac{\mu}{\lambda}.$$
 (2.37)

Remark 1. Assertion (2.37) follows by continuity from (2.16) taking account of $V(\tilde{x}) = 1$ and $V''(\tilde{x}, K) = 0$.

Remark 2. If $K \to \infty$, then

$$\tilde{x}(K) \to \tilde{x}(\infty)$$
,

where $\widetilde{x}(\infty)$ is the root of (2.28) and $U(x;K) \to \overline{V}(x)$, where $\overline{V}(x)$ is defined below in (4.5).

1. In t paid 30

We assu

where γ which con $X = (X_t)$

If $\mathcal{F}_t^X = \sigma$ (stopping $\mathcal{F}_{T_i}^X$ -measure

2. We shall the same id To this e considered a corresponding

 $e^{-\lambda(t\wedge\tau)}\widetilde{V}(.$

§3. The case B

1. In this case the dividend payment moments $0 = T_0 < T_1 < \dots$ and the amounts paid $\mathfrak{z}_0, \mathfrak{z}_1, \dots$ form a multivariant point process $(T_i, \mathfrak{z}_i)_{i \geqslant 0}$. Here

$$Z_t = \sum_{i \ge 0} e^{-\lambda T_i} \partial_i I(T_i \le t). \qquad (3.1)$$

We assume that (3.1) 'acts' for $t < \tau = \inf\{s : X_s = 0\}$ and

1l

7)

of

$$V(x) = \sup \mathsf{E}_x \sum_{i \geqslant 0} e^{-\lambda T_i} (\mathfrak{z}_i - \gamma) I(T_i \leqslant t), \tag{3.2}$$

where $\gamma > 0$ is interpreted as the transaction cost for each payment of dividend, which corresponds to frequent 'switching' of the evolution process of the capital $X = (X_t)_{t \geq 0}$ having stochastic differential

$$dX_t = \mu dt + \sigma dW_t - dZ_t. \tag{3.3}$$

If $\mathcal{F}^X_t = \sigma(X_s, s \leqslant t)$, then we assume that the moments T_i are Markov moments (stopping times) with respect to $(\mathcal{F}^X_t)_{t\geqslant 0}$ and the random variables \mathfrak{z}_i are $\mathcal{F}^X_{T_i}$ -measurable.

2. We shall find the function V(x) and the optimal strategy $\tilde{\pi} = (\tilde{T}_i, \tilde{\mathfrak{z}}_i)_{i \geqslant 0}$ following the same ideas as in §2 based on 'testing properties'.

To this end we assume that a certain function $\tilde{V}=\tilde{V}(x)$ of class $C^2(0,\infty)$ is considered as a 'candidate' for V(x). Then for a strategy π (with $\mathfrak{z}_0=0$) and the corresponding process X we have $(\tau=\inf\{s:X_s=0\})$

$$\begin{split} e^{-\lambda(t\wedge\tau)}\widetilde{V}(X_{t\wedge\tau}) &= \widetilde{V}(X_0) + \int_0^{t\wedge\tau} \left(-e^{-\lambda s}\lambda\widetilde{V}(X_s)\right) ds \\ &+ \int_0^{t\wedge\tau} e^{-\lambda s}V'(X_{s-}) dX_s + \frac{1}{2} \int_0^{t\wedge\tau} e^{-\lambda s}\widetilde{V}''(X_s)\sigma^2 ds \\ &+ \sum_{0 < s \leqslant t\wedge\tau} e^{-\lambda s} \left\{\widetilde{V}(X_s) - \widetilde{V}(X_{s-}) - \Delta X_s\widetilde{V}'(X_{s-})\right\} \\ &= \widetilde{V}(X_0) + \int_0^{t\wedge\tau} e^{-\lambda s}L\widetilde{V}(X_s) ds + \int_0^{t\wedge\tau} \sigma e^{-\lambda s}\widetilde{V}'(X_s) dW_s \\ &+ \sum_{i\geqslant 1} e^{-\lambda T_i} \left[\widetilde{V}(X_{T_i}) - \widetilde{V}(X_{T_{i-}})\right] I(T_i \leqslant t\wedge\tau) \\ &= \widetilde{V}(X_0) + \int_0^{t\wedge\tau} e^{-\lambda s}L\widetilde{V}(X_s) ds \\ &+ \int_0^{t\wedge\tau} \sigma e^{-\lambda s}\widetilde{V}'(X_s) dW_s - \sum_{i\geqslant 1} e^{-\lambda(T_i\wedge\tau)} (\mathfrak{z}_i - \gamma) \\ &+ \sum_{i\geqslant 1} e^{-\lambda T_i} \left[\widetilde{V}(X_{T_i}) - \widetilde{V}(X_{T_{i-}}) - (\Delta X_{T_i} + \gamma)\right] I(T_i \leqslant \tau \wedge t), \end{split}$$

268

where

$$L\tilde{V}(x) \equiv \mu \tilde{V}'(x) + \frac{\sigma^2}{2} \tilde{V}''(x) - \lambda \tilde{V}(x),$$

and we have used the fact that $\Delta X_{T_i} = -3i$.

From (3.4) we can see that

$$\begin{split} \widetilde{V}(x) &= \mathsf{E}_x e^{-\lambda(t\wedge\tau)} \widetilde{V}(X_{t\wedge\tau}) - \mathsf{E}_x \int_0^{t\wedge\tau} e^{-\lambda s} L \widetilde{V}(X_s) \, ds \\ &- \mathsf{E}_x \int_0^{t\wedge\tau} \sigma e^{-\lambda s} \widetilde{V}'(X_s) \, dW_s + \mathsf{E}_x \sum_{i\geqslant 1} e^{-\lambda T_i} (\mathfrak{z}_i - \gamma) I(T_i \leqslant t \wedge \tau) \\ &- \mathsf{E}_x \sum_{i\geqslant 1} e^{-\lambda T_i} \big[\widetilde{V}(X_{T_i}) - \widetilde{V}(X_{T_i-}) - \Delta X_{T_i} - \gamma \big] I(T_i \leqslant t \wedge \tau). \end{split} \tag{3.5}$$

If we assume that the function $\tilde{V} = \tilde{V}(x)$ satisfies (cf. (2.9))

$$L\tilde{V}(x) \leqslant 0, \qquad x > 0,$$
 (3.6)

and

$$\widetilde{V}(x) - \widetilde{V}(y) \ge (x - y) - \gamma, \qquad x \ge y,$$
 (3.7)

then from (3.5) we find that

$$\widetilde{V}(x) \geqslant \mathsf{E}_{x} \sum_{i \geqslant 1} e^{-\lambda(T_{i} \wedge \tau)} (\mathfrak{z}_{i} - \gamma)$$

$$+ \mathsf{E}_{x} e^{-\lambda(\widetilde{\mathcal{P}}_{i} \wedge \tau)} \widetilde{V}(X_{l \wedge \tau}) - \mathsf{E}_{x} \int_{0}^{t \wedge \tau} \sigma e^{-\lambda s} \widetilde{V}'(X_{s}) dW_{s}. \tag{3.8}$$

Assuming additionally that $\tilde{V}'(x)$ and $\tilde{V}(x)$ are bounded, we let $t \to \infty$ in (3.8) to obtain

$$\widetilde{V}(x) \geqslant \mathsf{E}_x \sum_{i \geqslant 1} e^{-\lambda T_i} (\mathfrak{z}_i - \gamma) I(T_i \leqslant \tau).$$
 (3.9)

To make conditions (3.6), (3.7) more precise (they are necessary to find $\widetilde{V}(x)$ coinciding with V(x)) we refer to the following heuristic argument suggesting the structure of the optimal strategy $\pi = (T_i, \mathfrak{z}_i)_{i \geqslant 0}$.

If the initial capital $X_0 = x$ is 'large', then it seems appropriate to pay a certain dividend $\mathfrak{z}_0(x)$ at once and then to begin the observation of the evolution of X with the initial state $x - \mathfrak{z}_0(x)$. Then it is clear that as in (2.6) we have

$$V(x) = \max_{0 \le j_0(x) \le x} \{ (j_0(x) - \gamma) + V_0(x - j_0(x)) \},$$

where $V_0(x)$ is a function coinciding with the right-hand side of (3.2) but with $i \ge 1$. At the same time, the following strategy of dividend payment seems natural: choose two thresholds a < b and when X reaches b, pay the dividend b - a, that is, at the moments $T_i = b - a$. Then clearly

These consideration V = V(x) and the t

Using the last conthe form

with $\Delta = \sqrt{(\mu/2)}$ Thus we have someth gluing't conditions at a as

We show that a, l

the condition V(

Let $\varphi(y; A) = 1$

To show that

V'(

V"(

at the moments $T_i = \inf\{t > T_{i-1} : X_{t-1} = b\}$ we have $X_{T_i} = a$ and $\mathfrak{z}_i = -\Delta X_{T_i} = -b - a$. Then clearly $V_0(x)$ should satisfy the following condition at a and b:

$$V_0(b) = V_0(a) + (b - a) - \gamma.$$

These considerations lead us to the natural idea of finding the required function V = V(x) and the thresholds a, b as a solution of the following problem:

$$LV(x) = 0,$$
 $0 < x < b,$
 $V(x) = V(a) + (x - a) - \gamma,$ $x \ge b,$ (3.10)
 $V(0) = 0.$

Using-the last condition (V(0) = 0), the solution of the equation LV(x) = 0 has the form

$$V(x) = Ae^{-\mu x/2} \sinh(\Delta x), \qquad 0 \leqslant x \leqslant b, \tag{3.11}$$

with $\Delta = \sqrt{(\mu/2)^2 + \lambda}$ (cf. (2.20)).

Thus we have three unknown constants: A, a, and b. Applying the concept of 'smooth gluing' to the condition $V(b) = V(a) + (b-a) - \gamma$, we add two more conditions at a and b

$$V'(a) = 1, V'(b) = 1.$$
 (3.12)

We show that a, b, and A can now be found uniquely. Since

$$V(b) - V(a) = \int_a^b V'(y) \, dy,$$

the condition $V(b) - V(a) = (b - a) - \gamma$ takes the form

$$\int_{a}^{b} (1 - V'(y)) \, dy = \gamma. \tag{3.13}$$

Let $\varphi(y; A) = 1 - V'(y)$. Then

$$\int_a^b \varphi(y; A) \, dy = \gamma \qquad \varphi(a; A) = 0, \qquad \varphi(b; A) = 0.$$

To show that this problem has a solution, we observe that (cf. (2.23), (2.24))

$$V'(x) = Ae^{-\frac{\mu}{2}x} \left\{ \Delta \cosh(\Delta x) - \frac{\mu}{2} \sinh(\Delta x) \right\},$$

$$V''(x) = Ae^{-\frac{\mu}{2}x} \left\{ \left(\left(\frac{\mu}{2} \right)^2 + \Delta^2 \right) \sinh(\Delta x) - \mu \Delta \cosh(\Delta x) \right\}.$$

(3.6)

(3.5)

(3.7)

(3.8)

1.8) to

(3.9)

V(x)

rtain with

≥ 1. ural: ut is, If \overline{x} is a root of the equation

$$\tanh(\Delta x) = \frac{\mu \Delta}{(\mu/2)^2 + \Delta^2} \qquad \bigg(= \frac{\mu \Delta}{2\Delta^2 - \lambda} \bigg)$$

(cf. (2.28); $\overline{x} = \widetilde{x}(\infty)$), then $V''(\overline{x}) = 0$ and

$$V'(\overline{x}) = Ae^{-\frac{\mu}{2}\overline{x}}\Delta \cosh(\Delta \overline{x})\frac{\lambda}{\lambda + \mu^2/2} > 0$$

if A > 0.

So the function $\varphi(x;A)=1-V'(x)$ has the properties: $\varphi(x;A)\downarrow -\infty$ as $A\uparrow\infty$ and $\varphi(x;A)\uparrow 1$ as $A\downarrow 0$ for each $x\geqslant 0$.

Thus, beginning with large A and decreasing it, we find unique values $\widetilde{A}, \widetilde{a}, \widetilde{b}$ with

$$\int_{\widetilde{a}}^{\widetilde{b}} \varphi(y; \widetilde{A}) \, dy = \gamma, \qquad \varphi(\widetilde{a}; \widetilde{A}) = 0, \quad \widetilde{\varphi(\widetilde{b}; \widetilde{A})} = 0. \tag{3.14}$$

Let $\widetilde{V}(x)$ be the function (3.11) with $A = \widetilde{A}$. We define the strategy $\widetilde{\pi} = (\widetilde{T}_i, \widetilde{j}_i)_{i \geq 0}$ in the following way:

$$\begin{split} \widetilde{\mathfrak{z}}_0 &= \left\{ \begin{array}{ll} x - \widetilde{a} & \text{if } x \geqslant \widetilde{b}, \\ 0 & \text{if } x < \widetilde{b}, \end{array} \right. \\ \widetilde{T}_i &= \inf \left\{ t > \widetilde{T}_{i-1} : X_{t-} = \widetilde{b} \right\}, \\ \widetilde{\mathfrak{z}}_i &= \widetilde{b} - a. \end{split}$$

We show that for the strategy $\widetilde{\pi}$ we have constructed the corresponding value

$$V(x;\widetilde{\pi}) \equiv \mathsf{E}_x \sum_{i \geq 0} e^{-\lambda \widetilde{T}_i} (\widetilde{\mathfrak{z}}_i - \gamma) I(\widetilde{T}_i \leqslant \tau)$$

exactly coincides with the function $\widetilde{V}(x)$ found, and moreover, $\widetilde{V}(x) = V(x)$, that is, $\widetilde{\pi}$ is optimal.

To prove $\widetilde{V}(x) = V(x; \widetilde{\pi})$ we use Itô's formula (3.5), taking the process X defined by the strategy $\widetilde{\pi}$ and assuming that $x < \widetilde{b}$.

Since $L\widetilde{V}(x) = 0$, in (3.5) we have

$$E_x \int_0^{t \wedge \tau} e^{-\lambda s} L\widetilde{V}(X_s) ds = 0.$$

The mathematical expectation of the stochastic integral vanishes,

$$E_{z} \int_{0}^{t \wedge \tau} e^{-\lambda s} \tilde{V}'(X_{s}) dW_{s} = 0,$$

since the deriva-

 $\tilde{V}(X_T)$

by the constru So, for each

 $\tilde{V}(x)$

Passing to

Now let $x \ge$

At the same

But $\widetilde{V}(\widetilde{a}) =$ It remain

We showed

and

In the

and

$$L\widetilde{V}(x) =$$

since by Thus, Finall

which is the cons We fo since the derivative $\widetilde{V}'(x)$ is bounded. Next, for $T_i \leqslant au$

$$\widetilde{V}(X_{T_i}) - \widetilde{V}(X_{T_i-}) - \Delta X_{T_i} - \gamma = \widetilde{V}(\widetilde{a}) - \widetilde{V}(\widetilde{b}) - (\widetilde{a} - \widetilde{b}) - \gamma = 0$$

by the construction of \tilde{a} and \tilde{b} .

So, for each t > 0

$$\widetilde{V}(x) = \mathsf{E}_x e^{-\lambda(t\wedge\tau)} \widetilde{V}(X_{t\wedge\tau}) + \mathsf{E}_x \sum_{i \geq 0} e^{-\lambda \widetilde{T}_i} (\mathfrak{z}_i - \gamma) I(T_i \leqslant t \wedge \tau).$$

Passing to the limit as $t \to \infty$ we find the required equality

$$\widetilde{V}(x) = V(x; \widetilde{\pi}), \quad x < \widetilde{b}.$$

Now let $x \ge \tilde{b}$. Then by (3.10),

$$\tilde{V}(x) = \tilde{V}(\tilde{a}) + (x - \tilde{a}) - \gamma.$$

At the same time, by the definition of the strategy $\widetilde{\pi}=(\widetilde{T}_i,\widetilde{\mathfrak{z}}_i)_{i\geqslant 0},$ for $x\geqslant \widetilde{b}$ we have

$$V(x; \tilde{\pi}) = \tilde{V}(\tilde{a}; \tilde{\pi}) + (x - \tilde{a}) - \gamma.$$

But $\widetilde{V}(\widetilde{a}) = \widetilde{V}(\widetilde{a}; \widetilde{\pi})$. Therefore, $\widetilde{V}(x) = V(x; \widetilde{\pi})$ for all $x \geqslant \widetilde{b}$. It remains to show that for any strategy π

$$\tilde{V}(x) \geqslant V(x; \pi).$$

We showed above that for this it is sufficient to verify that

$$L\widetilde{V}(x) \leqslant 0, \qquad x > 0,$$
 (3.15)

and

$$\widetilde{V}(x) - \widetilde{V}(y) \ge (x - y) - \gamma, \quad x \ge \gamma.$$
 (3.16)

In the domain $x<\widetilde{b}$ we have $L\widetilde{V}(x)=0.$ In the domain $x\geqslant\widetilde{b}$

$$\widetilde{V}(x) = \widetilde{V}(\widetilde{a}) + (x - \widetilde{a}) - \gamma$$

and

$$L\widetilde{V}(x) = -\lambda \big[\widetilde{V}(\widetilde{a}) + (x - \widetilde{a}) - \gamma\big] + \mu \leqslant -\lambda \big[\widetilde{V}(\widetilde{a}) + (b - \widetilde{a}) - \gamma\big] + \mu = -\lambda \widetilde{V}(\widetilde{b}) + \mu = 0,$$

since by continuity from $L\widetilde{V}(x)=0,\,x<\widetilde{b},$ we obtain $L\widetilde{V}(\widetilde{b}\,)=0.$

Thus, (3.15) has been established.

Finally, (3.16) is equivalent to the inequality

$$\int_{x}^{y} (1 - \tilde{V}'(u)) du \leqslant \gamma,$$

which is obviously satisfied by the properties of $\varphi(u; \tilde{A}) = 1 - \tilde{V}'(u)$ and the way the constant \tilde{A} was defined in the process of solving (3.14).

We formulate the results obtained in the following assertion.

1100

 \widetilde{A} , \widetilde{a} , \widetilde{b}

(3.14)

 $\tilde{\pi} =$

lue

that

fined

Theorem B. In the model B (see (1.5)) the optimal dividend payment strategy and the function V = V(x) (see (3.2)) are described in the following way.

Let $\lambda > 0$, $\mu > 0$, $\gamma > 0$ and suppose that the constants \tilde{A}, \tilde{a} , and \tilde{b} are defined by solving (3.14).

- 1) If $x \geqslant \tilde{b}$, then we make an instantaneous payment of the dividend $\tilde{\mathfrak{z}}_0 = \tilde{b} \tilde{a}$ and the evolution of the capital starts with the value \tilde{a} .
- 2) If $x < \tilde{b}$, then $\tilde{T}_0 = 0$, $\tilde{b}_0 = 0$ and the payment of the dividend is made when the process X reaches the threshold \tilde{b} with instantaneous payment of dividend of size $\tilde{b} \tilde{a}$, that is,

$$\widetilde{T}_i = \inf \big\{ t > T_{i-1} : X_{t-} = \widetilde{b} \big\}, \qquad \widetilde{\mathfrak{z}}_i = \widetilde{b} - \widetilde{a}.$$

Remark 1. By (3.11) the problem (3.14) takes the following form:

$$\begin{split} \widetilde{A} \left[e^{-\frac{\mu}{2} \widetilde{b}} \sinh(\Delta \widetilde{b}) - e^{-\frac{\mu}{2} \widetilde{a}} \sinh(\Delta \widetilde{a}) \right] &= (\widetilde{b} - \widetilde{a}) - \gamma, \\ \widetilde{A} e^{-\frac{\mu}{2} \widetilde{a}} \left\{ \Delta \cosh(\Delta \widetilde{a}) - \frac{\mu}{2} \sinh(\Delta \widetilde{a}) \right\} &= 1, \\ \widetilde{A} e^{-\frac{\mu}{2} \widetilde{b}} \left\{ \Delta \cosh(\Delta \widetilde{b}) - \frac{\mu}{2} \sinh(\Delta \widetilde{b}) \right\} &= 1, \end{split}$$

where $\Delta = \sqrt{(\mu/2)^2 + \lambda}$.

Remark 2. As $\gamma \to 0$,

$$\tilde{a} \to \overline{x}, \qquad \tilde{b} \to \overline{x},$$

where \overline{x} is a solution of

$$\tanh(\Delta x) = \frac{\mu \Delta}{(\mu/2)^2 + \Delta^2} \qquad \bigg(= \frac{\mu \Delta}{2\Delta^2 - \lambda} \bigg).$$

Remark 3. The following figure shows the behaviour of the function

$$V(x) = \begin{cases} \widetilde{A}e^{-\frac{\mu}{2}x}\sinh(\Delta x), & 0 \leqslant x \leqslant \widetilde{b}, \\ (x - \widetilde{a}) - \gamma + \widetilde{A}e^{-\frac{\mu}{2}\widetilde{a}}\sinh(\Delta \widetilde{a}), & x > b. \end{cases}$$

1. We proce payment Z =process. We Moreover, we $Z_0(x) \leq x$.

In this situ

and for t > 0

From hem $(Z_t)_{t\geqslant 0}$ on wh

is reached can and $\gamma \to 0$, re To this end $\tilde{x}(\infty)$, which i

with $\Delta = \sqrt{()}$ In the case

(see Remark 2
All this support of the pay at we place a refeach other). He by the visits of

2. This heuris
of the equation

where \overline{A} is suc.

ntegy

fined

phen idend

§4. The case C

1. We proceed to the general case where the (admissible) process of dividend payment $Z=(Z_t)_{t\geqslant 0}$ is an arbitrary non-decreasing right-continuous (for t>0) process. We assume that Z_t is $\mathcal{F}^W_t=\sigma(W_s,s\leqslant t)$ -measurable for each t>0. Moreover, we assume that $Z_0 = Z_0(x)$ is a measurable function with $Z_0(0) = 0$ and

In this situation we take a process $X = (X_t)_{t \ge 0}$ satisfying

$$X_0 = x$$
, $X_{0+} = x - Z_0(x)$, (4.1)

and for t > 0

$$X_t = (x - Z_0(x)) + \mu t + \sigma W_t - (Z_t - Z_{0+}). \tag{4.2}$$

From heuristic considerations we can expect that the optimal process Z = $(Z_t)_{t\geq 0}$ on which

$$V(x) = \sup_{Z} \left\{ Z_0(x) + \mathsf{E}_{x-Z_0(x)} \int_{(0,\infty)} e^{-\lambda t} dZ_t \right\}$$
 (4.3)

is reached can be obtained by the limit passage in the cases A and B as $K \to \infty$ and $\gamma \rightarrow 0$, respectively.

To this end we note that in the case A the optimal threshold $\tilde{x}(K)$ converges to $\tilde{x}(\infty)$, which is a solution of the equation

$$tanh(\Delta x) = \frac{\mu \Delta}{2\Delta^2 - \lambda}$$

with
$$\Delta = \sqrt{(\mu/2)^2 + \lambda}$$
.

In the case B the quantities \tilde{a} and \tilde{b} get closer as $\gamma \to 0$, converging to $\bar{x} = \tilde{x}(\infty)$ (see Remark 2 in §3).

All this suggests that in the general case we can expect the structure of the optimal process $\overline{Z} = (\overline{Z}_t)_{t \ge 0}$ of dividend payment to be such that when $x > \overline{x}$ we need to pay at once the dividend $x - \overline{x}$ and then 'run' the process X from \overline{x} , where we place a reflecting barrier (since as $\gamma \to \infty$ the quantities \tilde{a} and \tilde{b} converge to each other). Here the accumulation of dividends will take place in local time given by the visits of X at the reflecting barrier \overline{x} .

 This heuristic argument can be justified in the following way. Let \(\overline{x}\) be the root of the equation

$$tanh(\Delta \overline{x}) = \frac{\mu \Delta}{2\Delta^2 - \lambda},$$
 (4.4)

$$\tanh(\Delta \overline{x}) = \frac{\mu \Delta}{2\Delta^2 - \lambda}, \qquad (4.4)$$

$$\overline{V}(x) = \begin{cases} \overline{A}e^{-\frac{\mu}{2}x} \sinh(\Delta x), & 0 \leq x \leq \overline{x}, \\ (x - \overline{x}) + \overline{V}(\overline{x}), & x > \overline{x}, \end{cases}$$

where A is such that

$$\overline{A}e^{-\frac{\mu}{2}\overline{x}}\left\{\Delta\cosh(\Delta\overline{x})-\frac{\mu}{2}\sinh(\Delta\overline{x})\right\}=1.$$

特别的

From the considerations of §2, §3 it follows that

$$-\lambda \overline{V}(x) + \mu \overline{V}'(x) + \frac{\sigma^2}{2} \overline{V}''(x) = 0, \quad x < \overline{x},$$

$$\overline{V}(0) = 0, \quad \overline{V}'(\overline{x}) = 1, \quad \overline{V}''(\overline{x}) = 0.$$
(4.6)

Clearly, $\overline{V} \in C^2(0, \infty)$.

Let $x \leq \overline{x}$. Consider the solution $(\overline{X}, \overline{L}) = (\overline{X}_t, \overline{L}_t)_{t \geq 0}$ of the stochastic differential equation with reflection (see [4], Ch. IX, §2, Exercise 2.14)

$$\overline{X}_t = x + \mu t + \sigma W_t - \overline{L}_t, \tag{4.7}$$

where $\overline{L}=(\overline{L}_t)_{t\geqslant 0}$ is a continuous non-decreasing \mathcal{F}^W -adapted process with $\overline{L}_0=0$ such that

$$\overline{L}_t = \int_0^t I(\overline{X}_s = \overline{x}) d\overline{L}_s. \tag{4.8}$$

It is well known that a solution $(\overline{X}, \overline{L})$ exists, \overline{x} is the reflecting barrier for \overline{X} , and \overline{L} is a local time determined by the process \overline{X} at the boundary \overline{x} .

We show that for $x \leq \overline{x}$

$$\mathsf{E}_{x} \int_{0}^{\overline{\tau}} e^{-\lambda t} \, d\overline{L}_{t} = \overline{V}(x), \tag{4.9}$$

where $\overline{\tau} = \inf\{t \ge 0 : \overline{X}_t = 0\}$ and the function $\overline{V}(x)$ is defined by (4.5). As in §2, §3, we apply Itô's formula to the semimartingale \overline{X} (see [3]):

$$e^{-\lambda(t\wedge\overline{\tau})}\overline{V}(\overline{X}_{t\wedge\overline{\tau}}) = \overline{V}(x) + \int_{0}^{t\wedge\overline{\tau}} (-\lambda e^{-\lambda s}\overline{V}(\overline{X}_{s})) ds$$

$$+ \int_{0}^{t\wedge\overline{\tau}} \overline{V}'(\overline{X}_{s})e^{-\lambda s} d\overline{X}_{s} + \frac{1}{2} \int_{0}^{t\wedge\overline{\tau}} \sigma^{2}e^{-\lambda s}\overline{V}''(\overline{X}_{s}) ds. \quad (4.10)$$

Taking (4.7) into account we get

$$\overline{V}(x) = e^{-\lambda(t\wedge\overline{\tau})}\overline{V}(\overline{X}_{t\wedge\overline{\tau}}) - \int_{0}^{t\wedge\overline{\tau}} L\overline{V}(\overline{X}_{s}) ds$$

$$+ \int_{0}^{t\wedge\overline{\tau}} e^{-\lambda s}\overline{V}'(\overline{X}_{s}) d\overline{L}_{s} - \int_{0}^{t\wedge\overline{\tau}} \sigma e^{-\lambda s}\overline{V}'(\overline{X}_{s}) dW_{s}, \qquad (4.11)$$

where

$$L\overline{V} = -\lambda \overline{V} + \mu \overline{V}' + \frac{\sigma^2}{2} \overline{V}''.$$

By the definition of $\overline{V} = \overline{V}(x)$ and by the properties of $(\overline{X}, \overline{L})$

$$\mathsf{E}_x \int_0^{t \wedge \overline{\tau}} L \overline{V}(X_s) \, ds = 0, \qquad \mathsf{E}_x \int_0^{t \wedge \overline{\tau}} e^{-\lambda s} \overline{V}'(\overline{X}_s) \, dW_s = 0.$$

There letting t Now,

Clearl

E,

where $\overline{V}($.

where V(:

Let X i we get

 $e^{-\lambda(t\wedge \tau)}$

Hence it fol

$$\overline{V}(x) = \int_0^x$$

$$= I_1 +$$

Therefore, taking account of $\overline{V}'(\overline{x}) = 1$, we obtain the required equality (4.9) by letting $t \to \infty$ in (4.11).

Now, let $x > \overline{x}$. Then we put $\overline{Z}_0(x) = x - \overline{x}$ and

$$\overline{Z}_t = \overline{Z}_0(x)I(x > \overline{x}) + \overline{L}_t.$$
 (4.12)

Clearly, for such a process of dividend payment we have

$$\mathsf{E}_{x} \int_{0}^{\overline{\tau}} e^{-\lambda s} \, d\overline{Z}_{s} = \left(x - \overline{x} + \mathsf{E}_{\overline{x}} \int_{0}^{\overline{\tau}} e^{-\lambda s} \, d\overline{L}_{s} \right) I(x > \overline{x}) \\ + \mathsf{E}_{x} \int_{0}^{\overline{\tau}} e^{-\lambda s} \, d\overline{L}_{s} \cdot I(x \leqslant \overline{x}) = \overline{V}(x), \tag{4.13}$$

where $\overline{V}(x)$ is defined by (4.5).

3. Now we show that for any admissible dividend payment process $Z = (Z_t)_{t \geqslant 0}$

$$V(x;Z) \leq \overline{V}(x),$$
 (4.14)

where $V(x; Z) = \mathbb{E}_x \int_0^{\tau} e^{-\lambda s} dZ_s$, $\tau = \inf\{t : X_t = 0\}$ and

$$\mathsf{E}_x \int_0^\tau e^{-\lambda s} \, dZ_s = Z_0(x) + \mathsf{E}_x \int_{(0,\tau)} e^{-\lambda s} \, dZ_s.$$

Let X be the process corresponding to Z. Applying Itô's formula to $e^{-\lambda t}\overline{V}(X_t)$ we get

$$\begin{split} e^{-\lambda(t\wedge\tau)}\overline{V}(X_{t\wedge\tau}) &= \overline{V}(x) + \int_0^{t\wedge\tau} (-\lambda e^{-\lambda s}\overline{V}(X_s))\,ds \\ &+ \int_0^{t\wedge\tau} e^{-\lambda s}\overline{V}'(X_{s-})\,dX_s + \frac{1}{2}\int_0^{t\wedge\tau} \sigma^2 e^{-\lambda s}\overline{V}''(X_s)\,ds \\ &+ \sum_{0< s\leqslant t\wedge\tau} e^{-\lambda s}\big\{\overline{V}(X_s) - \overline{V}(X_{s-}) - \overline{V}'(X_{s-})\Delta X_s\big\} \\ &= \overline{V}(x) - \int_0^{t\wedge\tau} e^{-\lambda s}\overline{V}'(X_{s-})\,dZ_s + \int_0^{t\wedge\tau} e^{-\lambda s}L\overline{V}(X_s)\,ds \\ &+ \int_0^{t\wedge\tau} \sigma e^{-\lambda s}\overline{V}'(X_s)\,dW_s \\ &+ \sum_{0< s\leqslant t\wedge\tau} e^{-\lambda s}\big\{\overline{V}(X_s) - \overline{V}(X_{s-}) - \overline{V}'(X_{s-})\Delta X_s\big\}. \end{split}$$

Hence it follows that

$$\overline{V}(x) = \int_{0}^{t \wedge \tau} e^{-\lambda s} dZ_{s} - \int_{0}^{t \wedge \tau} e^{-\lambda s} (1 - \overline{V}'(X_{s-})) dZ_{s}$$

$$- \int_{0}^{t \wedge \tau} e^{-\lambda s} L \overline{V}(X_{s}) ds - \int_{0}^{t \wedge \tau} \sigma e^{-\lambda s} \overline{V}'(X_{s}) dW_{s}$$

$$- \sum_{0 < s \leqslant t \wedge \tau} e^{-\lambda s} \{ \overline{V}(X_{s}) - \overline{V}(X_{s-}) - \overline{V}'(X_{s-}) \Delta X_{s} \} + e^{-\lambda(t \wedge \tau)} \overline{V}(X_{t \wedge \tau})$$

$$= I_{1} + I_{2} + I_{3} + I_{4} + I_{5} + I_{6}.$$
(4.15)

(4.6)

iffer-

(4.7)

 $_{1} = 0$

(4.8)

and

(4.9)

4.10)

1.11)

Since $\overline{V}'(x) \geqslant 1$,

$$I_2 = -\int_0^{t \wedge \tau} e^{-\lambda s} (1 - \overline{V}'(X_{s-})) dZ_s \ge 0.$$

For $x < \overline{x}$ we have $L\overline{V}(x) = 0$, and for $x \geqslant \overline{x}$

$$-L\overline{V}(x) = \lambda \overline{V}(x) - \mu \geqslant \lambda \overline{V}(\overline{x}) - \mu = -L\overline{V}(\overline{x}) = 0.$$

Therefore,

$$I_3 = -\int_0^{t \wedge \tau} e^{-\lambda s} L \overline{V}(X_s) ds \ge 0.$$

If $\alpha < \beta$, then

$$\overline{V}(\beta) - \overline{V}(\alpha) - \overline{V}'(\beta)(\beta - \alpha) = \int_{\alpha}^{\beta} (\overline{V}'(y) - \overline{V}'(\beta)) \, dy \geqslant 0,$$

since $\overline{V}'(y)$ is decreasing. Therefore,

$$I_5 = -\sum_{0 \le s \le t \land \tau} e^{-\lambda s} \{ \overline{V}(X_s) - \overline{V}(X_{s-}) - \overline{V}'(X_{s-}) \Delta X_s \} \ge 0.$$

Since the derivative $\overline{V}'(x)$ is bounded,

$$E_x \int_0^{t \wedge \tau} e^{-\lambda s} \overline{V}'(X_s) dW_s = 0.$$

Next,

$$\lim_{t\to\infty} \mathsf{E}_x e^{-\lambda(t\wedge\tau)} \overline{V}(X_{t\wedge\tau}) = 1.$$

Therefore, taking in (4.15) the mathematical expectation E_x and letting $t \to \infty$, we obtain

 $\overline{V}(x) \geqslant \mathsf{E}_x \int_0^\tau e^{-\lambda s} \, dZ_s = V(x; Z).$

Thus the following assertion has been proved.

Theorem C. In the model C the optimal strategy of dividend payment is described in the following way. Let $\lambda > 0$, $\mu > 0$ and let \overline{x} be the root of the equation

$$tanh(\Delta \overline{x}) = \frac{\mu \Delta}{2\Delta^2 - \lambda}, \quad where \quad \Delta = \sqrt{\left(\frac{\mu}{2}\right)^2 + \lambda}.$$

- If x > x̄, then we make an instantaneous payment of dividend equal to x − x̄, that is, Z̄₀(x) = x − x̄.
- 2) If x = \(\overline{x}\), then the dividend payment process \(\overline{L} = (\overline{L}_t)_{t \geq 0}\) and the corresponding process \(\overline{X} = (\overline{X}_t)_{t \geq 0}\) of capital evolution are solutions of a stochastic differential equation with reflection (4.7)-(4.8). In addition, the function \(\overline{V} = \overline{V}(x)\) of optimal payment of dividends is given by (4.5).

[1] R. Radner a

[2] R. Radner a

[3] J. Jacod an Berlin 1987.

[4] D. Revuz a Berlin 1991.

[5] M. Jeanblar (1993), 161-

[6] A. K. Zvonl the drift", A

[7] L. E. Dubir inequalities transl. in Tr

Steklov Institut Russian Acader

Bibliography

- [1] R. Radner and L. Shepp, Risk vs. profit-potential; a model for corporate strategy (to appear).
- [2] R. Radner and L. Shepp, Risk vs. profit-potential; a model for corporate strategy, Preprint.
- [3] J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin 1987.
- [4] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin 1991.
- [5] M. Jeanblanc-Picqué, "Impulse control method and exchange rate", Math. Finance 3:3 (1993), 161-177.
- [6] A. K. Zvonkin, "A transformation of the phase space of a diffusion process-that will remove the drift", Mat. Sb. 93 (1974), 129-149; English transl. in Math. USSR-Sb. 22 (1974).
- [7] L. E. Dubins, L. A. Shepp, and A. N. Shiryaev, "Optimal stopping rules and maximal inequalities for Bessel processes", Teor. Veroyatnost. i Primenen. 38 (1993), 288-330; English transl. in Theory Probab. Appl. 38 (1993).

Steklov Institute of Mathematics, Russian Academy of Sciences

> Received 26/OCT/94 Translated by M. CAPINSKI

 $g t \to \infty$,

Fals:

1965 2013 50

s described

al to $x - \overline{x}$,

rresponding i stochastic he function

Typeset by AMS-TEX

The book of the second of the