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Abstract. Let SY Tn be the set of all standard Young tableaux
with n cells. After recalling the definition of a partial order on
SY Tn first defined by Melnikov, which we call the weak order, we
prove two main results:
• Intervals in the weak order essentially describe the product in

a Hopf algebra of tableaux defined by Poirier and Reutenauer.
• The map sending a tableau to its descent set induces a homo-

topy equivalence of the proper parts of either weak order or
Kazhdan-Lusztig order on tableaux with the Boolean algebra
2[n−1]. In particular, the Möbius function for either of these
orders on tableaux is (−1)n−1.

The methods use in an essential way the Kazhdan-Lusztig order on
SY Tn, and in some cases apply to other orders between the weak
order and KL-order.

1. introduction

The weak order on standard Young tableaux was introduced by Mel-
nikov [15] (who called it the induced Duflo order), in connection with
the Robinson-Schensted (RSK) correspondence and the weak Bruhat
order on permutations. Roughly speaking, this order is the weakest par-
tial ordering on SY Tn, such that the map from the weak Bruhat order
on the symmetric group Sn which takes a permutation w to its RSK in-
sertion tableau P (w) is order preserving; see Figure 1 for n = 2, 3, 4, 5.

This order is closely related to the Kazhdan-Lusztig preorder on the
symmetric group, and the partial order on SY Tn that it induces, which
we will call the KL order. In general, the weak order on SY Tn is weaker
than the KL order, although they are equivalent up to n = 5. The
goal of this paper is to prove two main results, Theorems 1.1 and 1.2,
about the weak and KL orders on SY Tn.

The first result relates to algebra structures defined by Malvenuto
and Reutenauer, Poirier and Reutenauer, and is motivated by results
of Loday and Ronco [13]; the same result was also asserted without
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Figure 1. The weak order and the KL-order on SY Tn,
which coincide for for n = 2, 3, 4, 5 (but not in general).

proof in [8, middle of p. 579]. Malvenuto and Reutenauer [14] defined
a (Hopf) algebra structure on ZS = ⊕n≥0ZSn, whose product sends a
pair of permutations u, v to the sum of all shuffles sh(u, v) of u and v
(after raising the values of all letters in v by the length of u). Poirier
and Reutenauer [17] observed that this product restricts to a product
on the subalgebra spanned by sums over Knuth/plactic classes in Sn

(or right Kazhdan-Lusztig cells), which are indexed by Young tableaux
T . This defines the product T ∗ S in the Poirier-Reutenauer Hopf
algebra ZSY T = ⊕n≥0ZSY Tn. The following is proven in Section 3,
where T/S and T\S are defined more precisely.

Theorem 1.1.

T ∗ S =
∑

R∈SY Tn:
T/S≤weakR≤weakT\S

R

where T/S and T\S are obtained by sliding S over T from the left and
from the bottom respectively.
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The second main result is about the Möbius function and homotopy
type for the weak order and KL-order on SY Tn. The weak Bruhat
order on Sn is well-known to have each interval homotopy equivalent
to either a sphere or a point, and hence have Möbius function values
all in {±1, 0}. This is false for intervals in general in (SY Tn,≤ weak);
see Figure 2 below. However, it is true for the interval from bottom to
top.

Theorem 1.2. Let ≤ be any partial order on SY Tn that lies between
≤weak and ≤KL (e.g. ≤weak or ≤KL itself).

Then the map of sets SY Tn 7→ 2[n−1] sending a tableau to its descent
set is order-preserving, and induces a homotopy equivalence of proper
parts. In particular, µ(0̂, 1̂) = (−1)n−1 for any such order.

To clarify the context and motivation for Theorems 1.1 and 1.2, we
recall two commutative diagrams appearing in the work of Loday and
Ronco [13]

(1.1)
Sn −→ Yn

↘ ↓
2[n−1]

ZS ←− ZY
↖ ↑

Σ
.

In the left diagram, Yn denotes the set of plane binary trees with n
vertices. The horizontal map sends a permutation w to a certain tree
T (w), and has been considered in many contexts (see e.g. [22, §1.3],
[5, §9]). The southeast map Sn → 2[n−1] sends a permutation w to
its descent set DesL(w). These maps of sets become order-preserving
if one orders Sn by weak order, Yn by the Tamari order (see [5, §9]),
and 2[n−1] by inclusion. In [5, Remark 9.12], Björner and Wachs (essen-
tially) show that the triangle on the left induces a diagram of homotopy
equivalences on the proper parts of the posets involved. Theorem 1.2
and the stronger assertion in Corollary 4.3 below give the analogue of
this statement in which one replaces (Yn,≤Tamari) by (SY Tn,≤weak).
We were further motivated in proving Theorem 1.2 by the results of
Aguiar and Sottile [1], where the Möbius function of the weak order
on Sn plays a role in understanding the structure of the Malvenuto-
Reutenauer algebra.

The second diagram in (1.1) consists of induced inclusions of Hopf
algebras, in which ZS is the Malvenuto-Reutenauer algebra, ZY is a
subalgebra isomorphic to Loday and Ronco’s free dendriform algebra
on one generator [12], and Σ is a subalgebra known as the algebra
of noncommutative symmetric functions. In [13], Loday and Ronco
proved a description of the product structure for each of these three
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algebras very much analogous to Theorem 1.1, which should be viewed
as the analogue replacing ZY by ZSY T .

The analogy between the standard Young tableaux SY Tn and the
plane binary trees Yn is tightened further by recent work of Hivert,
Novelli and Thibon [8]. They show that the planar binary trees Yn

can be interpreted as the plactic monoid structure given by a Knuth-
like relation similar to the interperation of the set of standard Young
tableaux as Knuth/plactic classes.

2. definition and properties of the weak order on SY Tn

Before giving the definition of the weak order, it is necessary to recall
the Robinson-Schensted (RSK) correspondence; see [18, §3] for more
details and references on RSK. The RSK correspondence is a bijection
between Sn and {(P, Q) : P, Q ∈ SY Tn of same shape}. Here P and
Q are called the insertion and recording tableau respectively. Knuth
[11] defined an equivalence relation ∼

K
on Sn with the property that

σ∼
K

τ if and only if they have the same insertion tableaux P (σ) = P (τ).

It turns out that RSK is closely related to the Kazhdan-Lusztig
preorders on Sn. Recall that a preorder on a set X is a binary relation
≤ which is reflexive (x ≤ x) and transitive (x ≤ y, y ≤ z implies
x ≤ z). It need not be antisymmetric, that is, the equivalence relation
x ∼ y defined by x ≤ y, y ≤ x need not have singleton equivalence
classes. Note that a preorder induces a partial order on the set X/∼ of
equivalence classes. Kazhdan and Lusztig [9] introduced two preorders
(the left and right KL preorders) on Coxeter groups. In this paper
we will denote by ≤op

KL the opposite of the usual KL right preorder on
Sn. For example, with our convention, the identity element 1 and the
longest element w0 satisfy 1 ≤op

KL w0. It turns out [9] (and explicitly in
[6, p. 54]) that the associated equivalence relation for this KL preorder
is the Knuth equivalence ∼

K
. Hence an equivalence class (usually called

either a Knuth class or plactic class or a Kazhdan-Lusztig right cell in
Sn) corresponds to a tableau T in SY Tn. Denote this equivalence class
CT . We denote by (SY Tn,≤op

KL) the partial order induced by the KL
preorder.

Proposition 2.1. Let ≤ be any preorder on Sn which is weaker than
≤op

KL. Then ≤ induces an order on SY Tn, by taking the transitive
closure of the relation which has S ≤ T whenever σ ≤ τ for some σ, τ
in Sn with P (σ) = S, P (τ) = T .

Furthermore, the map (S,≤) → (SY Tn,≤) sending σ 7→ P (σ) is
order-preserving.
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Proof. Straightforward, but omitted in this extended abstract. �

We now recall the (right) weak (Bruhat) order ≤weak Sn. It is the
transitive closure of the relation σ ≤weak τ if τ = σ · si for some i with
σi < σi+1, and where si is the adjacent transposition (i i + 1). The
weak order has an alternative characterization [3, Prop. 3.1] in terms
of (left) inversion sets

InvL(σ) := {(i, j) : 1 ≤ i < j ≤ n and σ−1(i) > σ−1(j)},

namely σ ≤weak τ if and only if InvL(σ) ⊂ InvL(τ).
It is known [9, page 171] that the (right) weak order ≤weak on Sn

is weaker than the (right) KL preorder ≤op
KL on Sn, leading to the

following definition.

Definition 2.2. The weak order (SY Tn,≤weak), first introduced by
Melnikov [15] under the name induced Duflo order, is the partial order
induced by (Sn,≤weak) via Proposition 2.1.

Implicitly the definition of (SY Tn,≤weak) involves taking transitive
closure; the necessity of this is illustrated by the following example (cf.
Melnikov [15, Example 4.3.1]).

Example 2.3. Let R =
1 2 5
3 4

, S =
1 4 5
2
3

, T =
1 4
2 5
3

with

CR = {31425, 34125, 31452, 34152, 34512},
CS = {32145, 32415, 32451, 34215, 34251, 34521},
CT = {32154, 32514, 35214, 32541, 35241}.

Here R <weak S since 34125 <weak 34215 = 34125 · s3, and S <weak T
since 32145 <weak 32154 = 32145 · s4. Therefore R < T .

On the other hand, for every ρ ∈ CR one has (2, 4) ∈ InvL(ρ),
whereas for every τ ∈ CT one has (2, 4) /∈ InvL(τ). This shows that
there is no ρ ∈ CR and τ ∈ CT such that ρ <R τ .

It happens that (SY Tn,≤weak) and (SY Tn,≤op
KL) coincide for n ≤ 5,

but the following examples show that they differ for n = 6.

Example 2.4. Let

S =
1 2 3
4 5 6

, T1 =
1 2 5
3 6
4

, T2 =
1 3 6
2 4
5

Computer calculations show that S ≤op
KL T1, T2, but S 6≤weak T1, T2. By

using the anti-automorphism of ≤op
KL,≤weak that transposes a standard

Young tableau (see Proposition 2.6) one obtains two more examples of
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pairs of tableaux which are comparable in ≤op
KL, but not in ≤weak.

These are the only such examples in SY T6.

An important property of both ≤weak and ≤op
KL are their interactions

with descent sets. The (left) descent set of a permutation σ is defined
by

DesL(σ) := {(i, i + 1) : 1 ≤ i ≤ n− 1 and σ−1(i) > σ−1(i + 1)}

= InvL(σ) ∩ S

where S = {(i, i + 1) : 1 ≤ i ≤ n − 1}. In what follows, we will
often identify the set S of adjacent transposition with the numbers
[n− 1] := {1, 2, . . . , n− 1} via the obvious map (i, i + 1) 7→ i.

Property (i) in the next proposition is well-known [9, Prop. 2.4], and
property (ii) follows from the characterization of ≤weak by inclusion of
left inversion sets.

Proposition 2.5. For σ, τ in Sn,

(i) σ ≤op
KL τ implies DesL(σ) ⊂ DesL(τ).

(ii) σ ≤weak τ implies DesL(σ) ⊂ DesL(τ).

As a consequence of this proposition (or well-known properties of
RSK), the left descent set DesL(−) is constant on Knuth classes CT ;
the descent set of the standard Young tableau T is described intrinsi-
cally by

Des(T ) := {(i, i + 1) : 1 ≤ i ≤ n− 1 and

i + 1 appears in a row below i in T}.

For the record, we note here some well-known symmetries of ≤weak

and ≤op
KL on SY Tn, and some obvious order-preserving maps to other

posets. Let (2[n−1],⊆) be the Boolean algebra of all subsets of [n − 1]
ordered by inclusion. Let (Parn,≤dom) denote the set of all partitions
of the number n ordered by dominance, that is, λ ≤dom µ if

λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk for all k.

Proposition 2.6. The following maps are order-preserving:

(i) The map

(SY Tn,≤weak)→ (2[n−1],⊆)

sending a tableau T to its descent set Des(T ).
(ii) The same map

(SY Tn,≤op
KL)→ (2[n−1],⊆).

(iii) The map

(SY Tn,≤weak)→ (Parn,≤dom)opp
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sending T to its shape λ(T ), where here (−)opp denotes the op-
posite or dual poset.

Also, Schützenberger’s evacuation map [20] on SY Tn gives a poset au-
tomorphism of both ≤weak and ≤op

KL, and the transpose map on SY Tn

gives a poset anti-automorphism of both.

Proof. The first two assertions are immediate from Proposition 2.5 (i)
and (ii). For (iii), one can apply Greene’s Theorem [7].

The assertions about transposing and evacuation follow from the fact
that the involutive maps

w 7→ w0w and w 7→ ww0

are antiautomorphisms of both (Sn,≤
op
KL) [6] and (Sn,≤weak). Hence

w 7→ w0ww0 is an automorphism of both. On the other hand P (ww0)
is just the transpose tableau of P (w) [19] and P (w0ww0) is nothing but
the evacuation of P (w) [20]. �

3. The Hopf Algebra of SY Tn

Malvenuto and Reutenauer, in [14] construct two graded Hopf al-
gebra structure on the Z module of all permutations ZS = ⊕n≥0ZSn

which are dual to each other, and shown to be free as associative al-
gebras by Poirier and Reutenauer in [17]. The product structure of
the one that concerns us here is given by, α ∗ β = sh(α, β) where β
is obtained by increasing the indices of β by the length of α and sh
denotes the shuffle product.

Poirier and Reutenauer also show that Z module of all plactic classes
{PCT}T∈SY T , where PCT =

∑
P (α)=T α becomes a Hopf subalgebra of

permutations and the product is given by the formula

(3.1) PCT ∗ PCT ′ =
∑

P (α)=T
P (β)=T ′

sh(α, β)

Then the bijection sending each plactic class to its defining tableau
gives us a Hopf algebra structure on the Z module of all standard Young
tableaux, ZSY T = ⊕n≥0ZSY Tn.

For example,

PC 1
2

∗ PC 1 2 = sh(21, 34) = PC 1 3 4
2

+ PC 1 4
2
3
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since sh(21, 34) = 2134 + 2314 + 2341 + 3241 + 3421. In other words,

1
2
∗ 1 2 =

1 3 4
2

+
1 4
2
3

.

Another approach to calculate the product of two tableaux is given
in [17] where Poirier and Reutenauer explain this product using jeu de
taquin slides. Our goal is to show that it can also be described by a
formula using partial orders, analogous to a result of Loday and Ronco
[13, Thm. 4.1]. To state their result, given σ ∈ Sk and τ ∈ S`, with
n := k+`, let τ be obtained from τ by adding k to each letter. Then let
σ/τ and σ\τ denote the concatenations of σ, τ and of τ , σ, respectively.

Theorem 3.1. For τ ∈ Sk and σ ∈ S`, with n := k + `, one has in
the Malvenuto-Reutenauer Hopf algebra

τ ∗ σ =
∑

ρ∈
�

n:
σ/τ≤ρ≤σ\τ

ρ.

Equivalently, the shuffles sh(σ, τ) are the interval [σ/τ, σ\τ ]≤weak
.

The next definition identifies a crucial property for transporting the
Loday and Ronco result to SY Tn.

Definition 3.2. Given σ in Sn, and k ∈ [n], let I and Ic be the initial
and final segments I = [k] and Ic = [n]− [k] = [k+1, n] of the alphabet
[n]. Let σI and σIc be the subwords of σ obtained by restricting to the
alphabets I and Ic. Let std(σIc) in Sn−k be the word obtained from
σIc by subtracting k from each letter.

Say that a family of preorders ≤ on Sn for all n restricts to initial
and final segments if σ ≤ τ implies σI ≤ τI and std(σIc) ≤ std(τIc).

We need analogous definitions for tableaux. Given a tableaux T and
k ∈ [n] with initial and final segments I = [k], Ic as before, let TI

denote subtableau of T obtained by restricting to the values in I. Let
std(TIc) denote the tableau obtained by first restricting T to its skew
subtableau on the values in Ic, then lowering all these entries by k, and
then sliding into normal shape by jeu-de-taquin [21].

The following are two basic facts about RSK, Knuth equivalence,
and jeu-de-taquin are essentially due to Knuth and Schützenberger;
see Knuth [10, Section 5.1.4] for detailed explanations.

Lemma 3.3. Given ρ ∈ Sn and k ∈ [n], let I = [k], Ic be initial and
final segments as before. Then

(i) P (wI) = P (w)I, and
(ii) std(P (w)Ic) = P (std(wIc)).
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Let σ ∈ Sk, τ ∈ S`. When P (σ) = S and P (τ) = T , let T denote the
result of adding k to every entry of T . It is easily seen that P (σ/τ) =
S/T and P (σ\τ) = S\T , where S/T (respectively, S\T ) is the tableaux
whose columns (resp. rows) are obtained by concatenating the columns
(resp. rows) of S and T . Note also that Lemma 3.3 shows

(S/T )I = S st((S/T )Ic) = T

(S\T )I = S st((S\T )Ic) = T.

The following theorem is a consequence of Lemma 3.3, Proposition
2.1 and Theorem 3.1. For the sake of space we omit the detailed proof.

Theorem 3.4. Let ≤ be a family of preorders on Sn for all n that

(a) lies between ≤weak and ≤op
KL, and

(b) restricts to initial and final segments.

Let (SY Tn,≤) denote the partial order on tableaux which it induces as
in Proposition 2.1.

Then in the Poirier-Reutenauer Hopf algebra,

S ∗ T =
∑

R∈SY Tn:
S/T≤R≤S\T

R.

Proof of Theorem 1.1. The poset (Sn,≤weak) satisfies both hypotheses
of Theorem 3.4: it lies between itself and ≤op

KL, and its characterization
via inclusion of left inversion sets shows immediately that it restricts
to initial and final segments. �

Example 3.5. Let T =
1 2
3

and S = P (β) =
1
2

. Then the product

on the corresponding the plactic classes gives

T ∗ S =
1 2
3

∗
1
2

=
1 2 4
3 5

+
1 2 4
3
5

+
1 2
3 4
5

+

1 2
3
4
5

.

On the other hand, T/S =
1 2 4
3 5 and T\S =

1 2
3
4
5

. The Hasse

diagram of SY T5 in Figure 1 shows that the product above is equal to
the sum of all tableaux in the interval [T/S, T\S]≤weak

.
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4. Möbius function and homotopy equivalences

In this section, we prove Theorem 1.2, but in greater generality. We
will view the the commutative diagram

(4.1)
Sn −→ SY Tn

↘ ↓
2[n−1]

as an instance of the following set-up, involving closure relations, equiv-
alence relations, order-preserving maps, and the topology of posets. For
background on poset topology, see [2].

Let P be a partial order and p 7→ p̄ a closure relation on P , that is,

¯̄p = p̄, p ≤P p̄ and p ≤P q implies p̄ ≤P q̄.

It is well-known that in this instance, the order-preserving closure map
P → P has the property that its associated simplicial map of order
complexes ∆(P )→ ∆(P ) is a strong deformation retraction.

Now assume ∼ be an equivalence relation on P such that, as maps
of sets, the closure map P → P factors through the quotient map
P → P/∼. Equivalently, the vertical map below is well-defined, and
makes the diagram commute:

(4.2)
P −→ P/∼
↘ ↓

P

Proposition 4.1. In the above situation, partially order P by the re-
striction of ≤P , and assume that P/∼ has been given a partial order
≤ in such a way that the horizontal and vertical maps in the (4.2) are
also order-preserving.

Then the commutative diagram of associated simplicial maps of order
complexes are all homotopy equivalences.

Proof. The proof is omitted for the sake of space. �

Lemma 4.2. Given any subset D ⊂ [n − 1], there exists a maximum
element τ(D) in (Sn,≤weak) for the descent class

Des−1
L (D) := {σ ∈ Sn : DesL(σ) = D}.

Consequently, the map Sn → Sn defined by σ 7→ τ(DesL(σ)) is a
closure relation, with image isomorphic to (2[n−1],⊆).

Proof. It is known that [3, page 98-100] Des−1
L (D) := {σ ∈ Sn :

DesL(σ) = D} is actually an interval of the weak Bruhat order on
Sn. The rest follows from this fact easily. �
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Figure 2. An interval in (SY T8,≤weak), having Mo-
bius function −2.

Corollary 4.3. Order Sn by ≤weak and 2[n−1] by ⊆, and let ≤ be any
order on SY Tn such that the commuting diagram (4.1) has all the maps
order-preserving.

Then these restrict to a commuting diagram of order-preserving maps
on the proper parts, each of which induces a homotopy equivalence of
order complexes. Consequently, µ(0̂, 1̂) = (−1)n−1 for each of the three
orders.

Proof. Straightforward from Proposition 4.1 and Lemma 4.2, but omit-
ted in this extended abstract. �

Proof of Theorem 1.2. Any partial order ≤ on SY Tn between ≤weak

and ≤op
KL satisfies the hypotheses of Corollary 4.3. �

The example shown in Figure 2 illustrates that the Möbius function
values need not all lie in {±1, 0} for ≤weak on SY Tn.

Remark 4.4. In light of Theorems 1.2 and 3.4 one might ask if there
are other natural orders on SY Tn which lie between ≤weak and ≤op

KL?
And if so, do any of them restrict to initial and final segments?

Conjecture 4.5. The Kazhdan-Lusztig order ≤KL on SY Tn restricts
to initial and final segments. Equivalently, the Kazhdan-Lusztig right
pre-order on Sn restricts to initial and final segments.

By the evacuation symmetry on ≤KL (see Proposition 2.6), one need
only check that it restricts to initial segments. Computer calculations
have verified this for SY Tn with n ≤ 7.

Remark 4.6. One might ask to what extent the definitions and results
in this paper apply to other Coxeter systems (W, S). The weak order
on W is well-defined, as are the KL-cells (replacing SY Tn) and the
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KL-order, so Proposition 2.1, Definition 2.2 make sense and remain
valid. Proposition 2.5 is also well-known ([9]; see [6, Fact 7]), and
hence Proposition 2.6(i),(ii) remain valid.

For the analysis of Möbius function and homotopy types, the crucial
Lemma 4.2 was proven by Bjorner and Wachs [4, Theorem 6.1] for all
finite Coxeter groups W . Hence Corollary 4.3 and Theorem 1.2 are
valid also in this generality, with the same proof.
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