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\II. Self-affine ti-Iings'
{Tilingsl

Fix a set of types (or colors) labeled by {1,...,m}.

Tile: T = (A,7) where A = supp(T) is a compact
set in R% which is the closure of its interior, i =
¢(T) <m is the type of T.

Tiling: a set of tiles 7 such that

R? = | {supp(T) : T €T}

and distinct tiles have disjoint interiors.
T-patch: a finite subset of 7.

Translation: (A4,7) +¢g= (A+g,i) for g € R?

TH+g={T+g: TeT}
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We assume that:

e Any two T-tiles with the same type (color)
are translationally equivalent. (Hence there are
finitely many T-tiles up to translation.)

e the tiling 7 has finite local complexity (FLC),
that is, for any R > 0 there are finitely many
T-patches of diameter less than R up to trans-
lation.

e the tiling T is repetitive, that is, for any 7-
patch P there exists R > 0 such that every ball
of radius R contains a translated copy of P.
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\Tile-substitutions]

Let ¢ : R? - R% be an expanding linear map, that
is, all its eigenvalues are greater than 1 in modulus.

Definition. Let {Ty,...,Tm} be a finite prototile
set. A tile-substitution with expansion ¢ is a map
T; — w(T;), + = 1,...,m, where each w(T;) is a
patch made of translates of T, such that

supp(w(T;)) = ¢(supp(T3)).

The substitution is extended to all translates of
prototiles by w(z+T;) = ¢z+w(T;), and to patches
and tilings by w(P) = U{w(T) : T € P}. We say
that 7 is a fixed point of a substitution if w(7T) = T.
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fSeIf—afrine tilings| |

The substitution w is primitive there exists k € N
such that w*(T;) contains a translate of T; for all 4, j
(equivalently, the substitution matrix is primitive).

T is self-affine if it is an FLC repetitive fixed point
of a primitive substitution. 7 is self-similar if ¢ is
a similitude, i.e.

¢(x)| = rlz|, Yo € R%.

History: ‘“fractiles” (m = 1), Gilbert, Penrose,
Dekking, Rauzy, Thurston, Lunnon & Pleasants,...

Connections: Markov partitions, numeration sys-
tems, wavelets,...
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|Self—affine tilings and IFS|

There exist finite sets D;; C RY, i,j < m:

w(T}) ={u+T;: weD;y, i=1,...,m}, j<m,
with

oA; = [ (Dij + 45), § <m. (2)
i=1

Here all the sets in the right-hand side must have
disjoint interiors; it is possible for some of the D;;
to be empty.

Rewrite the system of set equations (2):

m
A= @@ tA+ 071D, 5 <m.
i=1
#~1 is a contraction, so there is always a unique
nonempty compact solution {A4,...,An} (attrac-
tor of a graph-directed IFS). The difficulty is to
have Aj with nonempty interiors.
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\Substitution matrix|

Sij = #D;j, S IS m X m non-negative integer matrix
primitive < S* has no zero entries for some k.
{Ed(Aj)}Tzl is a positive row eigenvector for S,
with the eigenvalue |det(¢)|. (Here £% is Lebesgue
measure in R%.)

PERRON-FROBENIUS THEORY
COROLLARY 9. |det¢| is a Perron number,

i.e. an algebraic integer > 1 whose Galois conju-
gates are strictly less in modulus.
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}Characterization of expansionsl

THEOREM 10 (essentially [Lind '84]) In RL, ¢(z) =

Az is an expansion of a self-affine tiling iff |\| is a
Perron number.

THEOREM 11 [Thurston '89],[Kenyon '96] In
R2 = C, ¢(z) = Az with complex X, is an expansion
of a self-similar tiling iff A is a complex Perron num-
ber, i.e. an algebraic integer of modulus > 1 whose

Galois conjugates, except the complex conjugate,
A, are strictly less in modulus.
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{Substitution Delone multisets|

A multiset or m-multiset in R?% is a subset A =
A{ X - XAm CR%x ... x R* (m copies) where
A; C RS, (i is the “color” of points in A;).

We also write A = (Aq,...,Am) = (A))i<m.

A = (A)i<m is a Delone multiset in R? if each A;
is Delone and supp(A) := U™, A; C R% is Delone.

Definition. A = (A;);<m is a substitution Delone
multiset if A is a Delone multiset and there exist
an expansive map ¢ : R? — R? and finite sets D;;
for 2,7 < m such that

=1

where the unions on the right-hand side are disjoint.

[Lagarias & Wang '03]
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LEMMA 14. If T is self-affine, T = w(T), then

7= U@+ (4)

=1
where (A\;);<m IS @ substitution Delone multiset.

Proof. We have, applying w to both sides of (4),

T

J

= Lnj (G(Ti+pij)+¢/\j

j=1 \i=1

) (w(Ty) + o))
=1

\
/
m m \
= (Tq:+ U (eN; +Dyj) |-
i=1 j=1 )
Thus,

No= | (0A; +D;j), i< m,

j=1

which is (3).
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