Algebraic Cobordism

A. Algebraic cobordism of schemes

B. Cobordism motives

Motives and Periods Vancouver-June 5-12, 2006

Marc Levine

Outline: Part A

- Oriented Borel-Moore homology
- Universality and Riemann-Roch
- Fundamental classes

Oriented Borel-Moore homology

Regular embeddings and I.c.i. morphisms Recall:

A regular embedding of codimension d is a closed immersion $i: Z \to X$ such that \mathcal{I}_Z is locally generated by a regular sequence of length d.

Example A regular embedding of codimension 1 is a Cartier divisor

Definition A morphism $f: Y \to X$ in \mathbf{Sch}_k is an *l.c.i. morphism* if f can be factored as $p \circ i$, with $i: Y \to P$ a regular embedding and $p: P \to X$ smooth and quasi-projective.

 $X \in \mathbf{Sch}_k$ is an *l.c.i. scheme* if $X \to \operatorname{Spec} k$ is an l.c.i. morphism.

 $\operatorname{Lci}_k \subset \operatorname{Sch}_k$ is the full subcategory of I.c.i. schemes. Let $\operatorname{Sch}'_k :=$ the subcategory of projective morphisms in Sch_k .

Oriented homology

An oriented Borel-Moore homology theory A_* on \mathbf{Sch}_k consists of the following data:

(D1) An additive functor $A_* : \operatorname{Sch}'_k \to \operatorname{Ab}_*, X \mapsto A_*(X)$.

- (D2) For $f: Y \to X$ an l.c.i. morphism in Sch_k , a homomorphism of graded groups $f^*: A_*(X) \to A_{*-d}(Y)$, d := the codimension of f.
- (D3) For each pair (X, Y) in \mathbf{Sch}_k , a (commutative, associative) bilinear graded pairing $A_*(X) \otimes A_*(Y) \to A_*(X \times_k Y)$

 $u \otimes v \mapsto u \times v$,

and a unit element $1 \in A_0(\text{Spec}(k))$.

These satisfy six conditions:

(BM1) $\operatorname{id}_X^* = \operatorname{id}_{A_*(X)}$. For composable l.c.i. morphism f and g, $(f \circ g)^* = g^* \circ f^*$.

(BM2) Given a Tor-independent cartesian square in Sch_k : $W \xrightarrow{g'} X_{\substack{f' \mid & |f \\ Y \xrightarrow{g'} Z}}$, with f projective, g l.c.i. . Then $g^* f_* = f'_* g'^*$.

(BM3) For f and g morphisms in Sch_k : If f and g are projective, then $(f \times g)_*(u \times v) = f_*(u) \times g_*(v)$. If f and g are l.c.i., then $(f \times g)^*(u \times v) = f^*(u) \times g^*(u')$. (PB) For a line bundle L on $Y \in \mathbf{Sch}_k$ with zero section $s : Y \to L$ define $\tilde{c}_1(L) : A_*(Y) \to A_{*-1}(Y)$ by $\tilde{c}_1(L)(\eta) = s^*(s_*(\eta))$.

Let $E \to X$ be a rank n + 1 vector bundle, with associated projective space bundle $q : \mathbb{P}(E) \to X$. Then

$$\bigoplus_{i=0}^{n} A_{*+i-n}(X) \xrightarrow{\sum_{i=0}^{n-1} \tilde{c}_1(O(1)_E)^i \circ q^*} A_*(\mathbb{P}(E))$$

is an isomorphism.

(EH) Let $p: V \to X$ be an affine space bundle. Then $p^*: A_*(X) \to A_{*+r}(V)$

is an isomorphism.

(CD) ***.

Examples (1) The Chow group functor

 $X \mapsto \mathsf{CH}_*(X)$

with projective push-forward and I.c.i. pull-back given by Fulton.

(2) The Grothendieck group of coherent sheaves

 $X \mapsto G_0(X)[\beta, \beta^{-1}].$

(deg $\beta = 1$). L.c.i. pull-back exists because an l.c.i. morphism has finite Tor-dimension.

(3) Algebraic cobordism (chark = 0) $X \mapsto \Omega_*(X)$. L.c.i. pull-backs are similar to Fulton's, but require a bit more work.

Note. There are "refined intersections" for Ω_* , similar to Fulton's refined intersection theory for CH_{*}.

Homology and cohomology

Every morphism in Sm/k is l.c.i., hence:

Proposition Let A_* be an O.B.M.H.T. on Sch_k . Then the restriction of A to Sm/k, with

$$A^n(X) := A_{\dim X - n}(X),$$

defines an O.C.T. A^* on Sm/k:

- The product \cup on $A^*(X)$ is $x \cup y = \delta^*_X(x \times y)$.
- $1_X = p_X^*(1)$ for $p_X : X \to \operatorname{Spec} k$ in Sm/k .
- $c_1(L) = \tilde{c}_1(L)(1_X)$ for $L \to X$ a line bundle.

Consequence:

Let A_* be an O.B.M.H.T. on \mathbf{Sch}_k . There is a unique formal group law $F_A \in A_*(k)[[u, v]]$ with

 $F_A(\tilde{c}_1(L), \tilde{c}_1(M))(f_*(1_Y)) = \tilde{c}_1(L \otimes M)(f_*(1_Y))$ for all $X \in \mathbf{Sch}_k$, all $(f : Y \to X) \in \mathcal{M}(X)$.

Examples

(1) CH_{*} has the additive formal group law: $F_{CH}(u, v) = u + v$

(2) $G_0[\beta, \beta^{-1}]$ has the multiplicative formal group law: $F_{G_0}(u, v) = u + v - \beta u v$.

(3) Ω_* has the universal formal group law: $(F_{\Omega}, \Omega_*(k)) = (F_{\mathbb{L}}, \mathbb{L}_*)$

Universality and Riemann-Roch

Universality

Theorem Algebraic cobordism Ω_* is the universal O.B.M.H.T. on Sch_k .

Also:

Theorem The canonical morphism $\vartheta_{CH} : \Omega_* \otimes_{\mathbb{L}} \mathbb{Z} \to CH_*$ is an isomorphism, so CH_* is the universal additive theory on Sch_k .

A new result (due to S. Dai) is

Theorem The canonical morphism

 $\vartheta_{G_0}: \Omega_* \otimes_{\mathbb{L}} \mathbb{Z}[\beta, \beta^{-1}] \to G_0[\beta, \beta^{-1}]$

is an isomorphism, so $G_0[\beta, \beta^{-1}]$ is the universal multiplicative theory on \mathbf{Sch}_k .

Twisting

The τ -twisting construction is modified: one leaves f_* alone and twists f^* by $\widetilde{\mathsf{Td}_{\tau}^{-1}}(N_f)$:

$$f_{(\tau)}^* = \widetilde{\mathsf{Td}_{\tau}^{-1}}(N_f) \circ f^*.$$

Here $f: Y \to X$ is an l.c.i. morphism and $N_f \in K_0(Y)$ is the virtual normal bundle: If we factor f as $p \circ i$, p smooth, i a regular embedding, then:

p has a relative tangent bundle T_p i has a normal bundle N_i and

$$N_f := [N_i] - [i^*T_p].$$

 $\mathsf{Td}_{\tau}^{-1}(N_f)$ is the inverse Todd class operator, defined as we did Td_{τ}^{-1} , using the operators \tilde{c}_1 instead of the classes c_1 .

Riemann-Roch for singular varieties

Twisting $CH_* \otimes \mathbb{Q}[\beta, \beta^{-1}]$ to give it the multiplicative group law and using Dai's theorem, we recover the Fulton-MacPherson Riemann-Roch transformation $\tau : G_0 \to CH_{*,\mathbb{Q}}$:

Using the universal property of $G_0[\beta, \beta^{-1}]$ gives

$$\tau_{\beta}: G_0[\beta, \beta^{-1}] \to \mathsf{CH}_* \otimes \mathbb{Q}[\beta, \beta^{-1}]^{(\times)};$$

au is the restriction of au_{eta} to degree 0.

Fundamental classes

Fundamental classes for I.c.i. schemes

Definition Let $p_X : X \to \operatorname{Spec} k$ be an I.c.i. scheme. For an O.B.M.H.T. A on Sch_k , set

$$\mathbf{1}_X^A := p_X^*(\mathbf{1})$$

If X has pure dimension d over k, then 1_X^A is in $A_d(X)$. 1_X is the fundamental class of X.

Properties:

- For $X = X_1 \amalg X_2 \in \mathbf{Lci}_k$, $1_X = i_{1*}(1_{X_1}) + i_{2*}(1_{X_2})$.
- For $f: Y \to X$ an l.c.i. morphism in Lci_k , $f^*(1_X) = 1_Y$.

Fundamental classes of non-l.c.i. schemes

Some theories have more extensive pull-back morphisms, and thus admit fundamental classes for more schemes.

Example Both CH_{*} and $G_0[\beta, \beta^{-1}]$ admit pull-back for arbitrary *flat* maps, still satisfying all the axioms. Thus, functorial fundamental classes in CH_{*} and $G_0[\beta, \beta^{-1}]$ exist for all $X \in \operatorname{Sch}_k$.

This is NOT the case for all theories.

We give an example for Ω_* .

Let $S_1 \subset \mathbb{P}^5$ be \mathbb{P}^2 embedded by $\mathcal{O}(2)$. Let $S_2 \subset \mathbb{P}^5$ be $\mathbb{P}^1 \times \mathbb{P}^1$ embedded by $\mathcal{O}(2, 1)$. Let $R_1 \subset S_1$, $R_2 \subset S_2$ be smooth hyperplane sections. Note:

1. deg
$$c_1(0(2))^2 = \deg c_1(0(2,1))^2 = 4$$

2. R_1 and R_2 are both \mathbb{P}^1 's

So: R_1 and R_2 are both rational normal curves of degree 4 in \mathbb{P}^4 .

We may assume $R_1 = R_2 = R$.

Let $C(S_1)$, $C(S_2)$ and C(R) be the projective cones in \mathbb{P}^6 .

Proposition Let A be a O.B.M.H.T. on Sch_k . If we can extend fundamental classes in A for Sm/k to $C(S_1)$, $C(S_2)$ and C(R), functorial for l.c.i. morphisms, then

$$[\mathbb{P}^2] = [\mathbb{P}^1 \times \mathbb{P}^1]$$
 in $A_2(k)$

This is NOT the case for $A = \Omega$, since

$$c_2(\mathbb{P}^2) = 3, \ c_2(\mathbb{P}^1 \times \mathbb{P}^1) = 4.$$

Consequence for Gromov-Witten theory

The formalism of Gromov-Witten theory can be extended to a cobordism valued version, at least if the relevant moduli stack is an **Lci** stack.

One needs a theory of algebraic cobordism for (Deligne-Mumford) stacks: one can make a cheap version with \mathbb{Q} -coefficients by the universal twisting of $CH_{*\mathbb{Q}}$.

BUT: there are problems if the intrinsic normal cone of the moduli stack is not **Lci**.

Part B: Cobordism motives

Outline: Part B

- Motives over an O.C.T.
- Cobordism motives
- Motivic computations
- Algebraic cobordism of Pfister quadrics

Motives over an O.C.T.

We follow the discussion of Nenashev-Zainoulline.

A-correspondences

Definition A^* an O.C.T. on Sm/k. X, Y smooth projective k-varieties. Set

$$\operatorname{Cor}_{A}^{0}(X,Y) := A^{\dim Y}(X \times Y).$$

 Cor_A^0 is the category with objects: smooth projective *k*-varieties SmProj/k, morphisms:

$$\operatorname{Hom}_{\operatorname{Cor}_{A}^{0}}(X,Y) := \operatorname{Cor}_{A}^{0}(X,Y)$$

and composition law:

$$\gamma_{Y,Z} \circ \gamma_{X,Y} := p_{X,Z*}(p_{X,Y}^*(\gamma_{X,Y}) \cdot p_{Y,Z}^*(\gamma_{Y,Z}))$$

• Cor_A^0 is a tensor category: $X \oplus Y = X \amalg Y$ and $X \otimes Y := X \times Y$.

• Sending
$$f: X \to Y$$
 to the "graph"

$$\Gamma_f := (\mathrm{id}_X, f)_*(1_X) \in A^{\dim Y}(X \times Y)$$

gives the functor

$$m_A : \mathbf{SmProj}/k \to \mathbf{Cor}_A^{\mathbf{0}}.$$

Definition $\mathcal{M}_A^{\text{eff}}$ is the pseudo-abelian hull of Cor_A^0 :

Obects are pairs
$$(X, \alpha)$$
, $\alpha \in \operatorname{End}_{\operatorname{Cor}_{A}^{0}}(X)$, $\alpha^{2} = \alpha$.
Hom <sub>$\mathcal{M}_{A}^{\operatorname{eff}}((X, \alpha), (Y, \beta)) := \beta \operatorname{Hom}_{\operatorname{Cor}_{A}^{0}}(X, Y) \alpha$
with the evident composition.</sub>

Definition Let $\operatorname{Cor}_{A}^{*}(X, Y) := A^{\dim Y + *}(X \times Y).$

 Cor_A is the category with objects pairs (X, n), X a smooth projective k-variety $n \in \mathbb{Z}$, morphisms

$$\operatorname{Hom}_{\widetilde{\operatorname{Cor}}_A}((X,n),(Y,m)) := \operatorname{Cor}_A^{m-n}(X,Y)$$

 Cor_A is the additive category generated by Cor_A and \mathfrak{M}_A is the pseudo-abelian hull of Cor_A .

For
$$M = (X, \alpha) \in \mathcal{M}_A^{\mathsf{eff}}$$
, write $M(m) := ((X, \alpha), m)$.

 $\alpha \in \operatorname{Cor}_{A}^{n}(X, Y)$ acts as a homomorphism

$$\alpha_* : A^*(X) \to A^{*+n}(Y).$$

We have ${}^{t}\alpha \in \operatorname{Cor}^{n+\dim X-\dim Y}(Y,X)$; set

$$\alpha^* := {}^t \alpha_* : A^*(Y) \to A^{*+\dim X - \dim Y + n}(X).$$

• Cor_A is a tensor category, $1 = m_A(\operatorname{Spec} k)$ and

$$\operatorname{Hom}_{\operatorname{Cor}_A}(1(n), m_A(X)) = A_n(X).$$

• Sending X to (X, 0) defines tensor functors

$$\operatorname{Cor}_A^0 \to \operatorname{Cor}_A$$

 $\operatorname{M}_A^{\operatorname{eff}} \to \operatorname{M}_A$

• A natural transformation of O.C.T.'s on \mathbf{Sm}/k , $\vartheta : A \to B$, induces tensor functors

$$\vartheta_* : \operatorname{Cor}_A^0 \to \operatorname{Cor}_B^0$$

 $\vartheta_* : \mathcal{M}_A^{\operatorname{eff}} \to \mathcal{M}_B^{\operatorname{eff}}$

etc.

We add the ground field k to the notation when necessary: $\operatorname{Cor}_{A}^{0}(k)$, $\mathcal{M}_{A}(k)$, etc.

If R is a commutative ring, set

$$\operatorname{Cor}_{A,R}^{0} := \operatorname{Cor}_{A}^{0} \otimes R$$

 $\operatorname{Cor}_{A,R} := \operatorname{Cor}_{A} \otimes R$

 $\mathcal{M}_{A,R}^{\mathsf{eff}}$ and $\mathcal{M}_{A,R}$ are the respective pseudo-abelian hulls.

Examples

(1) For $A^* = CH^*$, we have the well-known categories:

 $\operatorname{Cor}_{\mathsf{CH}}^{0}(k)$ is the category of correspondences mod rational equivalence, $\mathcal{M}_{\mathsf{CH}}^{\mathsf{eff}}(k)$ is the category of effective Chow motives, $\mathcal{M}_{\mathsf{CH}}(k)$ is the category of effective k.

(2) For $A^* = \Omega^*$, we call $\operatorname{Cor}_{\Omega}^0(k)$ the category of *cobordism correspondences*, $\mathcal{M}_{\Omega}^{\text{eff}}(k)$ the category of *effective cobordism motives*, $\mathcal{M}_{\Omega}(k)$ the category of *cobordism motives* (over k).

(3) We can also take e.g. $A^* = K_0[\beta, \beta^{-1}]$; we write $\operatorname{Cor}_{K_0}^0$, $\mathcal{M}_{K_0}^{\text{eff}}$, etc.

Cobordism motives

Vishik-Yagita have considered the category $\mathcal{M}_{\Omega}^{\text{eff}}(k)$ and discussed its relation with Chow motives.

Remarks

(1) Since Ω^* is universal, there are canonical functors

$$\vartheta^A_* : \operatorname{Cor}^{\mathsf{0}}_{\Omega}(k) \to \operatorname{Cor}^{\mathsf{0}}_A(k)$$

 $\vartheta^A_* : \mathfrak{M}^{\mathsf{eff}}_{\Omega}(k) \to \mathfrak{M}^{\mathsf{eff}}_A(k)$

etc. Thus, identities in $\mathcal{M}_{\Omega}^{\mathsf{eff}}(k)$ or $\mathcal{M}_{\Omega}(k)$ yield identities in $\mathcal{M}_{A}^{\mathsf{eff}}(k)$ or $\mathcal{M}_{A}(k)$ for all O.C.T.'s A on \mathbf{Sm}/k .

(2) $\Omega^* \otimes \mathbb{Q}$ is isomorphic to the "universal twist" of $CH^* \otimes \mathbb{L} \otimes \mathbb{Q}$, so one can hope to understand $\mathcal{M}_{\Omega,\mathbb{Q}}$ by modifying $\mathcal{M}_{CH,\mathbb{L}\otimes\mathbb{Q}}$ by a twisting construction, i.e., a deformation of the composition law. We will see that $\mathcal{M}_{\Omega,\mathbb{Q}}$ is NOT equvalent to $\mathcal{M}_{CH,\mathbb{L}\otimes\mathbb{Q}}$.

(3) The work of Vishik-Yagita allows one to lift identies in $\mathcal{M}_{CH}^{eff}(k)$ or $\mathcal{M}_{CH}(k)$ to $\mathcal{M}_{\Omega}^{eff}(k)$ or $\mathcal{M}_{\Omega}(k)$

Example [The Lefschetz motive in
$$\mathcal{M}_{\Omega}^{\text{eff}}$$
] Let's compare $\text{End}_{\text{Cor}_{\Omega}^{0}}(\mathbb{P}^{1})$
with $\text{End}_{\text{Cor}_{\text{CH}}^{0}}(\mathbb{P}^{1})$
 $\Omega^{1}(\mathbb{P}^{1} \times \mathbb{P}^{1}) = \mathbb{Z}[0 \times \mathbb{P}^{1}] \oplus \mathbb{Z}[\mathbb{P}^{1} \times 0] \oplus \mathbb{Z}[\mathbb{P}^{1}] \times [(0,0)]$
Set: $\alpha = [0 \times \mathbb{P}^{1}]; \ \beta = [\mathbb{P}^{1} \times 0]; \gamma = [\mathbb{P}^{1}] \cdot [(0,0)].$

 $\mathrm{Cor}_\Omega^0\to\mathrm{Cor}_{\mathrm{CH}}^0$ just sends γ to zero. We have the composition laws:

$End_{Cor^0_{CH}}(\mathbb{P}^1)$				
0	lpha	eta		
lpha	α	0		
β	0	β		

$End_{Cor^0_\Omega}(\mathbb{P}^1)$					
0	α	β	γ		
α	α	0	0		
β	γ	β	γ		
γ	γ	0	0		

So

$$\operatorname{End}_{\operatorname{Cor}^0_\Omega}(\mathbb{P}^1) \to \operatorname{End}_{\operatorname{Cor}^0_{\operatorname{CH}}}(\mathbb{P}^1) = \mathbb{Z} \times \mathbb{Z}$$

is a non-commutative extension with square-zero kernel (γ). Hence:

• The Lefschetz Chow motive $L := (\mathbb{P}^1, \alpha)$ lifts to "the Lefschetz Ω -motive"

$$L_{\Omega}(\lambda) := (\mathbb{P}^1, \alpha + \lambda \gamma)$$

for any choice of $\lambda \in \mathbb{Z}$. Since $[\Delta_{\mathbb{P}^1}] = \alpha + \beta - \gamma$:

$$(\mathbb{P}^1, \mathrm{id}) = (\mathbb{P}^1, \alpha + \lambda \gamma) \oplus (\mathbb{P}^1, \beta - (1 + \lambda)\gamma) \cong L_{\Omega}(\lambda) \oplus 1.$$

Also: $L_{\Omega}(\lambda) \cong L_{\Omega}(\lambda')$ for all λ, λ' , but are not equal as summands of (\mathbb{P}^1, id) .

One can also compute:

- $\operatorname{End}(L_{\Omega}^{\otimes n}) = \mathbb{Z} \cdot \operatorname{id}$ for all $n \geq 0$, and $\operatorname{Hom}(1, L_{\Omega}) = 0$, but $\operatorname{Hom}(L_{\Omega}, 1) = \mathbb{Z} \cdot \gamma$.
- Let $t : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1$ be the switch of factors. Then t induces the identity on $L_{\Omega}^{\otimes 2}$.

Remark We have seen that

$$\operatorname{End}_{\mathcal{M}_{\Omega}^{\operatorname{eff}}}(m_{\Omega}(\mathbb{P}^{1})) \to \operatorname{End}_{\mathcal{M}_{\operatorname{CH}}^{\operatorname{eff}}}(m_{\operatorname{CH}}(\mathbb{P}^{1}))$$

is surjective with kernel a square zero ideal. A similar computation shows that

$$\operatorname{End}_{\mathcal{M}_{\Omega}^{\operatorname{eff}}}(m_{\Omega}(\mathbb{P}^{n})) \to \operatorname{End}_{\mathcal{M}_{CH}^{\operatorname{eff}}}(m_{CH}(\mathbb{P}^{n})) = \prod_{i=1}^{n} \mathbb{Z}$$

is surjective for all n with $ker^{n+1} = 0$, but $ker^{n} \neq 0$.

Definition Let A be an O.C.T. on Sm/k, $\vartheta_A : \mathcal{M}_{\Omega}^{\text{eff}}(k) \to \mathcal{M}_A^{\text{eff}}(k)$ the canonical functor. Define the *Lefschetz A-motive*

$$L_A := \vartheta_A(L_\Omega).$$

Proposition For $M = (X, \alpha)$, $N = (Y, \beta)$ in $\mathcal{M}_A^{\mathsf{eff}}(k)$,

$$\operatorname{Hom}_{\mathcal{M}_{A}^{\mathsf{eff}}}(M \otimes L_{A}^{\otimes m}, N \otimes L_{A}^{\otimes n}) = (\operatorname{id} \times \alpha)^{*}(\beta \times \operatorname{id})_{*}\Omega^{\dim Y - m + n}(X \times Y).$$

Hence

Theorem The inclusion functor $\mathfrak{M}_A^{\mathsf{eff}}(k) \to \mathfrak{M}_A(k)$ identifies $\mathfrak{M}_A(k)$ with the localization of $\mathfrak{M}_A^{\mathsf{eff}}(k)$ with respect to $-\otimes L_A$. Also

$$(X,\alpha)(m) := (X,\alpha,m) \cong (X,\alpha) \otimes L_A^{\otimes m}.$$

The nilpotence theorem

Theorem Take $X, Y \in \mathbf{SmProj}/k$. Then

$$\vartheta_{\mathsf{CH}} : \mathsf{Cor}^{\mathsf{0}}_{\Omega}(X, Y) \to \mathsf{Cor}^{\mathsf{0}}_{\mathsf{CH}}(X, Y)$$

is surjective. If X = Y, then the kernel ker(X) of ϑ_{CH} is nilpotent.

Proof. Surjectivity: Since $CH^* = \Omega^* \otimes_{\mathbb{L}} \mathbb{Z}$, $\Omega^*(T) \to CH^*(T)$ is surjective for all $T \in Sm/k$.

Nilpotence of the kernel: $CH^* = \Omega^* \otimes_{\mathbb{L}} \mathbb{Z} \Longrightarrow$

$$ker(X) = \sum_{n>0} \mathbb{L}^{-n} \Omega^{\dim X + n}(X \times X).$$

Composition is $\mathbb L\text{-linear},$ hence operates as:

$$\mathbb{L}^{-n}\Omega^{\dim X+n}(X\times X)\otimes\mathbb{L}^{-m}\Omega^{\dim X+m}(X\times X)$$

$$\stackrel{\circ}{\to}\mathbb{L}^{-n-m}\Omega^{\dim X+n+m}(X\times X).$$

Also: $\Omega^d(T) = 0$ for $d > \dim T$. Thus

 $ker(X)^{\circ \dim X+1} = 0.$

Proposition (Vishik-Yagita)

(1) For $X \in \mathbf{SmProj}/k$, each idempotent in $Cor^{0}_{CH}(X, X)$ lifts to an idempotent in $Cor^{0}_{\Omega}(X, X)$.

(2) For M, N in $\mathcal{M}_{\Omega}^{\mathsf{eff}}(k)$, each isomorphism $f : \vartheta_{\mathsf{CH}}(M) \to \vartheta_{\mathsf{CH}}(N)$ lifts to an isomorphism $\tilde{f} : M \to N$.

Theorem (Isomorphism) $\vartheta_{CH} : \mathfrak{M}_{\Omega}^{eff}(k) \to \mathfrak{M}_{CH}^{eff}(k)$ and $\vartheta_{CH} : \mathfrak{M}_{\Omega}(k) \to \mathfrak{M}_{CH}(k)$ both induce bijections on the set of isomorphism classes of objects.

Proof. For \mathcal{M}^{eff} , this follows from the proposition. For \mathcal{M} , this follows by localization.

Note. These result are also valid for motives with R-coefficients, R a commutative ring.

Motivic computations

Elementary computations

•
$$m_A(\mathbb{P}^n) \cong \bigoplus_{i=0}^n L_A^{\otimes i} \cong \bigoplus_{i=0}^n \mathbf{1}_A(i).$$

• Let $E \to B$ be a vector bundle of rank n + 1, $\mathbb{P}(E) \to B$ the projective-space bundle. Then

$$m_A(\mathbb{P}(E)) \cong \bigoplus_{i=0}^n m_A(B)(i).$$

• Let $\mu : X_F \to X$ be the blow-up of X along a codimension d closed subscheme F. Then

$$m_A(X_F) \cong m_A(X) \oplus \bigoplus_{i=1}^{d-1} m_A(F)(i).$$

So:

$$A^*(X_F) \cong A^*(X) \oplus \bigoplus_{i=1}^{d-1} A^{*-d+i}(F).$$

Indeed, we have all these isomorphisms in \mathcal{M}_{CH} , hence in \mathcal{M}_{Ω} by the isomorphism theorem, and thus in \mathcal{M}_A by applying ϑ_A .

Cellular varieties

Definition $X \in \mathbf{SmProj}/k$ is called *cellular* if there is a filtration by closed subsets

$$X = X^0 \supset X^1 \supset \ldots \supset X^d \supset X^{d+1} = \emptyset; \ d = \dim X,$$

such that $\operatorname{codim}_X X^i \ge i$ and either $X^i \setminus X^{i+1} \cong \coprod_{i=1}^{n_i} \mathbb{A}^{d-i}$ or $X^i = X^{i+1}$. If $X_{\overline{k}}$ is cellular, call X geometrically cellular.

 \bullet For X cellular as above, we have

$$m_A(X) \cong \oplus_{i=0}^d \mathbf{1}_A(i)^{n_i}$$

because we have this isomorphism for A = CH.

Examples Projective spaces and Grassmannians are cellular. A smooth quadric over k is geometrically cellular.

Quadratic forms

First some elementary facts about quadratic forms:

• Each quadratic form over k can be diagonalized. If $q = \sum_{i=1}^{n} a_i x_i^2$, let $Q_q \subset \mathbb{P}^{n-1}$ be the quadric q = 0. The dimension of q is n.

• For $q_1 = \sum_{i=1}^n a_i x_i^2$, $q_2 = \sum_{j=1}^m b_j y_j^2$, we have the orthogonal sum

$$q_1 \perp q_2 := \sum_{i=1}^n a_i x_i^2 + \sum_{j=1}^n j = 1^m b_j y_j^2$$

and tensor product

$$q_1 \otimes q_2 := \sum_{i=1}^n \sum_{j=1}^m a_i b_j z_{ij}^2.$$

Pfister forms and Pfister quadrics

• For $a \in k^{\times}$ we have $\langle \langle a \rangle \rangle := x^2 - ay^2$ and for $a_1, \ldots, a_n \in k^{\times}$ the *n*-fold Pfister form

$$\alpha := \langle \langle a_1, \dots, a_n \rangle \rangle := \langle \langle a_1 \rangle \rangle \otimes \dots \otimes \langle \langle a_n \rangle \rangle$$

The quadric $Q_{\alpha} \subset \mathbb{P}^{2^n-1}$ is the associated *Pfister quadric*.

• The isomorphism class of $\alpha = \langle \langle a_1, \dots, a_n \rangle \rangle$ depends only on the symbol

$$\{a_1,\ldots,a_n\} \in k_n(k) := K_n^M(k)/2.$$

 $\langle \langle a_1, \ldots, a_n \rangle \rangle$) is isomorphic to a hyperbolic form if and only if Q_{α} is isotropic, i.e. $\langle \langle a_1, \ldots, a_n \rangle \rangle = 0$ has a non-trivial solution in k.

The Rost motive

Proposition (Rost) (1) Let $\alpha = \langle \langle a_1, \ldots, a_n \rangle \rangle$ and let Q_{α} be the associated Pfister quadric. Then there is a motive $M_{\alpha} \in \mathcal{M}_{CH}^{\text{eff}}(k)$ with

$$m_{\mathsf{CH}}(Q_{\alpha}) \cong M_{\alpha} \otimes m_{\mathsf{CH}}(\mathbb{P}^{2^{n-1}-1}).$$

(2) Let \overline{k} be the algebraic closure. There are maps

$$L^{\otimes 2^{n-1}-1} \to M_{\alpha} \to 1$$

which induce

$$M_{\alpha \overline{k}} \cong 1 \oplus L^{\otimes 2^{n-1}-1}$$
 in $\mathfrak{M}_{\mathsf{CH}}^{\mathsf{eff}}(\overline{k})$.

 M_{α} is the *Rost motive*.

The Rost cobordism-motive

Applying the Vishik-Yagita bijection, there is a unique (up to isomorphism) cobordism motive

 $M^{\Omega}_{\alpha} \in \mathcal{M}^{\mathsf{eff}}_{\Omega}(k)$

with $\vartheta_{\mathsf{CH}}(M^{\Omega}_{\alpha}) \cong M_{\alpha}$. In addition:

1.
$$m_{\Omega}(Q_{\alpha}) \cong M_{\alpha}^{\Omega} \otimes m_{\Omega}(\mathbb{P}^{2^{n-1}-1}).$$

2. There are maps $L_{\Omega}^{\otimes 2^{n-1}-1} \to M_{\alpha}^{\Omega} \to 1$ which induce $M_{\alpha \overline{k}}^{\Omega} \cong 1 \oplus L_{\Omega}^{\otimes 2^{n-1}-1}$ in $\mathcal{M}_{\Omega}^{\text{eff}}(\overline{k})$.

Algebraic cobordism of Pfister quadrics

Vishik-Yagita use the Rost cobordism motive to compute $\Omega^*(Q_\alpha)$. The computation is in two parts:

- 1. Compute the image of base-change $\Omega^*(Q_{\alpha}) \to \Omega^*(Q_{\alpha \overline{k}})$. $\Omega^*(Q_{\alpha \overline{k}})$ is easy because $Q_{\alpha \overline{k}}$ is cellular.
- 2. Show that $\Omega^*(Q_{\alpha}) \to \Omega^*(Q_{\alpha \overline{k}})$ is injective.

Structure of $\mathbb L$

We need some information on \mathbb{L} to state the main result.

Recall the Conner-Floyd Chern classes c_I and the Landweber-Novikov operations s_I . Let $\overline{s}_I(x)$ be the image of $s_I(x)$ in CH^{*}. For $X \in \mathbf{SmProj}/k$ of dimension |I|

$$\overline{s}_I([X]) = \deg c_I(-T_X) \in \mathbb{Z} = CH^0(k).$$

Since the \overline{s}_I are indexed by the monomials in t_1, t_2, \ldots , deg $t_i = i$, we have

$$\bar{s}: \Omega^*(k) = \mathbb{L}^* \to \mathbb{Z}[t]$$

with $\overline{s}([X]) = \sum_I \overline{s}_I(X)t^I = \sum_I c(-T_X)t^I$.

Theorem (Quillen) $\overline{s} : \Omega^*(k) = \mathbb{L}^* \to \mathbb{Z}[t]$ is an injective ring homomorphism with image of finite index in each degree.

Definition $I(p) \subset \mathbb{L}^*$ is the prime ideal

$$I(p) := \overline{s}^{-1}(p\mathbb{Z}[\mathbf{t}]).$$

 $I(p,n) \subset I(p)$ is the sub-ideal generated by elements of degree $\leq p^n - 1$.

In words: $I(p) \subset \mathbb{L}$ is the ideal generated by [X], $X \in \mathbf{SmProj}/k$ all of whose Chern numbers deg $c_I(-T_X)$ are divisible by p.

Note. The fact that $s_{2^n-1}(Q_{2^n-1}) \equiv 1 \mod 2$ for Q_{2^n-1} a quadric of dimension $2^n - 1$ implies that I(2, r) is the ideal generated by the classes $[Q_{2^n-1}], 0 \leq 2^n - 1 \leq r ([Q_0] = 2 \in \mathbb{L}^0).$

The main theorem

Fix $\alpha := \langle \langle a_1, \ldots, a_n \rangle \rangle$, $Q_{\alpha} \subset \mathbb{P}^{2^n - 1}$ the associated Pfister quadric. Let $h_{\Omega}^i \in \Omega^i(Q_{\alpha \overline{k}})$ be the class of a codimension *i* linear section, Let $\ell_i^{\Omega} \in \Omega_i(Q_{\alpha \overline{k}})$ be the class of a linear $\mathbb{P}^i \subset Q_{\alpha \overline{k}}$. h^i , ℓ_i : the images of h_{Ω}^i and ℓ_i^{Ω} in CH^{*i*}, CH_{*i*}. Since $Q_{\alpha \overline{k}}$ is cellular

$$\Omega^*(Q_{\alpha \overline{k}}) = \bigoplus_{i=0}^{2^{n-1}-1} \mathbb{L} \cdot h_{\Omega}^i \oplus \mathbb{L} \cdot \ell_i^{\Omega}.$$

Theorem The base-change map $p^* : \Omega^*(Q_\alpha) \to \Omega^*(Q_{\alpha \overline{k}})$ is injective and the image of p^* is

$$\oplus_{i=0}^{2^{n-1}-1} \mathbb{L} \cdot h_{\Omega}^{i} \oplus I(2,n-2) \cdot \ell_{i}^{\Omega}$$

Idea of proof:

for

Use the isomorphisms

$$m_{\Omega}(Q_{\alpha}) \cong M_{\alpha}^{\Omega} \otimes m_{\Omega}(\mathbb{P}^{2^{n-1}-1}), \ M_{\alpha \overline{k}}^{\Omega} \cong 1 \oplus L_{\Omega}^{2^{n-1}-1}$$

to show that the image of base-change is $\oplus_{i=0}^{2^{n-1}-1} \mathbb{L} \cdot h_{\Omega}^{i} \oplus J \cdot \ell_{i}^{\Omega}$
for some ideal $J \subset \mathbb{L}$.

A result of Rost on M_{α}^{CH} plus Vishik-Yagita lifting shows that $M^{\Omega}_{\alpha} \oplus ? = m_{\Omega}(P_{\alpha}),$

 P_{α} : a linear section of Q_{α} of dimension $2^{n-1} - 1$.

The "small" dimension ($\leq 2^{n-1} - 1$) of P_{α} allows one to show that J = I(2, n - 2).

The injectivity is handled by the fact that P_{α} splits M_{α} .