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Abstract. In [6], Postnikov gave a combinatorially explicit cell decomposition of the totally nonnegative

part of a Grassmannian, denoted Gr
+

k,n
, and showed that this set of cells is isomorphic as a graded poset

to many other interesting graded posets, such as the posets of decorated permutations,

Γ

-diagrams (certain
0−1 tableau), and positroids. The main result of our work is an explicit generating function which enumer-

ates the cells in Gr
+

k,n
according to their dimension. Equivalently, we compute rank generating functions

for the posets of decorated permutations,

Γ

-diagrams, and positroids. As a corollary, we give a new proof
that the Euler characteristic of Gr+

k,n
is 1. Additionally, we use our result to produce a new q-analog of

the Eulerian numbers, which interpolates between the Eulerian numbers, the Narayana numbers, and the
binomial coefficients.

Résumé. Postnikov a décrit explicitement dans [6], en termes combinatoires, la décomposition cellulaire

de la partie positive (notée Gr
+

k,n
) d’une variété grassmannienne. Il a montré que cet ensemble de cellules

est isomorphe, en tant que treillis gradué, à de nombreux ensembles partiellement ordonnés intéressants,
comme les permutations décorées, les

Γ

-diagrammes (qui sont certains tableaux à coefficients 0, 1) ou les

matröides positifs. Le résultat principal de notre travail est une fonction génératrice explicite, qui dénombre
les cellules de Gr

+

k,n
selon leur dimension. De façon équivalente, nous calculons la fonction génératrice,

pondérée par le rang, pour le treillis des permutations décorées, des

Γ

-diagrammes et des matröides positifs.
Nous en déduisons comme corollaire une nouvelle preuve que la caractéristique d’Euler de Gr

+

k,n
est 1. De

plus, nous utilisons notre résultat pour exhiber un nouveau q-analogue des nombres eulériens, qui s’interpole
entre les nombres eulériens, les nombres de Narayana et les coefficients binomiaux.

1. Introduction

The classical theory of total positivity concerns matrices in which all minors are nonnegative. While
this theory was pioneered by Gantmacher, Krein, and Schoenberg in the 1930s, the past decade has seen a
flurry of research in this area initiated by Lusztig [3, 4, 5], and continued by works of Fomin and Zelevinsky
[1], and Rietsch [7], among others.

Most recently, Postnikov [6] investigated the combinatorics of the totally nonnegative part of a Grass-
mannian Gr+

k,n: he produced a combinatorially explicit cell decomposition of Gr+
k,n, giving the set of cells of

Gr+
k,n a natural structure of graded poset. Furthermore, he showed that this poset was isomorphic to many

other interesting combinatorial posets, such as the posets of decorated permutations,

Γ

-diagrams, positive
oriented matroids, and move-equivalence classes of planar oriented networks. In this paper we continue Post-
nikov’s study of the combinatorics of Gr+

k,n: in particular, we enumerate the cells in the cell decomposition
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of Gr+
k,n according to their dimension. Equivalently, we compute the rank generating functions for all of the

above posets.
The totally nonnegative part of the Grassmannian of k-dimensional subspaces in R

n is defined as the
quotient Gr+

k,n = GL+
k \Mat+(k, n), where GL+

k is the group of real k×k matrices with positive determinant,

and Mat+(k, n) is the set of real k × n-matrices of rank k with nonnegative maximal minors. If we specify
which maximal minors are strictly positive and which are equal to zero, we obtain a cellular decomposition
of Gr+

k,n, as shown in [6]. We refer to the cells in this decomposition as totally positive cells. The set of
totally positive cells naturally has the structure of a graded poset: we say that one cell covers another if the
closure of the first cell contains the second, and the rank function is the dimension of each cell.

The main result of this paper is an explicit formula for the rank generating function Ak,n(q) of Gr+
k,n.

Specifically, Ak,n(q) is defined to be the polynomial in q whose qr coefficient is the number of totally positive

cells in Gr+
k,n which have dimension r. As a corollary of our main result, we give a new proof that the Euler

characteristic of Gr+
k,n is 1. Additionally, using our result and exploiting the connection between totally

positive cells and permutations, we compute generating functions which enumerate (regular) permutations
according to two statistics. This leads to a new q-analog of the Eulerian numbers that has many interesting
combinatorial properties. For example, when we evaluate this q-analog at q = 1, 0, and −1, we obtain the
Eulerian numbers, the Narayana numbers, and the binomial coefficients. Finally, the connection with the
Narayana numbers suggests a way of incorporating noncrossing partitions into a larger family of “crossing”
partitions.

Let us fix some notation. Throughout this paper we use [i] to denote the q-analog of i, that is, [i] =
1+ q + · · ·+ qi−1. (We will sometimes use [n] to refer to the set {1, . . . , n}, but the context should make our

meaning clear.) Additionally, [i]! :=
∏i

k=1[k] and

[

i
j

]

:= [i]!
[j]![i−j]! are the q-analogs of i! and

(

i
j

)

, respectively.

2.

Γ

-Diagrams

A partition λ = (λ1, . . . , λk) is a weakly decreasing sequence of nonnegative numbers. For a partition λ,
where

∑

λi = n, the Young diagram Yλ of shape λ is a left-justified diagram of n boxes, with λi boxes in
the ith row. Figure 1 shows a Young diagram of shape (4, 2, 1).

Figure 1. A Young diagram of shape (4, 2, 1)

Fix k and n. Then a

Γ

-diagram (λ, D)k,n is a partition λ contained in a k × (n − k) rectangle (which
we will denote by (n− k)k), together with a filling D : Yλ → {0, 1} which has the

Γ

-property: there is no 0
which has a 1 above it and a 1 to its left. (Here, “above” means above and in the same column, and “to its
left” means to the left and in the same row.) In Figure 2 we give an example of a

Γ

-diagram. 1

We define the rank of (λ, D)k,n to be the number of 1’s in the filling D. Postnikov proved that there is
a one-to-one correspondence between

Γ

-diagrams (λ, D) contained in (n − k)k, and totally positive cells in
Gr+

k,n, such that the dimension of a totally positive cell is equal to the rank of the corresponding

Γ

-diagram.
He proved this by providing a modified Gram-Schmidt algorithm A, which has the property that it maps a
real k×n matrix of rank k with nonnegative maximal minors to another matrix whose entries are all positive
or 0, which has the

Γ

-property. In brief, the bijection between totally positive cells and

Γ

-diagrams maps a

1The symbol

Γ

is meant to remind the reader of the shape of the forbidden pattern, and should be pronounced as [le],
because of its relationship to the letter L. See [6] for some interesting numerological remarks on this symbol.
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k = 6, n = 17
λ = (10, 9, 9, 8, 5, 2)k

n− k

1 1

0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 1 1

0 1 1 0 0 1 0 1 0 1

Figure 2. A

Γ

-diagram (λ, D)k,n

matrix M (representing some totally positive cell) to a

Γ

-diagram whose 1’s represent the positive entries of
A(M).

Because of this correspondence, in order to compute Ak,n(q), we need to enumerate

Γ

-diagrams contained
in (n− k)k according to their number of 1’s.

3. Decorated Permutations and the Cyclic Bruhat Order

The poset of decorated permutations (also called the cyclic Bruhat order) was introduced by Postnikov
in [6]. A decorated permutation π̃ = (π, d) is a permutation π in the symmetric group Sn together with a
coloring (decoration) d of its fixed points π(i) = i by two colors. Usually we refer to these two colors as
“clockwise” and “counterclockwise,” for reasons which the next paragraph will make clear.

We represent a decorated permutation π̃ = (π, D), where π ∈ Sn, by its chord diagram, constructed as
follows. Put n equally spaced points around a circle, and label these points from 1 to n in clockwise order.
If π(i) = j then this is represented as a directed arrow, or chord, from i to j. If π(i) = i then we draw a
chord from i to i (i.e. a loop), and orient it either clockwise or counterclockwise, according to d. We refer
to the chord which begins at position i as Chord(i), and we use ij to denote the directed chord from i to j.
Also, if i, j ∈ {1, . . . , n}, we use Arc(i, j) to denote the set of points that we would encounter if we were to
travel clockwise from i to j, including i and j.

For example, the decorated permutation (3, 1, 5, 4, 8, 6, 7, 2) (written in list notation) with the fixed
points 4, 6, and 7 colored in counterclockwise, clockwise, and counterclockwise, respectively, is represented
by the chord diagram in Figure 3.

1

2

3

4

5

6

7

8

Figure 3. A chord diagram for a decorated permutation

The symmetric group Sn acts on the permutations in Sn by conjugation. This action naturally extends to
an action of Sn on decorated permutations, if we specify that the action of Sn sends a clockwise (respectively,
counterclockwise) fixed point to a clockwise (respectively, counterclockwise) fixed point.
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We say that a pair of chords in a chord diagram forms a crossing if they intersect inside the circle or on
its boundary.

Every crossing looks like Figure 4, where the point A may coincide with the point B, and the point C

A B

C D

Figure 4. A crossing

may coincide with the point D. A crossing is called a simple crossing if there are no other chords that go
from Arc(C, A) to Arc(B, D). Say that two chords are crossing if they form a crossing.

Let us also say that a pair of chords in a chord diagram forms an alignment if they are not crossing
and they are relatively located as in Figure 5. Here, again, the point A may coincide with the point B, and

A B

C D

Figure 5. An alignment

the point C may coincide with the point D. If A coincides with B then the chord from A to B should be a
counterclockwise loop in order to be considered an alignment with Chord(C). (Imagine what would happen
if we had a piece of string pointing from A to B, and then we moved the point B to A). And if C coincides
with D then the chord from C to D should be a clockwise loop in order to be considered an alignment with
Chord(A). As before, an alignment is a simple alignment if there are no other chords that go from Arc(C, A)
to Arc(B, D). We say that two chords are aligned if they form an alignment.

We now define a partial order on the set of decorated permutations. For two decorated permutations π1

and π2 of the same size n, we say that π1 covers π2, and write π1 → π2, if the chord diagram of π1 contains
a pair of chords that forms a simple crossing and the chord diagram of π2 is obtained by changing them to
the pair of chords that forms a simple alignment: If the points A and B happen to coincide then the chord
from A to B in the chord diagram of π2 degenerates to a counterclockwise loop. And if the points C and D
coincide then the chord from C to D in the chord diagram of π2 becomes a clockwise loop. These degenerate
situations are illustrated in Figure 7.

Let us define two statistics A and K on decorated permutations. For a decorated permutation π, the
numbers A(π) and K(π) are given by

A(π) = #{pairs of chords forming an alignment},

K(π) = #{i | π(i) > i}+ #{counterclockwise loops}.
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A B

C D

π1

A B

C D

π2

Figure 6. Covering relation

A = B

C D

π1

A = B

C D

π2

C = D

A B

π1

C = D

A B

π2

A = B

C = D
π1

A = B

C = D
π2

Figure 7. Degenerate covering relations

In our previous example π = (3, 1, 5, 4, 8, 6, 7, 2) we have A = 11 and K = 5. The 11 alignments in π are
(13, 66), (21, 35), (21, 58), (21, 44), (21, 77), (35, 44), (35, 66), (44, 66), (58, 77), (66, 77), (66, 82).

Lemma 3.1. [6] If π1 covers π2 then A(π1) = A(π2)− 1 and K(π1) = K(π2).

Note that if π1 covers π2 then the number of crossings in π1 is greater then the number of crossings in
π2. But the difference of these numbers is not always 1.
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Lemma 3.1 implies that the transitive closure of the covering relation “→” has the structure of a partially
ordered set and this partially ordered set decomposes into n+1 incomparable components. For 0 ≤ k ≤ n, we
define the cyclic Bruhat order CBkn as the set of all decorated permutations π of size n such that K(π) = k
with the partial order relation obtained by the transitive closure of the covering relation “→”. By Lemma 3.1
the function A is the corank function for the cyclic Bruhat order CBkn.

The definitions of the covering relation and of the statistic A will not change if we rotate a chord diagram.
The definition of K depends on the order of the boundary points 1, . . . , n, but it is not hard to see that the
statistic K is invariant under the cyclic shift conjσ for the long cycle σ = (1, 2, . . . , n). Thus the order CBkn

is invariant under the action of the cyclic group Z/nZ on decorated permutations.
In [6], Postnikov proved that the number of totally positive cells in Gr+

k,n of dimension r is equal to

the number of decorated permutations in CBkn of rank r. Thus, Ak,n(1) is the cardinality of CBkn, and the

coefficient of qk(n−k)−` in Ak,n(q) is the number of decorated permutations in CBkn with ` alignments.

4. The Rank Generating Function of Gr+
k,n

Recall that the coefficient of qr in Ak,n(q) is the number of cells of dimension r in the cellular decom-

position of Gr+
k,n. In this section we give an explicit expression for Ak,n(q), as well as expressions for the

generating functions Ak(q, x) :=
∑

n Ak,n(q)xn and A(q, x, y) :=
∑

k≥1

∑

n Ak,n(q)xnyk. Our main theorem
is the following:

Theorem 4.1.

A(q, x, y) =
−y

q(1− x)
+

∑

i≥1

yi(q2i+1 − y)

qi2+i+1(qi − qi[i + 1]x + [i]xy)

Ak(q, x) =

k−1
∑

i=0

(−1)i+k xk−i−1[i]k−i−1

qki+i+1(1− [i + 1]x)k−i
+

k
∑

i=0

(−1)i+k xk−i[i]k−i

qki(1− [i + 1]x)k−i+1

Ak,n(q) = q−k2

k−1
∑

i=0

(−1)i

(

n

i

)

(qki[k − i]i[k − i + 1]n−i − q(k+1)i[k − i− 1]i[k − i]n−i)

=

k−1
∑

i=0

(

n

i

)

q−(k−i)2([i− k]i[k − i + 1]n−i − [i− k + 1]i[k − i]n−i).

Corollary 4.2. The Euler characteristic of the totally non-negative part of the Grassmannian Gr+
k,n

is 1.

Recall that the Euler characteristic of a cell complex is defined to be
∑

i(−1)ifi, where fi is the number
of cells of dimension i. So to prove Corollary 4.2, simply set q = −1 in Theorem 4.1 and simplify.

One interesting ingredient in the proof of Theorem 4.1 is the following lemma. We prove this lemma by
interpreting the two equations as statements about partitions, and overpartitions, respectively. Alternatively,
Christian Krattenthaler has pointed out to us that this lemma follows from the 1φ1 summation described in
Appendix II.5 of [2].

Lemma 4.3.

(4.1)
∑

i≥0

(−1)iyiq(
i+1

2 )
i+1
∏

r=1

1

1− qry
= 1.
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(4.2) (−1)jq−(j+1

2 )y−j
∑

i≥j

(−1)iq(
i+1

2 )
[

i
j

]

yi

i+1
∏

r=1

1

1− qr+jy
= 1.

In Table 1, we have listed some of the values of Ak,n(q) for small k and n. It is easy to see from the
definition of

Γ

-diagrams that Ak,n(q) = An−k,n(q): one can reflect a

Γ

-diagram (λ, D)k,n of rank r over the
main diagonal to get another

Γ

-diagram (λ′, D′)n−k,n of rank r. Alternatively, one should be able to prove
the claim directly from the expression in Theorem 4.1, using some q-analog of Abel’s identity.

A1,1(q) 1
A1,2(q) q + 2
A1,3(q) q2 + 3q + 3
A1,4(q) q3 + 4q2 + 6q + 4
A2,4(q) q4 + 4q3 + 10q2 + 12q + 6
A2,5(q) q6 + 5q5 + 15q4 + 30q3 + 40q2 + 30q + 10
A2,6(q) q8 + 6q7 + 21q6 + 50q5 + 90q4 + 120q3 + 110q2 + 60q + 15
A3,6(q) q9 + 6q8 + 21q7 + 56q6 + 114q5 + 180q4 + 215q3 + 180q2 + 90q + 20
A3,7(q) q12 + 7q11 + 28q10 + 84q9 + 203q8 + 406q7 + 679q6 + 938q5 + 1050q4 +

910q3 + 560q2 + 210q + 35

Table 1. Ak,n(q)

Note that it is possible to see directly from the definition that Gr+
1,n is just some deformation of a simplex

with n vertices. This explains the simple form of A1,n(q).

5. A New q-Analog of the Eulerian Numbers

If π ∈ Sn, we say that π has a weak excedence at position i if π(i) ≥ i. The Eulerian number Ek,n is
the number of permutations in Sn which have k weak excedences. (One can define the Eulerian numbers in
terms of other statistics, such as descent, but this will not concern us here.)

Using the rank generating function for the poset of decorated permutations, we can enumerate (regular)
permutations according to two statistics: weak excedences and alignments. This gives us a new q-analog of
the Eulerian numbers.

Recall that the statistic K on decorated permutations was defined as

K(π) = #{i | π(i) > i}+ #{counterclockwise loops}.

Note that K is related to the notion of weak excedence in permutations. In fact, we can extend the definition
of weak excedence to decorated permutations by saying that a decorated permutation has a weak excedence
in position i, if π(i) > i, or if π(i) = i and d(i) is counterclockwise. This makes sense, since the limit of a
chord from 1 to 2 as 1 approaches 2, is a counterclockwise loop. Then K(π) is the number of weak excedences
in π.

We will call a decorated permutation regular if all of its fixed points are oriented counterclockwise. Thus,
a fixed point of a regular permutation will always be a weak excedence, as it should be. Recall that the
Eulerian number Ek,n is the number of permutations of [n] with k weak excedences. Earlier, we saw that

the coefficient of qk(n−k)−` in Ak,n(q) is the number of decorated permutations in CBkn with ` alignments.

By analogy, let Ek,n(q) be the polynomial in q whose coefficient of qk(n−k)−` is the number of (regular)
permutations with k weak excedences and ` alignments. Thus, the family Ek,n(q) will be a q-analog of the
Eulerian numbers.
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We can relate decorated permutations to regular permutations via the following lemma.

Lemma 5.1.

Ek,n(q) =
n

∑

i=0

(−1)i

(

n

i

)

Ak,n−i(q).

Putting this together with Theorem 4.1, we get the following.

Corollary 5.2.

Ek,n(q) = qn−k2

k−1
∑

i=0

(−1)i[k − i]nqki−k(

(

n

i

)

qk−i +

(

n

i− 1

)

).

Notice that by substituting q = 1 into the formula, we get

Ek,n =

k
∑

i=0

(−1)i

(

n + 1

i

)

(k − i)n,

the well-known exact formula for the Eulerian numbers.
Now we will investigate the properties of Ek,n(q). Actually, since Ek,n(q) is a multiple of qn−k, we first

define Êk,n(q) to be qk−nEk,n(q), and then work with this renormalized polynomial. Table 2 lists Êk,n(q)
for n = 4, 5, 6, 7.

Ê1,4(q) 1

Ê2,4(q) 6 + 4q + q2

Ê3,4(q) 6 + 4q + q2

Ê4,4(q) 1

Ê1,5(q) 1

Ê2,5(q) 10 + 10q + 5q2 + q3

Ê3,5(q) 20 + 25q + 15q2 + 5q3 + q4

Ê4,5(q) 10 + 10q + 5q2 + q3

Ê5,5(q) 1

Ê1,6(q) 1

Ê2,6(q) 15 + 20q + 15q2 + 6q3 + q4

Ê3,6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6

Ê4,6(q) 50 + 90q + 84q2 + 50q3 + 21q4 + 6q5 + q6

Ê5,6(q) 15 + 20q + 15q2 + 6q3 + q4

Ê6,6(q) 1

Ê1,7(q) 1

Ê2,7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5

Ê3,7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8

Ê4,7(q) 175+441q+588q2+532q3+364q4+196q5+84q6 +28q7+7q8 +q9

Ê5,7(q) 105 + 245q + 308q2 + 259q3 + 161q4 + 77q5 + 28q6 + 7q7 + q8

Ê6,7(q) 21 + 35q + 35q2 + 21q3 + 7q4 + q5

Ê7,7(q) 1

Table 2. Êk,n(q)
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We can make a number of observations about these polynomials. For example, we can generalize the
well-known result that Ek,n = En+1−k,n, where Ek,n is the Eulerian number corresponding to the number
of permutations of Sn with k weak excedences.

Proposition 5.3. Êk,n(q) = Ên+1−k,n(q).

Proposition 5.4. [6] The coefficient of the highest degree term of Êk,n(q) is 1.

Proposition 5.5. Êk,n(−1) = ±
(

n−1
k−1

)

.

Proposition 5.6. Êk,n(q) is a polynomial of degree (k−1)(n−k), and Êk,n(0) is the Narayana number
Nk,n = 1

n

(

n
k

)(

n
k−1

)

.

Corollary 5.7. Êk,n(q) interpolates between the Eulerian numbers, the Narayana numbers, and the
binomial coefficients, at q = 1, 0, and −1, respectively.

Remark 5.8. The coefficients of Êk,n(q) appear to be unimodal. However, these polynomials do not in
general have real zeroes.

6. Connection with Narayana Numbers

A noncrossing partition of the set [n] is a partition π of the set [n] with the property that if a < b < c < d
and some block B of π contains both a and c, while some block B ′ of π contains both b and d, then B = B′.
Graphically, we can represent a noncrossing partition on a circle which has n labeled points equally spaced
around it. We represent each block B as the polygon whose vertices are the elements of B. Then the
condition that π is noncrossing just means that no two blocks (polygons) intersect each other.

It is known that the number of noncrossing partitions of [n] which have k blocks is equal to the Narayana
number Nk,n = 1

n

(

n

k

)(

n

k−1

)

(see Exercise 68e in [8]).
To prove the following proposition we will find a bijection between permutations of Sn with k excedences

and the maximal number of alignments, and noncrossing partitions on [n].

Proposition 6.1. Fix k and n. Then (k − 1)(n − k) is the maximal number of alignments that a
permutation in Sn with k weak excedences can have. The number of permutations in Sn with k weak
excedences that achieve the maximal number of alignments is the Narayana number Nk,n = 1

n

(

n
k

)(

n
k−1

)

.

To figure out what the maximal-alignment permutations look like, imagine starting from any given
permutation and applying the covering relations in the cyclic Bruhat order as many times as possible, such
that the result is a regular permutation. Note that of the four cases of the covering relation (illustrated
in section 3), we can use only the first and second cases. We cannot use the third and fourth operations
because these add clockwise fixed points, which are not allowed in regular permutations. It is easy to see
that after applying the first two operations as many times as possible, the resulting permutation will have
no crossings among its chords and all cycles will be directed counterclockwise.

The map from maximal-alignment permutations to noncrossing partitions is now obvious. We simply
take our permutation and then erase the directions on the edges. Since the covering relations in the cyclic
Bruhat order preserve the number of weak excedences, and since each counterclockwise cycle in a permutation
contributes one weak excedence, the resulting noncrossing partitions will all have k blocks. In Figure 8 we
show the permutations in S4 which have 2 weak excedences and 2 alignments, along with the corresponding
noncrossing partitions.

Conversely, if we start with a noncrossing partition on [n] which has k blocks, and then orient each cycle
counterclockwise, then this gives us a maximal-alignment permutation with k weak excedences.

Corollary 6.2. The number of permutations in Sn which have the maximal number of alignments,
given their weak excedences, is Cn = 1

n

(

2n
n+1

)

, the nth Catalan number.

Proof. It is known that
∑

k Nk,n = Cn. �
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1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

Figure 8. The bijection between maximal-alignment permutations and noncrossing partitions

Remark 6.3. The bijection between maximal-alignment permutations and noncrossing partitions is
especially interesting because the connection gives a way of incorporating noncrossing partitions into a larger
family of “crossing” partitions; this family of crossing partitions is a ranked poset, graded by alignments.
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