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A Solution to the Tennis Ball Problem

Anna de Mier and Marc Noy

Abstract. We present a complete solution to the so-called tennis ball problem, which is equivalent to
counting lattice paths in the plane that use North and East steps and lie between certain boundaries. The
solution takes the form of explicit expressions for the corresponding generating functions.

Our method is based on the properties of Tutte polynomials of matroids associated to lattice paths.

We also show how the same method provides a solution to a wide generalization of the problem.
Résumé. Nous présentons une solution complète au “problème des balles de tennis”, problème qui revient
à compter des chemins, formés par des pas Nord et Est, dans une région délimitée de

�
2 . La solution se

présente sous la forme d’expressions explicites pour les séries génératrices correspondantes.
Notre méthode repose sur certaines propriétés des polynômes de Tutte des matröıdes associés à des

chemins de
�

2 . Nous montrons aussi comment cette méthode permet de résoudre un problème beaucoup
plus général.

1. Introduction

The statement of the tennis ball problem is the following. There are 2n balls numbered 1, 2, 3, . . . , 2n.
In the first turn balls 1 and 2 are put into a basket and one of them is removed. In the second turn balls 3
and 4 are put into the basket and one of the three remaining balls is removed. Next balls 5 and 6 go in and
one of the four remaining balls is removed. The game is played n turns and at the end there are exactly n
balls outside the basket. The question is how many different sets of balls may we have at the end outside
the basket.

It is easy to reformulate the problem in terms of lattice paths in the plane that use steps E = (1, 0)
and N = (0, 1). It amounts to counting lattice paths from (0, 0) to (n, n) that never go above the path
NE · · ·NE = (NE)n. Indeed, if π = π1π2 . . . π2n−1π2n is such a path, a moment’s thought shows that we
can identify the indices i such that π2n−i+1 is a N step with the labels of balls that end up outside the
basket. The number of such paths is well-known to be a Catalan number, and this is the answer obtained
in [GM].

The problem can be generalized as follows [MSV]. We are given positive integers t < s and sn labelled
balls. In the first turn balls 1, . . . , s go into the basket and t of them are removed. In the second turn
balls s + 1, . . . , 2s go into the basket and t among the remaining ones are removed. After n turns, tn balls
lie outside the basket, and again the question is how many different sets of balls may we have at the end.
Letting k = t, l = s − t, the problem is seen as before to be equivalent to counting lattice paths from (0, 0)
to (ln, kn) that use N and E steps and never go above the path N kEl · · ·NkEl = (NkEl)n. This is the
version of the problem we solve in this paper.
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From now on we concentrate on lattice paths that use N and E steps. To our knowledge, the only cases
solved so far are k = 1 and k = l = 2. The case k = 1 is straightforward, the answer being a generalized

Catalan number 1
ln+1

(
(l+1)n

n

)
. The case k = l = 2 (corresponding to the original problem when s = 4, t = 2)

is solved in [MSV] using recurrence equations; here we include a direct solution. We say that a path is a
Catalan path of semilength n if it goes from (0, 0) to (n, n) and stays below the line x = y. The case k = l = 2
is illustrated in Fig. 1, to which we refer next. A path π not above (N 2E2)n is “almost” a Catalan path,
in the sense that it can raise above the dashed diagonal line only through the dotted points. But clearly
between two consecutive dotted points hit by π we must have an E step, followed by a path isomorphic to a
Catalan path of odd semilength, followed by a N step. Thus, π is essentially a sequence of Catalan paths of
odd semilength. If G(z) =

∑
n

1
n+1

(
2n
n

)
zn is the generating function for the Catalan numbers, take the odd

part Go(z) = (G(z)−G(−z))/2. Then expand 1/(1− zGo(z)) to obtain the sequence 1, 6, 53, 554, 6363, . . . ,
which agrees with the results in [MSV].

P
π

Figure 1. The path π = EENNNEEEENNNNNEE not above P = (N 2E2)4. It has
i(π) = 3 and e(π) = 2, corresponding to the steps underlined.

Let P be a lattice path from (0, 0) to (m, r), and let b(P ) be the number of paths from (0, 0) to (m, r)
that never go above P . If PN denotes the path obtained from P by adding a N step at the end of P , then
clearly b(P ) = b(PN). However, it is not possible to express b(PE) simply in terms of b(P ), where PE
has the obvious meaning. As is often the case in counting problems, one has to enrich the objects under
enumeration with additional parameters that allow suitable recursive decompositions. This is precisely what
is done here: equations (2.2) and (2.3) in the next section contain variables x and y, corresponding to two
parameters that we define on lattice paths not above a given path P . These equations are the key to our
solution.

The basis of our approach is the connection between lattice paths and matroids established in [BMN],
where the link with the tennis ball problem was already remarked. For completeness, we recall the basic facts
needed from [BMN] in the next section. In Section 3 we present our solution to the tennis ball problem, in
the form of explicit expressions for the corresponding generating functions; see Theorem 3.1. In Section 4
we show how the same method can be applied to a more general problem. We conclude with some remarks.

2. Preliminaries

The contents of this section are taken mainly from [BMN], where the reader can find additional back-
ground and references on matroids, Tutte polynomials and lattice path enumeration.

A matroid is a pair (E,B) consisting of a finite set E and a nonempty collection B of subsets of E, called
bases of the matroid, that satisfy the following conditions: (1) No set in B properly contains another set in
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B, and (2) for each pair of distinct sets B, B′ in B and for each element x ∈ B − B′, there is an element
y ∈ B′ −B such that (B − x) ∪ y is in B.

Let P be a lattice path from (0, 0) to (m, r). Associated to P there is a matroid M [P ] on the set
{1, 2, . . . , m + r} whose bases are in one-to-one correspondence with the paths from (0, 0) to (m, r) that
never go above P . Given such a path π = π1π2 . . . πm+r, the basis corresponding to π consists of the indices
i such that πi is a N step. Hence, counting bases of M [P ] is the same as counting lattice paths that never
go above P .

For any matroid M there is a two-variable polynomial with non-negative integer coefficients, the Tutte
polynomial t(M ; x, y). It was introduced by Tutte [T1] and presently plays an important role in combinatorics
and related areas (see [W]). The key property in this context is that t(M ; 1, 1) equals the number of bases
of M .

Given a path P as above, there is a direct combinatorial interpretation of the coefficients of t(M [P ]; x, y).
For a path π not above P , let i(π) be the number of N steps that π has in common with P , and let e(π) be
the number of E steps of π before the first N step, which is 0 if π starts with a N step. This is illustrated in
Fig. 1, where the path P corresponds to the upper border of the diagram and hence a path π representing
a basis of M [P ] corresponds to a path that stays in the region shown.

Then we have (see [BMN, Th. 5.4])

(2.1) t(M [P ]; x, y) =
∑

π

xi(π)ye(π),

where the sum is over all paths π not above P . A direct consequence is that t(M [P ]; 1, 1) is the number of
such paths.

Furthermore, for the matroids M [P ] there is a rule for computing the Tutte polynomial that we use
repeatedly (see [BMN, Section 6]). If PN and PE denote the paths obtained from P by adding a N step
and an E step at the end of P , respectively, then

t(M [PN ]; x, y) = x t(M [P ], x, y),(2.2)

t(M [PE]; x, y) =
x

x− 1
t(M [P ], x, y) +

(
y −

x

x− 1

)
t(M [P ]; 1, y).(2.3)

The right-hand side of (2.3) is actually a polynomial, since x − 1 divides t(M [P ]; x, y) − t(M [P ]; 1, y) (see
the expansion (2.4) below). The key observation here is that we cannot simply set x = y = 1 in (2.3) to
obtain an equation linking t(M [PE]; 1, 1) and t(M [P ]; 1, 1).

For those familiar with matroid theory, we remark that the quantities i(π) and e(π) correspond to the
internal and external activities of the basis associated to π with respect to the order 1 < 2 < · · · < m + r
of the ground set of M [P ]. Also, the matroids M [PN ] and M [PE] are obtained from M [P ] by adding
an isthmus and taking a free extension, respectively; it is known that formulas (2.2) and (2.3) correspond
precisely to the effect these two operations have on the Tutte polynomial of an arbitrary matroid.

From (2.1) and the definition of i(π) and e(π), equation (2.2) is clear, since any path associated to
M [PN ] has to use the last N step. For completeness, we include a direct proof of equation (2.3).

We first rewrite the right-hand side of (2.3) as

x

x− 1
(t(M [P ]; x, y)− t(M [P ]; 1, y)) + yt(M [P ]; 1, y) =

∑

π

x

x− 1
ye(π)(xi(π) − 1) + ye(π)+1 =

∑

π

ye(π)(y + x + x2 + · · ·+ xi(π)),(2.4)

where the sums are taken over all paths π that do not go above P .
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To prove the formula, for each path π not above P we find i(π) + 1 paths not above PE such that their
total contribution to t(M [PE]; x, y) is ye(π)(y + x + x2 + · · · + xi(π)). Consider first the path π0 = Eπ; it
clearly does not go above PE and its contribution to the Tutte polynomial is ye(π)+1. Now for each j with
1 ≤ j ≤ i(π), define the path πj as the path obtained from π by inserting an E step after the jth N step
that π has in common with P (see Fig. 2). The path πj has exactly j N steps in common with PE, and
begins with e(π) E steps. Observe also that, if the j-th N step of π is the k-th step, then π and πj agree on
the first k and on the last m + r − k steps.

π1 π2π0

π

PE PE PE

P

Figure 2. Illustrating the combinatorial proof of formula (2.3): from a path π not above
P with i(π) = 2 we generate 3 paths not above PE.

It remains only to show that each contribution to the Tutte polynomial of M [PE] arises as described
above. Let π′ be a path that never goes above PE and consider the last N step that π′ has in common with
PE; clearly the next step must be E. Let π̃ be the path obtained after removing this E step. Since π ′ had
no N steps in common with PE after the removed E step, the path π̃ does not go above P . Thus the path
π′ can be obtained from π̃ by adding an E step after the i(π′)-th N step that π̃ has in common with P , and
hence π′ arises from π̃ as above. By the remarks at the end of the previous paragraph, it is clear that π ′

cannot be obtained in any other way by applying the procedure described above, and this finishes the proof.

3. Main result

Let k, l be fixed positive integers, and let Pn = (NkEl)n. Our goal is to count the number of lattice
paths from (0, 0) to (ln, kn) that never go above Pn. From the considerations in the previous section, this is
the same as computing t(M [Pn]; 1, 1). Let

An = An(x, y) = t(M [Pn]; x, y).

By convention, P0 is the empty path and A0 = 1.
In order to simplify the notation we introduce the following operator Φ on two-variable polynomials:

ΦA(x, y) =
x

x− 1
A(x, y) +

(
y −

x

x− 1

)
A(1, y).
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Then, by equations (2.2) and (2.3) we have

An+1 = Φl(xkAn),

where Φi denotes the operator Φ applied i times.
For each n ≥ 0 and i = 1, . . . , l, we define polynomials Bi,n(x, y) and Ci,n(y) as

Bi,n = Φi
(
xkAn(x, y)

)
,

Ci,n = Bi,n(1, y).

We also set C0,n(y) = An(1, y). Notice that Bl,n = An+1, and C0,n(1) = An(1, 1) is the quantity we wish to
compute.

Then, by the definition of Φ, we have:

B1,n =
x

x− 1
xkAn +

(
y −

x

x− 1

)
C0,n;

B2,n =
x

x− 1
B1,n +

(
y −

x

x− 1

)
C1,n;

· · ·

Bl,n =
x

x− 1
Bl−1,n +

(
y −

x

x− 1

)
Cl−1,n;

An+1 = Bl,n.

In order to solve these equations, we introduce the following generating functions in the variable z (but
recall the coefficients are polynomials in x and y):

A =
∑

n≥0

Anzn, Ci =
∑

n≥0

Ci,nzn, i = 0, . . . , l.

We start from the last equation An+1 = Bl,n and substitute repeatedly the value of Bi,n from the previous
equation. Taking into account that

∑
n An+1z

n = (A− 1)/z, a simple computation yields

A− 1

z
=

xk+l

(x− 1)l
A + (yx− y − x)

l∑

i=1

xi−1

(x− 1)i
Cl−i.

We now set y = 1 and obtain

(3.1) A
(
(x− 1)l − zxk+l

)
= (x − 1)l − z

l∑

i=1

xi−1(x − 1)l−i Cl−i,

where it is understood that from now on we have set y = 1 in the series A and Ci.
By Puiseux’s theorem (see [S, Theorem 6.1.5]), the algebraic equation in w

(3.2) (w − 1)l − zwk+l = 0

has k + l solutions in the field C fra((z)) = {
∑

n≥n0
anzn/N} of fractional Laurent series. Proposition 6.1.8

in [S] tells us that exactly l of them are fractional power series (without negative powers of z); let them be
w1(z), . . . , wl(z).

We substitute x = wj in (3.1) for j = 1, . . . , l, so that the left-hand side vanishes, and obtain a system
of l linear equations in C0, C1, . . . , Cl−1, whose coefficients are expressions in the wj , namely

(3.3)

l∑

i=1

wi−1
j (wj − 1)l−izCl−i = (wj − 1)l, j = 1, . . . , l.
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Notice that, in order of the product in the left hand-side of (3.1) to be defined, the solutions of (3.2)
that we substitute cannot have negative powers of z, hence they must be w1, . . . , wl. We remark that this
technique is similar with the one devised by Tutte for counting rooted planar maps (see, for instance, [T2]).

It remains only to solve (3.3) to obtain the desired series C0 =
∑

n An(1, 1)zn. The system (3.3) can we
written as

l−1∑

i=0

(
wj

wj − 1

)i

zCl−i−1 = wj − 1, j = 1, . . . , l.

The left-hand sides of the previous equations can be viewed as the result of evaluating the polynomial∑l−1
i=0(zCl−i−1)X

i of degree l− 1 at X = wj/(wj − 1), for j with 1 ≤ j ≤ l. Using Lagrange’s interpolation

formulas, we get that the coefficient of X l−1 in this polynomial is

zC0 =
l∑

j=1

wj − 1
∏

i6=j

(
wj

wj−1 −
wi

wi−1

) .

By straightforward manipulation this last expression is equal to

−

l∏

j=1

(1− wj)

l∑

j=1

(wj − 1)l−1

∏
i6=j(wj − wi)

= −

l∏

j=1

(1− wj),

where the last equality follows from an identity on symmetric functions (set r = 0 in Exercise 7.4 in [S]).
Thus we have proved the following result.

Theorem 3.1. Let k, l be positive integers. Let qn be the number of lattice paths from (0, 0) to (ln, kn)
that never go above the path (NkEl)n, and let w1, . . . , wl be the unique solutions of the equation

(w − 1)l − zwk+l = 0

that are fractional power series. Then the generating function Q(z) =
∑

n≥0 qnzn is given by

Q(z) =
−1

z
(1− w1) · · · (1− wl).

Note that, by symmetry, the number of paths not above (N lEk)n must be the same as in Theorem 3.1,
although the algebraic functions involved in the solution are roots of a different equation.

In the particular case k = l the solution can be expressed directly in terms of the generating function
G(z) =

∑
n

1
n+1

(
2n
n

)
zn for the Catalan numbers, which satisfies the quadratic equation G(z) = 1 + zG(z)2.

Indeed, (3.2) can be rewritten as

w = 1 + z1/kw2,

whose (fractional) power series solutions are G(ζjz1/k), j = 0, . . . , k − 1, where ζ is a primitive k-th root of
unity. For instance, for k = l = 3 (corresponding to s = 6, t = 3 in the original problem), ζ = exp(2πi/3)
and we obtain the solution

−1

z
(1−G(z1/3))(1−G(ζz1/3))(1−G(ζ2z1/3)) =

1 + 20z + 662z2 + 26780z3 + 1205961z4 + 58050204z5 + · · · .

In the same way, if l divides k and we set p = (k + l)/l, the solution can be expressed in terms of the
generating function

∑
n

1
(p−1)n+1

(
pn
n

)
zn for generalized Catalan numbers; the details are left to the reader.

As an example, for k = 4, l = 2, we obtain the series

−1

z
(1−H(z1/2))(1−H(−z1/2)) =

1 + 15z + 360z2 + 10463z3 + 337269z4 + 11599668z5 + · · · ,
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where H(z) =
∑

n
1

2n+1

(
3n
n

)
satisfies H(z) = 1 + zH(z)3.

4. A further generalization

In this section we solve a further generalization of the tennis ball problem. Given fixed positive integers
s1, t1, . . . , sr, tr with ti < si for all i, let s =

∑
si, t =

∑
ti. There are sn labelled balls. In the first turn we

do the following: balls 1, . . . , s1 go into the basket and t1 of them are removed; then balls s1 + 1, . . . , s1 + s2

go into the basket and among the remaining ones t2 are removed; this goes on until we introduce balls
s − sr + 1, . . . , s, and remove tr balls. After n turns there are tn balls outside the basket and the question
is again how many different sets of tn balls may we have at the end.

The equivalent path counting problem is: given k1, l1, . . . , kr, lr positive integers with k =
∑

ki, l =
∑

li,
count the number of lattice paths from (0, 0) to (ln, kn) that never go above the path Pn = (Nk1El1 · · ·NkrElr)n.
The solution parallels the one presented in Section 3. We keep the notations and let An = t(M [Pn]; x, y), so
that

An+1 = Φlr(xkr · · ·Φl1(xk1An) · · · ).

As before, we introduce l polynomials Bi,n(x, y) and Ci,n(y) = Bi,n(1, y), but the definition here is a bit
more involved:

(4.1)

Bi,n = Φi(xk1An), i = 1, . . . , l1;
Bl1+i,n = Φi(xk2Bl1,n), i = 1, . . . , l2;
Bl1+l2+i,n = Φi(xk3Bl1+l2,n), i = 1, . . . , l3;

· · ·
Bl−lr+i,n = Φi(xkrBl−lr ,n), i = 1, . . . , lr.

We also set C0,n(y) = An(1, y). Again, from the definition of Φ, we obtain a set of equations involving An,
An+1 = Bl,n, the Bi,n and Ci,n. We define generating functions A and Ci (i = 0, . . . , l) as in Section 3.

Starting with An+1 = Bl,n, we substitute repeatedly the values of the Bi,n from previous equations and
set y = 1. After a simple computation we arrive at

(4.2) A
(
(x− 1)l − zxk+l

)
= (x− 1)l + z U(x, C0, . . . , Cl−1),

where U is a polynomial in the variables x, C0, . . . , Cl−1. Observe that the difference between (4.2) and
equation (3.1) is that now U is not a concrete expression but a certain polynomial that depends on the
particular values of the ki and li.

Let w1, . . . , wl be again the power series solutions of (3.2). Substituting x = wj in (4.2) for j = 1, . . . , l,
we obtain a system of linear equations in the Ci. Since the coefficients are rational functions in the wj ,
the solution consists also of rational functions; they are necessarily symmetric since the wj , being conjugate
roots of the same algebraic equation, are indistinguishable.

Thus we have proved the following result.

Theorem 4.1. Let k1, l1, . . . , kr, lr be positive integers, and let k =
∑

ki, l =
∑

li. Let qn be the number

of lattice paths from (0, 0) to (ln, kn) that never go above the path (N k1El1 · · ·NkrElr )n, and let w1, . . . , wl

be the unique solutions of the equation

(w − 1)l − zwk+l = 0

that are fractional power series. Then the generating function Q(z) =
∑

n≥0 qnzn is given by

Q(z) =
1

z
R(w1, . . . , wl),

where R is a computable symmetric rational function of w1, . . . , wl.
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As an example, let r = 2 and (k1, l1, k2, l2) = (2, 2, 1, 1), so that k = l = 3. Solving the corresponding
linear system we obtain

R =
(1− w1)(1− w2)(1− w3)

2w1w2w3 − (w1w2 + w1w3 + w2w3)
,

and

Q(z) =
1

z
R = 1 + 16z + 503z2 + 19904z3 + 885500z4 + 42298944z5 + · · · .

It should be clear that for any values of the ki and li the rational function R can be computed effectively.

5. Concluding Remarks

It is possible to obtain an expression for the generating function of the full Tutte polynomials An(x, y)
defined in Section 3. We have to find the values of C0, C1, . . . , Cl−1 satisfying the system (3.3) and substitute
back into (3.1). After some algebraic manipulation, the final expression becomes

∑

n≥0

An(x, y)zn =
−(x− w1) · · · (x− wl)

(zxk+l − (x − 1)l)(y − w1(y − 1)) · · · (y − wl(y − 1))
.

Taking x = y = 1 we recover the formula stated in Theorem 3.1.
On the other hand, references [MS] and [MSV] also study a different question on the tennis ball problem,

namely to compute the sum of the labels of the balls outside the basket for all possible configurations. For a
given lattice path Pn, this amounts to computing the sum of all elements in all bases of the matroid M [Pn].
We remark that this quantity does not appear to be computable from the corresponding Tutte polynomials
alone.

Finally, as already mentioned, the technique of forcing an expression to vanish by substituting algebraic
functions was introduced by Tutte in his landmark papers on the enumeration of planar maps. Thus the
present paper draws in more than one way on the work of the late William Tutte.
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