Diffraction and discrete geometry

Daniel Lenz, TU Chemnitz

The Plan

- Introduction
- Prerequisites: Measures, convolutions, Fourier transform
- Periodic sets: Pure point diffraction via Poisson summation formula
- Model sets: Pure point diffraction via almost periodicity
- Random sets: Appearance of an absolutely continuous component
- Difffraction and dynamical systems and all that....

Introduction

intersity, pur point symmetry . S/B/G/C · peaks T pum point SCREEN ((m)) (1+ +) (w) = 4(d_x w) E A ray marson a veta dynamical system (Q12, m) SOLID NAIS Γ $\mathbb{R}^{\mathbb{N}}$ л х X x positions of atoms BEAM

DIFFRACTION

Dirac comb di E di E C-2Eilx-JIE X1961 1 Xyer dx-y F L ر * می م **1**< A c R^N finite mut . 米 $F(\delta_{\Lambda})$ 11 Simplest case Re Corre N× N×

Prerequisites

Measures and convolutions

G locally compact Abelian group, e.g. \mathbb{R}^N , \mathbb{Z}^N , $\mathbb{T}^N := \mathbb{R}^N / \mathbb{Z}^N$.

Definition 1. A (positive) measure on G is a linear map

 $\mu: C_c(G) \longrightarrow \mathbb{C}$

satisfying $\mu(\varphi) \geq 0$, whenever $\varphi \geq 0$.

Notation: $\int \varphi d\mu = \int \varphi(x) d\mu(x) = \mu(\varphi)$.

Example. Lebesgue measure on $\mathbb{R}^N \varphi \mapsto \int \varphi(x) dx$.

Example. $\delta_x : C_c(G) \longrightarrow \mathbb{C}, \varphi \mapsto \varphi(x)$ for $x \in G$.

Example. $\Lambda \in G$ finite. $\delta_{\Lambda} = \sum_{x \in \Lambda} \delta_x$, i. e.

$$\delta_{\Lambda} : C_c(G) \longrightarrow \mathbb{C}, \ \delta_{\Lambda}(\varphi) = \sum_{x \in \Lambda} \varphi(x).$$

Example.
$$G = \mathbb{R}^N$$
. $\delta_{\mathbb{Z}^N} = \sum_{x \in \mathbb{Z}^N}$, i. e.
 $\delta_{\mathbb{Z}^N} : C_c(\mathbb{R}^N) \longrightarrow \mathbb{C}, \ \delta_{\mathbb{Z}^N}(\varphi) := \sum_{x \in \mathbb{Z}^N} \varphi(x).$

Definition 2. A measure is called bounded or finite if it can be extended to $C_b(G)$. (" $\mu(1) < \infty$ ").

Example. $G = \mathbb{R}$, $c_n \ge 0$, with $\sum_{n=1}^{\infty} c_n < \infty$. Then $\sum_{n \in \mathbb{N}} c_n \delta_n$ is a finite measure.

Definition 3. A measure μ on G is called translation bounded if for one (all) $\varphi \in C_c(G)$ with $\varphi \ge 0$, $\varphi \ne 0$, there exists an $C_{\varphi} \ge 0$ with

$$\mu(\varphi(\cdot - x)) \le C_{\varphi}$$

for all $x \in G$.

Example. $\Lambda \subset \mathbb{R}^N$ uniformly discrete (i.e. exists an r > 0 with $||x - y|| \ge 2r$ for all $x, y \in \Lambda$ with $x \neq y$). Then,

$$\delta_{\Lambda}: C_{c}(\mathbb{R}^{N}) \longrightarrow \mathbb{C}, \ \varphi \mapsto \sum_{x \in \Lambda} \varphi(x),$$

is a translation bounded measure.

Example. $G = \mathbb{R}^N$. $\delta_{\mathbb{Z}^N}$.

Definition 4. For measures μ and ν the convolution $\mu * \nu$ is the measure defined by

$$\mu * \nu(\varphi) = \int \int \varphi(x+y) d\mu(x) d\nu(y).$$

Example. $\delta_x * \delta_y = \delta_{x+y}$.

Example. $\Lambda \subset \mathbb{R}^N$ finite:

$$\delta_{\Lambda} * \delta_{-\Lambda} = \left(\sum_{x \in \Lambda} \delta_x\right) * \left(\sum_{y \in \Lambda} \delta_{-y}\right) = \sum_{x,y \in \Lambda} \delta_{x-y}.$$

The Fourier transform on \mathcal{S}

The Schwartz space $S := S(\mathbb{R}^N)$ is defined by $\{\varphi \in C^{\infty}(\mathbb{R}^N) : p_k(\varphi) < \infty \text{ for all } k \in \mathbb{N}\},\$ where

$$p_k(\varphi) := \sup_{x \in \mathbb{R}^N, \alpha_1 + \cdots + \alpha_N \leq k} \{ (1 + |x|^k) | \partial_{x_1}^{\alpha_1} \cdots \partial_{x_N}^{\alpha_N} \varphi(x) | \}.$$

For $\varphi,\psi\in\mathcal{S}\text{, we define}$

$$\mathcal{F}(\varphi)(\xi) := \widehat{\varphi}(\xi) := \int e^{-2\pi i \xi \cdot x} \varphi(x) dx$$
$$\check{\mathcal{F}}(\psi)(x) := \check{\psi}(x) := \int e^{2\pi i \xi \cdot x} \psi(\xi) d\xi.$$

and

$$\varphi * \psi(x) := \int \varphi(x-y)\psi(y)dy.$$

Theorem 5. $\mathcal{F} : \mathcal{S} \longrightarrow \mathcal{S}$ is bijective with inverse $\check{\mathcal{F}}$. Moreover,

 $\mathcal{F}(\varphi * \psi) = \mathcal{F}(\varphi)\mathcal{F}(\psi), \ \mathcal{F}(e^{2\pi i\eta \cdot}\varphi)(\xi) = \mathcal{F}(\varphi)(\xi - \eta).$

$$\begin{split} \mathcal{S}(\mathbb{T}^N) &:= C^{\infty}(\mathbb{T}^N) \simeq \{\varphi \in C^{\infty}(\mathbb{R}^N) : \ \mathbb{Z}^N - \text{periodic}\}, \\ \mathcal{S}(\mathbb{Z}^N) &:= \{\varphi : \ \mathbb{Z}^N \longrightarrow \mathbb{C} : \ \sup(1 + |n|^k) |\varphi(n)| < \\ &\propto all \ k \in \mathbb{N}\}. \end{split}$$

Define

$$(\mathcal{F}_{\mathbb{T}^{N}}\varphi)(k) := \int_{\mathbb{T}^{N}} e^{-2\pi i k \cdot q} \varphi(q) dq$$
$$(\mathcal{F}_{\mathbb{Z}^{N}}\psi)(q) := \sum_{k \in \mathbb{Z}^{N}} e^{2\pi i k \cdot q} \psi(k).$$

Theorem 6. $\mathcal{F}_{\mathbb{T}^N}$: $\mathcal{S}(\mathbb{T}^N) \longrightarrow \mathcal{S}(\mathbb{Z}^N)$ is bijective with inverse $\mathcal{F}_{\mathbb{Z}^N}$.

Two useful formulae:

For $\varphi \in S$, define $\tilde{\varphi}$ by $\tilde{\varphi}(x) := \overline{\varphi}(-x)$. Then, $\mathcal{F}(\tilde{\varphi}) = \overline{\mathcal{F}(\varphi)}$. In particular,

$$\mathcal{F}(\varphi * \widetilde{\varphi}) = |\mathcal{F}(\varphi)|^2$$

and

$$\mathcal{F}(\psi * \widetilde{\psi})(\xi) = |\mathcal{F}(\varphi)|^2(\xi - \eta)$$

for $\psi = e^{2\pi i \eta \cdot \varphi}$.

Distributions and measures

Definition 7. A linear map

$$\phi: \mathcal{S} \longrightarrow \mathbb{C}$$

is called a tempered distribution if $\phi(\varphi_n) \longrightarrow \phi(\varphi)$ whenever $p_k(\varphi_n - \varphi) \longrightarrow 0$, $n \to \infty$, for every $k \in \mathbb{N}$. The set of all tempered distributions is denoted by S'.

Example. If g is a bounded function on \mathbb{R}^N , then ϕ_g with

$$\phi_g(\varphi) := \int \varphi(x)g(x)dx$$

belongs to \mathcal{S}' .

Example. If μ is a translation bounded measure on $\mathbb{R}^N,$ then ϕ with

$$\phi_{\mu}(\varphi) := \int \varphi d\mu$$

belongs to S' and satisfies $\phi_{\mu}(|\varphi|^2) \geq 0$ for every $\varphi \in S$.

Proposition 8. Let $\phi \in S'$ be given with $\phi(|\varphi|^2) \ge 0$ for every $\varphi \in S$. Then $\phi = \phi_{\mu}$ for a suitable measure μ .

On \mathcal{S}' we define the Fourier transform \mathcal{F} by $\mathcal{F}: \mathcal{S}' \longrightarrow \mathcal{S}', \ \mathcal{F}(\phi)(\varphi) := \phi(\widehat{\varphi}).$

Example. μ finite measure. Then,

$$\mathcal{F}(\mu)(\xi) = \int e^{-2\pi i \xi \cdot x} d\mu(x).$$

In particular, $\mathcal{F}(\delta_x)(\xi) = e^{-2\pi i \xi \cdot x}$.

Proposition 9. μ , ν finite measures. Then,

$$\mathcal{F}(\mu * \nu) = \mathcal{F}(\mu)\mathcal{F}(\nu).$$

Proposition 10. $\varphi \in C_c^{\infty}(\mathbb{R}^N)$, γ translation bounded measure,

$$(\varphi * \gamma)(x) := \int \varphi(x-y) d\gamma(y).$$

Then,

$$\mathcal{F}(\varphi * \gamma) = \widehat{\varphi}\widehat{\gamma}.$$

Poisson summation formula and diffraction for crystallographic sets

Theorem 11. (*PSF*) Let Γ be a lattice in \mathbb{R}^N with dual lattice Γ^* and density dens(Γ). Then,

 $\widehat{\delta_{\Gamma}} = dens(\Gamma) \, \delta_{\Gamma^*}.$

Definition 12. $\Lambda \subset \mathbb{R}^N$ is called crystallographic if it is uniformly discrete and invariant under a lattice Γ . Thus, $\Lambda = F + \Gamma$ with a lattice Γ and F finite.

Theorem 13. $\Lambda = F + \Gamma$ crystallographic. Then,

$$\widehat{\delta_A} = \sum_{k \in \Gamma^*} c_k \delta_k$$

with $c_k = dens(\Gamma) \, \widehat{\delta_F}(k)$.

Note: In the situation of the theorem it is natural to define

$$I := I_A := \sum_{k \in \Gamma^*} |c_k|^2 \delta_k.$$

Diffraction for infinite sets: General framework

(following Hof '95 a, see Cowley '95 as well)

For $n \in \mathbb{N}$ let C_n be the cube in \mathbb{R}^N with side length 2n centred in the origin.

The autocorrelation measure

Definition 14. $\Lambda \subset \mathbb{R}^N$ uniformly discrete. Then, the autocorrelation γ of Λ is defined by

$$\gamma := \gamma_{\Lambda} := vague - \lim_{n \to \infty} \frac{1}{|C_n|} \delta_{\Lambda \cap C_n} * \delta_{-\Lambda \cap C_n}$$

(if the limit exists).

Notation and note:

$$\gamma_n := \frac{1}{|C_n|} \delta_{A \cap C_n} * \delta_{-A \cap C_n} = \frac{1}{|C_n|} \sum_{\substack{x, y \in A \cap C_n}} \delta_{x-y}$$
$$= \sum_{z \in A - A} \frac{\left(\sum_{x, y \in A \cap C_n, x-y=z} 1\right)}{|C_n|} \delta_z.$$

Proposition 15. Λ uniformly discrete with minimal distance 2r. Then,

$$\gamma(B_s(0)) = dens(\Lambda)$$

for every s < r.

Example. $\Lambda = \Gamma$ lattice in \mathbb{R}^N . Then,

$$\gamma_{\Gamma} = \operatorname{dens}(\Gamma)\delta_{\Gamma}.$$

In particular, $\gamma_{\mathbb{Z}^N} = \delta_{\mathbb{Z}^N}$.

Example. $\Lambda = F + \Gamma$ crystallographic. Then,

$$\gamma_A = \operatorname{dens}(\Gamma)\delta_F * \delta_{-F} * \delta_{\Gamma}.$$

Recall: A measure μ is called positive definite if $\mu(\varphi * \tilde{\varphi}) \geq 0$ for all $\varphi \in C_c(G)$. $\check{\mu}$ is the measure defined by

$$\int \varphi(x) d\check{\mu}(x) = \int \varphi(-x) d\mu(x).$$

Proposition 16. Let γ be the autocorrelation of Λ .

(a)
$$\gamma = \check{\gamma}$$
.

(b) γ is translation bounded.

(c) γ is positive definite.

The autocorrelation and finite local complexity

Question: $\gamma = \gamma_A$. Is

$$\gamma = \sum_{z \in \Lambda - \Lambda} \eta(z) \delta_z$$

with suitable $\eta(z) \ge 0$?

Example. Let $\Lambda \subset \mathbb{R}$ be given by $\Lambda = \{0\} \cup \{n + \frac{1}{n+1} : n \in \mathbb{N}\} \cup \{-n - \frac{1}{1+n} : n \in \mathbb{N}\}.$ Then, $\gamma_{\Lambda} = \gamma_{\mathbb{Z}} = \delta_{\mathbb{Z}}.$

Proposition 17. If $\sharp(\Lambda - \Lambda) \cap B_R(0) < \infty$ for every R > 0, then $\gamma = \sum_{z \in \Lambda - \Lambda} \eta(z) \delta_z$ (if γ exists).

Lemma 18. For $\Lambda \subset \mathbb{R}^N$ uniformly discrete the following assertions are equivalent:

(i)
$$\sharp (\Lambda - \Lambda) \cap B_R(0) < \infty$$
 for every $R > 0$.

(ii) $\Lambda - \Lambda$ is discrete and closed.

(iii) Λ is of finite local complexity i.e.

 $\sharp\{(\Lambda - x) \cap B_R(0) : x \in \Lambda\} < \infty$ for all R > 0.

The diffraction measure

Theorem 19. Let γ be the autocorrelation of Λ . Then, $\hat{\gamma}$ is a translation bounded measure and

$$\widehat{\gamma} = vague - \lim_{n \to \infty} \frac{1}{|C_n|} I_{A \cap C_n},$$

where $I_{A\cap C_n} = \mathcal{F}(\delta_{A\cap C_n} * \delta_{-A\cap C_n}) = |\mathcal{F}(\delta_{A\cap C_n})|^2$.

Definition 20. $\Lambda \subset \mathbb{R}^N$ uniformly discrete with autocorrelation γ . Then, $\hat{\gamma}$ is called the diffraction measure of Λ .

Example. $\Lambda = \Gamma$ lattice. Then,

$$\hat{\gamma} = (\operatorname{dens}(\Gamma))^2 \delta_{\Gamma^*}.$$

Example. $\Lambda = F + \Gamma$ crystallographic. Then,

$$\widehat{\gamma} = \sum_{k \in \Gamma^*} m_k \delta_k$$

with $m_k = (\text{dens}(\Gamma))^2 |\widehat{\delta_F}|^2(k)$.

Cut and project schemes and model sets

(going back to Meyer '72, see e.g. Moody '00 and Schlottmann '00 as well).

A cut and project scheme $(\mathbb{R}^N, H, \tilde{L})$ is given by:

where

- H is a locally compact, σ -compact group, called the *internal space*,
- \tilde{L} is a *lattice* in $\mathbb{R}^N \times H$,
- π and π_{int} are the canonical projections.
- π is one-to-one and π_{int} has dense range.

Then, $L := \pi(\tilde{L})$ and $L^* := \pi_{int}(\tilde{L})$ are groups. As π is one-to-one, there is a uniquely defined group homomorphism

$$\star : L \longrightarrow L^{\star}$$

such that $(x,h) \in \tilde{L}$ if and only if $h = x^*$.

Given an cut and project scheme and a so called window $W \subset H$ we define

$$\mathcal{L}(W) := \{ x \in L : x^{\star} \in W \}.$$

Example. Fibonacci chain.

Example. Penrose tiling.

Let a cut and project scheme $(\mathbb{R}^N, H, \widetilde{L})$ be given and

 $\mathcal{A}(W) := \{ x \in L : x^* \in W \}.$

Proposition 21. $\emptyset \neq V \subset H$ open. Then, A(V) is relatively dense.

Proposition 22. $K \subset H$ compact. Then, $\lambda(K)$ is uniformly discrete.

Definition 23. If W is a non-empty compact subset of H, which is the closure of its interior, then $\mathcal{L}(W)$ is called a model set. A model set is called regular if ∂W has Haar measure 0 in H,

Theorem 24. Let Λ be a model set. Then, Λ is uniformly discrete and relatively dense. Moreover, $\Lambda - \Lambda$ is uniformly discrete as well. In particular, Λ has finite local complexity.

Definition 25. A set $\Lambda \subset \mathbb{R}^N$ is called a Meyer set if $\Lambda - \Lambda$ is uniformly discrete.

Theorem 26. (Meyer) Any Meyer set is a subset of a model set.

See Lagarias '96, Moody ' 97, Moody '00 for further discussion as well.

Uniform distribution

Recall: $f : H \longrightarrow \mathbb{R}$ is called Riemann-integrable if for every $\varepsilon > 0$, there exist $\varphi, \psi \in C_c(H)$ with

$$arphi \leq f \leq \psi \; \; ext{and} \; \; \int (\psi - arphi) dh \leq arepsilon.$$

Note:

- Any Riemann-integrable function vanishes outside a compact set.
- The characteristic function χ_W of a compact set W is Riemann-integrable if and only if the boundary ∂W of W has Haar measure zero.

Theorem 27. (Uniform distribution) Let $(\mathbb{R}^N, H, \tilde{L})$ be a cut and project scheme. Then, there exists a c > 0 such that

$$\lim_{n \to \infty} \frac{1}{|C_n|} \sum_{x \in C_n \cap L} f(x^*) = c \int_H f(h) dh$$

for every Riemann-integrable $f : H \longrightarrow \mathbb{R}$.

Going back to Weyl '16, see Schlottmann '98, Baake/Moody '00, Moody '02.

Almost periodic functions and a result of Wiener

Lemma 28. For $a \in C_b(\mathbb{R}^N)$ the following assertions are equivalent:

(i) $\overline{\{a(\cdot - t) : t \in \mathbb{R}^n\}}$ is compact in $(C_b(\mathbb{R}^N), \|\cdot\|_{\infty})$.

(ii) For each $\varepsilon > 0$, the set

 $\{t \in \mathbb{R}^N : \|a(\cdot - t) - a\|_{\infty} \le \varepsilon\}$

is relatively dense in \mathbb{R}^N .

Definition 29. A function satisfying the conditions of the previous lemma is called almost periodic.

Notation: The set of ε -almost-periods appearing in (ii) is denoted by AP(ε).

Example. For each $\xi \in \mathbb{R}^N$ the function $y \mapsto e^{-2\pi i \xi \cdot y}$ is almost periodic.

Theorem 30. The almost periodic functions form a closed sub algebra of $(C_b(\mathbb{R}^N), \|\cdot\|_{\infty})$, which is closed under taking complex conjugates. Recall: μ measure on \mathbb{R}^N . Then,

$$\mu = \mu_c + \mu_{pp},$$

where $\mu_c(\{x\}) = 0$ for every $x \in \mathbb{R}^N$ and

$$\mu_{pp} = \sum_{n=1}^{\infty} c_n \delta_{x_n}$$

with suitable $x_n \in \mathbb{R}^N$ $c_n \ge 0$, $n \in \mathbb{N}$. If μ is finite, then $\sum_{n=1}^{\infty} c_n < \infty$.

Theorem 31. (Wiener) Let μ be a finite measure on \mathbb{R}^N . Then,

$$\lim_{n \to \infty} \frac{1}{|C_n|} \int_{C_n} |\hat{\mu}(\xi)|^2 d\xi = \sum_{x \in \mathbb{R}^N} |\mu(\{x\})|^2.$$

Theorem 32. (Wiener) Let μ be a finite measure on \mathbb{R}^N . Then, μ is a pure point measure if and only if $\hat{\mu}$ is almost periodic.

Diffraction for model sets

(following Baake/Moody '04)

Let a cut and project scheme $(\mathbb{R}^N, H, \widetilde{L})$ be given.

Proposition 33. Let $W \subset H$ be given such that χ_W is Riemann-integrable and set $\Lambda := \mathcal{L}(W)$. Then,

$$\gamma_{\Lambda} = \sum_{z \in \Lambda - \Lambda} \eta(z) \delta_z$$

with $\eta(z) = \int_{H} \chi_{W}(h) \chi_{W}(h - z^{*}) dh = \chi_{W} * \chi_{-W}(z^{*}).$

Note: If we define $\eta(z) = \chi_W * \chi_{-W}(z^*)$ for arbitrary $z \in L$, then $\eta(z) = 0$ for $z \notin \Lambda - \Lambda$. In particular, we have

$$\gamma_A = \sum_{z \in L} \eta(z) \delta_z.$$

Lemma 34. Let $W \subset H$ be given such that χ_W is Riemann-integrable and set $\Lambda := \mathcal{L}(W)$. Let $\gamma_A = \sum_{x \in L} \eta(z) \delta_z$ be the associated autocorrelation. Then, for every $\varepsilon > 0$, the set

 $\{z \in L : |\eta(x-z) - \eta(x)| \le \varepsilon \text{ for all } x \in L\}$ is relatively dense in \mathbb{R}^N . We can now state the main result on diffraction for model sets.

Theorem 35. Let $W \subset H$ be compact with nonempty interior and boundary of Haar measure zero. Set $\Lambda := \mathcal{L}(W)$. Then, Λ is pure point diffractive *i.e.* $\hat{\gamma}$ is a pure point measure.

Note: Proof shows: $\hat{\gamma}$ pure point if and only if $\gamma * \varphi * \tilde{\varphi}$ almost periodic for all $\varphi \in C_c^{\infty}$.

(At least implicitly) formulated soon after discovery of quasicrystals. Proven in Hof '98, (see Hof '95 a) as well), Schlottmann '00. Proof given here follows Baake/Moody '04. **Calculating** $\hat{\gamma}$ (following Hof '95 a).

Assume the situation of the previous theorem.

Define

 $\widetilde{L}^{\perp} := \{ (\xi, \sigma) \in \mathbb{R}^N \times \widehat{H} : \forall (l, l^*) \in \widetilde{L} \ e^{-2\pi i \xi l} \sigma(l^*) = 1 \}.$ Then, \star induces a map

$$\star : \pi_{\mathbb{R}^N}(\widetilde{L}^{\perp}) \longrightarrow \pi_{\widehat{H}}(\widetilde{L}^{\perp})$$

such that $(\xi, \sigma) \in \tilde{L}^{\perp}$ if and only if $\sigma = \xi^*$.

Proposition 36. (a) Let $\xi \in \pi_{\mathbb{R}^N}(\tilde{L}^{\perp})$ be given and $\sigma := \xi^*$. Then,

$$c_{\xi} := \lim_{n \to \infty} \frac{1}{|C_n|} \sum_{x \in (t+C_n) \cap \Lambda} e^{-2\pi i \xi \cdot x} = \int_W \sigma(h) dh$$

uniformly in $t \in \mathbb{R}^N$.

(b) Let $\xi \notin \pi_{\mathbb{R}^N}(\widetilde{L}^{\perp})$ be given. Then,

$$c_{\xi} := \lim_{n \to \infty} \frac{1}{|C_n|} \sum_{x \in (t+C_n) \cap \Lambda} e^{-2\pi i \xi \cdot x} = 0$$

uniformly in $t \in \mathbb{R}^N$.

Theorem 37. $\hat{\gamma} = \sum_{(\xi,\sigma)\in \tilde{L}^{\perp}} |c_{\xi}|^2 \delta_{\xi}$.

Note: \tilde{L}^{\perp} is canonically isomorphic to $(\mathbb{R}^N \times H)/\tilde{L}$.

See Bombieri/Taylor '86 as well.

Diffraction for random sets

Bernoulli model

Choose $k \in \mathbb{Z}^N$ with probability 1/2. This yields a random set $\omega \subset \mathbb{Z}^N$. Then, for typical ω :

$$\eta(z) = \lim_{n \to \infty} \frac{1}{|C_n|} \sharp \{ x, y \in \omega \cap C_n : x - y = z \}$$
$$= \begin{cases} \frac{1}{2} : z = 0 \\ \vdots \\ \frac{1}{4} : z \neq 0. \end{cases}$$

Thus

$$\gamma = \frac{1}{4}\delta_{\mathbb{Z}^N} + \frac{1}{4}\delta_0.$$

In particular,

$$\widehat{\gamma} = \frac{1}{4} \delta_{\mathbb{Z}^N} + \frac{1}{4}$$

Appearance of an absolutely continuous component in the spectrum!

Lattice system with disorder (following Baake/Sing '04)

Let $\omega \subset \mathbb{Z}^N$ be given such that

$$\eta(z):=\lim_{n\to\infty}\frac{1}{|C_n|}\sharp\{x,y\in\omega\cap C_n:x-y=z\}$$
 exists for every $z\in\mathbb{Z}^N.$ Then,

$$\gamma_{\omega} = \sum_{z \in \mathbb{Z}^N} \eta(z) \delta_z.$$

For Gibbsian models it turns out that (in certain energy regions)

$$\eta(z) = \frac{1}{4} + s(z)$$

with s(z) rapidly decaying. Then, $\mathcal{F}_{\mathbb{Z}^N}(s)$ exists and we have

$$\widehat{\gamma} = \frac{1}{4} \delta_{\mathbb{Z}^N} + \widehat{s}.$$

Random displacement model (following Hof 95 b).

Situation: Let $\Lambda \subset \mathbb{R}^N$ be given with

- finite local complexity,

- existence of pattern frequencies, i.e.

$$\lim_{n \to \infty} \frac{1}{|C_n|} \sharp \{ x \in \Lambda \cap C_n : x + P \subset \Lambda \}$$

exists for all $P \subset \mathbb{R}^N$ finite.

Let γ be the autocorrelation of \varLambda and

$$n_0 = \gamma(\{0\}) = \operatorname{dens}(\Lambda).$$

Let $\{s_x\}_{x \in \Lambda}$ be independent, identically distributed random variables with values in \mathbb{R}^N . Denote their common distribution by ν . Set

$$\mu := \delta_{\Lambda}, \quad \mu' := \sum_{x \in \Lambda} \delta_{x+s_x}.$$

Theorem 38. Assume the above situation. Then, with probability one the autocorrelation

$$\gamma' := \lim_{n \to \infty} \frac{1}{|C_n|} \mu'|_{C_n} * \mu' |_{C_n}$$

exists and

$$\gamma' = \gamma * \nu * \widetilde{\nu} + n_0(\delta_0 - \nu * \widetilde{\nu})$$

holds. In particular,

$$\widehat{\gamma'} = |\widehat{\nu}|^2 \widehat{\gamma} + n_0 (1 - |\widehat{\nu}|^2).$$

Summary and warning

We have confirmed the "meta theorem"

- Order \equiv pure point diffraction.
- Disorder \equiv absolutely continuous diffraction component.

for three classes of examples: Periodic sets, Model sets and (certain) random sets.

However, the Bernoulli model and the Rudin-Shapiro substitution (with suitable weights) yield the same diffraction measure.

References:

- M. Baake, A Guide to mathematical quasicrystal, in: Quasicrystals (eds.) Suck J-B, Schreiber M and Huler P (Berlin: Springer)
- M. Baake, Diffraction of weighted lattice subsets, Can. Math. Bulletin 45 (2002) 483–498;
- M. Baake and D. Lenz, Dynamical systems on translation bounded measures: Pure point dynamical and diffraction spectra, Ergodic Theory & Dynamical Systems, 24 (2004) 1867-1893.
- M. Baake, D. Lenz, Deformation of Delone dynamical systems and pure point diffraction J. Fourier Anal. Appl. 11 (2005), 125–150.
- M. Baake, D. Lenz and R. V. Moody, *Characterization of model sets by dynamical systems*, in preparation.
- M. Baake and R. V. Moody, Self-similar measures for quasicrystals, in: Directions in Mathematical Quasicrystals, eds. M. Baake and R. V. Moody, CRM Monograph Series, vol. 13, AMS, Rhode Island (2000) 1–42
- M. Baake and R. V. Moody, Weighted Dirac combs with pure point diffraction, J. Reine Angew. Math. (Crelle), **573** (2004), 61–94.
- M. Baake, B. Sing, Diffraction spectrum of lattice gas models above T_c Lett. Math. Phys. 68 (2004) 165–173.
- E. Bombieri, J. E. Taylor, Which distributions of matter diffract? An initial investigation International workshop on aperiodic crystals (Les Houches, 1986). J. Physique 47 (1986), no. 7, Suppl. Colloq. C3, C3-19–C3-28.
- S. Dworkin, Spectral theory and X-ray diffraction, J. Math. Phys 34 (1993), 2965–2967.
- A.C.D. van Enter and J. Miękisz, How should one define a (weak) crystal?, J. Stat. Phys. 66 (1992), 1147–1153.
- J.-B. Gouéré, *iffraction et mesure de Palm des processus ponctuels* (French)
 C. R. Math. Acad. Sci. Paris 336 (2003), 57–62.
- J.-B. Gouéré, Quasicrystals and almost periodicity, Comm. Math. Phys. 255 (2005), 655–681.
- (a) A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995) 25-43.
- (b) A. Hof, Diffraction by aperiodic structures at high temperatures, J. Phys. A: Math. Gen. 28 (1995) 57–62.

- A. Hof, Uniform distribution and the projection method, in: Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10, AMS, Providence, RI (1998) 201–206.
- J. Lagarias, Meyer's concept of quasicrystal and quasiregular sets Comm. Math. Phys. **179** (1996) 365–376.
- J.-Y. Lee and R. V. Moody, A characterization of multi colour model sets, Preprint 2004.
- J.-Y. Lee, R. V. Moody and B. Solomyak, Pure point dynamical and diffraction spectra, Annales Henri Poincaré, 3 (2002) 1003–1018.
- R. V. Moody, Model sets: A survey, in: From Quasicrystals to More Complex Systems, eds. F. Axel, F. Dénoyer and J. P. Gazeau, Springer, Berlin (2000) 145–166.
- R. V. Moody, Uniform distribution in model sets, Can. Math. Bulletin 45 (2002) 123–13.
- R. V. Moody and N. Strungaru, *Point sets and dynamical systems in the autocorrelation topology*, Can. Math. Bulletin, **47** (2004) 82–99.
- M. Queffélec, Substitution Dynamical Systems Spectral Analysis, Lecture Notes in Mathematics 1294, Springer-Verlag. 1987.
- C. Richard, Dense Dirac combs in Euclidean space with pure point diffraction, J. Math. Phys. 44 (2003), 4436–4449.
- E. A. Robinson, *The dynamical properties of Penrose tilings* Trans. Amer. Math. Soc. **348** (1996) 4447–4464.
- M. Schlottmann, Cut-and-project sets in locally compact Abelian groups, in: Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10, AMS, Providence, RI (1998), pp. 247–264.
- M. Schlottmann, Generalized model sets and dynamical systems, in: Directions in Mathematical Quasicrystals, eds. M. Baake and R. V. Moody, CRM Monograph Series, vol. 13, AMS, Providence, RI (2000), pp. 143– 159.
- B. Solomyak, Spectrum of dynamical systems arising from Delone sets, in: Quasicrystals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10, AMS, Providence, RI (1998), pp. 265–275.
- B. Solomyak, Dynamics of self-similar tilings, Ergodic Th. & Dynam. Syst. 17 (1997) 695–738; Erratum: Ergodic Th. & Dynam. Syst. 19 (1999) 1685.
- N. Strungaru, Almost periodic measures and long-range order in Meyer sets, Discrete Comput. Geom. 33 (2005) 483–505.

• H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916) 313–352.

Four books:

- M. Baake and R. V. Moody, (eds.) *Directions in Mathematical Quasicrys*tals, CRM Monograph Series, vol. 13, AMS, Rhode Island (2000) 1–42
- J. M. Cowley, *Diffraction Physics*, 3rd ed., North-Holland, Amsterdam (1995).
- Y. Meyer, Algebraic numbers and harmonic analysis, North Holland, Amsterdam (1972).
- R. V. Moody, (ed.) The mathematics of long-range aperiodic order Proceedings of the NATO Advanced Study Institute held in Waterloo, ON, August 21–September 1, 1995. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences, Kluwer Academic Publishers Group, Dordrecht, 1997