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This set of lectures covers several inverse problems related to the propagation of
particles or radiation through various underlying media and some applications in med-
ical and geophysical imaging. We start by considering inverse transport problems in
the absence of scattering (ray transforms) in Lecture 1, and consider inverse transport
problems in highly scattering media (diffusion approximation) in Lecture 3. The inter-
mediate regime is characterized by radiative transfer equations (RTE). Lecture 2 will
recall some theoretical results on inverse RTE problems and will mostly focus on the
many mathematically open inverse problems that are really useful in practice.

Lecture 1. This lecture will cover basic results on ray transforms and inverse source
problems in the absence of scattering. I will focus on the method of the complexifica-
tion of the geodesic vector field and its application in medical imaging (SPECT) and
geophysical imaging (emission problem in hyperbolic geometry). Some bibliographical
references include [1, 7, 8, 9, 11, 15, 18, 19, 21, 22, 23].

Lecture 2. Quite opposite to the framework covered in the first lecture, we consider
here the case of highly heterogeneous media, where particles interact so much with the
underlying structure that their density can be modeled by a diffusion equation. I will
focus on the modeling of non-scattering inclusions in highly scattering environments
and how these inclusions can be reconstructed from boundary measurements. The main
application for such works is optical tomography in medical and atmospheric imaging.
Bibliographical references are [2, 4, 5, 6, 10, 12, 14, 17, 24].

Lecture 3. Radiative transfer equations are the proper model for the density of par-
ticles in general scattering media. Perturbations of the theory of ray transforms provide
most of the known results on the reconstruction of constitutive parameters in trans-
port equations from phase space boundary measurements [13, 16, 25]. The problem
is that phase-space measurements are usually not available. In many application, the
measurements are rather either the angularly averaged density or the outgoing current
at the physical domain boundary. They are thus similar to the measurements available
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in the diffusive approximation; e.g. the Dirichlet to Neumann map. There is hardly
any available theoretical result for this problem; see [3] for a counter-example. Rather
than perturbing ray transforms, one thus would like to “perturb” the theory for diffu-
sion equation; see e.g. [20, 26, 27]. The latter however does not respond very well to
perturbations. I will mention a few promising (and largely unexplored) ways to address
this issue.
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