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Séries Formelles et Combinatoire Algébrique
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Abstract. Given a real hyperplane arrangement A, the complement M(A) of the complexification of A
admits an action of

�
2 by complex conjugation. We define the equivariant Orlik-Solomon algebra of A to be

the
�

2-equivariant cohomology ring of M(A) with coefficients in
�

2. We give a combinatorial presentation
of this ring, and interpret it as a deformation of the ordinary Orlik-Solomon algebra into the Varchenko-
Gel′fand ring of locally constant

�
2-valued functions on the complement M � (A) of A in � n. We also

show that the
�

2-equivariant homotopy type of M(A) is determined by the oriented matroid of A. As an
application, we give two examples of pairs of arrangements A and A′ such that M(A) and M(A′) have the
same nonequivariant homotopy type, but are distinguished by the equivariant Orlik-Solomon algebra.

1. Introduction

Let A = {H1, . . . , Hn} be an arrangement of n hyperplanes in Cd, with Hi = ω−1
i (0) for some affine

linear map ωi : Cd → C. Let M(A) denote the complement of A in Cd. It is a fundamental problem in the
study of hyperplane arrangements to study the extent to which the topology of M(A) is determined by the
combinatorics of A.

Let CA denote the central arrangement of hyperplanes in C
d+1 given by first adding a “hyperplane at

infinity” to A to produce an arrangement of hyperplanes in CP d, and then taking its cone. The pointed
matroid of A is defined to be the matroid of dependence relations among the hyperplanes of CA, along with
a specified basepoint corresponding to the cone over the hyperplane at infinity [F2]. Geometrically, the
pointed matroid encodes two types of data:

(1) which subsets S ⊆ {1, . . . , n} have the property that
⋂

i∈S Hi = ∅, and
(2) which subsets S ⊆ {1, . . . , n} have the property that codim

⋂

i∈S Hi > |S|.

Definition 1.1. The Orlik-Solomon algebra A(A;R) is the cohomology ring H∗(M(A);R) of the com-
plement of the complexified arrangement with coefficients in the ring R.

For each i ≤ n, let ei = ω∗i [R+] ∈ A(A;R) be the pullback of the generator [R+] ∈ H1(C∗;R) under the
map ωi : M(A) → C

∗ = C\{0}. The following theorem, due to Orlik and Solomon, states that the elements
e1, . . . , en generate A(A;R), and gives explicit relations in terms of the pointed matroid of A. We give here
a simplified version by working only with the coefficient ring R = Z2, because this is the version that will
extend well to the equivariant setting.

Theorem 1.2. [OT] Consider the linear map ∂ =
∑n

i=1
∂

∂ei

from Z2[e1, . . . , en] to itself, lowering degree

by 1. The Orlik-Solomon algebra A(A; Z2) is isomorphic to Z2[e1, . . . , en]
/

I, where I is generated by the
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2 NICHOLAS PROUDFOOT

following three families of relations:

1) e2i for i ∈ {1, . . . , n}

2)
∏

i∈S

ei if
⋂

i∈S

Hi = ∅

3) ∂
∏

i∈S

ei if
⋂

i∈S

Hi is nonempty with codimension greater than |S|.

Now suppose that our arrangement A is defined over the real numbers. More precisely, suppose that ωi

restricts to a map ωi : Rd → R for all i. Let

H+
i = {p | ωi(p) ≥ 0} and H−

i = {p | ωi(p) ≤ 0},

both half-spaces in R
d with boundary Hi. The pointed oriented matroid of A is defined to be the oriented

matroid with basepoint given by the dependence relations of CA. Like the pointed matroid, the pointed
oriented matroid also encodes two types of geometrical data:

(1) which pairs S+, S− ⊆ {1, . . . , n} have the property that
⋂

i∈S+ H
+
i ∩

⋂

j∈S− H
−
j = ∅, and

(2) which pairs S+, S− ⊆ {1, . . . , n} have the property that
⋂

i∈S+ H
+
i ∩

⋂

j∈S− H
−
j is nonempty and

contained in some hyperplane.

In this paper we study the action of Z2 = Gal(C/R) on M(A) by complex conjugation, with fixed point
set MR(A) ⊆ Rd equal to the complement of the real loci of the hyperplanes. This is an enhancement of the
topological data of A, just as the pointed oriented matroid is an enhancement of the combinatorial data. It
is therefore natural to make the following definition.

Definition 1.3. The equivariant Orlik-Solomon algebra A2(A,Z2) of a hyperplane arrangement defined
over R is the equivariant cohomology ring H∗

Z2
(M(A); Z2).

In Section 3 we give a presentation of the equivariant Orlik-Solomon algebra in terms of the pointed
oriented matroid of A, analogous to Theorem 1.2.1 Moreover, we interpret A2(A,Z2) as a deformation from
the ordinary Orlik-Solomon algebra A(A; Z) to the Varchenko-Gel ′fand ring V G(A; Z2), which is defined
to be the ring of locally constant functions from MR(A) to Z2. We thus recover by independent means
the presentation of V G(A; Z2) given in [VG], and provide a topological explanation for the parallels that
Varchenko and Gel′fand observe between the the rings A(A; Z) and V G(A; Z2). Note that, while the Orlik-
Solomon algebra is super-commutative and the Varchenko-Gel′fand ring is commutative, these two notions
agree in characteristic 2.

A celebrated theorem of Salvetti [Sa] says that if A is central and essential, then M(A) is homotopy
equivalent to a simplicial complex that can be constructed from the oriented matroid2 ofA (see [Sa], [Pa], and
[GR]). In Section 4, we show that this simplicial complex has a natural, combinatorially defined action of Z2,
and that the homotopy equivalence is equivariant with respect to this action. Hence the oriented matroid of
A in fact determines the equivariant homotopy type of M(A). This observation provides an explanation for
the recent discovery of Huisman that the equivariant fundamental group of a line arrangement is determined
by its pointed oriented matroid [Hu].

We conclude by discussing three examples which illustrate the similarities and differences between the
equivariant and nonequivariant pictures. In Example 5.2 we consider the famous first example of two real
arrangements with different pointed matroids, but with homotopy equivalent complements [F1]. We show
that these two arrangements are distinguished by the equivariant Orlik-Solomon algebra, hence the homo-
topy equivalence cannot be made equivariant. In Example 5.4, we consider two arrangements whose pointed

1A special case of this presentation first appeared in [HP, 5.5], using the geometry of hypertoric varieties.
2If A is central, the oriented matroid and pointed oriented matroid encode the same data.
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oriented matroids are related by a flip [F1]. This implies that their complements are homotopy equivalent,
and that their unoriented pointed matroids are isomorphic, but once again their equivariant homotopy types
are distinguished by the equivariant Orlik-Solomon algebra. We conclude with a problem and a conjecture
regarding the relationship between the combinatorial data and the equivariant topology of a real arrangement.

Acknowledgments. The author is grateful to Graham Denham for pointing out the similarity between the
rings described in [HP] and [VG], and to Michael Falk for his help in understanding many examples.

2. Equivariant cohomology

In this section we review some basic definitions and results from [Bo]. Let X be a topological space
equipped with an action of a group G.

Definition 2.1. Let EG be a contractible space with a free G-action. Then we put

XG := X ×G EG = (X ×EG)/G

(well-defined up to homotopy equivalence), and define the G-equivariant cohomology of X

H∗
G(X) := H∗(XG).

The G-equivariant map from X to a point induces a map on cohomology in the other direction, hence
H∗

G(X) is a module over H∗
G(pt) ∼= H∗(BG), where BG = EG/G is the classifying space for G. Indeed, H∗

G

is a contravariant functor from the category of G-spaces to the category of H∗
G(pt)-modules.

Example 2.2. If G = Z2, then we may take EG = S∞ and BG = S∞/Z2 = RP∞. Then H∗
Z2

(pt; Z2) =
H∗(RP∞; Z2) ∼= Z2[x].

Suppose that X is a finite-dimensional manifold, and let Y ⊆ X be a G-invariant submanifold. We
denote by [Y ] ∈ H∗

G(X) the cohomology class represented in Borel-Moore homology by the finite-codimension
submanifold YG ⊆ XG. This will be our principal means of understanding specific equivariant cohomology
classes in this paper. We will need two technical theorems about equivariant cohomology, both of which we
state below. Let X be a Z2-space, and let F ⊆ X be the fixed point set.

Theorem 2.3. [Bo, §XII, 3.5] Suppose that F is nonempty, the induced action of Z2 on H∗(X ; Z2) is
trivial, and H∗(X ; Z2) is generated in degree 1. Then the Leray-Serre spectral sequence for the fiber bundle
X↪→XZ2

→ RP∞ collapses at the E2 term.

Corollary 2.4. Under the hypotheses of Theorem 2.3, any additive basis from H∗(X ; Z2) lifts to a
Z2[x]-basis for H∗

Z2
(X ; Z2) (and any set of lifts will do). In particular, H∗

Z2
(X ; Z2) is a free module over

Z2[x].

Theorem 2.5. [Bo, §IV, 3.7(b)] The restriction map H∗
Z2

(X ; Z2) → H∗
Z2

(F ; Z2) ∼= H∗(F ; Z2)[x] is an
isomorphism in all degrees greater than the dimension of X.

Corollary 2.4 says that we may interpret H∗
Z2

(X ; Z2) as a flat family of rings over the Z2 affine line. The
following corollary says that this family is a deformation of H∗(X ; Z2) into H∗(F ; Z2).

Corollary 2.6. Under the hypotheses of Theorem 2.3,

H∗(X ; Z2) ∼= H∗
Z2

(X ; Z2)/〈x〉

and

H∗(F ; Z2) ∼= H∗
Z2

(X ; Z2)/〈x− 1〉.

Proof. The first statement follows immediately from Corollary 2.4. For the second statement, consider
the ring H∗

Z2
(X ; Z2)[x

−1] obtained by formally inverting x. Theorem 2.5 tells us that the restriction map

H∗
Z2

(X ; Z2)[x
−1] → H∗

Z2
(F ; Z2)[x

−1] ∼= H∗(F ; Z2)[x, x
−1]
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is an isomorphism in high degree. But this map commutes with multiplication by x and x−1, so it must be
an isomorphism in every degree. Setting x equal to 1, we obtain the desired result. �

The following example will be fundamental to our applications.

Example 2.7. Let X = C∗, with Z2 acting by complex conjugation. Since X deformation-retracts
equivariantly onto the compact space S1, Theorem 2.3 applies. The image of x under the standard map
Z2[x] = H∗

Z2
(pt,Z2) → H∗

Z2
(X ; Z2) is the Z2-equivariant Euler class of the topologically trivial real line

bundle with a nontrivial Z2 action. This bundle has a Z2-equivariant section, transverse to the zero section,
vanishing exactly on the real points of X , and is therefore represented by the submanifold R

∗ ⊆ C
∗. Abusing

notation, we will write x = [R∗] ∈ H∗
Z2

(X ; Z2). Let y = [R+] ∈ H∗
Z2

(X ; Z2). Then x − y is represented by

R−, therefore y(x − y) = 0. Corollary 2.4 says that H∗
Z2

(X ; Z2) is additively generated by x and y. Since
Z2[x, y]/〈y(x− y)〉 is already a free module of rank 2 over Z2[x], Corollary 2.4 tells us that there can be no
more relations.

3. The equivariant Orlik-Solomon algebra

We now give a combinatorial presentation of the equivariant Orlik-Solomon algebra.

Theorem 3.1. The ring A2(A; Z2) is isomorphic to Z2[e1, . . . , en, x]
/

J , where J is generated by the

following three families of relations: 3

1) ei(x− ei) for i ∈ {1, . . . , n}

2)
∏

i∈S+

ei ×
∏

j∈S−

(x− ej) if
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−
j = ∅

3) x−1





∏

i∈S+

ei ×
∏

j∈S−

(x− ej)−
∏

i∈S+

(x− ei)×
∏

j∈S−

ej





if
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−
j is nonempty and contained in some hyperplane Hk.

Proof. Let y = [R+] ∈ H∗
Z2

(C∗; Z2), and let

ei = ω∗i (y) ∈ A2(A; Z2),

represented by the submanifold

Y +
i = ω−1

i (R+).

Let x ∈ A2(A; Z2) be the image of the generator of H∗
Z2

(pt; Z2); by functoriality, we have x = ω∗i (x) for all

i. Recall from Example 2.7 that [R−] = x− y ∈ H∗
Z2

(C∗; Z2), hence

x− ei = ω∗(x− y) ∈ A2(A; Z2)

is represented by the submanifold

Y −i = ω−1(R−).

Theorem 1.2 tells us that e1, . . . , en are lifts of ring generators for the ordinary Orlik-Solomon algebra
A(A; Z2). Since the manifolds Y +

i are stable under the action of Z2, the induced action of Z2 on A(A; Z2)
is trivial. The space M(A) has a compact Z2-equivariant deformation retract, therefore Corollary 2.3 tells
us that A2(A; Z2) is generated as a ring by the classes ei and x. We must now check that each of the three
families of generators of J do indeed vanish in A2(A; Z2), and that they generate all of the relations.

3Note that all of these relations are polynomial; the x−1 in the third relation cancels.
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The first family of relations follows from the fact that Y +
i ∩Y −i = ∅ for all i ∈ {1, . . . , n}. For the second

family, we must show that if
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−
j = ∅,

then
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j = ∅.

Suppose that

p ∈
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j ,

in other words ωi(p) ∈ R+ for all i ∈ S+ and ωj(p) ∈ R− for all j ∈ S−. Then the real part

Re(p) ∈
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−
j ,

hence the intersection is not empty.
The argument for the third family is similar. First, note that since A2(A; Z2) is free over Z2[x], it is

sufficient to show that
∏

i∈S+

ei ×
∏

j∈S−

(x − ej)−
∏

i∈S+

(x− ei)×
∏

j∈S−

ej = 0.

We treat each of the two terms separately. Suppose that

p ∈
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j .

Then, as above, we have

Re(p) ∈
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−
j .

Furthermore, there exists δ > 0 such that for any q ∈ Rn of norm less than δ,

p+ q ∈
⋂

i∈S+

Y +
i ∩

⋂

j∈S−

Y −j ,

and hence

Re(p) + q ∈
⋂

i∈S+

H+
i ∩

⋂

j∈S−

H−
j .

Since {Re(p + q) | |q| < δ} is an open subset of Rn, the intersection
⋂

i∈S+ H
+
i ∩

⋂

j∈S− H
−
j cannot be

contained in a hyperplane. Hence we have
∏

i∈S+

ei ×
∏

j∈S−

(x− ej) =
∏

i∈S+

(x− ei)×
∏

j∈S−

ej = 0.

Now we must show that we have found all of the relations. Let

ψ : Z2[e1, . . . , en, x] → Z2[e1, . . . , en]

be the map given by sending x to zero, and note that ψ(J ) = I. Now suppose that α ∈ Z2[e1, . . . , en, x]
is a relation in A2(A; Z2) that is not in the ideal J , and choose α of minimal degree. By Corollary 2.6 we
must have ψ(α) ∈ I, hence there exists β ∈ J with ψ(α − β) = 0. This implies that α − β = xγ for some
γ ∈ Z2[e1, . . . , en, x]. Since α and β are both relations in A2(A; Z2), and A2(A; Z2) is free over Z2[x], γ must
also be a relation. Since β is in J and α is not, γ cannot be in J . Since deg γ = degα− 1, we have reached
a contradiction. �
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By Corollary 2.6, A2(A; Z2) is a flat family of rings parametErized by the affine line Spec Z2[x], special-
izing at x = 0 to H∗(M(A); Z2) = A(A; Z2), and at x = 1 to H∗(MR(A); Z2) = V G(A; Z2). In particular,
this provides a topological explanation for the fact that the dimension of the Orlik-Solomon algebra is equal
to the number of connected components of MR(A). By setting x = 1 in Theorem 3.1 we obtain a nontrivial
presentation of V G(A; Z2), first given in the central case (over the integers) in [VG]. Varchenko and Gel′fand
interpret ei ∈ V G(A; Z2) as the ith Heaviside function MR(A) → R, restricting to 1 on MR(A) ∩H+

i and
0 on MR(A) ∩H−

i . These functions are easily seen to generate the ring V G(A; Z2), and the three families
of relations are clear, but the proof that there are no other relations is nontrivial. Varchenko and Gel′fand
observe that this presentation defines a filtration on V G(A; Z2) with A(A; Z2) as its associate graded. This
is also a consequence of Corollaries 2.4 and 2.6; this phenomenon is explored in greater detail in [Ca].

Remark 3.2. Our presentations of V G(A; Z2) and A2(A; Z2) depend on the coorientations of the hy-
perplanes, while the isomorphism classes of the rings themselves do not. Reversing the orientation of the
hyperplane Hi corresponds to changing every appearance of ei to x− ei in the generators of J .

4. The Salvetti complex

Let A be an essential central arrangement in R
d. Salvetti [Sa] has constructed a simplicial complex

from a poset Sal(A), depending only on the oriented matroid of A, which is homotopy equivalent to the
complement M(A) of the complexification of A. In this section we define a combinatorial action of Z2 on
Sal(A), and show that the homotopy equivalence is equivariant.

The hyperplanes of A subdivide Rd into faces, open in their supports, which form a poset F ordered
by reverse inclusion. The minimal elements of F are the connected components of MR(A), and {0} is the
unique maximal element. The Salvetti poset Sal(A) is a poset consisting of elements of the form

{(F,C) | C minimal and C ≤ F}.

The partial order is determined by putting (F ′, C ′) ≤ (F,C) if and only if F ′ ≤ F and C ′ = F ′C, where the
latter equality means that C and C ′ lie on the same side of every hyperplane containing F ′. The Salvetti
complex |Sal(A)| is defined to be the order complex of this poset.

The poset Sal(A) admits an action of Z2 given by setting (F,C)∗ = (F, C̃), where C̃ is obtained from
C by reflecting it over all of the hyperplanes that contain F . In [GR], Sal(A) is defined as a subset of the
set of all functions from the ground set of the oriented matroid to the set {±1,±i}. In this language, our
Z2-action is simply complex conjugation, and is easily seen to be an invariant of the oriented matroid. This
action induces an action of Z2 on the Salvetti complex |Sal(A)|.

Theorem 4.1. The complex |Sal(A)| is equivariantly homotopy equivalent to M(A). In particular, the
equivariant homotopy type of M(A) is determined by the oriented matroid associated to A.

Proof. For every F ∈ F , choose a point x(F ) ∈ F ⊆ Rd. Each element of Sal(A) determines a vertex
in the complex |Sal(A)|. For all (F,C) ∈ Sal(A), let

V (F,C) =





















∑

C′≤F

λC′x(C ′)

∣

∣

∣

∣

λC′ > 0







if F 6= {0}

Rd if F = {0},

and let

W (F,C) = {x ∈ R
d | x and C lie on the same side of every hyperplane containing F}.

Paris [Pa] shows that

U =
{

V (F,C) + iW (F,C)
∣

∣

∣ (F,C) ∈ Sal(A)
}
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is an open cover of M(A) with nerve |Sal(A)|, and that any nonempty intersection of open sets from U is
contractible, hence concluding that M(A) is homotopy equivalent to |Sal(A)|. To extend this proof to the

equivariant context, we need only observe that W (F, C̃) = W (F,C), and V (F, C̃) = −V (F,C). Both of
these equalities are clear from the definitions. �

Remark 4.2. The Salvetti complex may be defined for an arbitrary oriented matroid, which may not
be realizable by a hyperplane arrangement (see for example [BLSWZ]. We can then define the equivariant
Orlik-Solomon algebra of an arbitrary oriented matroid to be the Z2-equivariant cohomology ring of its
Salvetti complex. Theorem 4.1 implies that this definition agrees with our original one if the oriented
matroid is realizable.

5. Examples

In this section we discuss three examples. In the first and third, the equivariant Orlik-Solomon algebra
successfully distinguishes two arrangements with (nonequivariantly) homotopy equivalent complements. In
the second example, the equivariant Orlik-Solomon algebra fails to distinguish two combinatorially distinct
arrangements. In all three, we work with affine arrangements to keep dimensions as low as possible. The
analogous central examples can be understood via the following proposition.

Proposition 5.1. There is a Z2-equivariant diffeomorphism M(CA) ∼= M(A)× C∗, and

A2(CA; Z2) ∼= A2(A; Z2)⊗Z2[x] Z2[x, y]/y(x− y).

Proof. The standard diffeomorphism M(CA) ∼= M(A) × C∗, found for example in [OT], is Z2-
equivariant. The second half of the proposition is simply the statement of the equivariant Künneth theorem
[Se, 7.4], combined with Example 2.7. �

Example 5.2. The example of Figure 1 was introduced by Falk [F1, 3.1]. The arrangements A and A′

1 2

4

32 1

3

5

4

5PSfrag replacements

A A′

Figure 1. Two arrangements whose complements are homotopy equivalent, but not equivariantly.

have nonisomorphic pointed matroids, but their complements are homotopy equivalent. In particular, they
cannot be distinguished by their Orlik-Solomon algebras. We show that their equivariant Orlik-Solomon
algebras are nonisomorphic, therefore the homotopy equivalence between their complements cannot be Z2-
equivariant. Choose coorientations so that the intersections ∩i≤5H

−
i are equal to the shaded regions. Then

A2(A; Z2) = Z2[e1, . . . , e5, x]/J and A2(A
′; Z2) = Z2[e1, . . . , e5, x]/J

′,

where

J =

〈

e1(x− e1), . . . , e5(x− e5), e1e2, e1(x− e3)e4, e1e3e5, e1e4e5, e2e3(x− e4),
e2(x− e4)(x− e5), e2(x − e3)(x− e5), e3e4 + e3e5 + e4e5 + e4x

〉

and

J ′ =

〈

e1(x− e1), . . . , e5(x− e5), e1e2e4, e1e2e5, e1e3e4, e1e3e5, e1e4(x− e5), e2(x − e3)e4,
e2(x− e3)e5, e2(x− e4)e5, e1e2 + e1e3 + e2e3 + e2x, e3e4 + e3e5 + e4e5 + e4x

〉

.
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Using Macaulay 2 [M2], we have found that the element e2 + e3 ∈ A2(A′; Z2) has its annihilator ideal
generated by e4 + e5, e3 + e5 +x, and e2e5, and that no linear element in A2(A; Z2) has its annihilator ideal
generated by two linear elements and one quadratic element. Hence the two graded rings are not isomorphic.

These two arrangements are generic rank 2 truncations of a pair of rank 3 arrangementsA3 and A′3 which
have diffeomorphic complements by a general construction relating parallel connections to direct sums (see
[EF, Thm 2] and [F2, 3.8]). The first arrangement A3 is given by the equation (x+1)(x−1)y(y+z)(y−z) =
0, with A obtained from A3 by setting z = x. The second arrangement A′3 is given by the equation
(2x+ y− z)(2x− y+ z)x(x− y)(x+ y) = 0, with A′ obtained from A′3 by setting z = 1. The diffeomorphism
between M(A3) and M(A′3) given in [EF] is easily seen to be Z2-equivariant, as it is essentially derived from
repeated applications of the diffeomorphism of Proposition 5.1. Furthermore, it is not hard to produce an
explicit isomorphism between A2(A3; Z2) and A2(A′3; Z2). This shows that a theorem of Pendergrass [F2,
3.11], which states that truncation of matroids preserves isomorphisms of Orlik-Solomon algebras, does not
extend to the equivariant setting.

Example 5.3. Consider the two arrangements of lines in R2 shown in Figure 2. Choose coorientations

4

1

3

1

2

2

3

4PSfrag replacements

A A′

Figure 2. Two combinatorially distinct arrangements with isomorphic equivariant Orlik-
Solomon algebras.

such that the intersections ∩i≤4H
−
i are equal to the two shaded regions. Then A2(A; Z2) is isomorphic to

Z2[e1, . . . , e4, x]
/

〈e1(x− e1), . . . , e4(x− e4), e2e3, e1(x− e2)e4, e1e3e4〉

and H∗
Z2

(M(A′); Z2) is isomorphic to

Z2[e1, . . . , e4, x]
/

〈e1(x− e1), . . . , e4(x− e4), e2e3, (x− e1)e2(x− e4), e1e3e4〉 .

There is an isomorphism φ : A2(A; Z2) → A2(A′; Z2) of graded Z2[x]-modules given by the equations

φ(e1) = e1 + e2, φ(e2) = e2 + e3 + x, φ(e3) = e3, and φ(e4) = e2 + e4.

The pointed oriented matroids associated to A and A′ are not isomorphic, hence the equivariant Orlik-
Solomon algebra is not a complete invariant.

The pointed oriented matroids corresponding to the arrangements in Example 5.3, or the oriented
matroids of the cones of these two arrangements, are related by a flip. Geometrically, this means that A′

can be obtained from A by translating one of the hyperplanes from one side of a vertex to another. (For
a precise definition of flips, see [BLSWZ, §7.3].) Falk [F1] has shown that any two real line arrangements
related by a flip have homotopy equivalent complements, and Example 5.3 suggests that this phenomenon
might extend to the equivariant setting. The following example shows that it does not.
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Example 5.4. Consider the two line arrangements shown in Figure 3, obtained from Example 5.3 by
adding a vertical line on the far left to each arrangement.4 Clearly A and A′ are still related by a flip. We

4

1

3

1

2

2

3

4

55

PSfrag replacements

A A′

Figure 3. Two arrangements related by a flip with nonisomorphic Orlik-Solomon algebras.

have

A2(A; Z2) ∼= Z2[~e, x]

/

〈

e1(x− e1), e2(x− e2), e3(x− e3), e4(x − e4),
e5(x− e5), e2e3, (x− e1)e5, e1(x− e2)e4,

e1e3e4, (x− e2)e4e5, e3e4e5

〉

and

A2(A
′; Z2) ∼= Z2[~e, x]

/

〈 e1(x− e1), e2(x− e2), e3(x − e3), e4(x− e4),
e5(x− e5), e2e3, (x− e1)e5, (x− e1)e2(x− e4),

e1e3e4, (x− e2)e4e5, e3e4e5

〉

.

We have checked, using Macaulay 2 [M2], that the annihilator of the element e2 ∈ A2(A; Z2) is generated
by two linear elements (namely e3 and x− e2) and nothing else, while none of the (finitely many) elements
of A2(A′; Z2) has this property. Hence the two rings are not isomorphic, and M(A) is not equivariantly
homotopy equivalent to M(A′). From this example we conclude that the equivariant Orlik-Solomon algebra
of an arrangement is not determined by the pointed unoriented matroid.

Problem 5.5. In Example 5.3, are M(A) and M(A′) equivariantly homotopy equivalent?

The answer is likely no, and one tool for showing this may be the equivariant fundamental group
πZ2

1 (M(A)) := π1(M(A)Z2
), where M(A)Z2

is defined in Definition 2.1. This group is a semidirect product
of π1(M(A)) with Z2, where Z2 acts on π1(M(A)) by inverting the standard generators. Huisman [Hu] has
given a presentation of this group when d = 2.

All of the arrangements that we have discussed, aside from the rank 3 arrangements to which we refer
at the end of Example 5.2, have connected pointed matroids. Eschenbrenner and Falk [EF] conjecture that
if A is a complex central arrangement with connected matroid, then the matroid of A is determined by
the homotopy type of M(A). Assuming a negative answer to Problem 5.5, we conclude with the following
analogous conjecture.

Conjecture 5.6. If A is a real central arrangement with connected matroid, then the oriented matroid
of A is determined by the equivariant homotopy type of M(A).

4This example appeared first in [HP].
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