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T he Plan

Introduction

Prerequisites: Measures, convolutions, Fourier
transform

Periodic sets: Pure point diffraction via Poisson
summation formula

Model sets: Pure point diffraction via almost
periodicity

Random sets: Appearance of an absolutely con-
tinuous component

Difffraction and dynamical systems and all
that....



Introduction
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Prerequisites
Measures and convolutions

G locally compact Abelian group, e.g. R, 7N
TN := RN /ZN.

Definition 1. A (positive) measure on G is a linear
map

satisfying u(p) > 0, whenever ¢ > 0.

Notation: [du = [p(z)du(z) = u(p).
Example. Lebesgue measure on RN ¢ — [o(z)dz.
Example. §; : C.(G) — C, ¢ +— o(z) for z € G.

Example. A € G finite. 64 = ,cA 90z, 1. €.

54 :Ce(G) — C, d4(p) = ) o(x).
re



Example. G=R". §,y =% _,n, i. €

Son i Ce(RY) — C, d,n(p) = Y o(x).
xeZN

Definition 2. A measure is called bounded or finite
if it can be extended to Cp(G). (" u(l) < o0”).

Example. G =R, ¢, > 0, with >>° ; cn < oco. Then
> neNcndn is a finite measure.

Definition 3. A measure i on GG is called translation
bounded if for one (all) ¢ € C.(G) with o > 0, ¢ #= 0,
there exists an C, > 0 with

ple(-—x)) < Cyp
for all x € .

Example. A c RY uniformly discrete (i.e. exists an
r > 0 with ||z —y|| > 2r for all x,y € A with x # y).
Then,

54 Ce(RY) — C, p— > p(a),
xeA

is a translation bounded measure.

Example. G =RY. §,y.



Definition 4. For measures i and v the convolution
u*x v is the measure defined by

prv(e) = [ [ oo+ y)du@)dv(y).
Example. 0y * oy = 0,4,

Example. A c RV finite:

g *x0_ = (Z 53;) * (Z 5y> = Z Og—y-

xeA ye/ x,ye/



The Fourier transform on S

The Schwartz space S := S(RY) is defined by

{o e C®RYN) : pp(p) < o for all k € N},

where

pr(p) 1= sup {(A+]2|")|651 - - - 02N (@)}
zeRN a14an<k

For po,¢v € S, we define

F(@)(©) = ¢(©) i= [ e 2™ %p(a)da

F) (@) i= (@) i= [ 2Ty (6)de.
and

o+ 0(@) = [ pla - Py

Theorem 5. F : S — S is bijective with inverse F.
Moreover,

Flo ) = F()F@), FE2™Te) (&) = F(e)(€—n).



S(TN) := C®(TN) ~ {p € C*RN) : ZN —periodic},

S(ZN)Y == {o : ZN — C : sup(1l 4+ [n|®)|e(n)| <
oo all k € N}.

Define

(Fove) (k) = [ e 2R 0(g)dg

TN

(Fon)(q) == 3 e?TR 4y (k).

keZN

Theorem 6. Fpy : S(TVN) — S(Z%) is bijective
with inverse Fon.

Two useful formulae:

For o € S, define ¢ by ¢(x) := ©(—xz). Then,
F(@) = F(p). In particular,

Flp @) = |F(p)[?
and
F(b+)(€) = |F ()| (€ —n)

for ¢ = 2™ .



Distributions and measures
Definition 7. A linear map

o.S — C

is called a tempered distribution if ¢(prn) — d(p)
whenever pi(pn — @) — 0, n — oo, for every k € N.
The set of all tempered distributions is denoted by
S'.

Example. If g is a bounded function on RY, then
pg With

b9(9) = [ p(2)g(w)da
belongs to &’.

Example. If y is a translation bounded measure on
RY, then ¢ with

Pulp) 1= /sodu

belongs to S’ and satisfies ¢,(]p|?) > 0 for every
p€S.

Proposition 8. Let ¢ € S’ be given with ¢(|¢|?) > 0
for every o € S. Then ¢ = ¢, for a suitable measure

.



On S’ we define the Fourier transform F by

F:S8— S, F(o)(p) = 6().

Example. p finite measure. Then,
F(u)(©) = [ e 5T au(a).

In particular, F(8;)(§) = e 276,

Proposition 9. u,v finite measures. Then,

Flpxv) =F(p)Fw).

Proposition 10. o € C®RYN), ~ translation
bounded measure,

(¢ N@) = [z~ dy(y).
T hen,

Fle*7) = ¢7.



Poisson summation formula and
diffraction for crystallographic sets

Theorem 11. (PSF) Let I" be a lattice in RY with
dual lattice I'* and density dens(I'). Then,

5 = dens(I") 6 .
Definition 12. A ¢ RY s called crystallographic if

it is uniformly discrete and invariant under a lattice
I'. Thus, A = F + I' with a lattice I' and F finite.

Theorem 13. A = F 4+ I' crystallographic. Then,

op= > cply
kel™

with ¢, = dens(I") 6 (k).

Note: In the situation of the theorem it is natural
to define



Diffraction for infinite sets: General
framework

(following Hof '95 a, see Cowley '95 as well)

For n € N let C,, be the cube in RY with side length
2n centred in the origin.

T he autocorrelation measure

Definition 14. A ¢ RY uniformly discrete. Then,
the autocorrelation v of A is defined by

. . H 1
T =74 = Vague — n"_>moo C—n(SAﬂCn *0_ ANC),
(if the limit exists).
Notation and note:
1 1
Tn - = C—5Am0n * 5—AﬂCn — C’— Z 5£U—y

. Z (Zaz,yEAﬂCn,x—yzz 1)
z€N—A |Cnl

Proposition 15. A uniformly discrete with minimal
distance 2r. Then,

v(Bs(0)) = dens(A)
for every s < r.




Example. A = I" lattice in RY. Then,

~r = dens(I")dp.

In particular, v,y = 0yn.
Example. A = F + I' crystallographic. Then,

YA = denS(F)5F >I<5_F * 5[’.

Recall: A measure u is called positive definite if

(o x @) > 0 for all ¢ € C.(G). [ is the measure
defined by

[ e@dii(@) = [ o(-w)du(a).
Proposition 16. Let v be the autocorrelation of A.
(a) v=17%.

(b) ~ is translation bounded.

(c) v is positive definite.



The autocorrelation and finite local complexity

Question: v =~v4. Is

vy= ), n(2)d:

zeA—A
with suitable n(z) > 07

Example. Let A C R be given by

1 1

Then, YA = V7 — 52.

Proposition 17. If (A — A) N Br(0) < oo for every
R >0, then v =3 _.ca_an(z)d: (if v exists).

Lemma 18. For A ¢ RN uniformly discrete the fol-
lowing assertions are equivalent:

(i) 4(A—A) N Br(0) < < for every R > 0.
(ii) A — A is discrete and closed.

(iii) A is of finite local complexity i.e.

H{(A—xz)NBr(0) :x € A} < 0
for all R > 0.



T he diffraction measure

Theorem 19. Let ~v be the autocorrelation of A.
Then, 7 is a translation bounded measure and

~ : 1
N = vague — n||_>moo C—nl/mcn,

where Iync, = F(Sanc, * 0_anc,) = [F(Sanc,)|?

Definition 20. A ¢ RY uniformly discrete with au-
tocorrelation ~v. Then, 7 is called the diffraction
measure of A.

Example. A = [ lattice. Then,

5 = (dens(I"))? §+.

Example. A = F + ' crystallographic. Then,

J= > mydy
kel™

with m; = (dens(I"))2|6|2(k).



Cut and project schemes and model
sets

(going back to Meyer '72, see e.g. Moody '00 and
Schlottmann '00 as well).

A cut and project scheme (RY, H, E) is given by:

RN ™ RNypg Jnt, g

U U Udense
L & I S 5

| |

L x L*

where

e H is a locally compact, o-compact group, called
the internal space,

o L is a lattice in RN x H,
e 7 and Tint are the canonical projections.

e 7w iS one-to-one and m;,+ has dense range.



Then, L :=n(L) and L* := m,t(L) are groups. As
7 IS one-to-one, there is a uniquely defined group
homomorphism

x . L — L*

such that (z,h) € L if and only if h = z*.

Given an cut and project scheme and a so called
window W C H we define

A(W) := {xze€L:x*e W}

Example. Fibonacci chain.

Example. Penrose tiling.



Let a cut and project scheme (RY,H,L) be given
and

AW) :={ze L :x*cW}.

Proposition 21.0) =V C H open. Then, A(V) is
relatively dense.

Proposition 22. K ¢ H compact. Then, A(K) is
uniformly discrete.

Definition 23. If W is a non-empty compact subset
of H, which is the closure of its interior, then A (W)
is called a model set. A model set is called regular
it OW has Haar measure O in H,

Theorem 24. Let A be a model set. Then, A is
uniformly discrete and relatively dense. Moreover,
A — A is uniformly discrete as well. In particular, A
has finite local complexity.

Definition 25. A set A ¢ RY s called a Meyer set
if A — A is uniformly discrete.

Theorem 26. (Meyer) Any Meyer set is a subset of
a model set.

See Lagarias '96, Moody ' 97, Moody '00 for further
discussion as well.



Uniform distribution

Recall: f: H — R is called Riemann-integrable if
for every € > 0, there exist ¢,y € C.(H) with

p<f<wand [(w-pdh<e.

Note:

e Any Riemann-integrable function vanishes out-
side a compact set.

e [ he characteristic function xy of a compact
set W is Riemann-integrable if and only if the
boundary OW of W has Haar measure zero.

Theorem 27. (Uniform distribution) Let (RN, H, L)
be a cut and project scheme. Then, there exists a
c > 0 such that

im Y f =c/Hf(h)dh

"= Cnl peConL
for every Riemann-integrable f . H — R.

Going back to Weyl '16, see Schlottmann '98,
Baake/Moody '00, Moody '02.



Almost periodic functions and a result
of Wiener

Lemma 28. Fora € C,(RY) the following assertions
are equivalent:

(i) {a(- —t) : t € R} is compact in (C,(RM), | - [|oo).

(ii) For each € > 0, the set
{t e RY : la(- = t) — al|oo < &}

is relatively dense in RV,

Definition 29. A function satisfying the conditions
of the previous lemma is called almost periodic.

Notation: The set of e-almost-periods appearing in
(ii) is denoted by AP(e).

Example. For each ¢ € RN the function y —
e—2™&Y is almost periodic.

Theorem 30. The almost periodic functions form
a closed sub algebra of (Cp(RM), | - ||so), which is
closed under taking complex conjugates.



Recall: © measure on RN, Then,

P = phe + Hpp,
where uc.({z}) = 0 for every z € RY and

0@

Hpp — Z Cn533n
n=1

with suitable z, € RY ¢, > 0, n € N. If 4 is finite,
then >°>2 ; cn < oc0.

Theorem 31. (Wiener) Let n be a finite measure
on RY. Then,

im, & [ B©PdE= Y a({z)I

n— 00 |Cn‘ SeRN

Theorem 32. (Wiener) Let n be a finite measure
on RN . Then, u is a pure point measure if and only
if n is almost periodic.



Diffraction for model sets
(following Baake/Moody '04)

Let a cut and project scheme (RN,H, E) be given.

Proposition 33. Let W C H be given such that xw
is Riemann-integrable and set A := A(W'). Then,

A= Y, n(2)d:
zeA—A
with n(z) = [g xw (h)xw (h—2z%)dh = xw * x_w (2*).

Note: If we define n(z) = xw*x_w (z*) for arbitrary
z € L, then n(z) =0 for 2z ¢ A— A. In particular, we
have

4= > n(z)d-.

z€L

Lemma 34. Let W C H be given such that xw
is Riemann-integrable and set A = A(W). Let
YA = > rer,n(2)d0, be the associated autocorrelation.
Then, for every € > 0O, the set

{ze€L:|n(x—=z2)—n(x)| <e for all x € L}

is relatively dense in R .



We can now state the main result on diffraction for
model sets.

Theorem 35. Let W C H be compact with non-
empty interior and boundary of Haar measure zero.
Set A := A(W). Then, A is pure point diffractive
i.e. 4 is a pure point measure.

Note: Proof shows: ~ pure point if and only if
v * @ * @ almost periodic for all ¢ € CZ°.

(At least implicitly) formulated soon after discovery
of quasicrystals. Proven in Hof '98, (see Hof '95 a)
as well), Schlottmann '00. Proof given here follows
Baake/Moody '04.



Calculating ¥ (following Hof '95 a).
Assume the situation of the previous theorem.

Define
LT :={(¢,0) e RVxH : V(,1*) € L e ?™%ls(1*) = 1},
Then, x induces a map
* (L) — w5 (L)
such that (¢,0) € Lt if and only if o = £*.

Proposition 36. (a) Let ¢ € mpn (L) be given and
o .= &*. Then,

cg := lim 1 > e_2m§'x=/ o(h)dh
ze(t+Cr)NA W

uniformly in t € RV,

(b) Let ¢ ¢ mpn(Lt) be given. Then,
1 }
ce 1= n”—>moo C— Z 6—27m§.a: —0
|Cnl ze(t+Cr)NA

uniformly in t € RV,



Theorem 37.57 =%, . 7. RS

Note: L1 is canonically isomorphic to (RN x H)/L.

See Bombieri/Taylor '86 as well.



Diffraction for random sets
Bernoulli model

Choose k € ZN with probability 1/2. This yields a
random set w C ZY. Then, for typical w:

n(z)

1
im —f#{z,ycwnCh:x—y==z}

n—oo Cn
( % z=20
=
\ % z = 0.
Thus
1 1
= —0 —00.
Y 4 ZN‘|' 4 0
In particular,
R 1 1

Appearance of an absolutely continuous component
in the spectrum!



Lattice system with disorder (following
Baake/Sing '04)

Let w Cc Z be given such that

1
n(z) = Im —fH{x,ycwnNCp:x—y==z}

n—ﬁm‘C%|

exists for every z € ZV. Then,

Tw = Z n(2)dz.

27N

For Gibbsian models it turns out that (in certain
energy regions)

1) = + 5(2)

with s(z) rapidly decaying. Then, F,n(s) exists and
we have



Random displacement model (following Hof 95
b).

Situation: Let A ¢ RY be given with
- finite local complexity,

- existence of pattern frequencies, i.e.

1
im —f{zeANCy 2+ P C A}

n—oo Cn

exists for all P c R¥ finite.

Let v be the autocorrelation of A and

ng = 7({0}) = dens(4).

Let {sz}:ca De independent, identically distributed
random variables with values in RY. Denote their
common distribution by v. Set

pi= 04, :u/ = Z Ogt-sg-
xe/



Theorem 38. Assume the above situation.

with probability one the autocorrelation

exists and

fy’:fy*l/*ﬁ—l—no(cso—u*ﬁ)

holds. In particular,

—~

v = |9|°5 + no(1 — |7]2).

T hen,



Summary and warning

We have confirmed the “meta theorem”

e Order = pure point diffraction.

e Disorder = absolutely continuous diffraction
component.

for three classes of examples: Periodic sets, Model
sets and (certain) random sets.

However, the Bernoulli model and the Rudin-
Shapiro substitution (with suitable weights) yield
the same diffraction measure.
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