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Abstract. In earlier work, Jockusch, Propp, and Shor proved a theorem describing the limiting shape of
the boundary between the uniformly tiled corners of a random tiling of an Aztec diamond and the more
unpredictable ‘temperate zone’ in the interior of the region. The so-called arctic circle theorem made precise
a phenomenon observed in random tilings of large Aztec diamonds.

Here we examine a related combinatorial model called groves. Created by Carroll and Speyer as combi-
natorial interpretations for Laurent polynomials given by the cube recurrence, groves have observable frozen
regions which we describe precisely via asymptotic analysis of generating functions, in the spirit of Peman-
tle and Wilson. Our methods also provide another way to prove the arctic circle theorem for Aztec diamonds.

Résumé. Dans leurs travaux, Jockusch, Propp, et Shor ont prouvé un théorème décrivant la forme lim-
ite de la frontière entre les coins uniformement pavés d’un pavage aleatoire d’un diamant Aztèque et la
“zone temperee” moins previsible a l’intérieur de la région. Le théorème du cercle arctique a rendu précis
un phénomène observé dans les pavages aleatoires de grands diamants Aztèques.

Nous examinons un modèle combinatoire relie appele les groves. Créé par Carroll et Speyer en tant
qu’interprétations combinatoires pour des polynômes de Laurent donnés par la recurrence du cube, les groves
ont des régions congelees observables que nous décrivons avec precision par l’intermediaire de l’analyse
asymptotique de fonctions generatrices, dans l’esprit de Pemantle et de Wilson. Nos méthodes fournissent
egalement une autre maniere de prouver le théorème du cercle arctique pour des diamants Aztèques.

1. Introduction

Groves came into existence as combinatorial interpretations of rational functions generated by the cube

recurrence:
fi,j,kfi−1,j−1,k−1 = fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k,

where some initial functions are specified. Typically, fi,j,k := xi,j,k for some choice of (i, j, k) ∈ Z
3 called

the initial conditions. Fomin and Zelevinsky [FZ] were able to show that for arbitrary initial conditions
the rational functions generated by the cube recurrence were in fact Laurent polynomials in the xi,j,k . The
introduction of groves by Carroll and Speyer [CS] gave a combinatorial proof of the surprising fact that each
term of these polynomials has coefficient +1. In this paper we will only examine the family of groves on
standard initial conditions as described in Section 1.1.1

Before getting into the details of groves, let us first describe the motivation for this paper: random
domino tilings of large Aztec diamonds. An Aztec diamond of order n consists of the union of all unit
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1Herein we will invoke some of the basic properties of groves without proof. For such arguments, as well as a general

treatment of groves and the cube recurrence, the reader is referred to [CS].

1



2 T. K. PETERSEN AND D. SPEYER

squares with integer vertices contained in the planar region { (x, y) | |x| + |y| ≤ n + 1 }. A domino tiling

of an Aztec diamond is an arrangement of 2 × 1 rectangles, or dominoes, that cover the diamond without
any overlapping. A random domino tiling of a large Aztec diamond consists of two qualitatively different
regions.2 As seen in the random tiling in Figure 1, the dominoes in the corners of the diamond are frozen in
a brickwork pattern, whereas the dominoes in the interior have a more random, temperate behavior. It was
shown in [JPS] and [CEP] that asymptotically, the boundary between the frozen and temperate regions in
a random tiling is given by the circle inscribed in the Aztec diamond. Since everything outside the circle is
expected to be frozen, it is referred to as the arctic circle.

Figure 1. A random domino tiling of an Aztec diamond of order 64

In this paper we shall see that groves on standard initial conditions exhibit a very similar behavior. A
grove, however, is not a type of tiling. In fact, as the name may suggest, a grove is a collection of trees. From
our point of view, groves are forests on a triangular lattice satisfying certain connectivity conditions on the
boundary. We will show that outside of the circle inscribed in the triangle, the trees of a large random grove
line up uniformly.

Despite their superficial differences, groves and random domino tilings of Aztec diamonds are linked by
more than their asymptotic behavior. In fact it seems that their asymptotic behavior is similar because they
share a deeper link. The paper of Carroll and Speyer [CS] establishes that groves are encoded in terms of a
Laurent polynomial given by the cube recurrence. There is a more general form of the cube recurrence:

fi,j,kfi−1,j−1,k−1 = αfi−1,j,kfi,j−1,k−1 + βfi,j−1,kfi−1,j,k−1 + γfi,j,k−1fi−1,j−1,k,

2By random we mean selected from the uniform distribution on all tilings of an Aztec diamond of order n, though other
probability distributions may be considered as well. See [CEP].
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where α, β, γ are constants. If α = β = γ = 1 we have the original form of the cube recurrence from whence
come groves. If α = β = 1 and γ = 0, we have (after re-indexing), the octahedron recurrence:

gi,j,n+1gi,j,n−1 = gi−1,j,ngi+1,j,n + gi,j−1,ngi,j+1,n,

with which we may encode tilings of Aztec diamonds. In Section 3, we will describe the role that this
recurrence plays in the large scale behavior of such tilings.

While the octahedron recurrence is important to us, it has not played a significant role in the study of
tilings of Aztec diamonds in the past. Rather, a local move called domino shuffling has been used. Domino
shuffling was introduced in [EKLP] and is generalized in [P]. It provides a method for generating tilings of
successively larger Aztec diamonds uniformly at random, and has been at least implicit in all probabilistic
analysis done to date. Section 1.3 will introduce an analogous local move for groves that we call grove

shuffling. Like domino shuffling, it will be key to our analysis.
For each of the two models discussed we have a global perspective and a local perspective. Laurent

polynomials tell the global story: all groves are encapsulated in f0,0,0 (from the cube recurrence), all tilings
in g0,0,n (from the octahedron recurrence). A specified shuffling algorithm tells the local story. In this paper
we combine these two points of view to build generating functions (for tilings of Aztec diamonds as well as
for groves), with which we can study asymptotic behavior.

1.1. Groves on standard initial conditions. The standard initial conditions of order n specify a
vertex set I(n) = C(n) ∪ B(n) where C(n) = { (i, j, k) ∈ Z

3 | −n− 1 ≤ i + j + k ≤ −n + 1, i, j, k ≤ 0 } and
B(n) = { (i, j, k) ∈ Z

3 | i + j + k < −n− 1; i, j, k ≤ 0; and i, j, or k = 0 }. We draw its projection onto the
plane R

3/(1, 1, 1) as shown in Figure 2 for the case n = 2, and in Figure 4 for the case n = 5. One way to
generate all groves of order n is to set fi,j,k := xi,j,k for all (i, j, k) ∈ I(n), and compute f0,0,0. Each term in
the resulting Laurent polynomial defines a grove as follows. Let G(n) be the graph on the vertex set I(n)
where vertex (i, j, k) has as its neighbors the vertices I(n)∩{ (i±1, j±1, k), (i±1, j, k±1), (i, j±1, k±1) }.
Pictorially, edges of G(n) connect vertices that lie diagonally across a rhombus.

Figure 2. Part of the standard initial conditions of order 2
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The terms in f0,0,0 are Laurent monomials of the form

m(g) =
∏

(i,j,k)∈I(n)

x
deg(i,j,k)−2
i,j,k .

We have the following

Definition 1.1. The grove g defined by m(g) is the unique subgraph of G(n) containing no crossing
edges such that vertex (i, j, k) in I(n) has exactly deg(i, j, k) incident edges.

The uniqueness of the grove is a consequence of Theorem 3 in [CS]. For example, f0,0,0 on I(2) is
x−1,−1,0x0,0,−1

x−1,−1,−1
+

x−1,0,−1x0,−1,0

x−1,−1,−1
+

x0,−1,−1x−1,0,0

x−1,−1,−1
,

and the corresponding groves are shown in Figure 3.

Figure 3. The three groves of order 2.

For a more interesting example, one term of f0,0,0 on I(5) is
x−3,0,−2x−2,−1,−1x−1,−3,0x0,−2,−2

x−3,−1,−2x−2,−3,−1x−1,−2,−2
.

Its corresponding grove, g, is shown in Figure 4. This grove has interesting connectivity properties; in fact
these properties are what distinguish groves from arbitrary subgraphs of G(n). Every vertex on the boundary
of C(n) (where cubes have been pushed down) is connected to another vertex on the boundary of C(n) if
and only if those vertices are equidistant to the nearest corner (i.e. where two coordinates are zero) of the
grove. Groves are acyclic — every connected component of a grove is a tree.

Notice that there are two types of edges: long edges and short edges, depending on whether the long or
short diagonal of a rhombus is used. It is shown in [CS] that every vertex in B(n) has degree 2 and only
uses its short edges. As a result, there are only finitely many long edges, and these determine the grove.
This observation leads to a more convenient way of looking at groves.

1.2. Simplified groves. We begin by constructing a modified form of the cube recurrence. Let ai,j ,
bk,j , ci,k be long edge variables. The variable ai,j is the label for the edge between vertices (i, j − 1, k + 1)
and (i− 1, j, k + 1), bk,j is the label for the edge between (i− 1, j, k + 1) and (i, j, k), and ci,k is the label for
the edge between (i, j, k) and (i, j − 1, k + 1). We write a modified form of the cube recurrence as follows:

fi,j,kfi−1,j−1,k−1 = bi,kci,jfi−1,j,kfi,j−1,k−1 + ci,jaj,kfi,j−1,kfi−1,j,k−1

+aj,kbi,kfi,j,k−1fi−1,j−1,k .

As we said, the long edges determine the grove, so rather than setting fi,j,k := xi,j,k for (i, j, k) ∈ I(n), we
set fi,j,k := 1 for (i, j, k) ∈ I(n). Then f0,0,0 is simply a polynomial in the edge variables ai,j , bi,j , ci,j . Each
term describes a unique grove, and we still produce every grove. This form of the cube recurrence is called
the edge variables version. We can draw a simpler picture of our groves by ignoring all short edges and all of
the vertices incident with them. In other words, specify a subset of the standard initial conditions of order
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Figure 4. A grove g of order 4, superimposed on I(4)

n, called the simplified initial conditions : I ′(n) = { (i, j, k) ∈ Z3 | i + j + k = −n, i, j, k ≤ 0 } ⊂ I(n). We
now represent our groves as graphs on this vertex set – a triangular lattice shown in Figure 5. Also in Figure
5 we see the same grove as in Figure 4, but with only the long edges included. In terms of edge variables,
this grove is given by

a0,0a0,1a0,2a1,0a1,1a2,1b0,0b0,1c0,0c0,1c1,0c2,0.

Another modification of the cube recurrence that we shall like to use is the edge-and-face variables

version. In the original version of the cube recurrence, the variables xi,j,k such that i + j + k = −n + 1 were
vertex variables. In the simplified picture, we call them the face variables of order n, for reasons which will
become clear. Rather than setting fi,j,k := 1 for all (i, j, k) in I(n), we give the face variables their formal
weights. That is, we set fi,j,k := 1 for (i, j, k) ∈ { (i, j, k) ∈ Z3 | −n − 1 ≤ i + j + k ≤ n, i, j, k ≤ 0 } and
fi,j,k := xi,j,k for (i, j, k) ∈ { (i, j, k) ∈ Z3 | i+j+k = −n+1, i, j, k ≤ 0 }. Generating f0,0,0 using these initial
conditions, we get a Laurent polynomial in the edge and face variables. The vertices of the simplified initial
conditions can be seen as forming n(n + 1)/2 downward-pointing equilateral triangles, each with top-left
vertex (i, j − 1, k + 1), top-right vertex (i− 1, j, k + 1), and bottom vertex (i, j, k). The face variables then
correspond to each of these downward-pointing triangles. The triangle with (i, j, k) as its bottom vertex
has face variable xi,j,k+1. The exponent of the face variable is −1, 0, or 1, corresponding to whether the
downward-pointing triangle has, respectively, two, one, or zero edges present. Although the face variables
don’t tell us anything new about a particular grove, they will be useful later in deriving probabilities of edges
being present in random groves.

1.3. Grove shuffling. We have given one definition for what groves are, and how they may be gen-
erated. The methods and notation introduced in the previous section will be very helpful for later proofs.
However, there is another tool we will like to use; an algorithm called grove shuffling (or cube-popping –
see [CS]). Grove shuffling not only gives a purely combinatorial definition of groves, but also a method for
generating groves of order n uniformly at random. Its inspiration comes from domino shuffling, due to Elkies,
Kuperberg, Larsen, and Propp [EKLP]. The use to which we put grove shuffling is directly motivated by
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Figure 5. On the left: I ′(4) drawn from I(4). On the right: a simplified grove drawn from
a standard grove.

Jim Propp and his paper [P]. For proof that grove shuffling does indeed give rise to the same objects as the
terms of the Laurent polynomials given by the cube recurrence, see Carroll and Speyer [CS]. Here we will
only include a description of the algorithm.

Grove shuffling can be thought of as a local move on the downward-pointing triangles of a simplified
grove according to whether a triangle has zero, one, or two edges present. See Figure 6. Let x be a generic
downward-pointing triangle with possible edges a, b, c as shown, and let x′ be an upward-pointing triangle,
concentric with x, with possible edges a′, b′, c′ as shown. There are three configurations of x with two edges:
ab, ac, bc. Grove shuffling takes each of these triangles and replaces them with an upward-pointing triangle
x′ having none of its possible edges present. There are three configurations of x with exactly one edge:
a, b, c. Each of these is replaced by the upward-pointing triangle x′ with only the parallel edge: a′, b′, c′,
respectively present. Lastly, there is one configuration of x with none of its possible edges present. This
triangle is replaced with the upward-pointing triangle x′ containing any two of its three possible edges:
a′b′, a′c′, b′c′, chosen randomly with probability 1/3. After we have turned every downward-pointing triangle
into an upward-pointing triangle, we add three new vertices to the corners of the grove so that we may shuffle
again.3

There is a unique grove of order 1. It has one downward-pointing triangle with zero edges. We now give
a purely combinatorial description of simplified groves on standard initial conditions of order n: they are all
the possible results of n− 1 iterations of grove shuffling, beginning with the grove of order 1. It is not hard

to show that there are 3bn
2/4c groves of order n. We can now make the following claim about grove shuffling.

3To see grove shuffling in action, visit http://ups.physics.wisc.edu/˜hal/SSL/groveshuffler/
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Figure 6. Grove shuffling.

Theorem 1.2. Beginning with the unique grove of order one, any grove of order n will be generated

after n−1 iterations of grove shuffling with probability 1/3bn
2/4c. In other words, grove shuffling can be used

to generate groves uniformly at random.

The proof follows from some basic observations about grove shuffling.

1.4. Frozen regions. We now describe the phenomenon that we analyze in Section 2. First we observe
that edges are indexed relative to the corners perpendicular to them, so in fact the edges a and a′ in the
previous example have the same name: a = a′ = ai,j . Horizontal edges are indexed relative to the bottom
corner, and the diagonal edges are indexed relative to the top-right and top-left corners. In this way we can
think of grove-shuffling as more akin to domino shuffling [P]. Rather than replacing edges with parallel edges,
we “slide” edges toward the corners along perpendicular lines. When a downward-pointing triangle has two
edges, we remove both of those edges because they “annihilate” each other. When a downward-pointing
triangle has no edges, we create two new ones randomly.

With this viewpoint, we define an edge to be frozen if it cannot be annihilated under any further
iterations of grove shuffling. Clearly the bottom corner edge, a0,0, is frozen when present. Then the edge
ai,j is frozen exactly when the edges ai′,j′ are frozen, i ≤ i′ ≤ 0, j ≤ j′ ≤ 0. Diagonal edges behave similarly.
In Figure 7 all the highlighted edges are frozen.

We conclude this section by examining a picture of a large random grove generated by grove shuffling.
In Figure 8, we see that outside of a certain region, all of the edges are parallel. Moreover, the boundary
between the less uniform interior and the frozen regions in the corners seems to approximate a circle. Proving
that this boundary approaches a circle in the limit is the main goal of this paper.

2. The arctic circle theorem

For any n, we can scale the initial conditions so that they resemble an equilateral triangle with sides of
length

√
2. We will show that outside of the circle inscribed in this triangle, there is homogeneity of the edges

in an appropriately scaled random grove of order n, with probability approaching 1 as n →∞. Specifically,
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Figure 7. Frozen regions of a random grove of order 12

Figure 8. A grove on standard initial conditions of order 100

we will examine the limiting probability of finding a particular type of edge in a given location outside of
the inscribed circle.

2.1. Edge probabilities. Let pn(i, j) = p(i, j, k), k = −n− i− j − 1, be the probability that an(i, j),
the horizontal edge on triangle xi,j,k+1, is present in a random grove of order n. Similarly define probabilities
qn(k, i), rn(k, j) for the diagonal edges of the same triangle. Define En(i, j) = E(i, j, k + 1) = 1− pn(i, j)−
qn(k, i)− rn(k, j). The numbers En(i, j) are analogous to the creation rates discussed in [JPS], [CEP], and
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[P]. We will also refer to them as creation rates. Interestingly, we can also realize the number En(i, j) as
the expected value of the exponent of the face variable xi,j,k+1. We prove the following formula for finding
the edge probability pn(i, j) in terms of creation rates.

Theorem 2.1. The horizontal edge probabilities are given recursively by pn(i, j) = pn−1(i, j)+
2
3En−1(i, j).

Thus, pn(i, j) =
2

3

n−1
∑

l=1

El(i, j).

The proof relies only on observations made directly from grove shuffling. We also point out the similarity
between this statement and equation 1.5 of [CEP].

2.2. A generating function. We now know that to compute the probability of a particular edge being
present in a random grove, it will be enough to compute the creation rates El(i, j). In this section we derive a
generating function for computing these numbers as well as the related generating function for the horizontal
edge probabilities.

Let F (x, y, z) =
∑

i,j,k≥0

E(−i,−j,−k)xiyjzk be the generating function for the creation rates. First

consider the uniformly weighted version of the cube recurrence:

fi,j,kfi−1,j−1,k−1 =
1

3
(fi−1,j,kfi,j−1,k−1 + fi,j−1,kfi−1,j,k−1 + fi,j,k−1fi−1,j−1,k) .

Using this recurrence to calculate f0,0,0 we will get each monomial weighted uniformly, so that if we set all
the initial conditions equal to 1, f0,0,0 = 1. If we want the expectation of the exponent of the face variable
x = xi0,j0,k0

, we need only calculate the derivative of f0,0,0 with respect to this variable, then set all variables
equal to one. In other words,

E(i0, j0, k0) =
∂

∂x

(

f0,0,0

)∣

∣

∣

xi,j,k=1

Furthermore, we can calculate the intermediate creation rates for (i′, j′, k′) ∈ I(n′) with n′ < n by

E(i′, j′, k′) =
∂

∂x

(

fi′,j′,k′

)
∣

∣

∣

xi,j,k=1

(the proof only requires a re-labeling of vertices). With this in mind, let us differentiate the weighted cube
recurrence with respect to x:

f ′i,j,kfi−1,j−1,k−1 + fi,j,kf ′i−1,j−1,k−1 =
1

3

(

f ′i−1,j,kfi,j−1,k−1 + fi−1,j,kf ′i,j−1,k−1

)

+

1

3

(

f ′i,j−1,kfi−1,j,k−1 + fi,j−1,kf ′i−1,j,k−1

)

+

1

3

(

f ′i,j,k−1fi−1,j−1,k + fi,j,k−1f
′
i−1,j−1,k

)

.

Now by setting xi,j,k = 1 for all (i, j, k), we get a linear recurrence for the expectations in question:

E(i, j, k) + E(i− 1, j − 1, k − 1) =
1

3
(E(i− 1, j, k) + E(i, j − 1, k − 1)) +

1

3
(E(i, j − 1, k) + E(i− 1, j, k − 1)) +

1

3
(E(i, j, k − 1) + E(i− 1, j − 1, k)) .
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We can form the rational generating function in the variables x, y, z:

F (x, y, z) =
∑

i,j,k≥0

E(−i,−j,−k)xiyjzk

=
1

1 + xyz − 1
3 (x + y + z + xy + xz + yz)

.

Now using the fact that p(i, j, k) = p(i, j, k + 1) + (2/3)E(i, j, k), we can derive the formula for the
probability generating function:

G(x, y, z) =
∑

i,j,k≥0

p(−i,−j,−k)xiyjzk

=
2F (x, y, z)

3(1− z)
.

2.3. Asymptotic analysis. With our generating function in hand, we can prove our main theorem.
First let us embed a triangle in three-space by T := { (x, y, z) ∈ R3 | x, y, z ≤ 0, x + y + z = −1 }. This
is the triangle that we will scale I(n) to fit. A point (x, y, z) ∈ T is outside of the inscribed circle (what
will show is the arctic circle) if and only if the angle between the vector (x, y, z) and vector (−1,−1,−1) is

greater than cos−1(
√

2/3).
Notice that for any point (x, y, z) outside of the inscribed circle, we have either x ≤ y + z, y ≤ x + z,

or z ≤ x + y, depending on the region in which (x, y, z) lies. We call the coordinates on the right hand side
small coordinates.

Theorem 2.2 (Weak Arctic Circle). Let (x0, y0, z0) be a point in T outside of the inscribed circle for

which z0 is a small coordinate. Let (in, jn, kn), in + jn + kn = −n− 1, be a sequence of nonpositive integer

triples such that

lim
n→∞

1

n + 1
(in, jn, kn) = (x0, y0, z0).

Then lim
n→∞

p(in, jn, kn) = 0.

In other words, the theorem states that in the upper two regions of T outside of the arctic circle, the
probability of finding a horizontal edge goes to zero as the order of a (scaled) random grove goes to infinity.
By symmetry, there can be no diagonal edges in the lower region, and in order to satisfy the connectivity
properties of groves, all the edges in the lower region must be horizontal. The following lemma is the heart
of the proof.

Lemma 2.3. Fix a point (x0, y0, z0) in T outside of the inscribed circle. Then there are real constants

A, B, C such that

p(−i,−j,−k) = O(e−(Ai+Bj+Ck))

for all i, j, k ≥ 0 and Ax0 + By0 + Cz0 < 0.

The proof of the lemma is the most subtle part of the argument. It relies on the Cauchy integral formula
and an examination of the singular variety of the generating function. Asymptotics of multivariate generating
functions is described in general in the sequence of papers [PW1], [PW2], [PW3], by Robin Pemantle and
Mark Wilson. Perhaps their techniques will lead to a stronger version of Theorem 2.2. In particular, we
hope for a theorem that describes the statistics throughout the grove, similar to Theorem 1 of [CEP].

3. Domino tilings of Aztec diamonds

We now draw parallels between the examination of the behavior of large groves on standard initial
conditions, and the behavior of tilings of large Aztec diamonds. This approach yields no new results for
Aztec diamonds, but presents an alternative approach to their study. In this section we derive a generating
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function for the probabilities pn(i, j) that position (i, j) in a tiling of an Aztec diamond of order n is covered
by a particular type of horizontal domino. The asymptotics for the function we will derive are discussed as
an example in [PW1]. The first derivation of the function is due to Jim Propp and Dan Ionescu, though
their (different) derivation has never been published. Some recursive formulas for pn(i, j) are given in [P],
and are the inspiration for our derivation of the edge probabilities for groves. We list the analogous results.

Theorem 3.1 ([P]). The horizontal edge probabilities are given recursively by pn(i, j) = pn−1(i, j) +

1
2En−1(i, j). Thus, pn(i, j) =

1

2

n−1
∑

l=1

El(i, j).

The theorem follows more or less directly from the definition of domino shuffling, where En(i, j) is the
net creation rate (see [EKLP], [P]).

By differentiating the uniformly weighted version of the octahedron recurrence

gi,j,n+1gi,j,n−1 =
1

2
(gi−1,j,ngi+1,j,n + gi,j−1,ngi,j+1,n) ,

and because

En(i0, j0) =
∂

∂x

(

g0,0,n

)∣

∣

∣

xi,j=1

we obtain

En+1(i, j) + En−1(i, j) =
1

2
(En(i− 1, j) + En(i + 1, j)) +

1

2
(En(i, j − 1) + En(i, j + 1)) .

From this recurrence and Theorem 4 we get the generating function:

G(x, y, z) =
∑

n≥0

∑

|i|+|j|≤n

pn(i, j)xiyjzn

=
z/2

(1− yz)(1 + z2 − z
2 (x + x−1 + y + y−1))

.

This is the form of the generating function used as an example in [PW1]. A weak arctic circle theorem
like ours for groves follows directly from that example. Probabilities throughout the diamond could be
extracted from this function in principle, though the analysis is more difficult.

4. Further speculation on statistics of groves

As mentioned, we hope to apply the methods of Pemantle and Wilson to determine asymptotic proba-
bilities throughout a random grove. Based on computer experiments and the similarity of groves and Aztec
diamond tilings seen so far, we believe a formula for such probabilities exists.

Another future aim is to apply the methods of growth models and statistical mechanics to groves, in the
style of Johansson [J1], [J2]. One clever way for determining the boundary of the frozen region for Aztec
diamond tilings is to look at a frozen corner as a randomly growing Young diagram. See [JPS] for the first
description of this interpretation. A nearly identical projection of the frozen region of a grove yields some
sort of randomly growing Young diagram, but it seems to follow more intricate rules of growth than those
of Aztec diamond tilings.

In [CEP], the authors considered non-uniform distributions on the set of all tilings of the Aztec diamond.
In the shuffling algorithm, rather than having horizontal or vertical tiles chosen with equal probability, the
choice is biased towards one type of tile or the other. In this situation, there still appear frozen regions and
a temperate zone, but the boundary is no longer a circle, but an ellipse. By analogy, we have also considered
biased groves. Rather than making the random choice in grove shuffling be uniform, we make one choice
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with probability α, another with probability β and the third with probability γ = 1 − α − β. This bias
emerges in the generating function for creation rates as:

F (x, y, z) =
1

1 + xyz − α(x + yz)− β(y + xz)− γ(z + xy)
.

The boundary from temperate zone to frozen regions generalizes from a circle to an ellipse just as in the
Aztec diamond case, here given by the intersection of the plane x + y + z = −1 with the surface

rs + rt + st =
r2 + s2 + t2

2
,

where r = (1− α)x, s = (1− β)y, and t = (α + β)z.
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