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Artificial time and inverse problems

Uri Ascher, University of British Columbia, ascher@cs.ubc.ca

Abstract. A typical inverse problem involves the inference of a solution from a discrete set
of data through the inversion of a possibly continuous forward problem, in which case the solution
algorithm invariably involves a discretization of the continuous problem. Moreover, many recent
algorithmic approaches involve the construction of a differential equation model for computational
purposes, typically by introducing an artificial time variable. Of course the actual computational
model involves a discretization of the now time-dependent differential system: forward Euler is
usually employed. The resulting dynamics of such an algorithm is then a discrete dynamics, and
it is expected to be “close enough” to the dynamics of the continuous system (which is typically
easier to analyze) provided that small – hence many – time steps, or iterations, are taken. Indeed,
recent papers in inverse problems and image processing routinely report results requiring thousands
of iterations and more. This makes one wonder if and how the computational modeling process can
be improved to better reflect the actual properties sought.

In this talk I elaborate on several problem instances that illustrate the above observations. I then
show how a broader computational modeling approach may possibly lead to improved algorithms.

Scale invariant moving mesh finite elements

Mike Baines, University of Reading, M.J.Baines@reading.ac.uk
Matthew Hubbard, University of Leeds, meh@comp.leeds.ac.uk

Peter Jimack, University of Leeds, pkj@comp.leeds.ac.uk

Abstract. The GCL method of Cao, Huang and Russell is a velocity-based moving mesh method
driven by a monitor function. We present a fully discrete finite element scheme based on this idea
which for a simple monitor is locally conservative, preserves scale invariance of the underlying PDE
and, for the porous medium equation, reproduces key geometric properties.

For more general monitors, needed to follow distinctive features of the solution, conservation
breaks down and the scale invariance property does not hold. We show how the method can be
modified so that these features are restored.

Two dimensional results are shown for second and fourth order nonlinear moving boundary
problems and for a hyperbolic system.

Adaptive point shifts in the linear rational pseudospectral method

Jean-Paul Berrut, University of Fribourg, jean-paul.berrut@unifr.ch
Hans D. Mittelmann, Arizona State University, mittelmann@math.asu.edu

Abstract. The pseudospectral method we discuss here for solving boundary value problems on
the interval consists in replacing the solution by an interpolating polynomial in Lagrangian form
between well-chosen points and collocating at those same points. Due to its globality, the method
cannot handle steep gradients well (Markovs inequality). We will present and discuss two means of
improving upon this: the attachment of poles to the ansatz polynomial, on one hand, and conformal
point shifts on the other hand, both optimally adapted to the problem to be solved.
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Who put the r into r-adaptivity?

Chris Budd, University of Bath, cjb@maths.bath.ac.uk

Abstract. In an attempt to achieve the impossible, I will try to summarise Bob’s immense
contribution to numerical analysis in general and to adaptivity and moving meshes in particular.

Moving meshes help your digestion

Chris Budd, University of Bath, cjb@maths.bath.ac.uk
Andre Leger, University of Bath, mapajpl@maths.bath.ac.uk
Alastair Spence, University of Bath, as@maths.bath.ac.uk

Abstract. When we eat food it passes through our stomachs into our small intestine, where
nutrients are absorbed before the remaining food passes out of our bodies. The wall of the intestine
moves by the action of peristaltic waves. I will construct a model for this process and then solve
it numerically by using a moving mesh method to cope with the moving boundary caused by the
intestinal waves. Ill show some images of how these wave act to mix up the food in the intestine
and improve the absorbtion process, thus making us all digest food better.

Mathematics in Industry: Things we don’t learn in Graduate School

Antonio Cabal, Kaiser Permanente, antonio.cabal@kp.org

Abstract. In this talk I will describe what I consider to be the main differences in the way
Industry and Academia go about solving problems. I will illustrate my points using example of
industrial problems I have worked on in which adaptive computational methods for differential
equations are essential. I will give some useful tips for Grad Students interested in a carrier as an
industrial mathematician.
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An interpolation error estimate in R2 based on anisotropic measure of
higher order derivatives

Weiming Cao, University of Texas at San Antonio, wcao@math.utsa.edu

Abstract. In this talk, we introduce the magnitude, orientation, and anisotropic ratio for the
higher order derivative ∇k+1u (with k ≥ 1) of a function u to characterize its anisotropic behavior.
The magnitude of ∇k+1u is equivalent to its usual Euclidean norm. The orientation is the direction
along which the k + 1-th directional derivative is about the smallest, while along its perpendicular
direction it it about the largest. The anisotropic ratio measures the strength of the anisotropic
behavior of ∇k+1u. These quantities are invariant under translation and rotation of the independent
variables. They correspond to the area, orientation, and aspect ratio for triangular elements. Based
on these measures, we derive an anisotropic error estimate for the piecewise polynomial interpolation
over a family of triangulations that are quasi-uniform under a given Riemannian metric M . It is
identified among a general class of triangulations that the interpolation error is nearly the minimum
on the mesh in which all the elements are aligned with the orientation of ∇k+1u, their aspect ratios
are about the anisotropic ratio of ∇k+1u, and their areas make the error evenly distributed over
every element.

A Simple Moving Mesh Method for Blowup Problems

Shaohua Chen, Cape Breton University, george chen@capebretonu.ca

Abstract. This talk will present a simple adaptive method in solving parabolic blowup problems
numerically. The mesh will be generated directly on the physical domain as Ceniceros and Hou
developed. A curvature term is added to smooth the mesh. Several numerical examples are presented
by way of comparison.

Affine similar convergence theorems for collocation methods

Peter Deuflhard, Zuse Institute Berlin (ZIB), deuflhard@zib.de

Abstract. In the course of his book ’Newton Methods for Nonlinear Problems. Affine Invariance
and Adaptive Algorithms’, the author has worked out a new ’affine similar’ convergence theorem
for collocation methods, a class of techniques that has attracted Bob’s interest for quite a time.
This theorem applies to collocation for nonlinear boundary value problems (BVPs) showing the
possible existence of discrete ’ghost solutions’, and therefore advocating the use of Newton methods
in function space rather than discrete Newton methods – which is just the route that has been taken
by the COLSYS people. From this starting point, the talk will derive further (yet unpublished)
collocation theorems (a) for stiff nonlinear initial value problems (IVPs) which do not contain any
undesirable Lipschitz constant of the right hand side, but only the IVP condition number (known to
be moderate for stiff IVPs), and (b) for linear BVPs which are anyway the ones realized in COLSYS.
The new theorems should open the door to further insight into singularly perturbed problems.
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Construction of smooth SVDs with applications

Luca Dieci, School of Mathematics, Georgia Tech, dieci@math.gatech.edu
M. Grazia Gasparo, University of Florence, Italy, gasparo@de.unifi.it
Alessandra Papini, UIniversity of Florence, Italy, papini@de.unifi.it

Abstract. In this talk, we will consider the singular value decomposition (SVD) of a smooth
matrix valued function A. After a quick review of results guaranteeing that the factors in the SVD
are themselves smooth functions, a brief discussion of algorithmic aspects of the computation of such
smooth SVD will be given. As illustration, we will use the smooth SVD for computing a curve of
equilibria of a dynamical system.

Krylov integrators for Hamiltonian systems

Timo Eirola, Helsinki University of Technology, timo.eirola@tkk.fi

Abstract. Viewing Hamiltonian systems in Cn instead of R2n brings a useful structure, since
the real and imaginary parts of the complex inner product correspond to the real inner product
and the standard symplectic form, respectively. The inconveninence that the “linear part” is then
not complex linear can be taken care of by using real linear operators. It turns out that complex
orthonormal vectors of Arnoldi like processes become useful for Hamiltonian systems. This approach
is taken and a large system is locally approximated by one living in a low-dimensional Krylov
subspace. When this is applied to Hamiltonian systems, the low dimensional approximations stay
Hamiltonian. Combined with some symplectic and exponential integrators the overall methods
preserve the energy exactly in linear problems. In numerical experiments the behaviour in nonlinear
Hamiltonian problems seems also promising.

An Inexpensive Estimate of Arc Length and its use in Automatic Mesh
Refinement

Wayne Enright, University of Toronto, enright@cs.utoronto.ca

Abstract. It is well known that in the numerical solution of differential equations one must
use adaptive mesh refinement to obtain reliable and efficient performance, especially on nonlinear
problems. Automatic mesh refinement (AMR) is therefore a key component of methods for BVPs
in ODEs and methods for PDEs that use a MOL approach. In these applications the overall per-
formance of the method (especially on nonlinear problems or problems with boundary layers) can
depend critically on the choice of an effective mesh selection scheme. In this talk we will present
a mesh refinement strategy for ordinary differential equations (ODEs) based on an inexpensive es-
timate of the arc length of the numerical solution. We will present an overview of the technique,
analyze its cost and accuracy and present numerical evidence to show its potential for use in static
remeshing in the MOL solution of a nonlinear Boussinesq wave equation.
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Personalized Adaptive Computational Experimentation

Daryl Hepting, University of Regina, dhh@cs.uregina.ca

Abstract. Computational discovery is facilitated by tools that enable the researcher to focus on
a problem and the making sense of results obtained, rather than on the idiosyncrasies of command
syntax and the bookkeeping associated with repeated variable command invocations. In a search
for insight, imagination should be encouraged more than patience should be required. The cogito

software system is described, which allows any researcher a great deal of flexibility to personalize
how computational experiments are conducted and how results are visualized. The system features
an application programming interface that allows it to be adapted to a wide range of uses.

Optimal Control Problems from Finance and Engineering Applications

Huaxiong Huang, York University, hhuang@yorku.ca

Abstract. In this talk we discuss two classes of optimal control problems. The first type of
problems come from finance, formulated under the classical optimal consumption framework origi-
nally developed by Merton. We describe a solution procedure which combines incomplete similarity
reduction and numerical PDE techniques for the HJB (Hamilton-Jacobi-Bellman) equation. Opti-
mal consumption with restricted assets and insurance-wage-consumption problems are used as two
examples to illustrate the method.

If time permits, we will also describe another type of constrained optimal control problems from
engineering applications. In this case, we described a solution procedure which combines asymptotic
expansion and numerical methods. Thermal stress reduction in compound crystal growth is used as
an example and numerical results are also given.

A three-dimensional adaptive moving mesh method based on MMPDEs

Weizhang Huang, University of Kansas, huang@math.ku.edu
Yan Zhu, University of Kansas, yzhu@math.ku.edu

Abstract. A three-dimensional adaptive moving mesh method will be presented. The method
is based on a moving mesh partial differential equation. Theoretical and computational issues,
including formulation and computation of the monitor function, movement of boundary points, and
mesh quality measure, will be addressed. Numerical results will be given to demonstrate the ability
of the method to adapt the mesh according to evolutionary features of the physical solution.
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Finite volume methods for partial differential equations with intrinsic
constraints

Rolf Jeltsch, Swiss Federal Institute of Technology (ETH), jeltsch@math.ethz.ch
Manuel Torrilhon, Hong Kong University of Science and Technology, matorril@ust.hk

Michael Fey, Swiss Federal Institute of Technology (ETH), fey@sam.math.ethz.ch

Abstract. Many partial differential equations describing evolutions have solutions which satisfy
an intrinsic constraint. Examples are the Maxwell Equations, ideal MHD equations, nonlinear system
for the wave equation, Einsteins Equations. Numerical schemes for such equations often freeze the
transport velocity locally in time and use a scheme to perform a linear transport in each step. In
order to design schemes for evolutions with inherent constraints we consider in addition to the well
known linear transport equation two special linear transport equations, each satisfying an inherent
condition. In one, the divergence of the transported quantity is constant, in the other the curl stays
constant. As an example we mention the ideal MHD equations where the divergence of the magnetic
field stays constant and the field equations in the elasticity theory, where the curl of the deformations
stays constant. A general framework allows to construct numerical methods that preserve exactly
the discretized constraint on arbitrary grids by special fluxdistributions. Assuming at first in two
space dimensions a rectangular grid numerical upwind schemes are developed. It turns out that
there is a duality between the equations preserving the divergence and the ones preserving the curl.
Applications to the MHD equation are presented.

Anisotropic mesh refinement based upon sensitivity analysis of an a
posteriori error estimate.

Peter Jimack, University of Leeds, pkj@comp.leeds.ac.uk
Rene Schneider, University of Leeds, rschneid@comp.leeds.ac.uk

Abstract. A posteriori error estimation is widely used to control local mesh refinement and
recent advances include the development of error estimates, based upon the use of an adjoint for-
mulation, for quantities of interest that depend upon the computed solution. This work extends the
use of the discrete adjoint technique to also efficiently calculate the sensitivity of such a posteriori
error estimates to the location of the nodes of the mesh. It is demonstrated that, in addition to
providing the usual information about where to locally refine, this also yields guidance on how to
refine (isotropically or anisotropically). The talk will also discuss possible implementations that
exploit this sensitivity estimate and present some promising early numerical results.
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RH-Adaptive Finite Elements

Jens Lang, Darmstadt University of Technology, lang@mathematik.tu-darmstadt.de

Abstract. The purpose of this talk is to present a combination of an r-adaptive and an h-
adaptive finite element method. r-adaptivity, i.e., moving grid points through the computational
domain without destroying the mesh connectivity, is accomplished by a moving mesh method which
has been developed by Cao, Huang, and Russell for a few years. Although moving methods have a
good potential to solve non-trivial problems including free boundaries or time-dependent domains,
a fixed number of grid points may become a major disadvantage. Here, h-adaptivity can be useful
to insert new grid points in regions where large solution variations have to be resolved and to delete
grid points where they are no longer needed. Thus, the main idea is to run the r-method until an
h-method is required to keep the estimated discretization error in space below a certain tolerance.

High-Order Embedded Runge-Kutta Pairs for the Time Evolution of
Hyperbolic Conservation Laws

Colin Macdonald, Simon Fraser University, cbm@sfu.ca

Abstract. This talk will deal with the construction and use of new fifth-order Runge-Kutta
schemes with embedded third-order strong-stability-preserving (SSP) Runge-Kutta pairs. The mo-
tivation for such pairs is to evolve Weighted Essentially Non-Oscillatory (WENO) spatial discretiza-
tions of hyperbolic conservation laws. The third-order SSP scheme would be used near shocks or
discontinuities where the SSP property is useful for minimizing spurious oscillations. The fifth-order
scheme would then be used in smoother regions where WENO provides fifth-order in space and SSP
properties are not necessary.

Numerical estimation of progesterone transcriptional activity in the
EGFR pathway using Chemcell

Tatiana Marquez Lago, University of New Mexico, tmarquez@math.unm.edu

Abstract. Among several possible ways to control endometrial cell growth, it was recently found
that the optimization of progesterone transcriptional activity could well be an efficient method. As
simple as it may sound this method is not trivial at all: in the ERB1 pathway transcriptional activity
is affected by ubiquitination, which in turn can break down molecules of dimerized active forms of
progesterone receptors (PrR), transcription factor (TF) and DNA bound to TF, thus representing
a bottleneck for mRNA formation.

In order to determine the ranges of concentrations of the molecular species to achieve an optimal
transcriptional activity, we were aided by the use of Chemcell (Sandia National Laboratories) and
considered a parametric analysis of diffusion and reaction rates.

Numerical results for simulations of the EGFR-pathway will be presented, as well as validation
of simulations (comparison with experimental biological data), and partial validation through its
related ODE system of reactions. We also consider verification on stochastic automata procedures,
as opposed to the regular global error analysis in deterministic systems.
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Adaptive Schemes for Static Hamilton-Jacobi

Ian Mitchell, University of British Columbia, mitchell@cs.ubc.ca
Kenneth Alton, University of British Columbia, kalton@cs.ubc.ca

Abstract. Hamilton-Jacobi PDEs arise in shortest path computations – the classical example
being the Eikonal equation for wavefront time of arrival. Algorithms such as fast marching and fast
sweeping have been proposed to solve these equations. I discuss implementations and modifications
of these algorithms to permit solution on adaptive grids in moderate dimensions (two to six).

Wide stencil schemes for nonlinear second order elliptic equations

Adam Oberman, Simon Fraser University, aoberman@sfu.ca

Abstract. We build convergent finite difference schemes for nonlinear elliptic partial differential
equations, such as the equation for motion by mean curvature, the ”infinity Laplacian”, which has
applications to image inpainting, and the Monge-Ampere equation.

These equations are nonlinear, and possibly degenerate. We show that naive schemes can fail to
converge without actually blowing up. A result of Motzkin and Wasow from the 50s shows the need
for large stencil schemes, even for linear ellipitic pdes. We build monotone, wide stencil schemes for
these nonlinear PDEs.

A hybrid h-refinement / p-refinement strategy

Benjamin Ong, Simon Fraser University, bwo@sfu.ca
Steven Ruuth, Simon Fraser University, sruuth@cs.sfu.ca

Bob Russell, Simon Fraser University, rdr@cs.sfu.ca

Abstract. MMPDEs and ideas from the GCL (Geometric Conservation Law) are augmented
by a levelset framework to control the location, and number of mesh nodes used to solve a physical
PDE. The main advantages of using a levelset framework are: the automatic creation and deletion
of grid nodes as necessary, and circumventing the problem of mesh crossing

Solving large sparse Ax = b: stopping criteria, and GMRES behaviour.

Chris Paige, McGill University, paige@cs.mcgill.ca

Abstract. We give a gentle introduction to such strange sounding (but in fact logical and
quite simple) concepts as the “normwise relative backward error” for an approximate solution y
to the linear system of equations Ax = b where A is a large sparse matrix, and describe its use
in determining when to stop an iterative process for solving Ax = b. An efficient implementation
of the generalized minimum residual (GMRES) method for solving Ax = b uses modified Gram-
Schmidt orthogonalization (MGS-GMRES). We show how, and why, this behaves so well despite
loss of orthogonality, and use it to illustrate the effectiveness of the normwise relative backward error
in designing stopping criteria.
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Applications of mesh adaptivity in ocean modelling

Matthew Piggott, Imperial College London, m.d.piggott@imperial.ac.uk
Chris Pain, Imperial College London, c.pain@imperial.ac.uk

Gerard Gorman, Imperial College London, g.gorman@imperial.ac.uk
David Marshall, University of Reading, d.p.marshall@reading.ac.uk

Peter Killworth, National Oceanography Centre Southampton, pki@noc.soton.ac.uk

Abstract. Modelling of the oceans represents an important application area where a vast range
of scales are present and need accurate numerical simulation. Currently mesh adaptivity is not
employed in any ocean model, indeed the numerical technology has remained largely unchanged in
three decades. Increasing interest in climate and extreme events means that there is a real need to
make use of the latest techniques of numerical analysis, and in particular adaptive mesh methods
which are able to accurately and efficiently resolve complex solution dynamics. In this presentation
I will describe efforts underway to develop ICOM (Imperial College Ocean Model) using adaptive
algorithms.

Pricing and Risk Analysis of Financial Instruments

Satish Reddy, Quadrus Financial Technologies Inc., satishr@quadrusfinancial.com

Abstract. This presention gives an introduction to pricing and risk analysis of financial instru-
ments, including examples of financial instruments, mathematical models for risk factors, mathe-
matical formulation of pricing problems and numerical methods for their solution, and Value at Risk
and Potential Future Exposure risk analyis.

Shallow Waves in an Evolving Basin

Juan Restrepo, University of Arizona, restrepo@physics.arizona.edu
Jared Barber, Applied Math, U Arizona, jbarber@math.arizona.edu

James Hyman, T7 Group, LANL, mac@t7.lanl.gov

Abstract. We present an effective algorithm for the numerical simulation of shallow water
waves in a basin that is composed of an erodible bed. The interactions between the water and the
sandy bottom can lead to the appearance and disappearance of islands and of dramatic changes in
the basin itself. Combining a Lagrangian description of the water boundary, an indicator function
and standard shallow water wave equation Eulerian numerical implementations we can effectively
handle the evolution of this multiphase flow even when the domain itself changes dramatically in
topology.
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How Efficient is Adaptive Delaunay Refinement?

Bruce Simpson, University of Waterloo, rbsimpson@uwaterloo.ca

Abstract. Let M(f, D) denote an unstructured triangular mesh for defining a pwlinear approx-
imation, f (pl)(x, y), to a function f(x, y) for (x, y) in a domain D. Adaptive refinement (AR) is a
familiar technique for generating M(f, D) to control the error, err(x, y, M) = f(x, y) − f (pl)(x, y).
The primary goal of these methods is efficiency. I.e. vertices of M(f, D) should be limited to
locations necessary to control err(x, y, M).

AR can be combined with Delaunay meshing techniques to enhance the geometric attributes
of M(f, D); the resulting approach is referred to as Adaptive Delaunay Refinement (ADR). Sev-
eral forms of robust, geometry based, algorithms for Delaunay refinement have been developed
(Chew,Ruppert, and Shewchuk), (M-C Rivara et al), (P L George et al) which can be readily
extended to ADR. In this paper, we present some computations that rate the efficiency of ADR
generated meshes.

On the mesh relaxation time in the moving mesh method

John Stockie, Simon Fraser University, stockie@math.sfu.ca
Ali Reza Soheili, University of Sistan & Baluchestan, Iran, soheili@hamoon.usb.ac.ir

Abstract. In the moving mesh method, the “physical PDE” governing the problem of interest
is discretized using a set of nonuniform points whose motion is governed by a “moving mesh PDE”
or MMPDE. The MMPDE contains a mesh relaxation time, often denoted τ , which is employed as a
temporal smoothing parameter that acts to regularize the mesh motion. Most previous moving mesh
simulations employ a constant value of τ even though the time scale of the mesh motion may vary
significantly throughout a computation. We propose a modification to the MMPDE which includes
a variable relaxation time that is chosen to adaptively smooth the mesh in time. The effectiveness
of this approach is illustrated using problems involving blow-up and front propagation.

Collocation-type approximations to hypersingular integrals and
hypersingular integral equations

Weiwei Sun, City University of Hong Kong, maweiw@math.cityu.edu.hk

Abstract. Many physical problems require an efficient discrete scheme for Hadamard finite-
part integral operators and an efficient quadrature rule for such integrals. In this talk, we present
several collocation-type approximations to Hadamard integral operators. These discrete schemes
are of Toeplitz or nearly Toeplitz structure, which gives many advantages in developing fast lin-
ear solvers for numerical solution of integral equations and intego-differential equations. Also the
superconvergence of classical Newton-Cotes formulae and Gauss quadrature rules are investigated.
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Adaptive Collocation for Boundary Layer Problems with Radial Basis
Functions

Manfred Trummer, Simon Fraser University, mrt@cs.sfu.ca

Leevan Ling, University of Tokyo, lling@cs.sfu.ca

Abstract. An adaptive collocation method based upon radial basis functions is presented for the
solution of singularly perturbed two-point boundary value problems. Using a multiquadric integral
formulation, the second derivative of the solution is approximated by multiquadric radial basis
functions. This approach is combined with a coordinate stretching technique. The required variable
transformation is accomplished by a conformal mapping, an iterated sine-transformation. A new
error indicator function accurately captures the regions of the interval with insufficient resolution.
This indicator is used to adaptively add data centres and collocation points. The method resolves
extremely thin layers accurately with fairly few basis functions. The proposed adaptive scheme is
very robust, and reaches high accuracy even when parameters in our coordinate stretching technique
are not chosen optimally. The effectiveness of our new method is demonstrated on two examples
with boundary layers, and one example featuring an interior layer. It is shown in detail how the
adaptive method refines the resolution.

Approximation of Lyapunov and Dichotomy Spectra

Erik Van Vleck, Dept. of Mathematics, University of Kansas, evanvleck@math.ku.edu

Luca Dieci, School of Mathematics, Georgia Tech, dieci@math.gatech.edu

Michael Jolly, Dept. of Mathematics, Indiana Univ., msjolly@indiana.edu

Abstract. We will review theoretical and algorithmic aspects of QR methods to approximate
Lyapunov exponents and Exponential Dichotomy spectra of dynamical systems.

Solving large Hamiltonian eigenvalue problems

David Watkins, Washington State University, watkins@math.wsu.edu

Abstract. Large, sparse eigenvalue problems with Hamiltonian structure arise in several con-
texts, including the study of corner singularities in anisotropic elastic solids. We show how to solve
these by applying structure-preserving Krylov subspace methods of several types, including some
that attack the Hamiltonian problem directly and others that make a further transformation to
either skew-Hamiltonian or symplectic form. All of the structure-preserving methods are more ac-
curate than a comparable method that ignores the structure. The fastest of the structure-preserving
methods is more efficient than the method that ignores the structure.
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Adaptive Grid Control for Singular BVPs

Ewa Weinmüller, Vienna University of Technology, e.weinmueller@tuwien.ac.at
Winfried Auzinger, Vienna University of Technology, w.auzinger@tuwien.ac.at

Georg Kitzhofer, Vienna University of Technology, g.kitzhofer@kabsi.at
Othmar Koch, University of Tuebingen, othmar@othmar-koch.org

Abstract. We describe a mesh selection strategy for the numerical solution of boundary value
problems for singular ordinary differential equations. We prove that under realistic assumptions our
mesh selection strategy serves to approximately equidistribute the global error of the collocation
solution, thus enabling to satisfy prescribed tolerances efficiently.

This mesh adaptation procedure has been implemented in our new Matlab code colimp, a successor
of sbvp. colimp is based on polynomial collocation, equipped with an a posteriori estimate for the
global error of the numerical solution, and the mesh adaptation procedure. Moreover, in the present
version of the code a pathfollowing strategy based on pseudo-arclength parametrization applied
for the computation of solution branches with turning points of parameter-dependent equations in
implicit form,

f(y′(t), y(t)/tα, t, λ), t ∈ (0, 1], α ≥ 1

g(y(0), y(1)) = 0,

is available. We show that the pathfollowing procedure is well-defined under realistic assumptions,
and a numerical solution is possible with a stable, high-order discretization method.

Finally, we demonstrate the performance of our code by solving a number of problems relevant in
applications. These include the computation of density profiles in a non-homogeneous fluid, complex
Ginzburg-Landau equation, and problems from the shell buckling.


