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Vancouver 2004

On Inversions in Standard Young Tableaux

Michael Shynar

Abstract. In this work, we present the inversion number of a standard Young tableau, and determine its
distribution over certain sets of standard Young tableaux. Specifically, the work determines the distribution
of the inversion number over hook-shaped tableaux and over tableaux of shape (n, n). We also study the
parity (also referred to as ‘sign balance’) of the inversion number over hook-shaped tableaux and over

(n−k, k)-shaped tableaux. The latter results resemble results in the field of pattern-avoiding permutations,
achieved by Adin, Roichman and Reifegerste.

1. Preliminaries

Definition 1.1. Let n ∈ N (N denotes the set of positive integers). A partition of n is a vector of
positive integer numbers λ = (λ1, λ2, . . . , λk) such that λ1 ≥ λ2 ≥ · · · ≥ λk > 0 and λ1 + λ2 + · · ·+ λk = n.
We write λ ` n. We denote by λ′ = (λ′1, . . . , λ

′

t) the conjugate partition, where λ′i is the number of parts in
λ greater or equal to i. We define | λ |= n.

Definition 1.2. The set {(i, j) | i, j ∈ N, i ≤ k, j ≤ λi} is called the Young diagram of shape λ (notice
that ‘English notation’ is used).

Definition 1.3. A standard Young tableau of shape λ consists of inserting the integers 1, 2, . . . , n as
entries in the cells of the Young diagram of λ, allowing no repetitions and having entries increase along rows
and columns. λ is normally denoted Sh(T ).

Definition 1.4. A descent in a standard Young tableau T , is an entry i, such that i+1 is strictly south
(and weakly west) of i. Denote the set of all descents in T by D(T ). We define two statistics on a standard
Young tableau:

(1) The descent number of T . des(T ) =
∑

i∈D(T ) 1.

(2) The major index of T . maj(T ) =
∑

i∈D(T ) i.

Stanley has found a generalization of the hook formula, giving the generating function for maj(T ) when
T is of shape λ.

Theorem 1.5 (Stanley’s q-analogue of the hook formula, see [ST2]).

(1.1)
∑

shape(T )=λ

qmaj(T ) =

∏n

k=1[k]q
∏

(i,j)∈λ[hi,j ]q

where [m]q = 1 + q + q2 + · · ·+ qm−1.
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(0,0)

(n,n)=(6,6)

Figure 1. A Dyck path. The area of this Dyck path is shaded in gray.

Seeing how natural the generating function of the major index turns out to be, it is surprising that there
is no similar result for the descent number. However, Adin and Roichman ina joint study, and Hästö in a
parallel study, managed to establish the expected value and variance of des(T ) for a random standard Young
tableau of a given shape (see [AR1, H]).

One can also think of defining the inversion number of a tableau. Not much is known regarding the
distribution of the inversion number over tableaux of a fixed shape, and that is in fact the primary goal of
this research.

Remark 1.6. The convention within this paper is that
(
n
k

)
= 0 when k < 0.

Definition 1.7. A lattice path in the plane is defined to be a sequence L = (v1, . . . vk) where vi ∈ N
2

and vi+1 − vi ∈ {(1, 0), (0, 1)}. The last condition indicates that when moving from vi to vi+1, we move
either one unit north, or one unit east.

Definition 1.8. A Dyck path of order n is a lattice paths starting at (0, 0) and ending at (n, n), which
always remain above or on the line x = y. A Dyck path can be encoded by a sequence (a1, . . . a2n) where
ai ∈ {1,−1} with ai = 1 indicating a north move at the i-th step, and ai = −1 indicating an east move at
the i-th step.

The area above a dyck path D (denoted: area(D)) is the area between D and the dyck path encoded by
{1, 1, . . . , 1
︸ ︷︷ ︸

n

,−1,−1, . . . ,−1
︸ ︷︷ ︸

n

}.

Example 1.9. The Dyck path corresponding to the series {1, 1,−1, 1,−1,−1, 1, 1,−1, 1,−1,−1} is
drawn in figure 1 with its area shaded in gray.

Recall that the number of Dyck paths of order n is called the n-th Catalan number, and is denoted Cn.
Recall the following well-known corollary of the q-binomial theorem (see [GR, page 7]):

Theorem 1.10. (The Cauchy binomial theorem[GR, page 7])

n∏

k=1

(1 + yqk) =
n∑

m=0

ymq(
m+1

2 )
[

n

m

]

q

Definition 1.11. The n-th Carlitz-Riordan q-Catalan number is defined as follows: Cn(q) =
∑

D∈Dyck(n) qarea(D),

where Dyck(n) is the set of all Dyck paths of order n.

This q-Catalan number was studied by Carlitz and Riordan (see [C, CR]), and further studied by
Fürlinger and Hofbauer in 1985 (see [FH], which also includes further references within). There is no known
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generating function for this q-Catalan number, however Fürlinger and Hofbauer expressed it as a term within
a generating function, and several determinant formulas were provided, the most recent one by Loehr (see
[L, Theorem 16]).

Lemma 1.12. [FH, Eq. 2.2] The Carlitz-Riordan q-Catalan numbers abide to the recursion:

Cn+1(q) =
n∑

k=0

Ck(q)Cn−k(q) · q(k+1)(n−k)

with starting condition C0(q) = 1.

Remark 1.13. Some authors define the Carlitz-Riordan q-Catalan as C̃n(q) = q(
n

2)Cn(q). These num-
bers describe the distribution of the area between Dyck paths of order n, and the “diagonal Dyck path”
(1,−1, 1,−1, 1,−1, . . . , 1,−1).

We cite the following “common knowledge” result:

Lemma 1.14. For any two positive integers k ≤ n,

[
n

k

]

q=−1







0
n even

k odd
(bn

2 c
b k

2 c

)
otherwise

Corollary 1.15.
2n+1∑

k=0

[
2n + 1

k

]

q=−1

qk = (1 + q)

n∑

k=0

(
n

k

)

q2·k

2n∑

k=0

[
2n

k

]

q=−1

qk =

n∑

k=0

(
n

k

)

q2·k

2. Inversions in Tableaux and Signs of Tableaux

This chapter presents the most fundamental concept of the work.
As we saw in definition , there is a meaningful way to define the descent set of a tableau. The definitions

of the descent number and the major index follow naturally. The following definition of an inversion in a
standard Young tableau is natural as an extension of the descent definition. It is a variant of the definition
given by Stanley (see [ST3, page 15]).

Definition 2.1. An inversion in a standard Young tableau is a pair (i, j) such that i < j and the entry
for j appears strictly south and strictly west of the entry for i. The inversion number of a standard Young
tableau T (denoted: inv(T )) is the number of inversions in this standard Young tableau.

Definition 2.2. A weak inversion in a standard Young tableau T is a pair of integers (i, j) such that
i < j and j is weakly south and weakly west of i. The number of weak inversions in T is called the weak
inversion number of T and denoted winv(T ).

There is a simple connection between the inversion and the weak inversion numbers: Let T be a standard
Young tableau with sh(T ) = λ = (λ1, . . . , λk), and denote λ′ = (λ′1, . . . , λ

′

λ1
) to be the conjugate partition,

then winv(T ) = inv(T ) +
∑λ1

i=1

(
λ′

i

2

)
.

Definition 2.3. Let T be a standard Young tableau. The sign of T is defined: sign(T ) = (−1)inv(T ).
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3. Hook Shaped Tableaux

Definition 3.1. A hook-shaped tableaux is a tableaux with one row and one column. Alternatively, it is
a tableaux T with shape λ = (k, 1, 1, . . . , 1) with k ≥ 1. The column length of T (denoted col(T )) is defined
as λ′1 − 1, or equivalently, the number of parts in λ, reducing 1. The row length of T is defined as λ1 − 1.

Definition 3.2. Write sh(T ) ∈ hook(n) if T is a hook-shaped standard Young tableau of order n. Write
sh(T ) ∈ hook(n, k) if T is a hook-shaped standard Young tableau of order n with column length k.

Lemma 3.3.

(3.1) Fn,k(q) =
∑

sh(T )∈hook(n+1,k)

qinv(T ) =

[
n

k

]

q

Proof. This proposition may be proved using the recursion Fn,k(q) = Fn−1,k(q)+qn−kFn−1,k−1(q). �

Using Cauchy’s binomial theorem (Theorem 1.10) we deduce that

∑

sh(T )∈hook(n+1)

qwinv(T ) =

n∏

k=1

(1 + qk)

for a detailed proof see [SH].

4. Tableaux of Two Rows

4.1. Counting Inversions.

Definition 4.1. Let T be a standard Young tableau. If sh(T ) = (n− k, k) with n− k, k ≥ 0, we say T

is a two-rowed tableau, and write T ∈ tworows(n). If n − k = k we say T is equal-rowed.

Lemma 4.2. Let (x1, x2, . . . , x2n) be an encoding of a Dyck path (see definition 1.8). In each Dyck path
of order n there are exactly n 1’s, call them xa1

, . . . , xan
. Then area(D) =

∑n

i=1(ai − i).

The proof of this proposition is left to the reader.

Theorem 4.3. Recall the definition of C̃n(q) in note 1.13.

(4.1)
∑

sh(T )=(n,n)

qinv(T ) = C̃n(q)

Proof. There is a well known bijection between Dyck paths of order n, and standard Young tableaux
of shape (n, n): Take a standard Young tableaux T of shape (n, n). The corresponding Dyck path encoding
is given by ai = 1 if the entry i lies within the first row of T , and ai = −1 if the entry i lies within the
second row of T .

Now, observe that the entry values in T are uniquely determined by choosing the entries in the first row,
since there is only one unique way to arrange the remainder “unused” entries in the second row. Moreover,
the sum of entries in the first row uniquely determines the number of inversions.

To prove this, write:

T =
a1 a2 . . . an

b1 b2 . . . bn

Notice that from the definition of an inversion, it must follow that any two entries i, j creating an inversion,
must reside in two different rows. Thus, to calculate the number of inversions for our given tableau, it is
sufficient to determine the number of inversions involving one element ai and one element bj (j < i). Thus,
we need to determine the number of elements bj < ai with j < i. We know there are ai − 1 values smaller
than ai, and i − 1 of them are in the first row (all the entries to before the i-th entry), so there are ai − i

entries smaller than ai in the second row, and they all must appear in smaller column indices than i. That
leaves room for exactly i− 1− (ai − i) = 2i− ai − 1 entries larger than ai in the second row, with a smaller
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Figure 2. Gluing together equal-shaped tableaux. Notice that all inversions in the tableau
R are preserved. The entry couple (2, 3) is an inversion. It is highlighted throughout the
process. At the end it corresponds with the entry couple (8, 9) which is an inversion in S.

Figure 3. In this illustration, there are exactly 3 inversions involving exactly one entry
from each of the two merged tableaux. The specific values within the tableaux do not make
any difference here.

column index, and hence that is also the number of inversions in which ai participates. The number of total
inversions in the tableau would be

∑n

i=1(2i− ai − 1) =
(
n+1

2

)
− n +

∑n

i=1(i− ai). By proposition 4.2 we get
∑n

i=1(i − ai) = −area(D). Thus,
∑

sh(T )=(k,k) qinv(T ) = q(
n+1

2 )−nCn( 1
q
) = q(

n

2)Cn( 1
q
) = C̃n(q). �

Corollary 4.4. Let Gn−k,k(q) =
∑

sh(T )=(n−k,k) qinv(T ). Then

bn

2 c∑

k=0

q(
n−2k

2 )Gn−k,k(q)2 = C̃n(q)

Proof. Let T and R be tableaux of shape (n − k, k) (0 ≤ 2k ≤ n with n > 0). Any two tableaux of
the same shape may be “glued” together in a certain fashion we shall describe, to obtain a standard Young
tableau of shape (n, n), which we denote S. From there we use 4.1 to conclude the result.

Let T , R be standard Young tableaux of shape (n− k, k). Take the second row of R. Reverse the order
of elements in it, and then replace each element a by 2n− a− 1. Add the result to the end of T ’s first row.
This is the first row of S. The second row is acquired from applying the same transformation on R’s first
row, and adding it to T ’s second row. It is required to verify that S is indeed a standard Young tableau,
which is left as an exercise for the reader. Notice that all elements originating from R are bigger than all
elements in T . See Figure 2 for an illustration of the process.

Now we look at the relation between inversions of T and R, and those of S. First notice that for any two
entries i < j in R, with j strictly southwest of i the corresponding entries in S would be 2n−i−1 > 2n−j−1
and 2n − i− 1would be strictly southwest of 2n− j − 1. Thus, these entries would form an inversion in S.
All inversions in T are obviously preserved in S. Furthermore: any inversion in S not derived from R or
T would have to consist of one element from T and one element from R (else the inversion would have to
appear either in R or S). The only inversions in S consisting of one element from T and one element from R

could be found in the “middle region” of S, i.e. in column indices ranging from k + 1 to n− k. All elements
in R are bigger than those in T , thus we can calculate exactly this number of inversions: it is the number of
matchings of elements from the first row within this “middle region”, and elements of the second row, also
in this “middle region”. This gives us exactly

(
n−2k

2

)
extra inversions. See Figure 3 for an example.
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This transformation is a bijection from standard Young tableaux of shapes (n− k, k) with 0 ≤ k ≤
⌊

n
2

⌋

to (n, n)-shaped tableaux. Thus, the inversions over q(n−2k

2 )Gn−k,k(q)2 distribute exactly as they do over
(n, n)-shaped tableaux. �

4.2. Sign Balance. When addressing standard Young tableaux of shape (n − k, k), we can give an
explicit formula for the sign distribution.

Definition 4.5. row2(T ) will denote the length of the second row of T . i.e. if T is of shape (n − k, k)
then row2(T ) = k.

Theorem 4.6. Recall that we defined
(
n
k

)
= 0 whenever k is negative. Then:

∑

T∈tworows(2n+1)

sign(T )qrow2(T ) =

bn

2 c∑

k=0

(−1)k

[(
n

k

)

−

(
n

k − 1

)]

q2k

∑

T∈tworows(2n)

sign(T )qrow2(T ) = (1 + q)

bn

2 c∑

k=0

(−1)k

[(
n− 1

k

)

−

(
n − 1

k − 1

)]

q2k

Proof. Denote Sum(n, k) =
∑

sh(T )=(n−k,k) sign(T ). Then it is sufficient to prove that for 0 ≤ 2k ≤ n:

(1) Sum(2n + 1, 2k) = (−1)k
[(

n

k

)
−

(
n

k−1

)]

.

(2) Sum(2n + 1, 2k + 1) = 0. (2k 6= n)

(3) Sum(2n, 2k) = (−1)k
[(

n−1
k

)
−

(
n−1
k−1

)]

.

(4) Sum(2n, 2k + 1) = (−1)k
[(

n−1
k

)
−

(
n−1
k−1

)]

. (2k 6= n)

The proof is done by induction on n. It is clear that Sum(1, 0) = 1. We give the induction step for the first
case. The other three cases are very similar.

Take a tableau of shape (2n + 1 − 2k, 2k) with n ≥ 2k > 0. Each such tableaux is uniquely achieved
either by a (2n + 1 − 2k, 2k − 1)-shaped tableaux with the entry 2n + 1 added to its second row, or by a
(2n− 2k, 2k)-shaped tableaux with the entry 2n + 1 added to its first row. If the entry 2n + 1 resides in the
first row, it would participate in no inversions, and thus its removal would not alter the sign. If it resides in
the second row, it would participate in 2n + 1− 4k inversions (the number of elements in the first row with
greater column index), and its removal would flip the sign. Thus,

Sum(2n + 1, 2k) = Sum(2n, 2k)− Sum(2n, 2(k − 1) + 1) =

= (−1)k

(
n− 1

k

)

−

(
n − 1

k − 1

)

+ (−1)k

(
n − 1

k − 1

)

−

(
n− 1

k − 2

)

=

= (−1)k

[(
n− 1

k

)

+

(
n− 1

k − 1

)]

− (−1)k

[(
n− 1

k − 1

)

+

(
n− 1

k − 2

)]

=

= (−1)k

[(
n

k

)

−

(
n

k − 1

)]

Notice that this result would be true also for k = 0 since then we would look only at Sum(2n, 2 · 0) =

(−1)0
[(

n
0

)
−

(
n

0−1

)]

=
(
n
0

)
, which is also what we would get by substituting k = 0 in the formula for

Sum(2n + 1, 0). �
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5. The “n
2 Phenomenon”

The following results are corollaries of previous theorems in this work.

Theorem 5.1. Let sh(T )′ = (λ′1, . . . , λ
′

l). Denote col(T ) = λ′1 − 1. Then

∑

T∈hook(2n−1)

sign(T )qcol(T ) =
∑

T∈hook(n)

q2·col(T )

∑

T∈hook(2n)

sign(T )qcol(T ) = (1 + q)
∑

T∈hook(n)

q2·col(T )

Theorem 5.2.
∑

T∈tworows(2n+1)

sign(T )qrow2(T ) =
∑

T∈tworows(n)

(−q2)row2(T )

∑

T∈tworows(2n+2)

sign(T )qrow2(T ) = (1 + q)
∑

T∈tworows(n)

(−q2)row2(T )

Remark 5.3. As a special case of Theorem 5.2, we see that for the Carlitz-Riordan q-Catalan numbers:

∞∑

n=1

qn · C̃n(−1) =

∞∑

n=1

q2n+1 · C̃n

These results resemble recent results of Adin and Roichman (see [AR2]) and Reifegerste (see [R])
regarding 321-avoiding permutations, which are brought hereby.

Definition 5.4. Let Tn := {π ∈ Sn |6 ∃i < j < k such that π(i) > π(j) > π(k)} be the set of all
321-avoiding permutations. Define ldes(π) := max{1 ≤ i ≤ n− 1 | π(i) > π(i + 1)} and define ldes(id) = 0.

Theorem 5.5. [AR2]

∑

π∈T2n+1

sign(π) · qldes(π) =
∑

π∈Tn

q2·ldes(π)

∑

π∈T2n

sign(π) · qldes(π) = (1− q)
∑

π∈Tn

q2·ldes(π)

Definition 5.6. Define lis(π) as the longest increasing subsequence in π.

Theorem 5.7. [R]
∑

π∈T2n+1

sign(π) · qlis(π) =
∑

π∈Tn

q2·lis(π)+1

∑

π∈T2n+2

sign(π) · qlis(π) = (q − 1)
∑

π∈Tn

q2·lis(π)+1

Theorem 5.8. [R]
∑

π∈T∗

2n+1

sign(π) · qlis(π)tldes(π) =
∑

π∈Tn

q2·lis(π)+1t2·ldes(π)

(1 + q)
∑

π∈T∗

2n

sign(π)qlis(π)tldes(π) =
∑

π∈Tn

q2·lis(π)+1t2·ldes(π)

A fuller understanding of such results would require additional research.
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