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Séries Formelles et Combinatoire Algébrique
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Abstract. Creation operators are given for three distinguished bases of the type BCD universal character
ring of Koike and Terada. Deformed versions of these operators create symmetric functions whose expan-
sion in the universal character basis, has coefficient polynomials K ∈

�

≥0[q]. We conjecture that for every
nonexceptional affine root system, these polynomials coincide with the graded tensor product multiplicities
for affine characters that occur in the X = M conjecture of Hatayama, Kuniba, Okado, Takagi, Tsuboi,
and Yamada, which asserts the equality of an affine crystal theoretic formula X with a rigged configuration
fermionic formula M .
Résumé. Nous donnons les opérateurs qui créent trois bases spéciales du type BCD de l’anneau des char-
actres de Koike et Terada. Les versions difforme de ces opérateurs créent les fonctions symétriques avec les
coefficients K ∈

�

≥0[q]. Nous conjecturons que pour tous les systèmes des racines affines et non-exceptionnel,

ces polynômes cöincident avec les multiplicitès des produits tensoriels des charactres affines qui apparaissent
dans le conjecture X = M de Hatayama, Kuniba, Okado, Takagi, Tsuboi, and Yamada. Ce conjecture af-
firme que une formule pour X liée aux crystaux affines, est egale à une formule fermionic des configurations
‘gréées’ pour M .

1. Introduction

It is well-known that the ring Λ of symmetric functions is the universal character ring of type A, with
universal characters given by the Schur functions. That is, for every n ∈ Z>0 there is a ring epimorphism
Λ → R(GL(n)) from Λ onto the ring of polynomial representations of GL(n), which sends the Schur function
sλ to the isomorphism class of the irreducible GL(n)-module of highest weight λ.

Using identities of Littlewood [13], Koike and Terada [12] showed that that the common universal
character ring for types B, C, and D, is isomorphic to Λ, constructing two distinguished bases which
correspond to the irreducible characters of the symplectic and orthogonal groups. These bases have the
same structure constants under a suitable labeling of dominant weights by partitions. This ring captures the
behavior (as the rank goes to infinity) of the representation ring of the simple Lie group, or more precisely,
the subring generated by the vector representation.

There is a third basis of Λ with the same structure constants as the above two bases. This basis is
implicitly defined by Kleber [7], who showed that up to a constraint involving Schur function expansions,
these are the only three bases of Λ with the given set of structure constants. This basis also appears with
a slight deformation in [11, def 6.4, eq (7.2.6)]. It is noteworthy that [7] was motivated by identities for
characters of finite dimensional modules over affine algebras, and that one only sees the third basis upon

considering the twisted affine root system D
(2)
n+1.

Bernstein’s creation operator Br is a degree r linear endomorphism of Λ. The operators Br create the
Schur basis by adding a row at a time to a Schur function, in the sense that Bλ1

Bλ2
· · ·Bλk

1 = sλ where
λ = (λ1, . . . , λk). Jing [3] defined a q-analogue of Bernstein’s operator and showed that they create the Hall-
Littlewood symmetric functions. In [22] the authors defined parabolic analogues of Jing’s Hall-Littlewood
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creation operators and showed that they create symmetric functions, which, when expanded in the Schur
basis, have coefficients given by the generalized Kostka polynomials of [21].

We consider the analogous constructions for the three bases of the BCD universal character ring using
the general q-analogue of a symmetric function operator given in [23]. Such operators create q-analogues of
products of universal characters. In the row-adding case one obtains polynomials with nonnegative integer
coefficients, but in the parabolic case the nonnegativity fails. Corresponding to the three bases of the BCD
universal character ring, we define three analogues of the type A deformed parabolic creation operators, and
observe that the coefficients are polynomials with nonnegative coefficients which we call K.

To identify the polynomials K we turn to affine algebras. Kirillov and Reshetikhin [8] defined a family of
finite-dimensional modules over Yangians and conjectured that tensor products multiplicities of such modules,
are given by a fermionic formula. This inspired Hatayama, Kuniba, Okado, Takagi, Tsuboi, and Y. Yamada
[2] [1] to formulate the X = M conjecture. First, they conjecture the existence of a family of irreducible
finite-dimensional modules over quantum affine algebras called Kirillov-Reshetikhin (KR) modules. Using
the theory of affine crystal graphs, they define a formula X , which is a q-analogue of the multiplicities of the
restriction to the canonical simple Lie subalgebra, of the tensor product of KR modules. They also define
the fermionic formula M by generalizing to any affine root system, the q-analogue of the fermionic formula
in [8]. They then assert that X = M .

We observe that for each infinite family of affine root systems, the formula M has a stable limit as the
rank goes to infinity. Using the stable M polynomials we define a symmetric function called a universal
affine character, which corresponds to the character of a tensor product of KR modules for large rank. We
conjecture that X = M = K. There are eight infinite families of affine root systems if one distinguishes the

two ways to achieve A
(2)
2n based on whether the 0 root is short (denoted A

(2)
2n ) or extra long (written A

(2)†
2n ). In

this stable limit we observe that there are only four distinct families of universal affine characters, which are
in natural correspondence with the four bases of symmetric functions given by the Schur functions and the
three other aforementioned bases. For any of the four families, the corresponding K polynomials are related
to those of type A in a simple way. Moreover the K polynomials satisfy a Macdonald-type level-rank duality.
Via the X = M = K conjecture these observations have remarkable implications for the affine characters.

2. Plethystic formulae

Let Λ be the ring of symmetric functions, to which we apply the ‘plethystic notation’. Instead of defining
this notation precisely, we list most of the necessary identities in this section; see also subsection 3.3. Assume
that the letters X, Y, Z and W represent sums of monomials with coefficient 1 and expressions like x ∈ X

indicate that x is a single monomial in the multiset X . Let Λ̂ be the completion of Λ given by formal sums
f0 + f1 + f2 + . . . where fi ∈ Λ has degree i.

2.1. Cauchy kernel. There is an element Ω ∈ Λ̂ defined by

(2.1) Ω[X − Y ] =

∏
y∈Y (1− y)

∏
x∈X(1− x)

=


∑

r≥0

(−1)rs(1r)[Y ]





∑

r≥0

sr[X ]


 .

It satisfies Ω[X + Y ] = Ω[X ]Ω[Y ]. The reproducing kernel for 〈· , ·〉 is

(2.2) Ω[XY ] =
∑

λ

sλ[X ]sλ[Y ].

2.2. Skewing operators. Given P [X ] ∈ Λ, the skewing operator P [X ]⊥ ∈ End(Λ) is the linear
operator that is adjoint to multiplication by P [X ]:

(2.3) P [X ]⊥(Ω[XY ]) = Ω[XY ]P [Y ].
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By linearity it follows that for all P [X ] ∈ Λ,

(2.4) Ω[XZ]⊥(P [X ]) = P [X + Z]

For all P [X ] ∈ Λ one obtains the operator identity

(2.5) Ω[XW ]⊥ ◦ P [X ] = P [X + W ] ◦ Ω[XW ]⊥

where P [X ] denotes multiplication by P [X ] ∈ Λ.

2.3. Coproduct. The coproduct ∆ : Λ → Λ ⊗ Λ may be computed as follows. For P ∈ Λ, expand
P [X + Y ] as a sum of products of the form P1[X ]P2[Y ]: P [X + Y ] =

∑
(P ) P1[X ]P2[Y ]. Then ∆(P ) =∑

(P ) P1 ⊗ P2.

The skewing operators P⊥ act on products via the coproduct:

(2.6) P⊥(QR) =
∑

(P )

P⊥
1 (Q)P⊥

2 (R).

2.4. Deforming an operator on Λ. Given any operator V ∈ End(Λ), one of the authors [23] defined

its t-analogue Ṽ ∈ End(Λ) by

(2.7) Ṽ (P [X ]) = V Y (P [tX + (1− t)Y ])|Y→X

where V Y acts on the Y variables and Y → X is the substitution map. Applying this construction to
V = Ω[XZ] ◦ Ω[XW ]⊥, we have that for P [X ] ∈ Λ,

Ṽ (P [X ]) = Ω[XZ]Ω[XW (1− t)]⊥P [X ].

By linearity, for all P [X ], Q[X ] ∈ Λ, if V = P [X ] ◦Q[X ]⊥, then

(2.8) Ṽ = P [X ] ◦Q[X(1− t)]⊥.

At t = 0 the operator V is recovered:

(2.9) Ṽ |t=0 = P [X ] ◦Q[X ]⊥ = V.

At t = 1, the operator

(2.10) Ṽ |t=1 = P [X ]Q[0]

is multiplication by P [X ]Q[0].
Let er[X ] = s(1r)[X ] be the elementary symmetric function. The following result is used in later proofs.

Proposition 2.1.

(2.11) Ω[We2[X ]]⊥ ◦ Ω[ZX ] = Ω[ZX + We2[Z]]Ω[W (e2[X ] + ZX)]⊥.

3. Four bases of symmetric functions

3.1. Littlewood’s formulae. Let

f∅[X ] = 0

f [X ] = s1[X ] + e2[X ]

f [X ] = e2[X ]

f [X ] = s2[X ].

(3.1)

To explain the notation, for ♦ ∈ {∅, , , }, let P♦ be the set of partitions that can be tiled using the
shape ♦. That is, P∅ = {∅} is the singleton set containing the empty partition, P = P is the set of all
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partitions, P is the set of partitions with even rows, and P is the set of partitions with even columns.
Littlewood proved that

(3.2) Ω[f♦] =
∑

λ∈P♦

sλ[X ].

3.2. Definition of the four bases. For λ ∈ P define

(3.3) s♦λ [X ] = Ω[−f♦]⊥sλ[X ].

All of the four families {s♦λ | λ ∈ P} are bases of Λ, due to the inverse formula

(3.4) sλ[X ] = Ω[f♦]⊥s♦λ [X ].

Of course s∅

λ = sλ is the basis of Schur functions, which are the universal characters for the special/general

linear groups. The bases {sλ} and {sλ } appear in [12] as the universal characters for the symplectic and
orthogonal groups respectively. The basis {sλ} is not mentioned in [12] but appears implicitly in [7].

Example 3.1. The following elements may computed by the Littlewood-Richardson rule, (3.3), and
Littlewood’s inverse relations to (3.3) [15]. Each Schur function sµ will be represented by the Ferrers
diagram of the partition µ.

s(433) = − − + + +

− − − +

s(433) = − − + + −

s(433) = − − + + + − −

− − + + + − − +

(3.5)

3.3. Change of basis. In plethystic formulae let ε represent a variable that has been specialized to
the scalar −1. We will consider ε to be a special element with the property ε2 = 1 and

(3.6) Ω[εX − εY ] =

∏
y∈Y (1 + y)

∏
x∈X(1 + x)

.

For ♦,♥ ∈ {∅, , , } define the linear isomorphism i♥♦ : Λ → Λ by

(3.7) i♥♦(s♦λ [X ]) = s♥λ [X ]

for all λ. It is given by

(3.8) i♥♦ = Ω[f♦ − f♥]⊥.

Proposition 3.2. For all P ∈ Λ,

i P [X ] = P [X − 1] i P [X ] = P [X + 1](3.9)

i P [X ] = P [X − 1− ε] i P [X ] = P [X + 1 + ε](3.10)

i P [X ] = P [X − ε] i P [X ] = P [X + ε](3.11)

Since substitution maps are algebra homomorphisms, one has the following result, which was obtained
in [12] for and . The full result is proved in [7], although the basis sλ[X ] is not explicitly mentioned.

Corollary 3.3. i♥♦ is an algebra isomorphism for ♦,♥ ∈ { , , }.
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3.4. BCD structure constants and uniqueness of bases. Define the structure constants ♦cλ
µν by

(3.12) s♦µ [X ]s♦ν [X ] =
∑

λ

♦cλ
µνs♦λ [X ].

The coefficient ∅cλ
µν is the ordinary Littlewood-Richardson coefficient cλ

µν . By Corollary 3.3, the other three
sets of structure constants coincide; call this common structure constant dλµν .

Theorem 3.4. [7] Suppose {vλ} is a basis of Λ such that

(3.13) vµvν =
∑

λ

dλµνvλ

for all µ, ν and that

(3.14) sλ ∈ vλ +
∑

µ<λ

Z≥0 vµ

where µ ≤ λ means that µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for all i (but µ and λ need not have the same number

of cells). Then {vλ} must be one of the bases {sλ}, {sλ }, or {sλ}.

The structure constants dλµν can be expressed in terms of the Littlewood-Richardson coefficients cλ
µν

using the Newell-Littlewood formula.

Proposition 3.5. [14] [16]

(3.15) dλµν =
∑

ρ,σ,τ

cµ
ρτcν

στ cλ
ρσ .

Example 3.6. For ♦ ∈ { , , },

s♦(21)s
♦
(3) = s♦(2) + s♦(11) + s♦(4) + 2 s♦(31) + s♦(22) + s♦(211) + s♦(51) + s♦(42) + s♦(411) + s♦(321)

The well-known transpose symmetry of Littlewood-Richardson coefficients cλt

µtνt = cλ
µν immediately

implies the following result.

Corollary 3.7. [12] dλtµtνt = dλµν .

4. Bernstein operators for the bases s♦λ and determinants

4.1. The Schur basis. The Schur functions {sλ | λ ∈ P} are the unique family of symmetric functions,
which for λ = (r) are given by

(4.1)
∑

r∈Z

sr[X ]zr = Ω[zX ]

and for λ ∈ P are given by the Jacobi-Trudi determinant

(4.2) sλ[X ] = det |sλi−i+j [X ]|1≤i,j≤`(λ)

where `(λ) is the number of parts of λ. One may define sν [X ] for ν ∈ Z
n using (4.1) and (4.2).

Bernstein’s operators {Br | r ∈ Z} ⊂ End(Λ) are defined by

(4.3) B(z) =
∑

r∈Z

Brz
r = Ω[zX ]Ω[−z∗X ]⊥

where z∗ = 1/z. For ν ∈ Z
n, define

Bν = Bν1
◦Bν2

◦ · · · ◦Bνn
∈ End(Λ).

It is well-known that

(4.4) Bν1 = sν [X ].
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4.2. Creating the bases s♦. For ν ∈ Z
n and Z = (z1, z2, . . . , zn), define B♦

ν ∈ End(Λ) by

(4.5) B♦(Z) =
∑

ν∈Zn

zνB♦
ν = i♦

∅
◦B(Z) ◦ i∅

♦.

For ν ∈ Z
n it follows from (4.4) and (3.7) that

(4.6) B♦
ν1
· · ·B♦

νn
1 = B♦

ν 1 = s♦ν [X ].

The operator B♦(Z) has the following plethystic formula.

Proposition 4.1. For ♦ ∈ { , , },

(4.7) B♦(Z) = R(Z)Ω[−f♦[Z]]Ω[ZX ]Ω[−(Z + Z∗)X ]⊥,

where Z∗ = z∗1 + z∗2 + · · ·+ z∗n and

R(Z) =
∏

1≤i<j≤n

(1− zj/zi).

It follows that

B (Z) = Ω[−Z]B (Z)(4.8)

B (Z) = Ω[−(1 + ε)Z]B (Z)(4.9)

4.3. Determinantal formulae. Recall that the Schur functions satisfy the Jacobi-Trudi identity (4.2).

The other three bases satisfy a common determinantal formula due to Weyl for s and s . See [12, Thm.
2.3.3].

Proposition 4.2. For ♦ ∈ { , , } the basis {s♦λ | λ ∈ P} of Λ is characterized by

sr = sr

sr = sr − sr−1

sr = sr − sr−2

(4.10)

for r ∈ Z and

(4.11) s♦λ =
1

2
det

∣∣∣s♦λi−i+j + s♦λi−i−j+2

∣∣∣
1≤i,j≤`(λ)

5. Hall-Littlewood symmetric functions and analogues

5.1. Deformed Schur basis. Define

(5.1) B̃(Z) =
∑

ν∈Zn

zνB̃ν

where B̃ν is the t-analogue of Bν given by equation (2.7). This is the “parabolic modified” analogue of Jing’s
Hall-Littlewood creation operator. It was studied in [22], where it is denoted by H t

ν . It is given by

(5.2) B̃(Z) = R(Z)Ω[ZX ]Ω[(t− 1)Z∗X ]⊥.

Let Z(1), . . . , Z(L) be a family of finite ordered alphabets and R1 through RL partitions such that the number
of parts of Rj is equal to the number of letters in Z(j) for all j. Define the symmetric functions BR[X ; t]
and polynomials cλ;R(t) by

(5.3) B̃R1
· · · B̃RL

1 = BR[X ; t] =
∑

λ

sλ[X ]cλ;R(t).

The cλ;R(t) are the generalized Kostka polynomials of [21], as proved in [22].
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By (2.9) and (4.4) we have

(5.4) BR[X ; 0] = BR1
· · ·BRL

1 = s(R1,...,RL)[X ]

where (R1, . . . , RL) denotes the sequence of integers obtained by juxtaposing the parts of the partitions Rj .
By (2.10) and (4.4) we have

(5.5) BR[X ; 1] = sR1
[X ] · · · sRL

[X ].

5.2. Deformed s♦λ basis. Let B̃♦
ν be the t-analogue of B♦

ν . For ♦ ∈ { , , } define

(5.6) B̃♦(Z) =
∑

ν∈Zn

zνB̃♦
ν .

By (2.8), Proposition 4.1, (4.8) and (4.9),

B̃ (Z) = R(Z)Ω[−e2[Z]]Ω[ZX ]Ω[(Z + Z∗)(t− 1)X ]⊥

B̃ (Z) = B̃ (Z)Ω[−Z]

B̃ (Z) = B̃ (Z)Ω[−(1 + ε)Z].

(5.7)

For a sequence of partitions R = (R1, R2, . . . , RL), define the symmetric function B
♦
R[X ; t] and the polyno-

mials d♦λR(t) by

(5.8) B
♦
R[X ; t] = B̃♦

R1
B̃♦

R2
· · · B̃♦

RL
1 =

∑

λ

d♦λR(t)s♦λ .

Theorem 5.1. d♦λR(t) is constant over ♦ ∈ { , , }.

Let us call these polynomials dλR(t). When R consists of single-rowed rectangles of sizes given by the
partition µ, write dλµ(t) instead of dλR(t).

Theorem 5.2. dλµ(t) ∈ Z≥0[t].

Example 5.3. Let µ = (3, 2, 1). For ♦ ∈ { , , }, we will represent the function s♦λ by the diagram
for the partition λ superscripted by ♦. By Theorem 5.1 the expansion is independent of ♦.

B
♦
µ [X ; t] =

♦

+ t
♦

+ t
♦

+ (t2 + t)
♦

+ (t2 + t3)
♦

+ t4 ♦ + (t2 + t)
♦

+ t
♦

+ (2t2 + t + t3)
♦

+ (t4 + t2 + t3) ♦ + (t2 + t3)
♦

+ (t4 + t2 + t3) ♦ + t4∅
♦

6. Parabolic Hall-Littlewood operators and ♦-analogues

For each ♦ ∈ {∅, , , } we define a variant of the type A parabolic Hall-Littlewood creation operator

B̃ν . These will be the creation operators for the universal affine characters.

6.1. ♦-analogues of B̃ν. Write B̃♦
t2(Z) for B̃♦(Z) with t replaced by t2. Let

(6.1) H♦(Z) =
∑

ν∈Zk

zνH♦
ν = Ω[f♦[tX ]− f♦[X ]]⊥B̃t2(Z)Ω[f♦[X ]− f♦[tX ]]⊥.

Proposition 6.1. For ♦ ∈ {∅, , , },

(6.2) H♦(Z) = Ω[f♦[tZ]]B̃♦
t2(Z).
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6.2. The K polynomials. Let R = (R1, R2, . . . , RL) be a sequence of partitions. For♦ ∈ {∅, , , }

define H
♦
R[X ; t] and K♦

λ;R(t) by

(6.3) H
♦
R[X ; t] =

∑

λ

K♦
λ;R(t) s♦λ [X ] = H♦

R1
H♦

R2
· · ·H♦

RL
1.

Using (5.4) and (5.5) one obtains the specializations at t = 0 and t = 1, for all ♦.

H
♦
R[X ; 0] = s♦(R1,R2,...,RL)[X ](6.4)

H
♦
R[X ; 1] = sR1

[X ]sR2
[X ] · · · sRL

[X ].(6.5)

Remark 6.2. For any ♦, H
♦
R[X ; t] is a t-deformation of the product of Schur functions, rather than s♦Ri

.

Note also that K∅

λ;R(t) = cλ;R(t2); see (5.3).

6.3. K♦ in terms of K∅. Let |R| =
∑

i |Ri|. Observe that

H
♦
R[X ; t] = Ω[f♦[tX ]− f♦[X ]]⊥H

∅

R[X ; t].

It follows that for ♦ ∈ {∅, , , },

(6.6) K♦
λ;R(t) = t|R|−|λ|

∑

τ∈P
|τ |=|R|

K∅

τ ;R(t)
∑

µ∈P♦

|µ|=|R|−|λ|

cτ
λµ.

Example 6.3.

H(32)[X ; t] = s(32) + ts(41) + t2s(5) + t2
(
1 + t + t2

)
s(3)

+ t2 (1 + t) s(21) + t4
(
1 + t + t2

)
s(1)

H(32)[X ; t] = s(32) + ts(41) + t2s(5) + t3s(3) + t2s(21) + t4s(1)

H(32)[X ; t] = s(32) + ts(41) + t2s(5) + ts(22) +
(
t + t2

)
s(31)

+
(
t2 + t3

)
s(4) +

(
2 t2 + t3

)
s(21) +

(
t2 + 2 t3 + t4

)
s(3)

+ t3s(11) +
(
t3 + t4

)
s(2) + t4s(1)

6.4. Level-rank (transpose) duality. Let ||R|| =
∑

i<j |Ri ∩ Rj |, ∅
t = ∅, t = , t = , and

t = .

Proposition 6.4. Let R be a dominant sequence of rectangles (that is, one whose widths weakly decrease)
and R′ a dominant rearrangement of Rt. Then for all partitions λ,

(6.7) K♦t

λt;R′(t) = t2(||R||+|R|−|λ|)K♦
λ;R(t−1).

6.5. Connection between B
♦ and H

♦.

Proposition 6.5. Let R be the sequence of single-rowed partitions of sizes given by the partition µ.
Then

HR[X ; t] = BR[X ; t2](6.8)

Kλ;R(t) = dλR(t2).(6.9)
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7. Universal affine characters and X = M = K

Let g be any affine Lie algebra, say, of type X
(r)
N [6], with canonical simple Lie subalgebra g of rank n,

and let U ′
q(g) and Uq(g) the corresponding quantized enveloping algebras. Motivated by the work of [8] on

finite-dimensional modules over Yangians, the papers [2] and [1] conjecture the existence of finite-dimensional
U ′

q(g)-modules called Kirillov-Reshetikhin (KR) modules. In type A the restriction of a KR module to Uq(g)
has character given by a Schur function indexed by a rectangle. In general one can think of the KR-modules
as being indexed by rectangles, but the restriction of a KR module to Uq(g) is generally reducible. The KR
modules are conjectured to have a natural grading that is constant on Uq(g)-components.

The above two papers propose the X = M conjecture, which give two ways to compute the graded
multiplicity of a Uq(g)-irreducible in a tensor product of KR modules over U ′

q(g). The symbols X and M
represent two families of polynomials that are indexed by a pair (R, λ) where R is a sequence of rectangles
which corresponds to a tensor product of KR modules, and λ is a partition which corresponds to a dominant
weight of g. The X formula can be stated entirely in terms of the affine crystal graph of a tensor product of
KR modules; its definition depends on the existence of KR modules and some of their conjectured properties.
The M formula is a q-analogue of the fermionic formula in [8], but extended to all affine root systems. It is
well-defined and independent of the existence of KR modules. See [2] and [1] for details on this remarkable
conjecture.

The X = M conjecture is only completely proved for type A [10] and in this case the polynomials are
essentially the generalized Kostka coefficients cλ;R(t) of equation (5.3). In general the KR modules have not
even been constructed, although strong additional hints on their structure have been provided by Kashiwara
[4] [5].

Proposition 7.1. Consider a nonexceptional family {X
(r)
N } of affine root systems. There is a well-

defined limiting polynomial

(7.1) lim
n→∞

MR,λ(t)

as the rank n goes to infinity. It depends only on R, λ, and the affine family of X
(r)
N . Moreover, there are

only four distinct families of such polynomials, which shall be named as follows.

(1) For A
(1)
n : M

∅

R,λ(t).

(2) For B
(1)
n , D

(1)
n , and A

(2)
2n−1: MR,λ(t).

(3) For C
(1)
n and A

(2)†
2n : MR,λ(t).

(4) For D
(2)
n+1 and A

(2)
2n : MR,λ(t).

The families are grouped according to the decomposition of a KR module upon restriction to Uq(g);
see the appendices of [2] [1]. We define the universal affine character associated to ♦ and R to be

the symmetric function
∑

λ M
♦

R,λ(t)s♦λ ; it corresponds to the graded character of the tensor product of KR
modules indexed by R in the large rank limit.

Conjecture 7.2. For R a dominant sequence of rectangles and all ♦ ∈ {∅, , , },

(7.2) K♦
λ;R(t) = M

♦t

Rt,λt(t2/ε)

where ε = 1 except for ♦ = , in which case ε = 2.

At t = 1 this was essentially known [7]. However the formulae for the powers of t occurring in the affine
characters given either by X or the M formulae, do not at all suggest such a simple relationship. Perhaps
the virtual crystal methods of [17] can be used to prove Conjecture 7.2.

Equation (7.2) holds for ♦ = ∅ by combining [10] [18] [19] [20] [22]. It also holds for a single rectangle
in all nonexceptional affine types; see [1, Appendix A] and [2, Appendix A].
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Observe that by combining Conjecture 7.2 and Proposition 6.4 one obtains the following conjecture.

Conjecture 7.3.

(7.3) M
♦

R;λ(t) = tε(||R||+|R|−|λ|)M
♦t

Rt,λt(t−1).

This was proved in [9] via a direct bijection for ♦ = ∅. This is a striking conjecture as it relates the
fermionic formulae of different types. This kind of relation is not apparent from the structure of the fermionic
formulae.
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