Tilings and Dynamics

Boris Solomyak, University of Washington

Victoria, August 2005

Plan of the Talks

- Delone sets and associated dynamical systems: finite local complexity, repetitivity, continuous eigenfunctions, uniform cluster frequencies, measure-preserving systems, pure point spectrum.
- <u>Self-affine tilings</u>: tile-substitutions, characterization of expansion maps, substitution Delone sets.
- Eigenvalues for substitution tiling systems: description of eigenvalues for measure-preserving substitution tiling systems, Pisot numbers, Meyer sets.
- Toward complete spectral analysis of substitution systems: spectral measures, pure point spectrum, coincidence conditions, singular component, Lebesgue component, open problems.

I. Delone sets

Definition. $\Lambda \subset \mathbf{R}^d$ is a Delone set if $\exists r, R > 0$ with

$$egin{aligned} &orall \, y \in \mathbf{R}^d, \ \#(\Lambda \cap B_r(y)) \leq 1; \ &orall \, y \in \mathbf{R}^d, \ \Lambda \cap B_R(y)
eq \emptyset. \end{aligned}$$

 Λ -*cluster* is a finite subset $P \subset \Lambda$.

Two clusters P and P are translationally equivalent if P = x + P' for some $x \in \mathbb{R}^d$.

Finite Local Complexity

Definition. The Delone set Λ has *finite local complexity (FLC)* if for every R > 0 there are finitely many translational classes of clusters among $\{(\Lambda - x) \cap B_R(0) : x \in \mathbb{R}^d\}.$

This is equivalent to $\Lambda - \Lambda$ being closed and discrete (Exercise).

FLC will be a standing assumption

Metric on the space of Delone sets

$$d(\Lambda_1, \Lambda_2) := \min\{\tilde{d}(\Lambda_1, \Lambda_2), 2^{-1/2}\},\$$

where

$$\tilde{d}(\Lambda_1, \Lambda_2) = \inf\{\varepsilon > 0 : \exists x, y \in B_{\varepsilon}(0), \\ B_{1/\varepsilon}(0) \cap (-x + \Lambda_1) = B_{1/\varepsilon}(0) \cap (-y + \Lambda_2)\}.$$

 Λ_1 and Λ_2 are close if they agree on a large neighborhood around the origin after a small translation.

Exercise. Prove that d is a metric.

Dynamical system from a Delone set

 $X_{\Lambda} := \overline{\{-h + \Lambda : h \in \mathbb{R}^d\}}$ with the metric d.

THEOREM 1. The metric space X_{Λ} is compact iff Λ has FLC.

The group \mathbf{R}^d acts on X_{Λ} by translations which are homeomorphisms, and we get a topological dynamical system $(X_{\Lambda}, \mathbf{R}^d)$.

Repetitivity

Definition. Delone set Λ is *repetitive* if for all R > 0 there is C(R) > 0 such that every ball of radius C(R) contains translates of all clusters of diameter R. (Recall that FLC is always assumed.)

A is *linearly repetitive* (LR) if $C(R) \leq \text{const} \cdot R$.

THEOREM 2. Λ is repetitive iff $(X_{\Lambda}, \mathbb{R}^d)$ is minimal, that is,

 $\overline{\{-h+\Gamma:h\in\mathbf{R}^d\}}=X_{\Lambda},\ \forall\ \Gamma\in X_{\Lambda}.$

Locator sets

 $\Psi_r(\Lambda) := \{ x \in \mathbf{R}^d : \Lambda \cap B_r(0) = (\Lambda - x) \cap B_r(0) \}$

Properties (exercise) (i) $\Psi_r(\Lambda) \subset \Psi_s(\Lambda), r < s$;

(ii) $\Psi_r(\Lambda)$ is uniformly discrete;

(iii) Λ is repetitive iff $\Psi_r(\Lambda)$ is relatively dense for all r > 0;

(iv) Λ is non-periodic (i.e. $\Lambda - h \neq \Lambda$ for $h \neq 0$) iff $\inf\{|x - y|: x, y \in \Psi_r(\Lambda), x \neq y\} \rightarrow \infty, r \rightarrow \infty.$

Remark. [N. Priebe Frank '00] defined *derived Voronoi tilings* using the locator sets (the tiles are the Voronoi cells, and the labels are equivalence classes of appropriate clusters)

Continuous eigenfunctions

Definition. $\alpha \in \mathbb{R}^d$ is an eigenvalue for the topological dynamical system $(X_{\Lambda}, \mathbb{R}^d)$ if there exists a continuous $f : X_{\Lambda} \to \mathbb{C}$, $f \neq 0$, such that

$$f(\Gamma - x) = e^{2\pi i \langle x, \alpha \rangle} f(\Gamma), \ \forall x \in \mathbf{R}^d, \ \forall \Gamma \in X_{\Lambda}.$$

In general, given a locally compact Abelian group G and a G-action, the eigenvalues are the elements of the **dual group** \hat{G} .

THEOREM 3. Let Λ be a repetitive Delone set. Then $\alpha \in \mathbb{R}^d$ is an eigenvalue for $(X_{\Lambda}, \mathbb{R}^d)$ iff

$$\lim_{r \to \infty} \sup_{x \in \Psi_r(\Lambda)} |e^{2\pi i \langle x, \alpha \rangle} - 1| = 0.$$

Proof Sketch of Theorem 3. \Rightarrow

Let f be a continuous eigenfunction corresponding to α . It is uniformly continuous since X_{Λ} is compact. Fix $\epsilon > 0$.

$$\begin{aligned} x \in \Psi_r(\Lambda) \ \Rightarrow \ \Lambda \cap B_r(0) &= (\Lambda - x) \cap B_r(0) \\ \Rightarrow \ d(\Lambda, \Lambda - x) \leq 1/r \ (\text{for large } r) \\ \Rightarrow \ |f(\Lambda) - f(\Lambda - x)| \ \text{is small (for large } r) \\ |f(\Lambda) - f(\Lambda - x)| &= |f(\Lambda)| \ |e^{2\pi i \langle x, \alpha \rangle} - 1| \\ f(\Lambda) \neq 0 \ \text{by minimality, hence} \\ |e^{2\pi i \langle x, \alpha \rangle} - 1| < \epsilon \ (\text{for large } r) \end{aligned}$$

$$f(\Lambda - x) = e^{2\pi i \langle x, \alpha \rangle}$$

Since the orbit is dense in X_{Λ} , it suffices to show that f is uniformly continuous on the orbit (then it extends to X_{Λ} and clearly satisfies the eigenfunction equation).

If $\Lambda - x$ is close to $\Lambda - y$, then they agree on a large neighborhood of the origin, after a small translation. By repetitivity,

$$x-y=x'-y'+w,$$
 where $x',y'\in \Psi_r(\Lambda),$

with r large and |w| small. Then

$$\begin{split} |f(\Lambda - x) - f(\Lambda - y)| &= |e^{2\pi i \langle x, \alpha \rangle} - e^{2\pi i \langle y, \alpha \rangle}| \\ &= |e^{2\pi i \langle x - y, \alpha \rangle} - 1| = |e^{2\pi i \langle x' - y' + w, \alpha \rangle} - 1| \\ &\leq |e^{2\pi i \langle x', \alpha \rangle} - 1| + |e^{2\pi i \langle y', \alpha \rangle} - 1| + |e^{2\pi i \langle w, \alpha \rangle} - 1| \\ & \text{which is small.} \end{split}$$

Uniform Cluster Frequencies

 $L_{\mathsf{P}}(A) := \sharp \{ x \in \mathsf{R}^d : x + P \subset A \cap \mathsf{A} \}$

where P is a non-empty cluster and $A \subset \mathbf{R}^d$ is bounded, i.e. $L_P(A)$ is the number of translates of P contained in A.

Sequence $\{F_n\}_{n\geq 1}$ of bounded measurable subsets of \mathbf{R}^d is **van Hove** if

 $\lim_{n\to\infty} \operatorname{Vol}(\partial F_n + B_r(0))/\operatorname{Vol}(F_n) = 0, \text{ for all } r > 0.$

Definition. Let $\{F_n\}_{n\geq 1}$ be a van Hove sequence. The Delone set Λ has *uniform cluster frequencies* (UCF) (relative to $\{F_n\}_{n\geq 1}$) if for any non-empty cluster P, the limit

$$freq(P, \Lambda) = \lim_{n \to \infty} \frac{L_{\mathsf{P}}(x + F_n)}{\operatorname{Vol}(F_n)} \ge 0$$

exists uniformly in $x \in \mathbf{R}^d$.

Unique Ergodicity

A topological dynamical system is *uniquely ergodic* if it has a unique invariant Borel probability measure.

THEOREM 4. Let Λ be a Delone set. Then the dynamical system $(X_{\Lambda}, \mathbb{R}^d)$ is uniquely ergodic iff Λ has UCF.

COROLLARY 5. The existence of UCF does not depend on the van Hove sequence.

THEOREM 6. [Lagarias & Pleasants '03] Any linearly repetitive Delone set has UCF.

Proof Sketch of UCF \Rightarrow **Unique Ergodicity.** Using approximation by step-functions, we obtain from UCF

$$(I_n)(\Gamma, f) := \frac{1}{\operatorname{Vol}(F_n)} \int_{F_n} f(-g + \Gamma) \, dg \to \text{ const},$$
(1)

as $n \to \infty$, for any continuous $f : X_{\Lambda} \to \mathbf{C}$, uniformly in $\Gamma \in X_{\Lambda}$, with the constant depending on f.

For any invariant measure μ , exchanging the order of integration yields

$$\int_{X_{\wedge}} I_n(\Gamma, f) \, d\mu(\Gamma) = \int_{X_{\wedge}} f \, d\mu,$$

so by the Dominated Convergence Theorem, the constant in (1) is $\int_{X_{\Lambda}} f d\mu$. If there is another invariant measure ν , then $\int_{X_{\Lambda}} f d\mu = \int_{X_{\Lambda}} f d\nu$ for all $f \in C(X_{\Lambda})$, hence $\mu = \nu$.

Measure-preserving systems

For Λ with UCF, $(X_{\Lambda}, \mathbb{R}^d)$ has a unique invariant measure μ , so we consider the measure-preserving system $(X_{\Lambda}, \mu, \mathbb{R}^d)$.

Tools and Concepts of Ergodic Theory: Ergodic Theorem, mixing properties, spectral properties.

Eigenvalues

Consider the associated group of unitary operators $\{U_g\}_{q \in \mathbb{R}^d}$ on $L^2 = L^2(X_{\Lambda}, \mu)$:

$$U_g f(\mathcal{S}) = f(-g + \mathcal{S}).$$

A vector $\alpha = (\alpha_1, \dots, \alpha_d) \in \mathbf{R}^d$ is an eigenvalue for the \mathbf{R}^d -action if there exists an eigenfunction $f \in L^2(X_{\Lambda}, \mu)$, that is, $f \not\equiv 0$ and

$$U_g f = e^{2\pi i \langle g, \alpha \rangle} f, \ \forall \ g \in \mathbf{R}^d.$$

The set of eigenvalues is a **subgroup** of \mathbf{R}^d .

Pure point spectrum and quasicrystals

The dynamical system $(X_{\Lambda}, \mu, \mathbf{R}^d)$ has *pure point* (or pure discrete) *spectrum* if the linear span of the eigenfunctions is dense in L^2 .

POINTS OF A DELONE SET \longleftrightarrow ATOMS OF A SOLID

The X-ray diffraction spectrum is, in some sense, a "part" of the dynamical spectrum [Dworkin '93]. Bragg peaks are the sharp, bright spots in the diffraction picture, associated with crystals or quasicrystals.

$\mathsf{EIGENVALUES}\longleftrightarrow\mathsf{BRAGG}\mathsf{PEAKS}$

THEOREM 7 [Lee, Moody & S.'03], [Baake & Lenz '04], [Gouéré '05] *Pure point dynamical spectrum is equivalent to pure point diffraction.*

Conditions for Pure Point Spectrum

Suppose that Λ is a repetitive Delone set with UCF. Say that $x \in \mathbb{R}^d$ is a δ -almost period for Λ if

 $freq(\Lambda \setminus (\Lambda + x)) \leq \delta$

(exists by UCF).

THEOREM 8 [S. '98], [Baake & Moody '04], [Gouéré '05] Suppose that Λ is a repetitive Delone set with UCF. Then $(X_{\Lambda}, \mu, \mathbb{R}^d)$ has pure point spectrum iff for every $\delta > 0$, the set of δ -almost periods for Λ is relatively dense in \mathbb{R}^d .