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Abstract. We define a family of totally nonnegative polynomials of the form
�

f(σ)x1,σ(1) · · ·xn,σ(n) and

show that this family generalizes all known totally nonnegative polynomials of the form ∆J,J′(x)∆L,L′ (x)−
∆I,I′(x)∆K,K′ (x), where ∆J,J′ (x), . . . ,∆K,K′ (x) are matrix minors. We also give new conditions on the

sets J, . . . , K′ which guarantee that the corresponding polynomials are totally nonnegative.

Résumé. Nous donons une famille de polynômes totallement nonnegatifs de la forme
�

f(σ)x1,σ(1) · · ·xn,σ(n)

et montrons que cette famille generalise tous les polynômes totalement nonnegatifs de la forme ∆J,J′(x)∆L,L′ (x)−
∆I,I′(x)∆K,K′ (x), ou ∆J,J′ (x), . . . ,∆K,K′ (x) sont des mineurs des maitrices. Nous donons aussi des condi-
tions nouvelles sur les ensembles J, . . . , K ′ qui guarantisent que les polynômes correspondents sont totalement
nonnegatifs.

1. Introduction

A real matrix is called totally nonnegative (TNN) if the determinant of each of its square submatrices
is nonnegative. Such matrices appear in many areas of mathematics and the concept of total nonnegativity
has been generalized to apply not only to matrices, but also to other mathematical objects (See e.g. [10]
and references there.) In particular, a polynomial p(x) in n2 variables x = (x1,1, . . . , xn,n) is called totally

nonnegative if it satisfies

p(A) =
def

p(a1,1, . . . , an,n) ≥ 0

for every n×n TNN matrix A = [ai,j ]. Obvious examples are the n×n determinant and the k×k minors, i.e.
the determinants of k×k submatrices. Given subsets I = {i1, . . . , ik} and I ′ = {i′1, . . . , i

′
k} of [n] = {1, . . . , n}

we define the (I, I ′) minor to be the polynomial

∆I,I′(x) =
∑

σ∈Sk

(−1)inv(σ)xi1 ,i′σ(1)
· · ·xik ,i′σ(k)

.

Thus ∆I,I′(A) is the determinant of the submatrix of A corresponding to rows I and columns I ′.
Some recent interest in TNN polynomials concerns a collection of polynomials arising in the study of

canonical bases of quantum groups [3]. While this collection, known as the dual canonical basis of type An−1,
currently has no simple description, Lusztig [18] has proved that it consists entirely of TNN polynomials.
Berenstein, Gelfand, and Zelevinsky [4, 11] have developed machinery to enumerate the dual canonical
basis elements for small n, and further investigation suggests that these polynomials are expressable as
subtraction-free Laurent expressions in matrix minors [9].
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Progress on the problem of describing the dual canonical basis is obstructed somewhat by the scarcity of
nontrivial families of polynomials which are known to be TNN. Providing examples of such families, several
authors have conjectured and proved the total nonnegativity of polynomials called f -immanants, constructed
from functions f : Sn → R by

(1.1) Immf (x) =
∑

σ∈Sn

f(σ)x1,σ(1) · · ·xn,σ(n).

Stembridge proved the total nonnegativity of the immanants Immχλ(x) constructed from the irreducible

characters χλ : Sn → R of Sn [20, Cor. 3.3]. (See also [15].) These immanants are usually abbreviated
Immλ(x),

(1.2) Immλ(x) =
∑

σ∈Sn

χλ(σ)x1,σ(1) · · ·xn,σ(n).

Stembridge also proved the stronger result [20, Cor. 3.4] that the immanants

(1.3) Immλ(x)− deg(χλ) det(x)

are TNN, where deg(χλ) is the dimension of the Specht module Sλ, i.e. the number of standard Young
tableaux of shape λ.

Discovering another family of TNN immanants, Fallat et. al. [8, Thm. 4.6] characterized all TNN im-
manants of the form

(1.4) ∆J,J(x)∆J,J(x)−∆I,I(x)∆I,I(x),

where I = [n] r I , J = [n] r J . This result was later strengthened [19, Thm. 3.2] to include products of
nonprincipal minors

(1.5) ∆J,J′(x)∆J,J′(x)−∆I,I′(x)∆I,I′(x).

(For other work concerning TNN immanants, see [2, 7].)
More results of Stembridge [20, Sec. 2], [21, Sec. 5] suggest that certain quotients of the symmetric

group algebra provide important information about TNN polynomials in general. In this paper, we use such
a quotient which is isomorphic to the Temperley-Lieb algebra Tn(2) to define a family of functions

{fτ : Sn → R | τ a basis element of Tn(2)}

and a family of corresponding TNN immanants {Immfτ
} whose cone contains all immanants in the family

(1.5). We begin in Section 2 with some of the well-known combinatorics of total nonnegativity. Then in
Section 3 we introduce the Temperley-Lieb algebra and derive our main results. Finally in Section 4 we give
an improved criterion for deciding whether or not an immanant of the form (1.5) is TNN.

2. Total nonnegativity and planar networks

It is possible to prove that some polynomials p(x) are TNN by providing a combinatorial interpretation
for p(A) whenever A is a TNN matrix. Typically such a combinatorial interpretation involves a particular
class of digraphs which we will call planar networks.

We define a planar network of order n to be an acyclic planar directed multigraph G = (V, E) in which
2n boundary vertices are labeled counterclockwise as q1, . . . , qn, q′n, . . . , q′1. The vertices q1, . . . , qn are called
sources and the vertices q′1, . . . , q

′
n are called sinks. Each edge e ∈ E is weighted by a postive real weight

ω(e), and we will define the weight of a set F of edges to be the product of weights of edges in F ,

(2.1) ω(F ) =
∏

e∈F

ω(e).



TNN f -IMMANANTS 3

q

q

q

q

q’

q’

q’

q’

1

2

3

4

1

2

3

4

7

4 .5
2 2

1 1
3

1

.5

6 .4

Figure 1. A planar network

More generally, we will define the weight a multiset of edges to be the analogous product in which weights
of edges may appear with multiplicities greater than one. If m = (me)e∈F is a vector of multiplicities which
defines a multiset of edges in F , we will denote the weight of this multiset by ω(F, m).

Given a planar network G of order n, we will define a subgraph H of G to be a planar subnetwork of G
if it is a planar network whose sources and sinks are precisely those of G. We will economize notation by
writing H ⊂ G to denote that H is a planar subnetwork of G.

We define the path matrix A = [ai,j ] of a planar network G by letting ai,j be the sum

ai,j =
∑

π

ω(π),

of weights of paths over all paths π from source i (qi) to sink j (q′j). The reader may verify that the path
matrix of the planar network in Figure 1 is

(2.2)









9 8 4 0
1 4 5 .4
0 0 3 .2
0 0 0 2.4









.

and that this matrix is TNN. (In figures we will assume that all edges are directed from left to right.)
The following famous theorem of Lindström and others [1] [5] [6] [13] [16] [17] explains the connection

between planar networks and TNN matrices. (See also [10].)

Theorem 2.1. An n× n matrix A is totally nonnegative if and only if it is the path matrix of a planar

network G of order n. Furthermore, for any k-element subsets I = {i1, . . . , ik}, I ′ = {i′1, . . . , i
′
k} of [n], the

(I, I ′) minor of A has the combinatorial interpretation

∆I,I′(A) =
∑

Π

ω(Π),

where the sum is over all k-tuples Π = (π1, . . . , πk) of paths in G which satisfy

(1) πj is a path from qij
to q′i′j .

(2) πj and π` do not intersect for j 6= `.

The reader may verify that the graph in Figure 1 has three nonintersecting path families from {q1, q2}
to {q′1, q

′
3}, and that these families have weights 14, 21, and 6. Correspondingly, the ({1, 2}, {1, 3})-minor of

the path matrix (2.2) is 41 = 14 + 21 + 6.
Immediate consequences of Theorem 2.1 are combinatorial interpretations for certain TNN immanants.

Fix a planar network G and its path matrix A. The application of the monomial x1,σ(1) · · ·xn,σ(n) to A has
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Figure 2. Planar networks for the generators of Sn.

the interpretation

a1,σ(1) · · · an,σ(n) =
∑

Π

ω(Π),

where the sum is over path families Π = (π1, . . . , πn) in G in which πi is a path from qi to q′σ(i). We will say
that such a path family has type σ. Also, by choosing I = I ′ = [n] in Theorem 2.1, we have that

det(A) =
∑

H⊂G

ω(H),

where the sum is over all planar subnetworks H of G which are unions of n nonintersecting paths. With a
bit more work, one can derive a similar combinatorial interpretation for the TNN immanants (1.5),

∆J,J′(A)∆J,J′(A) −∆I,I′(A)∆I,I′(A) =
∑

H∈H

cHω(H),

for appropriate collections H of planar subnetworks which depend on the index sets I , J , etc., and for appro-
priate constants cH . (See [19, Cor. 3.3].) The problem of finding an analogous combinatorial interpretation
for the TNN immanants (1.2) and (1.3) remains open.

To construct more TNN polynomials, we shall examine the planar networks of order n which are unions
of n paths. We will say that a path family Π covers a planar network H = (V, E) if every edge in E belongs
to a path in Π. Since two different path families may cover the edges of a planar network with different
multiplicities, we introduce the following notation. Given a planar network H = (V, E) of order n, a sequence
m = (me)e∈E of positive multiplicities, and a permutation σ in Sn, we define the number γ(G, σ, m) to be
the number of path families Π of type σ which cover H in such a way that each edge e belongs to exactly
me paths. Note that we may assume that the components of m belong to [n], since each edge of G will be
covered at least once and at most n times by n paths. To enumerate the path families which cover H , we
will associate to H an element β(H) in Z[Sn] which will serve as an unweighted path generating function,

β(H) =
∑

m

∑

σ∈Sn

γ(H, σ, m)σ,

where the first sum is over sequences m.
Certain planar networks which appear often in conjunction with the symmetric group are called wiring

diagrams. Specifically, to the generators s1, . . . , sn−1 of Sn we associate the planar networks in Figure 2.
Then to an expression

σ = si1 · · · sik

(not necessarily reduced), we associate the planar network formed by concatenation of the generator networks.
It is easy to see that there is at least one path family of type σ which covers a wiring diagram corresponding
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Figure 3. A wiring diagram.

(a) (b)

Figure 4. A generalized wiring diagram and another planar network.

to any expression for σ. (This family crosses paths at every opportunity.) Furthermore, the path generating
function for this planar network

(1 + si1) · · · (1 + sik
).

It is easy to see that any family of n paths which covers a wiring diagram of order n covers each edge
exactly once. Figure 3 shows the wiring diagram associated to the expression s1s2s1s1s3 (in S4). The reader
can verify that the corresponding path generating function is

2(s3 + s1s3 + s2s3 + s1s2s3 + s2s1s3 + s1s2s1s3).

Three necessary conditions for a planar network to be a wiring diagram are the following.

(1) No vertex is contained in three paths.
(2) No edge is contained in two paths.
(3) Path intersections occur in an unambiguous left-to-right order.

Relaxing the first two conditions, we have planar networks such as that in Figure 4 (a).
We will define a planar network of order n to be a generalized wiring diagram (of order n) if it is a union

of n paths, no three of which intersect in a single vertex.
It is easy to see that the form of a given wiring diagram determines a unique sequence m of multiplicities

with which edges are covered.

Lemma 2.2. Let H be a generalized wiring diagram. If a path family Π and a path family Π′ cover the

edges of H with multiplicity sequences m and m′, respectively, then m = m′.

Proof. Omitted. �

The path generating functions of generalized wiring diagrams factor just as those of wiring diagrams.
On the other hand, the path generating functions of arbitrary unions of n paths do not factor this way.
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Figure 5. Generators of Tn(λ).

Figure 4 (b) shows a planar network whose path generating function is 1 + s2 + s3 + s2s3 + s3s2 + s2s3s2.
We will denote by u[i,j] the element of Z[Sn] which is a sum of permutations in the subgroup generated by
si, . . . , sj−1.

Lemma 2.3. Let H be a planar network which is a union of n paths. If H is a generalized wiring diagram

then β(H) factors as

β(H) = (1 + si1) · · · (1 + sik
)

for some generators si1 , . . . , sik
of Sn. If H is not a generalized wiring diagram, then β(H) can be expressed

as a sum of terms of the form

u[i1,j1] · · ·u[ik,jk],

where in each such term we have i` ≤ j` − 2 for at least one index `.

Proof. Omitted. �

3. Main results

Given an integer λ, we define the Temperley-Lieb algebra Tn(λ) to be the Z-algebra generated by elements
t1, . . . , tn−1 subject to the relations

t2i = λti, for i = 1, . . . , n− 1,

titjti = ti, if |i− j| = 1,

titj = tjti, if |i− j| ≥ 2.

The rank of Tn(λ) as a Z-module is well known to be the nth Catalan number Cn = 1
n+1

(

2n

n

)

.

Tn(2) is isomorphic to the quotient Z[Sn]/I , where I is the ideal generated by u[1,3], u[2,4], . . . , u[n−2,n].
(See [12, Sec. 2.1].) The isomorphism is given by

θ : Z[Sn] → Tn(2),

si 7→ ti − 1.

We will call the elements of the multiplicative monoid generated by t1, . . . , tn−1 the basis elements of Tn(λ).
Figure 5 shows pictorial representations of the basis elements of Tn(λ) which were made popular by

Kauffman [14, Sec. 4]. Multiplication of generators corresonds to concatenation of diagrams, with cycles
contributing λ. Figure 6 shows the multiplication t1t2t1t1t3 = λt1t3 in T4(λ). (We “tighten” long curves to
simplify the picture.)

For any basis element τ of Tn(2), define fτ : Sn → R to be the function which maps σ to the coefficient
of τ in θ(σ).
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Figure 6. Multiplication in Tn(λ).

Given a planar network H which is a union of n paths, define the element φλ(H) of Tn(λ) by

φλ(H) = θ(β(H)).

If H is a generalized wiring diagram, then by Lemma 2.3, we have that

φλ(H) = θ(1 + si1) · · · θ(1 + sik
) = ti1 · · · tik

for some indices i1, . . . , ik ∈ [n] and therefore that

φλ(H) = λjτ

for some nonnegative integer j and some basis element τ = φ1(H) of Tn(λ). We will denote the exponent
by α(H),

φλ(H) = λα(H)φ1(H).

If, on the other hand, H is not a generalized wiring diagram, then by Lemma 2.3 we have that β(H) is equal
to a sum of Z[Sn] elements which belong to the kernel of θ. It follows in this case that φλ(H) = 0. If H is a
generalized wiring diagram, then φλ(H) can be computed pictorially as follows.

(1) Contract any doubly covered subpath to a single vertex.
(2) For each vertex v of indegree two and outdegree two, create vertex v ′ with indegree two and vertex

v′′ with outdegree two.
(3) Interpret the resulting graph as an element of Tn(λ). (See Figures 3 and 6.)

Lemma 3.1. Let H be a planar network which is a union of n paths. For any basis element τ of Tn(2)
we have

∑

Π

fτ (type(Π)) =

{

2α(H) if φ1(H) = τ ,

0 otherwise,

where the sum is over path families Π which cover H.

Proof. Note that we have
∑

Π

fτ (type(Π)) =
∑

m

∑

σ∈Sn

γ(H, σ, m),

which is equal to the coefficient of τ in

(3.1) θ

(

∑

m

∑

σ∈Sn

γ(H, σ, m)σ

)

= θ(β(H)) = φ2(H).

This coefficient is 2α(H) if φ1(H) = τ and is zero otherwise. �

We may now state and prove our main result.
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Theorem 3.2. For any basis element τ of Tn(2), the fτ -immanant Immfτ
(x) is totally nonnegative. In

particular, let G be a planar network of order n and let A be its path matrix. Then we have

Immfτ
(A) =

∑

H⊂G

2α(H)ω(H, m),

where the sum is over all planar subnetworks H of G which are generalized wiring diagrams and which satisfy

φ1(H) = τ , and m is the vector of edge multiplicities which is uniquely determined by H.

Proof. We have

Immfτ
(A) =

∑

σ∈Sn

fτ (σ)a1,σ(1) · · · an,σ(n)

=
∑

σ∈Sn

fτ (σ)
∑

H⊂G

∑

m

ω(H, m)γ(H, σ, m),

where the second sum is over all planar subnetworks H of G which are unions of n paths. Changing the
order of summation, we have

Immfτ
(A) =

∑

H⊂G

∑

m

ω(H, m)
∑

σ∈Sn

fτ (σ)γ(H, σ, m)

=
∑

H⊂G

∑

m

ω(H, m)
∑

Π

fτ (type(Π)),

where the inner sum is over all path families Π which cover H with edge multiplicities m. By Lemma 3.1,
this inner sum is 2α(H) if H is a generalized wiring diagram, and zero otherwise. In the case that H is a
generalized wiring diagram, then Lemma 2.2 implies that the sequence m is completely determined by H ,
and we have our desired result.

�

4. Improved criterion

Now let us associate to each pair of k-subsets (I, I ′) of [n] a subset of the basis elements of Tn(λ). Labeling
the vertices of a basis element generator τ by q1, . . . , qn, q′n, . . . , q′1 (counterclockwise), let us say that τ is
compatible with the pair (I, I ′) if each edge is incident upon exactly one of the vertices {qi | i ∈ I}∪{q′j | j ∈ I ′}.

Theorem 4.1. Let I, I ′, J, J ′ be subsets of [n] satisfying |I | = |I ′| and |J | = |J ′|, and let R(I, I ′),
R(J, J ′) be the subsets of basis elements of Tn(λ) which are compatible with (I, I ′) and (J, J ′), respectively.

The immananant ∆J,J′(x)∆J,J′(x)−∆I,I′(x)∆I,I′(x) is totally nonnegative if and only if R(I, I ′) is contained

in R(J, J ′). In particular, we have

∆J,J′(x)∆J,J′(x) −∆I,I′(x)∆I,I′(x) =
∑

τ∈R(J,J′)rR(I,I′)

Immfτ
(x).

Proof. Omitted. �
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