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Vancouver 2004

Finite-Dimensional Crystals for Quantum Affine Algebras of type D
(1)
n

Philip Sternberg

Abstract. The combinatorial structure of the crystal basis B(2,2) for the U ′

q
(
�
���

2n)-module W (2,2) is given,

and a conjecture is presented for the combinatorial structure of the crystal basis B(2,s) for the U ′

q
(
�
���

2n)-

module W (2,s).
Résumé. Nous donnons la structure combinatoire de la base cristalline B(2,2) pour le U ′

q
(
�
���

2n)-module

W (2,2), et nous conjecturons la structure combinatoire de la base cristalline B(2,s) pour le U ′

q
(
�
���

2n)-module

W (2,s).

1. Introduction

While studying representations of quantum groups, Kashiwara developed the theory of crystal bases,
which allow modules over quantum groups to be studied in terms of a crystal graph, a purely combinatorial
object [5]. An open question in the area of crystal basis theory is to determine for which irreducible
representations of quantum affine algebras a crystal basis exists, and when they exist, what combinorial
structure the crystals have. It is conjectured [3, 4] that there is a family of irreducible finite-dimensional
U ′

q(g)-modules W (k,s), called Kirillov-Reshetikhin modules, which have crystal bases B(k,s), where k is a
Dynkin node and s is a positive integer; furthermore, it is expected that all irreducible finite-dimensional
U ′

q(g)-modules which have crystal bases are tensor products of the modules W (k,s). A first step towards
understanding these crystals is to determine their combinatorial structure.

For type A
(1)
n , the existence of the modules W (k,s) has been established [8], and the explicit combinatorial

structure is also well-known [14]. For non-simply laced types, the following well-known algebra embeddings
are conjectured to apply to crystals as well [12], which would yield the combinatorial structure of the
corresponding crystals in terms of the crystal structure for the simply-laced types.:

C(1)
n , A

(2)
2n , A

(2)†
2n , D

(2)
n+1 ↪→ A

(1)
2n−1

A
(2)
2n−1, B

(1)
n ↪→ D

(1)
n+1

E
(2)
6 , F

(1)
4 ↪→ E

(1)
6

D
(3)
4 , G

(1)
2 ↪→ D

(1)
4 .
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Therefore, the next step in developing a general theory of affine crystals is to explore crystals of types

D
(1)
n (n ≥ 4) and E

(1)
n (n = 6, 7, 8). In this paper, we concentrate on type D

(1)
n . For irreducible representa-

tions corresponding to multiples of the first fundamental weight (indexed by a one-row Young diagram) or
any single fundamental weight (indexed by a one-column Young diagram) the crystals are known to exist
and the structure is known [8, 7]. It is conjectured in [3, 4] that as Uq(gI\{0})-crystals, the crystal B(k,s)

decomposes as

B(k,s) =
⊕

Λ

B(Λ),

where the direct sum is taken over all partitions which result from removing any number of 2 × 1 vertical
dominoes from a k × s rectangle, whenever k ≤ n− 2. In the sequel, we consider the case k = 2, for which
the above direct sum specializes to

B(2,s) =

s⊕

i=0

B(iΛ2).

First, we will use tableaux of shape (s, s) to define a Uq(so2n)-crystal whose vertices are in bijection with
the classical tableaux from the above direct sum decomposition. Because of the way we define our tableaux,
we will be able to combinatorially define the unique action of f̃0 which makes this crystal into a connected
perfect crystal of level s. Finally, we present a conjecture for an explicit construction of the representation
W (2,s) which is compatible with the crystal basis B(2,s) as constructed. Full details of our results will be
forthcoming [13].

2. Review of quantum groups and crystal bases

For n ∈ Z and a formal parameter q, we use the notations

[n]q =
qn − q−n

q − q−1
, [n]q ! =

n∏

k=1

[k]q , and

[
m

n

]

q

=
[m]q !

[n]q ![m− n]q !
.

These are all elements of Q(q), called the q-integers, q-factorials, and q-binomial coefficients, respectively.
Let g be a Lie algebra with Cartan datum (A, Π, Π∨, P, P∨), a Dynkin diagram indexed by I , and let

{si|i ∈ I} be the entries of the diagonal symmetrizing matrix of A. Let qi = qsi and Ki = qsihi . We may
then construct the quantum enveloping algebra Uq(g) as the associative Q(q)-algebra generated by ei and fi

for i ∈ I , and qh for h ∈ P∨, with the following relations:

(1) q0 = 1, qhqh′ = qh+h′ for all h, h′ ∈ P∨,
(2) qheiq

−h = qαi(h)ei for all h ∈ P∨,
(3) qhfiq

−h = qαi(h)fi for all h ∈ P∨,

(4) eifj − fjei = δij
Ki−K−1

i

qi−q−1
i

for i, j ∈ I ,

(5)
∑1−aij

k=0 (−1)k

[
1−aij

k

]

qi

e
1−aij−k
i eje

k
i = 0 for all i 6= j,

(6)
∑1−aij

k=0 (−1)k

[
1−aij

k

]

qi

f
1−aij−k
i fjf

k
i = 0 for all i 6= j.

We can view Uq(g) as a q-deformation of U(g). Similarly, a Uq(g)-module V may be seen as a q-
deformation of a U(g)-module. The representation theory of Uq(g) does not depend on q, provided q 6= 0
and qk 6= 1 for all k ∈ Z. Furthermore, through appropriate tensoring and factoring, we may “take the limit
as q goes to zero” in Uq(g) and V . This process makes V very simple, so that we may study it using a colored
directed graph whose vertices correspond to a canonical basis of V . In the solvable lattice models which
provided the original motivation for quantum groups, q parameterized temperature, so letting q approach
0 in the quantum group corresponds to the temperature approaching absolute zero in the physical models.
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Thus, the graph described above is called a crystal graph, and its vertices are a crystal basis B for V [5].

The edges are colored by the index set I , which indicates the action of the Kashiwara operators ẽi and f̃i

on B. The Kashiwara operators are a “crystal version” of the Chevalley generators of g.
We are particularly interested in a class of crystals called perfect crystals, since they allow us to construct

infinite-dimensional highest weight modules over Uq(g), where g is of affine type [9]. To define them, we
need a few preliminary definitions.

Let P be the weight lattice of an affine Lie algebra g. Define Pcl = P/Zδ, P+
cl = {λ ∈ Pcl|〈hi, λ〉 ≥

0 for all i ∈ I}, and U ′
q(g) to be the quantum enveloping algebra with the Cartan datum (A, Π, Π∨, Pcl, P

∨
cl ).

A crystal pseudobase for a module V is a set B such that there is a crystal base B ′ for V such that
B = B′ ∪ −B′.

Denote by c the canonical central element of g. In the sequel, we only consider g of type D
(1)
n , in which

case

c = Λ0 + Λ1 + 2Λ2 + · · ·+ 2Λn−2 + Λn−1 + Λn.

Define the set of level ` weights to be (P +
cl )` = {λ ∈ P+

cl |〈c, λ〉 = `}. For a crystal basis element b ∈ B, define

εi(b) = max{n ≥ 0|ẽn
i (b) ∈ B}, and ε(b) =

∑
i∈I εi(b)Λi, and similarly, ϕi(b) = max{n ≥ 0|f̃n

i (b) ∈ B}, and
ϕ(b) =

∑
i∈I ϕi(b)Λi. Finally, for a crystal basis B, we define Bmin to be the set of crystal basis elements b

such that 〈c, ε(b)〉 is minimal over b ∈ B.
A crystal B is a perfect crystal of level ` if:

(1) B ⊗B is connected;
(2) there exists λ ∈ Pcl such that wt(B) ⊂ λ +

∑
i6=0 Z≤0αi and #(Bλ) = 1;

(3) there is a finite-dimensional irreducible U ′
q(g)-module V with a crystal pseudobase of which B is

an associated crystal;
(4) for any b ∈ B, we have 〈c, ε(b)〉 ≥ `;
(5) the maps ε and ϕ from Bmin to (P+

cl )` are bijective.

We may now state the main result of this paper.

Theorem 2.1. Suppose that the U ′
q(ŝo2n)-module W (2,2) has a crystal basis B(2,2) as conjectured in

[3]. Then B(2,2) ∼= B̃(2,2), where B̃(2,2) is the affine crystal given explicitly by the construction below.

Furthermore, we conjecture that the construction of B̃(2,s) below explicitly gives the crystal graph associated
to the U ′

q(ŝo2n)-module W (2,s).

Specifically, we will construct a U ′
q(ŝo2n)-crystal B̃(2,s) with the conjectured classical decomposition, and

then show that it is the only perfect crystal which can admit such a decomposition. This is the first step in
confirming Conjecture 2.1 of [4], which states that as modules over the embedded classical quantum group,
W (2,s) decomposes as

⊕s
i=0 V (iΛ2), where V (Λ) is the classical module with highest weight Λ, W (2,s) has a

crystal basis, and this is a perfect crystal of level s.

3. Decomposition of B̃(2,s)

Let B(kΛ2) denote the crystal basis of the irreducible representation of Uq(so2n) with highest weight
kΛ2 for k ∈ Z≥0. We may associate with each crystal element a tableau of shape λ = (k, k) on the partially
ordered alphabet

1 < 2 < · · · < n− 1 <
n

n̄
< n− 1 < · · · 2̄ < 1̄

such that [2, page 202]

(1) if ab is in the filling, then a ≤ b;
(2) if a

b is in the filling, then b � a;
(3) no configuration of the form a a

ā or a
ā ā appears;

(4) no configuration of the form n−1
n

n
n−1 or n−1

n̄
n̄

n−1 appears;
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(5) no configuration of the form 1
1̄ appears.

Note that for k ≥ 2, condition 5 follows from conditions 1 and 3.
Consider the set T of tableaux of shape (s, s) which violate only condition 3. We will construct a bijection

between T and the vertices of
⊕s−1

i=0 B(iΛ2), so that T ∪ B(sΛ2) may be viewed as a Uq(so2n)-crystal with

the conjectured classical decomposition of B(2,s). In section 4 we will define f̃0 on T ∪B(sΛ2) to give it the

structure of a perfect U ′
q(ŝo2n)-crystal. This will be the crystal B̃(2,s) mentioned in Theorem 2.1. For proofs

of all claims, see [13].

Let T ∈ T , and define ¯̄i = i for 1 ≤ i ≤ n. Then there is a unique a ∈ {1, . . . , n, n̄}, m ∈ Z>0 such that
T has exactly one configuration of one of the following forms:

a

b1

a

ā
· · ·

a

ā︸ ︷︷ ︸
m

c1

d1
, where b1 6= ā, and c1 6= a or d1 6= ā;

b2

c2

a

ā
· · ·

a

ā︸ ︷︷ ︸
m

d2

ā
, where d2 6= a, and b2 6= a or c2 6= ā;

b3

c3

a

ā
· · ·

a

ā︸ ︷︷ ︸
m+1

d3

e3
, where b3 6= a and e3 6= ā.

To find the corresponding element of
⊕s−1

i=0 B(iΛ2), remove
a

ā
· · ·

a

ā︸ ︷︷ ︸
m

from T . The result will be a tableau in

B((s−m)Λ2). Denote the image of T under this map by D2(T ). We call D2 the height-two drop map. For
example, we have

T =
1 2 3 3
4 2 2 1

, D2(T ) =
1 3 3
4 2 1

.

Let t ∈ B(iΛ2). The map F2 (the height-two fill map) which inverts D2 is given by finding a configuration

a
b

c
d in t such that either c ≤ ā ≤ d or a ≤ d̄ ≤ b, and filling with

a

ā
· · ·

a

ā︸ ︷︷ ︸
s−i

or
d̄

d
· · ·

d̄

d︸ ︷︷ ︸
s−i

, respectively. If more

than one such configuration exists, or if both pairs of inequalities are satisfied, then F2(t) is independent of
any of these choices. For example,

t =
1 2 3

4 2 1
, F2(t) =

1 2 2 3

4 2 2 1
.

While we could choose either column two or column three as the filling location, either choice results in the
same tableau.

The action of the Kashiwara operators ẽi, f̃i for i ∈ {1, . . . , n} on T ∪ B(sΛ2) can be defined by direct
combinatorial construction, but for the sake of simplicity, we describe them in terms of the above bijection.
Let T ∈ T ∪ B(sΛ2). We define

ẽi(T ) = F2(ẽi(D2(T )))

f̃i(T ) = F2(f̃i(D2(T ))),

where the ẽi and f̃i on the right are the standard Kashiwara operators on Uq(so2n)-crystals [10].
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4. Affine Kashiwara operators

We know that once B(2,s) is determined, there will be a map σ : B(2,s) → B(2,s) such that ẽ0 = σẽ1σ and
f̃0 = σf̃1σ, corresponding to the automorphism of U ′

q(ŝo2n) which interchanges nodes 0 and 1 of the Dynkin

diagram. With this in mind, suppose we have defined f̃0 on T ∪ B(sΛ2) to produce B̃(2,s), and consider

the following operations on B̃(2,s); let J ⊂ I , and denote by BJ the graph which results from removing all
j-colored edges from B̃(2,s) for j ∈ J . Then as directed graphs, we expect B{0} to be isomorphic to B{1},

otherwise, B̃(2,s) and B(2,s) will not be isomorphic. We can gain some information about σ by considering
B{0,1}.

It is easy to see that the connected components of B{0,1} will be Uq(so2n−2)-crystals, indexed by parti-

tions as described below. This decomposition produces a “branching component graph” for B̃(2,s), which we
denote BC(B̃(2,s)). It suffices to describe the decomposition of the component of B̃(2,s) with classical highest
weight kΛ2 into Uq(so2n−2)-crystals. Denote this branching component subgraph by BC(kΛ2). Each vertex
vλ of this graph will be labeled by a partition indicating the classical highest weight λ of the corresponding
Uq(so2n−2)-crystal. Let B(vλ) denote the set of tableaux in B(kΛ2) contained in the Uq(so2n−2)-crystal
indexed by vλ. Then BC(kΛ2) has a 1-colored edge from vλ to vµ if there is a tableau b ∈ B(vλ) such that

f̃1(b) ∈ B(vµ).
We can give an explicit combinatorial description of BC(kΛ2) as follows. The “highest weight” component

of BC(kΛ2) is a 1× k rectangle; call this vertex vk . The function

rk(v) = d(v, vk) = min
P (v,vk)

(number of edges in P (v, vk))

is a rank function on BC(kΛ2), where P (v, vk) is the set of all paths from v to vk in BC(kΛ2). For any
partition λ, in each rank no more than one vertex may be indexed by λ. Let vλ ∈ BC(kΛ2) have rank less
than k; then there is a 1-edge from vλ to vµ, where rk(vµ) = rk(vλ) + 1 and there is an edge between λ and
µ in the Young lattice. Also note that if vλ ∈ BC(kΛ2), then λ ⊂ (k, k).

If vλ ∈ BC(kΛ2) has rank p, there is a vertex v′λ, called the complementary vertex of vλ, with rank 2k−p.
Let vλ have a 1-edge to vµ. Then there is also a 1-edge from v′µ to v′λ. Combined with the above description
of the first k + 1 ranks, this completely characterizes BC(kΛ2).

Observe that BC(B̃(2,s)) =
⋃s

i=0 BC(iΛ2). Let vλ ∈ BC(iΛ2) ⊂ BC(B̃(2,s)). Define R(vλ) = ri(vλ)+s− i.

This puts a rank on all of BC(B(2,s)). Note that BC(iΛ2) ⊂ BC((i + 1)Λ2), and this inclusion is compatable
with R. Also note that if R(vλ) = p, then v′λ, the complementary vertex to vλ, is now defined to be the
vertex of rank 2s− p with the same shape and in the same component as vλ.

To illustrate, BC(B̃(2,2)) is given in Figure 1, with rank 0 in the first line, rank 1 in the second, etc.
Since we know that B{0} and B{1} are isomorphic as directed graphs, it is clear that we can put 0-colored

edges in the branching component graph in such a way that interchanging the 1-edges and the 0-edges
and applying some shape-preserving bijection σ̂ (defined below) to the vertices will produce an isomorphic

colored directed graph. Such a bijection can be naturally extended to σ : B̃(2,s) → B̃(2,s) as follows. Let
b ∈ B(vλ) ⊂ B̃(2,s) for some supercrystal vertex vλ, and let uλ denote the Uq(so2n−2) highest weight vector

of B(vλ). Then for some finite sequence i1, . . . , ik of integers in {2, . . . , n}, we know that f̃i1 · · · f̃ik
uλ = b.

Let v∗λ = σ̂(vλ), and let u∗λ be the highest weight vector of B(v∗λ). We may define σ(b) = f̃i1 · · · f̃ik
u∗λ. This

involution of B̃(2,s) will satisfy f̃0 = σf̃1σ.
We will define σ̂(vλ) for R(vλ) ≤ s, and observe that σ̂(v′λ) = σ̂(vλ)′, where v′ denotes the complementary

vertex of v. Let vλ ∈ BC(kΛ2), and R(vλ) = p. Then by the inclusion BC(iΛ2) ⊂ BC((i + 1)Λ2), there are

p + 1 vertices of the same shape as vλ of rank p in BC(B̃(2,s)), one in each BC(jΛ2) for j = {s − p, . . . , s}.
We define σ̂(vλ) to be the vertex of the same shape as vλ of rank 2s− p in BC((2s− p− k)Λ2).

The action of σ̂ on BC(B̃(2,2)) is given in Figure 2.
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Figure 1. The branching component graph BC(B̃(2,2))
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Figure 2. Definition of σ̂ on BC(B̃(2,2))

The observant reader will note that there are other permutations of the set of vertices of BC(B̃(2,s))
which respect the shape of the associated partitions. First, note that if a tableau T is in a vertex of rank
p, we expect f̃0(T ) = σf̃1σ(T ) to be in a vertex with rank p− 1; otherwise there will be some T for which

f̃0(T ) = f̃1(T ), which must not be the case. Even this does not completely specify σ̂, since (for instance) we
might permute the three empty partitions in any manner and still satisfy all the above requirements. Note,
however, that ε0 depends entirely on the definition of σ, and the perfectness of a crystal depends on the
function ε0. (Recall the definitions from section 2.) For a detailed proof of the following theorem, see [13].

Theorem 4.1. The above definition of σ, interpreted as a permutation of the vertices of
⊕s

i=0 B(iΛ2),

is the only map such that defining f̃0 = σf̃1σ produces a perfect crystal of level s for s = 2. We conjecture
that this is true for all s.

5. Perfectness of B̃(2,s), Part 1

We must show that B̃(2,s) satisfies conditions 1-5 from Section 2 with ` = s. Condition 1 is verified by
showing that each vertex of B̃(2,s) ⊗ B̃(2,s) is connected to u∅⊗u∅, where u∅ ∈ B̃(2,s) is the unique vector of
the Uq(so2n)-crystal B(0) [13]. Condition 2 is satisfied by λ = sΛ2 − 2sΛ0. We discuss a conjecture which
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satisfies Condition 3 in section 7. Conditions 4 and 5 can be dealt with simultaneously, and have been proved
for s = 2 as described below. For proofs of all claims, see [13].

Given a weight λ ∈ (P +
cl )s, we can construct a tableau Tλ ∈ B̃(2,s) such that ε(Tλ) = ϕ(Tλ) = λ. First,

observe the following. Let T ∈ B(kΛ2) ⊂ B̃(2,s), and let T ∗ = ιsk(T ), where ιji : B(iΛ2) ↪→ B(jΛ2) is the
natural inclusion map which is compatible with the inclusion BC(iΛ2) ↪→ BC(jΛ2). Assume T to be such
that T ∗ ∈ ιss−1(B((s− 1)Λ2)). Let Tm = (ιsm)−1(T ∗) for m = s, s− 1, . . . , k, where k is the smallest number

such that Tk /∈ ιkk−1(B((k − 1)Λ2)). Then we have

〈ε(Ts), Λ0 + Λ1〉 = 〈ε(Ts−1), Λ0 + Λ1〉 = · · · = 〈ε(T ), Λ0 + Λ1〉 6= 0,

and for i = 2, . . . , n,

〈ε(Ts), Λi〉 = 〈ε(Ts−1), Λi〉 = · · · = 〈ε(Tk), Λi〉.

This allows us to temporarily restrict our attention to those level s weights λ which satisfy 〈λ, Λ0〉 =
〈λ, Λ1〉 = 0; i.e., which can be expressed as λ =

∑n
i=2 aiΛi. These weights correspond to tableaux Tλ ∈

Bmin ∩ B(sΛ2) \ ιss−1(B((s − 1)Λ2)). We will later recursively construct the tableaux corresponding to all
other level s weights.

First, let λ = kΛn−1 + (s− k)Λn. If s is even and k ≥ s/2, the corresponding tableau is

Tλ =
n− 2

n− 1
· · ·

n− 2

n− 1︸ ︷︷ ︸
s−k

n− 1

n̄
· · ·

n− 1

n̄︸ ︷︷ ︸
k−s/2

n

n− 1
· · ·

n

n− 1︸ ︷︷ ︸
k−s/2

n− 2

n− 1
· · ·

n− 2

n− 1︸ ︷︷ ︸
s−k

If s is odd and k ≥ s/2, we have

Tλ =
n− 2

n− 1
· · ·

n− 2

n− 1︸ ︷︷ ︸
s−k

n− 1

n̄
· · ·

n− 1

n̄︸ ︷︷ ︸
k−s/2

n

n̄

n

n− 1
· · ·

n

n− 1︸ ︷︷ ︸
k−s/2

n− 2

n− 1
· · ·

n− 2

n− 1︸ ︷︷ ︸
s−k

In either case, if k < s/2, interchange n and n̄ in Tλ.
Next, we describe how to construct Tλ recursively when λ =

∑n
i=2 aiΛi and 〈λ, Λn−1 + Λn〉 < s. Let

j be the minimal index for which 〈λ, Λj〉 = k 6= 0, let λ′ = λ − kΛj , and let Tλ′ be the tableaux such that
ε(Tλ′) = λ′. We then set

Tλ =
j − 1

j
· · ·

j − 1

j︸ ︷︷ ︸
k

Tλ′
j̄

j − 1
· · ·

j̄

j − 1︸ ︷︷ ︸
k

,

which is simply the result of inserting Tλ′ between the two 2× k tableaux on either side.
We now consider level s weights λ such that 〈λ, Λ1〉 = k1 6= 0 or 〈λ, Λ0〉 = k0 6= 0 (or both). Let

λ′ = λ − k1Λ1 − k0Λ0, let kλ′ = 〈c, λ′〉, and once again, let Tλ′ be such that ε(Tλ′) = λ′. It follows
that Tλ′ is a tableau of shape (kλ′ , kλ′). If k1 ≤ kλ′ , then change Tλ′ into a skew tableau Sλ′ of shape
(kλ′ + k1, kλ′ )/(k1) by Lecouvey D-equivalence [11], then fill the northwest boxes with 1’s and the southeast
boxes with 1̄’s to get a tableau of shape (kλ′ + k1, kλ′ + k1). If k1 > kλ′ , change Tλ′ into a skew tableau Sλ′

of shape (2kλ′ , kλ′)/(kλ′) by Lecouvey D-equivalence, fill the northwest and southwest boxes as above, and
insert a tableau of the form

1

2̄
· · ·

1

2̄

2

1̄
· · ·

2

1̄︸ ︷︷ ︸
k1−kλ′

if k1 − kλ′ is even;

1

2̄
· · ·

1

2̄

2

2̄

2

1̄
· · ·

2

1̄︸ ︷︷ ︸
k1−kλ′

if k1 − kλ′ is odd;
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between the first kλ′ columns and the last kλ′ columns to get a tableau Tλ′′ of shape (kλ′ + k1, kλ′ + k1).
Observe that ε(Tλ′′) = λ′′ = λ− k0Λ0.

Finally, use the filling map of section 3 to add k0 columns to Tλ′′ , yielding Tλ with ε(Tλ) = λ.

6. Perfectness of B̃(2,s), Part II

We must now show that the tableaux constructed in section 5 are in bijection with (P +
cl )s. Once again,

for proofs of the following Lemmas, see [13].

Lemma 6.1. Let ι be the crystal endomorphism of B̃(2,s) defined by ι =
⊕s−1

i=0 ιi+1
i , and let T ∈ B̃(2,s)

be a tableau in the range of ι. Then ε(ι(T )) = ε(T ) + Λ1 − Λ0.

This means that given a weight Λ = k0Λ0 + k1Λ1 + Λ′, where 〈Λ′, Λ0〉 = 〈Λ′, Λ1〉 = 0, it suffices
to search for tableaux which correspond to the weight Λ′. Furthermore, such a tableau will appear in
the “new” part of B(sΛ2), where s is the level of Λ′. We may thus restrict our attention to tableaux
T ∈ B(sΛ2) \ ιss−1(B((s − 1)Λ2)).

Lemma 6.2. Let vλ ∈ BC(B̃(2,s)) with complimentary vertex v′λ. (Recall the definitions of the compli-
mentary vertex of vλ and B(vλ) from section 4.) If B(vλ) contains no minimal tableaux, then neither does
B(v′λ).

Therefore, we need only consider tableaux in the upper half (including the middle row) of the branching
component graph.

Lemma 6.3. Let k ≥ s/2. If T has k or more 1’s in the first row and no 1̄’s, then T is not minimal.

This eliminates many tableaux. In particular, in B̃(2,2), we only need to check the middle vertices of the
branching component graph with shape (2, 2) and (2). Exhaustion shows the conjectured tableaux to be the
only tableaux of level 2 in those sets.

7. Construction of W (2,s)

In [9], Kang et al. discuss the relationship between an arbitrary finite-dimensional U ′
q(g)-module M

(where g is of affine type) and Aff(M), the infinite-dimensional Uq(g)-module constructed by “affinizing”
M . Loosely speaking, Aff(M) '

⊕
n∈Z

T nM , where e0 and f0 respectively raise and lower the degree of T
in addition to their ordinary action on M . To make the weight spaces of Aff(M) finite-dimensional, we add
nδ to the weight of a vector in T nM , where δ is the null root of g. Kang et al. also construct Aff(B) for
any U ′

q(g)-crystal B, and state that if (L, B) is a crystal base of M , then (Aff(L), Aff(B)) is a crystal base
of Aff(M).

The inverse of this process for level zero extremal weight modules generated by a basic weight vector is
given in [6] as follows: given a fundamental infinite-dimensional Uq(g)-module V ($i), there is a U ′

q(g)-linear
automorphism zi of V ($i) of weight diδ, where di is an integer constant determined by the root system of
g. The finite-dimensional U ′

q(g)-module W ($i) is given by W ($i) = V ($i)/(zi − 1)V ($i), and V ($i) can
be naturally embedded in Aff(W ($i)).

Later, Kashiwara also conjecturally gives an embedding for V (λ) ⊂
⊗

V ($i)
⊗mi , where λ =

∑
mi$i

is a level zero extremal weight. This conjecture is verified in [1] for symmetric untwisted affine Lie algebras,
using Schur functions in the operators zi,ν , which correspond to zi as above acting on the i, ν-th component
of the tensor product.

We conjecture that the U ′
q(ŝo2n)-module W (2,s) = W (s$2) can be constructed as the quotient V (s$2)/(z2s−

1)V (s$2), where z2s is the U ′
q(ŝo2n)-linear automorphism of V (s$2) of weight 2sδ. Such a construction would

be compatible with B(2,s) as constructed here, and would give an embedding of V (s$2) in Aff(W (s$2))
similar to the embedding in [6] for fundamental representations.
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