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Introduction







Prerequisites

Measures and convolutions

G locally compact Abelian group, e.g. RN , ZN ,

TN := RN/ZN .

Definition 1. A (positive) measure on G is a linear

map

µ : Cc(G) −→ C

satisfying µ(ϕ) ≥ 0, whenever ϕ ≥ 0.

Notation:
∫
ϕdµ =

∫
ϕ(x)dµ(x) = µ(ϕ).

Example. Lebesgue measure on RN ϕ 7→
∫
ϕ(x)dx.

Example. δx : Cc(G) −→ C, ϕ 7→ ϕ(x) for x ∈ G.

Example. Λ ∈ G finite. δΛ =
∑
x∈Λ δx, i. e.

δΛ : Cc(G) −→ C, δΛ(ϕ) =
∑
x∈Λ

ϕ(x).



Example. G = RN . δZN =
∑
x∈ZN , i. e.

δZN : Cc(RN) −→ C, δZN(ϕ) :=
∑
x∈ZN

ϕ(x).

Definition 2. A measure is called bounded or finite
if it can be extended to Cb(G). (“ µ(1) <∞”).

Example. G = R, cn ≥ 0, with
∑∞
n=1 cn <∞. Then∑

n∈N cnδn is a finite measure.

Definition 3.A measure µ on G is called translation
bounded if for one (all) ϕ ∈ Cc(G) with ϕ ≥ 0, ϕ 6= 0,
there exists an Cϕ ≥ 0 with

µ(ϕ(· − x)) ≤ Cϕ
for all x ∈ G.

Example. Λ ⊂ RN uniformly discrete (i.e. exists an
r > 0 with ‖x − y‖ ≥ 2r for all x, y ∈ Λ with x 6= y).
Then,

δΛ : Cc(RN) −→ C, ϕ 7→
∑
x∈Λ

ϕ(x),

is a translation bounded measure.

Example. G = RN . δZN .



Definition 4. For measures µ and ν the convolution

µ ∗ ν is the measure defined by

µ ∗ ν(ϕ) =
∫ ∫

ϕ(x+ y)dµ(x)dν(y).

Example. δx ∗ δy = δx+y.

Example. Λ ⊂ RN finite:

δΛ ∗ δ−Λ =

 ∑
x∈Λ

δx

 ∗
 ∑
y∈Λ

δ−y

 =
∑

x,y∈Λ
δx−y.



The Fourier transform on S

The Schwartz space S := S(RN) is defined by

{ϕ ∈ C∞(RN) : pk(ϕ) <∞ for all k ∈ N},

where

pk(ϕ) := sup
x∈RN ,α1+···αN≤k

{(1+ |x|k)|∂α1
x1 · · · ∂

αN
xN ϕ(x)|}.

For ϕ,ψ ∈ S, we define

F(ϕ)(ξ) := ϕ̂(ξ) :=
∫
e−2πiξ·xϕ(x)dx

F̌(ψ)(x) := ψ̌(x) :=
∫
e2πiξ·xψ(ξ)dξ.

and

ϕ ∗ ψ(x) :=
∫
ϕ(x− y)ψ(y)dy.

Theorem 5. F : S −→ S is bijective with inverse F̌.

Moreover,

F(ϕ ∗ψ) = F(ϕ)F(ψ), F(e2πiη·ϕ)(ξ) = F(ϕ)(ξ− η).



S(TN) := C∞(TN) ' {ϕ ∈ C∞(RN) : ZN−periodic},

S(ZN) := {ϕ : ZN −→ C : sup(1 + |n|k)|ϕ(n)| <
∞ all k ∈ N}.

Define

(FTNϕ)(k) :=
∫
TN

e−2πik·qϕ(q)dq

(FZNψ)(q) :=
∑
k∈ZN

e2πik·qψ(k).

Theorem 6. FTN : S(TN) −→ S(ZN) is bijective

with inverse FZN .

Two useful formulae:

For ϕ ∈ S, define ϕ̃ by ϕ̃(x) := ϕ(−x). Then,

F(ϕ̃) = F(ϕ). In particular,

F(ϕ ∗ ϕ̃) = |F(ϕ)|2

and

F(ψ ∗ ψ̃)(ξ) = |F(ϕ)|2(ξ − η)

for ψ = e2πiη·ϕ.



Distributions and measures

Definition 7. A linear map

φ : S −→ C
is called a tempered distribution if φ(ϕn) −→ φ(ϕ)
whenever pk(ϕn − ϕ) −→ 0, n→∞, for every k ∈ N.
The set of all tempered distributions is denoted by
S ′.

Example. If g is a bounded function on RN , then
φg with

φg(ϕ) :=
∫
ϕ(x)g(x)dx

belongs to S ′.

Example. If µ is a translation bounded measure on
RN , then φ with

φµ(ϕ) :=
∫
ϕdµ

belongs to S ′ and satisfies φµ(|ϕ|2) ≥ 0 for every
ϕ ∈ S.

Proposition 8. Let φ ∈ S ′ be given with φ(|ϕ|2) ≥ 0
for every ϕ ∈ S. Then φ = φµ for a suitable measure
µ.



On S ′ we define the Fourier transform F by

F : S ′ −→ S ′, F(φ)(ϕ) := φ(ϕ̂).

Example. µ finite measure. Then,

F(µ)(ξ) =
∫
e−2πiξ·xdµ(x).

In particular, F(δx)(ξ) = e−2πiξ·x.

Proposition 9. µ, ν finite measures. Then,

F(µ ∗ ν) = F(µ)F(ν).

Proposition 10. ϕ ∈ C∞c (RN), γ translation

bounded measure,

(ϕ ∗ γ)(x) :=
∫
ϕ(x− y)dγ(y).

Then,

F(ϕ ∗ γ) = ϕ̂γ̂.



Poisson summation formula and
diffraction for crystallographic sets

Theorem 11. (PSF) Let Γ be a lattice in RN with

dual lattice Γ ∗ and density dens(Γ ). Then,

δ̂Γ = dens(Γ ) δΓ ∗.

Definition 12. Λ ⊂ RN is called crystallographic if

it is uniformly discrete and invariant under a lattice

Γ . Thus, Λ = F + Γ with a lattice Γ and F finite.

Theorem 13. Λ = F + Γ crystallographic. Then,

δ̂Λ =
∑
k∈Γ ∗

ckδk

with ck = dens(Γ ) δ̂F (k).

Note: In the situation of the theorem it is natural

to define

I := IΛ :=
∑
k∈Γ ∗

|ck|2δk.



Diffraction for infinite sets: General
framework

(following Hof ’95 a, see Cowley ’95 as well)

For n ∈ N let Cn be the cube in RN with side length
2n centred in the origin.

The autocorrelation measure

Definition 14. Λ ⊂ RN uniformly discrete. Then,
the autocorrelation γ of Λ is defined by

γ := γΛ := vague− lim
n→∞

1

|Cn|
δΛ∩Cn ∗ δ−Λ∩Cn

(if the limit exists).

Notation and note:

γn : =
1

|Cn|
δΛ∩Cn ∗ δ−Λ∩Cn =

1

|Cn|
∑

x,y∈Λ∩Cn
δx−y

=
∑

z∈Λ−Λ

(∑
x,y∈Λ∩Cn,x−y=z 1

)
|Cn|

δz.

Proposition 15. Λ uniformly discrete with minimal
distance 2r. Then,

γ(Bs(0)) = dens(Λ)

for every s < r.



Example. Λ = Γ lattice in RN . Then,

γΓ = dens(Γ )δΓ .

In particular, γZN = δZN .

Example. Λ = F + Γ crystallographic. Then,

γΛ = dens(Γ )δF ∗ δ−F ∗ δΓ .

Recall: A measure µ is called positive definite if

µ(ϕ ∗ ϕ̃) ≥ 0 for all ϕ ∈ Cc(G). µ̌ is the measure

defined by ∫
ϕ(x)dµ̌(x) =

∫
ϕ(−x)dµ(x).

Proposition 16. Let γ be the autocorrelation of Λ.

(a) γ = γ̌.

(b) γ is translation bounded.

(c) γ is positive definite.



The autocorrelation and finite local complexity

Question: γ = γΛ. Is

γ =
∑

z∈Λ−Λ
η(z)δz

with suitable η(z) ≥ 0?

Example. Let Λ ⊂ R be given by

Λ = {0}∪ {n+
1

n+ 1
: n ∈ N}∪ {−n− 1

1 + n
: n ∈ N}.

Then, γΛ = γZ = δZ.

Proposition 17. If ](Λ − Λ) ∩ BR(0) < ∞ for every
R > 0, then γ =

∑
z∈Λ−Λ η(z)δz (if γ exists).

Lemma 18. For Λ ⊂ RN uniformly discrete the fol-
lowing assertions are equivalent:

(i) ](Λ− Λ) ∩BR(0) <∞ for every R > 0.

(ii) Λ− Λ is discrete and closed.

(iii) Λ is of finite local complexity i.e.

]{(Λ− x) ∩BR(0) : x ∈ Λ} <∞
for all R > 0.



The diffraction measure

Theorem 19. Let γ be the autocorrelation of Λ.

Then, γ̂ is a translation bounded measure and

γ̂ = vague− lim
n→∞

1

|Cn|
IΛ∩Cn,

where IΛ∩Cn = F(δΛ∩Cn ∗ δ−Λ∩Cn) = |F(δΛ∩Cn)|2.

Definition 20. Λ ⊂ RN uniformly discrete with au-

tocorrelation γ. Then, γ̂ is called the diffraction

measure of Λ.

Example. Λ = Γ lattice. Then,

γ̂ = (dens(Γ ))2 δΓ ∗.

Example. Λ = F + Γ crystallographic. Then,

γ̂ =
∑
k∈Γ ∗

mkδk

with mk = (dens(Γ ))2|δ̂F |2(k).



Cut and project schemes and model
sets

(going back to Meyer ’72, see e.g. Moody ’00 and
Schlottmann ’00 as well).

A cut and project scheme (RN , H, L̃) is given by:

RN π←−−− RN ×H
πint−−−→ H

∪ ∪ ∪dense

L
1−1←−−−− L̃ −−−→ L?

‖ ‖
L

?−−−−−−−−−→ L?

where

• H is a locally compact, σ-compact group, called
the internal space,

• L̃ is a lattice in RN ×H,

• π and πint are the canonical projections.

• π is one-to-one and πint has dense range.



Then, L := π(L̃) and L? := πint(L̃) are groups. As

π is one-to-one, there is a uniquely defined group

homomorphism

? : L −→ L?

such that (x, h) ∈ L̃ if and only if h = x?.

Given an cut and project scheme and a so called

window W ⊂ H we define

f(W ) := {x ∈ L : x? ∈W}.

Example. Fibonacci chain.

Example. Penrose tiling.



Let a cut and project scheme (RN , H, L̃) be given
and

f(W ) := {x ∈ L : x? ∈W}.

Proposition 21. ∅ 6= V ⊂ H open. Then, f(V ) is
relatively dense.

Proposition 22.K ⊂ H compact. Then, f(K) is
uniformly discrete.

Definition 23. If W is a non-empty compact subset
of H, which is the closure of its interior, then f(W )
is called a model set. A model set is called regular
if ∂W has Haar measure 0 in H,

Theorem 24. Let Λ be a model set. Then, Λ is
uniformly discrete and relatively dense. Moreover,
Λ − Λ is uniformly discrete as well. In particular, Λ
has finite local complexity.

Definition 25. A set Λ ⊂ RN is called a Meyer set
if Λ− Λ is uniformly discrete.

Theorem 26. (Meyer) Any Meyer set is a subset of
a model set.

See Lagarias ’96, Moody ’ 97, Moody ’00 for further
discussion as well.



Uniform distribution

Recall: f : H −→ R is called Riemann-integrable if
for every ε > 0, there exist ϕ,ψ ∈ Cc(H) with

ϕ ≤ f ≤ ψ and
∫

(ψ − ϕ)dh ≤ ε.

Note:

• Any Riemann-integrable function vanishes out-
side a compact set.

• The characteristic function χW of a compact
set W is Riemann-integrable if and only if the
boundary ∂W of W has Haar measure zero.

Theorem 27. (Uniform distribution) Let (RN , H, L̃)
be a cut and project scheme. Then, there exists a
c > 0 such that

lim
n→∞

1

|Cn|
∑

x∈Cn∩L
f(x?) = c

∫
H
f(h)dh

for every Riemann-integrable f : H −→ R.

Going back to Weyl ’16, see Schlottmann ’98,
Baake/Moody ’00, Moody ’02.



Almost periodic functions and a result
of Wiener

Lemma 28.For a ∈ Cb(RN) the following assertions

are equivalent:

(i) {a(· − t) : t ∈ Rn} is compact in (Cb(RN), ‖ · ‖∞).

(ii) For each ε > 0, the set

{t ∈ RN : ‖a(· − t)− a‖∞ ≤ ε}

is relatively dense in RN .

Definition 29. A function satisfying the conditions

of the previous lemma is called almost periodic.

Notation: The set of ε-almost-periods appearing in

(ii) is denoted by AP(ε).

Example. For each ξ ∈ RN the function y 7→
e−2πiξ·y is almost periodic.

Theorem 30. The almost periodic functions form

a closed sub algebra of (Cb(RN), ‖ · ‖∞), which is

closed under taking complex conjugates.



Recall: µ measure on RN . Then,

µ = µc + µpp,

where µc({x}) = 0 for every x ∈ RN and

µpp =
∞∑
n=1

cnδxn

with suitable xn ∈ RN cn ≥ 0, n ∈ N. If µ is finite,

then
∑∞
n=1 cn <∞.

Theorem 31. (Wiener) Let µ be a finite measure

on RN . Then,

lim
n→∞

1

|Cn|

∫
Cn
|µ̂(ξ)|2dξ =

∑
x∈RN

|µ({x})|2.

Theorem 32. (Wiener) Let µ be a finite measure

on RN . Then, µ is a pure point measure if and only

if µ̂ is almost periodic.



Diffraction for model sets

(following Baake/Moody ’04)

Let a cut and project scheme (RN , H, L̃) be given.

Proposition 33. Let W ⊂ H be given such that χW
is Riemann-integrable and set Λ := f(W ). Then,

γΛ =
∑

z∈Λ−Λ
η(z)δz

with η(z) =
∫
H χW (h)χW (h− z?)dh = χW ∗χ−W (z?).

Note: If we define η(z) = χW ∗χ−W (z?) for arbitrary
z ∈ L, then η(z) = 0 for z /∈ Λ−Λ. In particular, we
have

γΛ =
∑
z∈L

η(z)δz.

Lemma 34. Let W ⊂ H be given such that χW
is Riemann-integrable and set Λ := f(W ). Let
γΛ =

∑
x∈L η(z)δz be the associated autocorrelation.

Then, for every ε > 0, the set

{z ∈ L : |η(x− z)− η(x)| ≤ ε for all x ∈ L}

is relatively dense in RN .



We can now state the main result on diffraction for

model sets.

Theorem 35. Let W ⊂ H be compact with non-

empty interior and boundary of Haar measure zero.

Set Λ := f(W ). Then, Λ is pure point diffractive

i.e. γ̂ is a pure point measure.

Note: Proof shows: γ̂ pure point if and only if

γ ∗ ϕ ∗ ϕ̃ almost periodic for all ϕ ∈ C∞c .

(At least implicitly) formulated soon after discovery

of quasicrystals. Proven in Hof ’98, (see Hof ’95 a)

as well), Schlottmann ’00. Proof given here follows

Baake/Moody ’04.



Calculating γ̂ (following Hof ’95 a).

Assume the situation of the previous theorem.

Define

L̃⊥ := {(ξ, σ) ∈ RN×Ĥ : ∀(l, l∗) ∈ L̃ e−2πiξlσ(l?) = 1}.

Then, ? induces a map

? : πRN(L̃⊥) −→ π
Ĥ
(L̃⊥)

such that (ξ, σ) ∈ L̃⊥ if and only if σ = ξ?.

Proposition 36. (a) Let ξ ∈ πRN(L̃⊥) be given and

σ := ξ?. Then,

cξ := lim
n→∞

1

|Cn|
∑

x∈(t+Cn)∩Λ
e−2πiξ·x =

∫
W
σ(h)dh

uniformly in t ∈ RN .

(b) Let ξ /∈ πRN(L̃⊥) be given. Then,

cξ := lim
n→∞

1

|Cn|
∑

x∈(t+Cn)∩Λ
e−2πiξ·x = 0

uniformly in t ∈ RN .



Theorem 37. γ̂ =
∑

(ξ,σ)∈L̃⊥ |cξ|
2δξ.

Note: L̃⊥ is canonically isomorphic to (RN ×H)/L̃.

See Bombieri/Taylor ’86 as well.



Diffraction for random sets

Bernoulli model

Choose k ∈ ZN with probability 1/2. This yields a

random set ω ⊂ ZN . Then, for typical ω:

η(z) = lim
n→∞

1

|Cn|
]{x, y ∈ ω ∩ Cn : x− y = z}

=


1
2 : z = 0

:
1
4 : z 6= 0.

Thus

γ =
1

4
δZN +

1

4
δ0.

In particular,

γ̂ =
1

4
δZN +

1

4
.

Appearance of an absolutely continuous component

in the spectrum!



Lattice system with disorder (following

Baake/Sing ’04)

Let ω ⊂ ZN be given such that

η(z) := lim
n→∞

1

|Cn|
]{x, y ∈ ω ∩ Cn : x− y = z}

exists for every z ∈ ZN . Then,

γω =
∑
z∈ZN

η(z)δz.

For Gibbsian models it turns out that (in certain

energy regions)

η(z) =
1

4
+ s(z)

with s(z) rapidly decaying. Then, FZN(s) exists and

we have

γ̂ =
1

4
δZN + ŝ.



Random displacement model (following Hof 95

b).

Situation: Let Λ ⊂ RN be given with

- finite local complexity,

- existence of pattern frequencies, i.e.

lim
n→∞

1

|Cn|
]{x ∈ Λ ∩ Cn : x+ P ⊂ Λ}

exists for all P ⊂ RN finite.

Let γ be the autocorrelation of Λ and

n0 = γ({0}) = dens(Λ).

Let {sx}x∈Λ be independent, identically distributed

random variables with values in RN . Denote their

common distribution by ν. Set

µ := δΛ, µ′ :=
∑
x∈Λ

δx+sx.



Theorem 38. Assume the above situation. Then,

with probability one the autocorrelation

γ′ := lim
n→∞

1

|Cn|
µ′|Cn ∗ µ̃′|Cn

exists and

γ′ = γ ∗ ν ∗ ν̃ + n0(δ0 − ν ∗ ν̃)

holds. In particular,

γ̂′ = |ν̂|2γ̂ + n0(1− |ν̂|2).



Summary and warning

We have confirmed the “meta theorem”

• Order ≡ pure point diffraction.

• Disorder ≡ absolutely continuous diffraction

component.

for three classes of examples: Periodic sets, Model

sets and (certain) random sets.

However, the Bernoulli model and the Rudin-

Shapiro substitution (with suitable weights) yield

the same diffraction measure.
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