Hierarchical Tilings ("supertilings" may be different) / UH Substitution tilings (combinatorial, e.g. ?) m an Fibonacci, arbitrary lengths) Pseudo-self-affine tilings $Jef: \mathcal{T} \longleftrightarrow \mathcal{Y}\mathcal{T}$ Self-affine tilings 47 subdivides to J exactly

II. Self-affine tilings

Tilings

Fix a set of **types** (or **colors**) labeled by $\{1, \ldots, m\}$.

Tile: T = (A, i) where A = supp(T) is a compact set in \mathbb{R}^d which is the closure of its interior, $i = \ell(T) \leq m$ is the type of T.

Tiling: a set of tiles ${\mathcal T}$ such that

 $\mathbf{R}^d = \bigcup \{ \operatorname{supp}(T) : T \in \mathcal{T} \}$

and distinct tiles have disjoint interiors.

 \mathcal{T} -patch: a finite subset of \mathcal{T} .

Translation: (A,i) + g = (A + g,i) for $g \in \mathbb{R}^d$

 $\mathcal{T} + g = \{T + g : T \in \mathcal{T}\}$

We assume that:

- Any two *T*-tiles with the same type (color) are translationally equivalent. (Hence there are finitely many *T*-tiles up to translation.)
- the tiling T has finite local complexity (FLC), that is, for any R > 0 there are finitely many T-patches of diameter less than R up to translation.
- the tiling *T* is repetitive, that is, for any *T*-patch *P* there exists *R* > 0 such that every ball of radius *R* contains a translated copy of *P*.

Tile-substitutions

Let ϕ : $\mathbb{R}^d \to \mathbb{R}^d$ be an expanding linear map, that is, all its eigenvalues are greater than 1 in modulus.

Definition. Let $\{T_1, \ldots, T_m\}$ be a finite **prototile** set. A tile-substitution with expansion ϕ is a map $T_i \mapsto \omega(T_i), i = 1, \ldots, m$, where each $\omega(T_i)$ is a patch made of translates of T_j , such that

$$supp(\omega(T_i)) = \phi(supp(T_i)).$$

The substitution is extended to all translates of prototiles by $\omega(x+T_j) = \phi x + \omega(T_j)$, and to patches and tilings by $\omega(P) = \bigcup \{ \omega(T) : T \in P \}$. We say that \mathcal{T} is a fixed point of a substitution if $\omega(\mathcal{T}) = \mathcal{T}$.

Self-affine tilings

The substitution ω is **primitive** there exists $k \in \mathbf{N}$ such that $\omega^k(T_i)$ contains a translate of T_j for all i, j(equivalently, the substitution matrix is primitive).

 \mathcal{T} is **self-affine** if it is an FLC repetitive fixed point of a primitive substitution. \mathcal{T} is **self-similar** if ϕ is a similitude, i.e.

$$|\phi(x)| = r|x|, \ \forall x \in \mathbf{R}^d.$$

History: "fractiles" (m = 1), Gilbert, Penrose, Dekking, Rauzy, Thurston, Lunnon & Pleasants,...

Connections: Markov partitions, numeration systems, wavelets,...

 $\frac{\gamma^3}{\gamma^2} = \frac{\gamma^2}{\gamma^2} + \frac{\gamma}{\gamma^2} +$ $\lambda^3 + \lambda^2 + \lambda - 1 = 0$ 0.2 -0.4 -0.2 0.4 -0.2 Figure 5 Rauzy tiling; pure discrete spectrum

-3A- from free group endo: $a \rightarrow b, b \rightarrow c, c \rightarrow a^{-3}b$

-igure 7.8. Patch of a self-similar tiling (non-Pisot case) no discrete spectrum (weak mixing)

Self-affine tilings and IFS

There exist finite sets $\mathcal{D}_{ij} \subset \mathbf{R}^d$, $i, j \leq m$:

 $\omega(T_j) = \{u+T_i: u \in \mathcal{D}_{ij}, i = 1, \dots, m\}, j \leq m,$ with

$$\phi A_j = \bigcup_{i=1}^m (\mathcal{D}_{ij} + A_i), \ j \le m.$$
 (2)

Here all the sets in the right-hand side must have disjoint interiors; it is possible for some of the D_{ij} to be empty.

Rewrite the system of set equations (2):

$$A_j = \bigcup_{i=1}^m (\phi^{-1}A_i + \phi^{-1}\mathcal{D}_{ij}), \ j \le m.$$

 ϕ^{-1} is a contraction, so there is always a unique nonempty compact solution $\{A_1, \ldots, A_m\}$ (attractor of a graph-directed IFS). The difficulty is to have A_i with nonempty interiors.

Substitution matrix

 $S_{ij} = \# \mathcal{D}_{ij}$, S is $m \times m$ non-negative integer matrix

primitive $\Leftrightarrow S^k$ has no zero entries for some k.

 $\{\mathcal{L}^{d}(A_{j})\}_{j=1}^{m}$ is a positive row eigenvector for S, with the eigenvalue $|\det(\phi)|$. (Here \mathcal{L}^{d} is Lebesgue measure in \mathbb{R}^{d} .)

PERRON-FROBENIUS THEORY

COROLLARY 9. $|\det \phi|$ is a **Perron number**, i.e. an algebraic integer > 1 whose Galois conjugates are strictly less in modulus.

Characterization of expansions

THEOREM 10 (essentially [Lind '84]) In \mathbb{R}^1 , $\phi(x) = \lambda x$ is an expansion of a self-affine tiling iff $|\lambda|$ is a Perron number.

THEOREM 11 [Thurston '89],[Kenyon '96] In $\mathbf{R}^2 \equiv \mathbf{C}, \ \phi(z) = \lambda z$ with complex λ , is an expansion of a self-similar tiling iff λ is a complex Perron number, i.e. an algebraic integer of modulus > 1 whose Galois conjugates, except the complex conjugate, $\overline{\lambda}$, are strictly less in modulus. <u>Lemma</u> <u>p</u>[Kenyon '90] [Thurston '89] T-self-affine tiling of IR^d with expansion 4. Then the eigenvalues of 4 are algebraic integers.

Proposition 13 [Kenyon '90] [Thurston'89] J-seff-similar tiling of R° with expansion 4=70, where 7>1, (9 - orthogonal matrix. Let 7 be an eigenvalue of 4. Then every Galois conjugate of R is either an eigenvalue of 4 or strictly less than $|\lambda| = 2$ in modulus

26 Control Points Want to define "reference paints" $C(T) \in supp(T)$ $\forall T \in 5$ so that (i) T'=T+x \rightarrow $c(T') = c(T) + \infty$ (ii) $\Psi C = C$, $C = \{c(T): T \in \mathcal{T}\}$ $\{T_1, ..., T_m\}$, choose $\mathcal{T}(T_i) \in \omega(T_i)$ $\mathcal{T}(T_j + x) = \omega(T_j) + \Psi x$ $c(T) = \bigcap^{\infty} \varphi^{-n}(\mathcal{T})$

$$\frac{A \,ddress \, Map}{J = \langle C \rangle = \mathbb{Z} - module generated}$$

$$= all \, integer \, linear \, comb.$$

$$\frac{\text{Lemma. J is finitely generated.}}{\text{Proof}: FLC, \, can \, jump \, from \, neighbor \, to \, neighbor}$$

$$J \approx \mathbb{Z}^{N}, \, N \geq d$$

$$\text{Let } \{V_{1}, ..., V_{N}\} \text{ be generators}_{(nked not \, Be \, in \, C)}$$

$$\forall \xi \in J \, \exists ! a = a(\xi) \in \mathbb{Z}^{N}: f = \sum_{j=1}^{N} a_{j} v_{j}$$

$$\boxed{\xi \mapsto a(\xi)} \, address \, map$$

$$V = [v_{1}, ..., v_{N}], d \times N \text{ matrix} \\ \text{rank } V = d$$

$$S = Va(S)$$

$$PROOF \quad OF \quad Lemma \quad 12$$

$$\Psi C = C \implies \Psi J = J \quad \text{integer matrix} \\ \Psi V_{j} = \sum_{i=1}^{\infty} b_{ij} v_{i} \quad \Psi V = VB \\ \lambda \quad e/value \quad of \quad \Psi \implies \exists x \in C^{d}, \quad \Psi x = \lambda x \\ B^{T}V^{T}x = V^{T}\lambda x = \lambda V^{T}x \\ \implies \lambda \quad \text{is an equalue of } B \\ \Rightarrow \lambda \quad \text{is an equalue of } B$$

are the Galois conjugates What of N? They are eigenvalues of B Claim. $g(B) \leq g(4)$, g = spectral vadiusProof VBa(§)= 4Va(§) = 4§ $\Rightarrow a(\varphi_{\xi}) = Ba(\xi)$ Sublemma $\xi \mapsto \alpha(\xi)$ is Lipschitz on C $T_{-}(C)$ (caution: NOT Lip on J=(C) in general) $|B^{n}a(\xi)| = |a(\psi^{n}\xi)| \leq L \cdot |\psi^{n}\xi|$ ~ g(B) "

for some §

265 PROOF OF PROP 13 (self-similar $\pi - e/value of \Psi$, $1\pi I = 7 > 1$. asehet T be a conjugate of 7 het Uz be the "eigenspace" of corr. to J В (real; 1-dim if $T \in \mathbb{R}$ 2-dim if $T \notin \mathbb{R}$) Pg-projection on Ug: Bpg=pgB Suppose $|\mathcal{J}| = \mathcal{I}$. Want to show that \mathcal{J} is an eigenvalue of φ We already know that $|\mathcal{J}| \leq 7 = \mathcal{G}(\varphi)$

26
Define
$$f_{\mathcal{F}}: C \to U_{\mathcal{F}}$$

 $f_{\mathcal{F}}(\xi) = p_{\mathcal{F}} a(\xi)$
def. $f_{\mathcal{F}}: \varphi^{-k} C \to U_{\mathcal{F}}$ by
 $f_{\mathcal{F}}(\varphi^{-k} \xi) = B^{-k} f_{\mathcal{F}}(\xi)$
 $constistent$
 $f_{\mathcal{F}} is defined on $\bigoplus^{\infty} \varphi^{-k} C$
 $k=0$ dense in \lim^{d}
 $\underbrace{Claim}_{k=0} f_{\mathcal{F}} is Lip. on^{\frac{1}{2}}$
 $\left| f_{\mathcal{F}}(\varphi^{-k}c_{1}) - f_{\mathcal{F}}(\varphi^{-k}c_{2}) \right| = \left| B^{-k}(f_{\mathcal{F}}(c_{1}) - f_{\mathcal{F}}(c_{2}) \right|$
 $= |\mathcal{F}|^{-k} |f_{\mathcal{F}}(c_{1}) - f_{\mathcal{F}}(c_{2})| \leq L|\mathcal{F}|^{-k}(c_{1} - c_{2})|$
 $= U_{\mathcal{F}}|^{-k} (c_{1} - c_{2})|$ (use that \mathcal{G} expands
 $b_{\mathcal{F}} = 2 = 181$)$

=> fy extends to Lip foill 2 Claim Claim fy is linear (!) Why? · Lip => differentiable a. · almost flat in a small ball expand by φ is $f_{\sigma} \circ \varphi = B \circ f_{\sigma}$ almost flat on a large ball · use repetitivity & that for depends only on tile type almost flat close to the origin

Substitution Delone multisets

A multiset or *m*-multiset in \mathbb{R}^d is a subset $\Lambda = \Lambda_1 \times \cdots \times \Lambda_m \subset \mathbb{R}^d \times \cdots \times \mathbb{R}^d$ (*m* copies) where $\Lambda_i \subset \mathbb{R}^d$. (*i* is the "color" of points in Λ_i).

We also write $\Lambda = (\Lambda_1, \ldots, \Lambda_m) = (\Lambda_i)_{i \leq m}$.

 $\Lambda = (\Lambda_i)_{i \leq m}$ is a Delone multiset in \mathbb{R}^d if each Λ_i is Delone and supp $(\Lambda) := \bigcup_{i=1}^m \Lambda_i \subset \mathbb{R}^d$ is Delone.

Definition. $\Lambda = (\Lambda_i)_{i \leq m}$ is a substitution Delone multiset if Λ is a Delone multiset and there exist an expansive map $\phi : \mathbb{R}^d \to \mathbb{R}^d$ and finite sets \mathcal{D}_{ij} for $i, j \leq m$ such that

$$\Lambda_{i} = \bigcup_{j=1}^{m} (\phi \Lambda_{j} + \mathcal{D}_{ij}), \quad i \le m,$$
(3)

where the unions on the right-hand side are disjoint.

[Lagarias & Wang '03]

LEMMA 14. If \mathcal{T} is self-affine, $\mathcal{T} = \omega(\mathcal{T})$, then

$$\mathcal{T} = \bigcup_{j=1}^{m} (T_j + \Lambda_j) \tag{4}$$

where $(\Lambda_i)_{i\leq m}$ is a substitution Delone multiset.

Proof. We have, applying ω to both sides of (4),

$$\mathcal{T} = \bigcup_{\substack{j=1 \\ j=1}}^{m} (\omega(T_j) + \phi \Lambda_j)$$
$$= \bigcup_{\substack{j=1 \\ i=1}}^{m} \left(\bigcup_{i=1}^{m} (T_i + \mathcal{D}_{ij}) + \phi \Lambda_j \right)$$
$$= \bigcup_{i=1}^{m} \left(T_i + \bigcup_{j=1}^{m} (\phi \Lambda_j + \mathcal{D}_{ij}) \right)$$

Thus,

$$\Lambda_i = \bigcup_{j=1}^m (\phi \Lambda_j + \mathcal{D}_{ij}), \quad i \le m,$$

which is (3).