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Abstract. In this work we study the problem of computing the coefficients of rational formal series in
two commuting variables. Given a rational formal series φ(x, y) =

�
n,k≥0

cnkxnyk = P (x, y)/Q(x, y) with

P,Q ∈ � [{x, y}] and Q(0, 0) 6= 0, we show that the coefficient [xiyj ]φ(x, y) can be computed in time O(i+j)
under the uniform cost criterion.
Résumé. Dans cet article, nous étudions le problème du calcul des coefficients de séries formelles rationelles
en deux variables commutatives. Etant donné une série formelle rationnelle φ(x, y) =

�
n,k≥0

cnkxnyk =

P (x, y)/Q(x, y) ou P,Q ∈ � [{x, y}] et Q(0, 0) 6= 0, nous montrons que le coefficient [xiyj ]φ(x, y) peut être
calculé en un temps O(i + j) sous le critère de coût uniforme.

1. Introduction

The problem of computing the coefficients of formal power series (known as the Coefficient Problem) is
of primarly interest in many different areas such as combinatorics and theory of languages. For example, the
problem of counting objects with a given property that belong to a combinatorial structure S can be easily
reduced to computing the coefficients of suitable formal power series: the property is codified into a weight
function w : S → N and the formal series

∑
s∈S w(s) s is considered. Then, the counting problem associated

with S and w consists of computing the function f(n) = ]{s ∈ S|w(s) = n}.
Another setting where the Coefficient Problem arises is the random generation of combinatorial structures

(see, for instance, [10]). Efficient algorithms for the random generation of strings in a language can also be
derived by exploiting the generating function associated with the language (see, for example, [7]).

A likewise important and (intuitively) more general version of the Coefficient Problem can be stated
considering a multivariate formal series in commutative variables. More precisely, the Coefficient Problem for
a class A of commutative formal series consists of computing, given a series in k variables f =

∑
n∈Nk cnx

n

∈ A and a multi-index i ∈ Nk, the coefficient ci of f . When dealing with counting and random generation,

this generalization appears whenever a multiple output weight function w : S → Nk is considered. Some
examples are the problem of counting and random sampling words with fixed occurrences of each letter of
the alphabet ([2],[8]) or the random generation through object grammars ([9]).

In this paper we consider the Coefficient Problem for the class Q[[{x, y}]]r of the rational formal series in
two commuting variables. These are power series expansions of functions of the form P (x, y)/Q(x, y) where
P , Q are polynomials with rational coefficients and Q(0, 0) 6= 0.

Key words and phrases. holonomic functions, shift algebra.
This work has been supported by the project M.I.U.R. COFIN “Formal Languages and Automata: Theory and

Applications”.
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We show that given a couple of integers (i, j) and a couple of polynomials P,Q ∈ Q[{x, y}], with
Q(0, 0) 6= 0, the coefficient [xiyj ]φ(x, y) of φ(x, y) = P (x, y)/Q(x, y) can be computed in time O(i+ j) under
the uniform cost criterion. Our method is based on the theory of holonomic power series. We derive suitable
recurrence equations with polynomial coefficients from the holonomic system associated with φ(x, y), then
we use them, together with a recurrence with constant coefficients, in order to compute [xiyj ]φ(x, y) in an
efficient way. This is a significant improvement on a more general algorithm presented in [11], that let us to
compute [xiyj ]φ(x, y) in time O(i · j).

2. Preliminaries

We denote by N (Q) the set of the natural (rational) numbers. A 2-dimensional sequence c with values
in Q is a function c : N2 7→ Q, usually denoted by {cnk}. We denote by Q(2) the ring of 2-dimensional
sequences on Q with the operations of sum, {ank}+{bnk} = {ank + bnk} and product, {ank} · {bnk} = {cnk}
where cnk =

∑
l+m=n
i+j=k

alibmj .

Moreover, we consider the following operators from Q(2) into Q(2):

• External product by e ∈ Q: e · {ank} = {eank}, e ∈ Q

• Shift : En{ank} = {an−1 k}, Ek{ank} = {an k−1}
• Multiplication by n, k : n{ank} = {nank}, k{ank} = {kank}

Then, the so called shift algebra Q〈n, k, En, Ek〉 is a particular Ore algebra (see, for instance, [6]) and can
be interpreted as a (noncommutative) ring of linear operators on Q(2), with pseudo-commutative rules given
by:

nk = kn, nEk = Ekn, kEn = Enk,

nEn = Enn+En, kEk = Ekk +Ek.

More simply, a polynomial in Q〈n, k, En, Ek〉 represents a linear recurrence with polynomial coefficients.

2.1. Rational formal series and Holonomic functions. Let Σc be the commutative free monoid
generated by a finite alphabet Σ. Given a commutative ring K, a formal series ψ in commutative variables
Σ is a function ψ : Σc 7→ K, usually indicated by

∑
x∈Σc ψ(x)x; the support of ψ is the set of monomials

{x ∈ Σc |ψ(x) 6= 0}. We denote by K [[Σ]] the ring of commutative formal series with coefficients in K

equipped with the usual operations of sum (+) and product (·). Formal series with finite support belong
to the ring of polynomials K [Σ]. The ring of rational formal series K[[Σ]]r can be defined as the smallest
subring of K [[Σ]] containing K [Σ] and rationally closed (i.e. closed with respect to ?, +, · and the two
external products of K on K [[Σ]] — where ? is the usual closure operation that is defined for proper series,
i.e. series ψ s.t. ψ(ε) = 0).

In the sequel we will consider the alphabet X = {x, y} and K = Q. A rational formal series φ ∈ Q[[X ]]r
is then the power series expansion of a suitable rational function,

φ(x, y) =
∑

n,k∈N

cnkx
nyk =

P (x, y)

Q(x, y)
P,Q ∈ Q[X ], Q(0, 0) 6= 0.

We often use the notation [xnyk]φ(x, y) to indicate the coefficient cnk of a formal series φ. We refer to
[3] for a detailed analysis of the class of the rational series.
It is well known (see, for example, [14]) that the class of the rational functions is properly contained in the
class of the holonomic functions defined as follows.

Definition 2.1. A function φ(x, y) is holonomic iff there exist some polynomials

pij ∈ Q[X ], 1 ≤ i ≤ 2, 0 ≤ j ≤ di, pidi 6= 0
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such that
d1∑

j=0

p1j∂
j
xφ = 0,

d2∑

j=0

p2j∂
j
yφ = 0.

The above equations are said to be a holonomic system for φ.

Holonomic systems were first introduced by I.N. Bernstein in the 1970s ([1]) and deeply investigated
by Stanley, Lipshitz, Zeilberger et al. (see [5], [11], [13] and [14]). In this setting, we are interested in the
following result:

Theorem 2.2. Let φ(x, y) =
∑

n,k≥0 cnkx
nyk be a holonomic function. Then the sequence of coefficients

{cnk} satisfies a system of linear recurrence equations with polynomial coefficients

(2.1) S =

{
P (n, k, En){cnk} = 0
Q(n, k, Ek){cnk} = 0

where P (n, k, En) =
∑r

i=0 pi(n, k)En
i and Q(n, k, Ek) =

∑s
j=0 qj(n, k)Ek

j belong to Q〈n, k, En, Ek〉.

Proof. See, for instance, [11]. �

A direct consequence of the previous theorem is that the sequence of the coefficients of a rational formal
series satisfies a system of recurrence equations of type (2.1): we give here an outline of how to compute
such a system.
In [14] it is shown how to compute a holonomic system {D1, D2} associated with a rational function
φ(x, y). Then, given {D1, D2}, we can obtain in two steps a system of recurrences S = {P,Q} of type
(2.1) satisfied by the sequence {cnk}. First, we compute two operators w1, w2 ∈ Q〈n, k, En, Ek〉 such that
w1(n,En, Ek){cn,k} = w2(k,En, Ek){cn,k} = 0. This is easily done by observing the following correspon-
dence between operators

xrys∂i
x∂

j
y ≡

(
i∏

h=1

(n− r + h)

j∏

h=1

(k − s+ h)

)
Er−i

n Es−j
k .

Then, we get the first recurrence P (n, k, En) by solving an elimination problem in Q〈n, k, En, Ek〉. This can
be done, for example, by computing the Gröbner basis associated with w1, w2 with respect to a suitable
ordering on Q〈n, k, En, Ek〉. We proceed similarly in order to get the second recurrence Q(n, k, Ek). Useful
packages for such computations have been recently developed (see [6], [12]).

We recall that the coefficients of a rational series satisfy a linear recurrence with constant coefficients.
More formally, we have the following:

Theorem 2.3. Let be φ(x, y) =
∑

n,k≥0 cnkx
nyk = P (x, y)/Q(x, y) with P,Q ∈ Q[X ] and Q(0, 0) 6= 0.

Then the sequence of coefficients {cnk} satisfies a linear recurrence equation with constant coefficients

(2.2) B(En, Ek){cnk} = 0

where B(En, Ek) =
∑r s

i,j=0 qijEn
iEk

j , qij ∈ Q and q00 6= 0.

Proof. Let be P (x, y) =
∑r1,s1

i,j=0 pijx
iyj and Q(x, y) =

∑r2,s2

i,j=0 qijx
iyj . Then we have

Q(x, y)φ(x, y) =
∑

n,k≥0




∑

i1+i2=n
j1+j2=k

qi1j1ci2j2


xnyk =

r1,s1∑

i,j=0

pijx
iyj .

So, for n > r1 and k > s1 it holds

r2,s2∑

i,j=0

qijcn−ik−j =

r2,s2∑

i,j=0

qijEn
iEk

jcnk = 0. �
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A naive method for computing the coefficient cij of a rational series in time O(ij) can be obtained as an
immediate application of the theorem above. Linear recurrences with constant coefficients have been deeply
studied in [4], where it is shown a necessary and sufficient condition that let us to define a well ordering
on the elements of the solution. Moreover, it is also shown that the solutions of such recurrences can have
generating functions that are not rational (they can be algebraic, holonomic or even non-holonomic).

3. Computing the coefficient

Given a rational formal series φ =
∑

n,k∈N
cnkx

nyk, by applying Theorem 2.3 we can easily obtain a

linear recurrence equation with constant coefficients satisfied by {cnk}. Then, we can use it for computing
an arbitrary coefficient cij once a suitable set of initial conditions is known. On the other hand, because
in general both En and Ek appear in the recurrence, this technique requires O(ij) coefficients in order to
determine cij .

As shown before, the theory of holonomic systems let us to obtain particular linear recurrence equations
with polynomial coefficients that are more suitable for computing coefficients. More precisely, we get two
operators in the shift algebra Q〈n, k, En, Ek〉 that depend on n, k and either En or Ek. So, we can efficiently

compute all the coefficients along a line n = n or k = k if the leading and the least coefficients of the
recurrences do not vanish on that line.

Our approach takes advantage of both types of recurrences in order to get a method that efficiently
computes the coefficient cij by starting with a suitable set of initial conditions and proceeding by choosing
at each step the “right” recurrence to use.

More formally, we consider the Coefficient Problem for rational series defined as follows.

Problem: to determine the coefficient cij in the power series expansion of a rational series φ(x, y).

Input: A tuple 〈N ,K,B, I, i, j〉 where:

-: N , K and B are three recurrence equations of type

N (n, k, En) =

r∑

i=0

pi(n, k)En
i pi(n, k) ∈ Q[{n, k}], pr(n, k) 6= 0(3.1)

K(n, k, Ek) =

s∑

j=0

qj(n, k)Ek
j qj(n, k) ∈ Q[{n, k}], qs(n, k) 6= 0(3.2)

B(En, Ek) =

r2,s2∑

i,j=0

hijEn
iEk

j hij ∈ Q, h00 6= 0(3.3)

satisfied by the sequence {cnk}.
-: I is a suitable set of initial conditions for N , K, B, i.e. the set of coefficients

I = {cnk | (0 ≤ n ≤ α ∧ 0 ≤ k ≤ e) ∨ (0 ≤ n ≤ e ∧ 0 ≤ k ≤ β)}

with
• e = max{r, s, r2, s2}
• α = max{n ∈ N | pr(n, k) = 0 ∨ p0(n, k) = 0, 0 ≤ k ≤ e}
• β = max{k ∈ N | qs(n, k) = 0 ∨ q0(n, k) = 0, 0 ≤ n ≤ e}

-: (i, j) ∈ N2.

Output: the coefficient cij .
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3.1. Clusters and coefficients. In this section we give some definitions and prove some basic results
that are useful to describe the behaviour of the algorithm.

Definition 3.1 (R(e)(x, y)). Let be e, x, y ∈ N. The square R(e)(x, y) is the set of points

R(e)(x, y) = {(x′, y′) | (x′, y′) ∈ N2, x− e < x′ ≤ x ∧ y − e < y′ ≤ y}.
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Figure 1. The square R(3)(8, 5).

Note that each square is identified by the point on the right upper corner.

Definition 3.2 (SQ(e)). Let be e ∈ N. Then

SQ(e) = {R(e)(x, y) | (x, y) ∈ N2, x ≥ e, y ≥ e}.

We give a notion of neighbor of a square introducing the following partial functions from SQ(e) to SQ(e):

N(R(e)(x, y)) = R(e)(x, y + e)

S(R(e)(x, y)) = R(e)(x, y − e) (defined if y ≥ 2e)

E(R(e)(x, y)) = R(e)(x+ e, y)

W (R(e)(x, y)) = R(e)(x− e, y) (defined if x ≥ 2e)

Let be T ∈ {N,E, S,W}, then we often write T i(R) for T (T i−1(R)), T 0(R) = R. Moreover, we also consider
the shortcuts SW (R) = S(W (R)), NW (R) = N(W (R)), SE(R) = S(E(R)) and NE(R) = N(E(R)).

Definition 3.3 (SQ(e)(R), SQ
(e)
V (R)). Let be e ∈ N and V ⊆ N2. Given R ∈ SQ(e) such that R =

N c(W d(R(e)(e, e))) (c, d ∈ N) we define

SQ(e)(R) =
{
R ∈ SQ(e) | ∃u, v ∈ N2, R = W u(Sv(R))

}

SQ
(e)
V (R) = {R ∈ SQ(e)(R) |R ∩ V 6= ∅}

We introduce a reflexive and symmetric relation � ⊂ SQ(e) × SQ(e):

Definition 3.4 (�). R
(e)
1 is a neighbor of R

(e)
2 , R

(e)
1 �R

(e)
2 , if and only if

∃T ∈ {N,NE,E, SE, S, SW,W,NW} s.t. R
(e)
1 = T (R

(e)
2 ).

Particular sequences of squares will be of interest when considering the behaviour of the algorithm.

Definition 3.5. Let Seq = R1, . . . , Rk be a sequence of squares in SQ(e). Then, Seq is

• 8-connected iff for 1 ≤ i < k it holds Ri �Ri+1

• 4-connected iff for 1 ≤ i < k it holds Ri+1 = Ti(Ri) with Ti ∈ {N,E, S,W}
• descending iff Seq is 8-connected or 4-connected and for 1 ≤ i < k it holds Ri+1 = Ti(Ri) with
Ti ∈ {E, SE, S, SW,W}

• ascending iff Seq is 8-connected or 4-connected and for 1 ≤ i < k it holds Ri+1 = Ti(Ri) with
Ti ∈ {W,NW,N,NE,E}
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Henceforward, we fix an instance 〈N ,K,B, I, i, j〉 of the Coefficient Problem for a series φ(x, y) ∈ Q[[X ]]r
and we associate with it the following values:

• Z = Z(N ,K) = {(x, y) ∈ N2 | pr(x, y) = 0 ∨ p0(x, y) = 0 ∨ qs(x, y) = 0 ∨ q0(x, y) = 0}.
• e = e(N ,K) = max{r, s, r2, s2}
• R0 = R(e)(e− 1, e− 1)
• R = R(ı, ) = N c(Ed(R0)) with c = bj/ec d = bi/ec.

Once we have fixed the values above, we can write R for R(e) and SQ for SQ(e) whenever the context is clear.
Note that SQZ(R) consists of those squares in SQ(R) that contain at least one point (n, k) such that at least
one of the following methods fails:

ComputeN (n, k) : use N to compute [xnyk]φ from the values [xn−lyk]φ or [xn+lyk]φ, 1 ≤ l ≤ r

ComputeK(n, k) : use K to compute [xnyk]φ from the values [xnyk−l]φ or [xnyk+l]φ, 1 ≤ l ≤ s

The next lemma will be frequently used in the sequel.

Lemma 3.6. Let be R = R(ı, ). Then the number of squares in SQ(R) containing at least one point for
which ComputeN (n, k) or ComputeK(n, k) fail is ]SQZ(R) = O(ı+ ).

Proof. We first note that if (x, y) ∈ R with R ∈ SQZ(R) then 0 ≤ x ≤ ı and 0 ≤ y ≤ . Then,
consider the set Z = {(x, y) ∈ Z | 0 ≤ y ≤ } and observe that ]Z ≤ [degn(p0(n, k)) + degn(pr(n, k)) +
(degn(q0(n, k)) + degn(qs(n, k))](+ 1) = O() = O(ı+ ).
Since each square in SQZ(R) contains at least one point in Z, we have ]SQZ(R) = O(ı+ ). �

In the sequel, we will denote by Coeffφ(R) the set of the coefficients of φ associated with R, that is,

Coeffφ(R) = {[xayb]φ(x, y) | (a, b) ∈ R}.

The following lemmas tell us how to compute the coefficients in Coeffφ(R) from the knowledge of the
coefficients in the neighborhood.

Lemma 3.7. Let be R ∈ SQ(R) \ SQZ(R). If there exists T ∈ {N,W, S,E} such that Coeffφ(T (R)) is
known, then Coeffφ(R) can be computed in time O(1).

Proof. Suppose that we know Coeffφ(E(R)), that is, the set Coeffφ(R(l− e,m)). Then it is immediate
to obtain Coeffφ(R(l−e+1,m)) by computing only e coefficients in Coeffφ(R(l−e+1,m))\Coeffφ(R(l−e,m)):
this can be easily done with e2 arithmetical operations (in order to get cl−e+1 m−i+1 we use the recurrence N
and the values of the i-th row of Coeffφ(R(l−e,m))). Then, for i = 2 . . . e, we compute Coeffφ(R(l−e+i,m))
from Coeffφ(R(l − e + i− 1,m)). Since there are e steps with cost O(e2), the overall computation requires
time O(e3) = O(1). The other cases are similar. �

Lemma 3.8. Let R = R(l,m) ∈ SQZ(R). If Coeffφ(W (R)), Coeffφ(SW (R)) and Coeffφ(S(R)) are
known, then Coeffφ(R) can be computed in time O(1).

Proof. We define an ordering ≺ on the set Coeffφ(R) as follows: cαβ ≺ cγδ iff β < δ or β = δ and
α ≤ γ. Then, we can compute the coefficients according to the ≺ ordering, starting with min(Coeffφ(R))
and using equation B of the instance (see Equation (3.3) in the Coefficient Problem definition). At each step
we compute one coefficient with e2 arithmetical operations. Since we have e2 coefficients, the total time is
O(e4) = O(1). �

The transitive closure of � defines an equivalence relation �? ⊆ SQZ(R)2, i.e. it defines a partition of SQZ(R)
into equivalence classes that we call clusters. More precisely, let be

�R = � ∩
(
SQZ(R)× SQZ(R)

)

and consider the following:
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Definition 3.9 (Cluster). The cluster generated by R ∈ SQZ(R)) is

ClRR = [R]�?
R

=
{
Q ∈ SQZ(R) |Q �?

R
R
}
.

It is then immediate to observe that it holds the following partition

SQZ(R) =
k⋃

h=1

· ClRRh

with Rh ∈ SQZ(R) and Rh1
6 �?

R
Rh2

.

Example 3.10. Let us consider the function φ(x, y) = 1
1−x2y−xy3 and the recurrences

N =
(
4n3 − 4n2k − 30n2 − 7nk2 + 50n− 5nk + 25 k + 5 k2 − 2 k3

)
En

5 +

(27n3 − 135n2 − 27n2k + 90nk+ 150n+ 9nk2 − k3 − 50 k − 15 k2)En
0

K =
(
10n+ nk + 6n2 − k2 + 5 k

)
Ek

5 − (4 k2 + 4nk − 5n− n2 + 10 k)Ek
0

associated with it. Let be R = R(5)(59, 59) and R = R(5)(4, 4). The graphical representation of the cluster

ClRR is given in Figure 2.

1
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n

Figure 2. A cluster associated with φ(x, y) = 1
1−x2y−xy3 . Dots are elements of Z(N ,K).

Given a cluster ClRR we define its border as the set

B(ClRR) = {R′ ∈ SQ(R) \ SQZ(R) | ∃R′′ ∈ ClRR s.t. R′ �R R
′′}.

It is immediate to observe that ]B(ClRR) = O(]ClRR) = O(ı + ).
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3.2. The algorithm. As shown in the previous section, an instance 〈N ,K,B, I, i, j〉 univocally iden-
tifies a set Z, an integer e, a square R0 at the origin and a square R = N bj/ec(Ebi/ec(R0)) containing the
point (i, j). We compute the coefficient [xiyj ]φ(x, y) through a procedure that starts with Coeffφ(R0) ⊆ I

and halts having computed Coeffφ(R) after O(i+ j) steps.
Informally, the procedure works by computing a main sequence

Coeffφ(E0(R0)),Coeffφ(E1(R0)), . . . ,Coeffφ(Ebi/ec(R0)),

Coeffφ(N1(Ebi/ec(R0))),Coeffφ(N2(Ebi/ec(R0))) . . . ,Coeffφ(R).

The first bi/ec + 1 sets of coefficients are easily computed in time O(i). Then, we compute each set
Coeffφ(Nk(Ebi/ec(R0))) having as input Coeffφ(Nk−1(Ebi/ec(R0))) according to the following rule: ifNk(Ebi/ec(R0)) ∈
SQ(R) \ SQZ(R) then Coeffφ(Nk(Ebi/ec(R0))) is computed as shown in Lemma 3.7, otherwise all the coef-

ficients associated with the cluster ClRNk(Ebi/ec(R0)) are computed in a suitable order.

In Figure 3 we define a procedure COEFF(i, j) that has as input two positive integers i, j and returns the
value [xiyj ]φ(x, y). In the code a procedure COMPUTE�(Rout, Rin) is called. It takes as input two squares
such that Rout = T (Rin), with T ∈ {N,E, S,W}, and computes the set Coeffφ(Rout) under the assumption
that Coeffφ(Rin) has been previously computed.

Procedure COEFF(i, j)
Begin

R0 := R(e− 1, e− 1); c1 := bi/ec; c2 := bj/ec;
For k from 1 to c1 do

compute Coeffφ[Ek(R0)] from Coeffφ[Ek−1(R0)]
by using the equation N and the initial conditions I ;

For k from 1 to c2 do
if Nk(Ec1(R0)) 6∈ SQZ(R)

then compute Coeffφ[Nk(Ec1(R0))] by using equation K and Coeffφ[Nk−1(Ec1(R0))];
else COMPUTE�(Nk(Ec1(R0)), N

k−1(Ec1(R0)));
return [xiyj ]φ(x, y) from Coeffφ[N c2(Ec1(R0))];

End;

Figure 3. Procedure COEFF

Both procedures are supposed to use two global variables: a suitable data structure for the sets Coeffφ(R)
and an integer variable e (the size of the edge of a square). As we note, the core of the algorithm consists of
the procedure COMPUTE�(Rout, Rin). This procedure computes Coeffφ(Rout) starting from Coeffφ(Rin)
and moving clockwise by using coefficients previously computed. In the code we find an indexed function
nextRp(R): this is used to identify the square R′ that is neighbor to Rp and follows R (clockwise). More
formally:

nextRp(R)





NE(Rp) if R = N(Rp)
E(Rp) if R = NE(Rp)

SE(Rp) if R = E(Rp)
S(Rp) if R = SE(Rp)

SW (Rp) if R = S(Rp)
W (Rp) if R = SW (Rp)

NW (Rp) if R = W (Rp)
N(Rp) if R = NW (Rp)

Rp

Function next

oo
��

��

////
OO

OO

oo
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Procedure COMPUTE�(Rout, Rin)
Begin

While Undef(Coeffφ[S(Rout)]) or Undef(Coeffφ[SW (Rout)]) or Undef(Coeffφ[W (Rout)]) do
R′ := nextRout(Rin);
if Undef(Coeffφ[R′]) then

if R′ 6∈ SQZ(R) then compute Coeffφ[R′] by using N or K and Coeffφ[Rin];
else COMPUTE�(R′, Rin);

Rin := R′;
EndWhile
compute Coeffφ[Rout] by using B and Coeffφ[S(Rout)], Coeffφ[SW (Rout)], Coeffφ[W (Rout)];

End;

Figure 4. Procedure COMPUTE�.

As an example, suppose we call COMPUTE�(R,S(R)), that is, we want to compute Coeffφ(R) knowing

Coeffφ(S(R)). So, if R ∈ SQZ(R) then Coeffφ(SW (R)) and Coeffφ(W (R)) are needed, as shown in Lemma
3.8. Hence, the procedure advances clockwise around R, in order to get (recursively) Coeffφ(SW (R)) from
Coeffφ(S(R)) and then Coeffφ(W (R)) from Coeffφ(SW (R)).
Figure 4 shows the procedure COMPUTE�; a simple example of computation is sketched in Figure 5, while
in Figure 6 a real computation is shown.

(a)

//

OO

1

R

____

�

�

�

OO

(b)

//

OO

1 2 3 4 5

6

7

R
OO

(c)

//

OO

1 2 3 4 5

6

78

9

R�

�

�

___

�

�

�

_ _ _

(d)

//

OO

1 2 3 4 5

6

7

10

8

9

11

Figure 5. A run of COEFF. Squares are numbered with respect to the order of computa-
tion. The gray square is in SQZ(R); in order to compute it, COMPUTE� moves clockwise
until South, West and South-West neighbors have been computed.

4. Complexity

It is straightforward to see that COEFF(i, j) computes [xiyj ]φ(x, y) if and only if every call COMPUTE�(Nk(Ec1(R0)), N
k−1(Ec1(R0)))

terminates and computes Coeffφ[Nk(Ec1(R0))].
Hence, the problem is to analyse which sets of coefficients are computed by the recursive procedure COMPUTE�.
Note that a call COMPUTE�(Rout,Rin) recursively calls itself if and only if Rout ∈ SQZ(R). So, let be
Out0 = Nk(Ec1(R0)), In0 = Nk−1(Ec1(R0)) for a suitable integer k ≤ c2 and consider the sequence of calls

COMPUTE�(Out0, In0), . . . ,COMPUTE�(Outl, Inl)

contained in the stack associated with the call COMPUTE�(Out0,In0) (at the bottom).
For each 0 ≤ p < l, let Stepp = Rp1

, . . . , Rph
be the 4-connected sequence of squares adjacent to Outp such

that

Rpi =

{
Inp : i = 1

nextOutp
(Rpi−1

) : i > 1

and h = min{j | nextOutp
(Rpj ) = Inp+1}.
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51

50

49

48

47

4645

44434241

4039383736

3534333231

3029282726

25242322 21 20 19

18 17 16

15 14

13

12

11

10

987654321
1

10

20

30

40

50

60

k

1 10 20 30 40 50 60

n

Figure 6. Running COEFF(59,59) for the function φ(x, y) = 1
1−x2y−xy3 (Example 3.10).

Squares that are not numbered belong to the set of initial conditions.

In the sequel, we consider three sequences Seq, S̃eq and Ŝeq, associated with the stack and defined as follows:

- Seq = Out0, . . . ,Outl is the 8-connected sequence of squares in SQZ(R) such that Coeffφ(Outi) is
not known (0 ≤ i ≤ l).

- S̃eq = R0, E(R0), . . . , E
c1(R0), N(Ec1(R0)), . . . , N

k−1(Ec1(R0)) is the 4-connected ascending se-

quence of c1 + k squares such that Coeffφ(R) is known, R ∈ S̃eq.

- Ŝeq = Step0, . . . , Stepl−1, Inl is the 4-connected sequence such that for all R ∈ Ŝeq, Coeffφ(R) has
been computed by recursive calls to COMPUTE�.

We analyse which sets of coefficients are computed by COMPUTE� by proving the following:

Lemma 4.1. Let COMPUTE�(Nk(Ec1(R0)), N
k−1(Ec1(R0))) be a call occurring in COEFF. Then, for

all the calls COMPUTE�(Rout, Rin) that are pushed onto the stack we have

Rout ∈ Cl
Nk(Ec1 (R0))

Nk(Ec1 (R0))
.

Proof. Let be Out0 = Nk(Ec1(R0)) and let Seq, S̃eq and Ŝeq be the sequences associated with the
stack having the call COMPUTE�(Out0, S(Out0))) at the bottom. We show that for all Outi in Seq we

have Outi ∈ ClOut0
Out0

, that is, Outi �?
Out0

Out0. Hence, since for 0 ≤ i < l it holds Outi �Outi+1, it is sufficient
to prove that

(4.1) Outi ∈ SQZ(Out0)

Observe that {Seq} ∩ {Ŝeq} = {Seq} ∩ {S̃eq} = ∅ and note that we can univocally identify g sequences Seqi

(1 ≤ i ≤ g) such that Seq = Seq1, Seq2, . . . , Seqg with

• Seq1 is the longest descending sequence that appears at the beginning of Seq
• Seq2i is the longest ascending sequence after Seq1, Seq2, . . . , Seq2i−1, 1 < 2i ≤ g
• Seq2i+1 is the longest descending sequence after Seq1, Seq2, . . . , Seq2i, 1 < 2i+ 1 ≤ g

We prove Property (4.1) by induction on the number g of ascending or descending sequences in the decom-
position of Seq shown above.
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BASIS: Seq consists of one descending sequence Out0, . . . ,Outl, where Outi = Ewi(W vi(Sui(Out0))) and
either Out1 = W (Out0) or Out1 = SW (Out0). So, it trivially holds that Outi ∈ SQZ(Out0) if vi > wi,

1 ≤ i ≤ l. By absurd, let be ı = min{i | vi < wi} (note that it must be vı 6= wı since {Seq}∩ {S̃eq} = ∅). So,
we would have vı−1 > wı−1 and vı < wı: this would imply that Outı−1 6 � Outı.

INDUCTION: Seq = Seq1, Seq2, · · · , Seqn−1, Seqn. By induction we know that all the squares in Seq1, Seq2, · · · , Seqn−1

satisfy Property (4.1). Let be Seqn = Outs, . . . ,Outl and let Outs−1 be the last square of Seqn−1. We dis-
tinguish two cases.

n IS ODD: Seqn is a descending sequence. By induction we know that Outs−1 ∈ SQZ(Out0), that
is, Outs−1 = Wαs−1(Sus−1(Out0)) with αs−1, us−1 ∈ N, αs−1 > 0. Since Outs = T (Outs−1) with T ∈

{SW,S, SE} it holds Outs = Wαs(Sus−1+1(Out0)) with αs ≥ 0. Again, αs 6= 0 since {Seq} ∩ {S̃eq} = ∅.
Now, the same analysis done for the basis shows that Property 4.1 holds for the squares of Seqn.

n IS EVEN: Seqn is an ascending sequence, that is, Outs = T (Outs−1), T ∈ {NW,N,NE}. We claim
that Outs = NE(Outs−1). In fact, recall that each sequence Stepi of squares examined by COMPUTE�(Outi, Ini)
before calling COMPUTE�(Outi+1, Ini+1) is 4-connected. This means that the sequence Outs−1, Ins−1 is 4-
connected, that is, Ins−1 = T (Outs−1) with T = {N,E, S,W}. In particular, note that Ins−1 = N(Outs−1)
since in the other three cases the call COMPUTE�(Outs−1, Ins−1) would compute Coeffφ(Outs−1) without
any recursion.
Therefore, COMPUTE�(Outs−1, Ins−1) recursively calls COMPUTE�(NE(Outs−1), Ins) with Ins = N(Outs−1) ∈

Ŝeq.

Now, consider the 4-connected sequence
̂̂
Seq obtained by joining S̃eq to Ŝeq,

̂̂
Seq = R0, E(R0), . . . , E

c1(R0), N(Ec1(R0)), . . . , N
k−1(Ec1(R0)), Step0, . . . , Steps−1, Ins.

We trivially have {
̂̂
Seq} ∩ {Seqn} = ∅. In fact, the value Coeffφ[R] is defined if R ∈

̂̂
Seq and undefined if

R ∈ Seqn. Informally, this means that the squares of the ascending sequence Seqn are restricted to lie in a

closed area (delimited by
̂̂
Seq) consisting of squares that satisfy Property (4.1).

�

An immediate consequence of the previous lemma is:

Corollary 4.2. Let be Rk = Nk(Ec1(R0)) ∈ SQZ(R). If Coeffφ(R) is computed by a call COMPUTE�(Rk, S(Rk))
occurring in COEFF then

R ∈ B(ClRk

Rk
) ∪ ClRk

Rk
.

Proof. By inspecting the code of COMPUTE� we note that for each computed set Coeffφ(R), either

R ∈ SQZ(R) (and COMPUTE�(R,Rin) is a call generated by COMPUTE�(Rk , S(Rk))) or R /∈ SQZ(R)
(and Coeffφ(R) is computed by a recursive call COMPUTE�(Rout, Q) generated by COMPUTE�(Rk , S(Rk))
such that R �Rout).

In the first case Lemma 4.1 states that R ∈ ClRk

Rk
while in the second we have R ∈ B(ClRk

Rk
). �

Lemma 4.3. Let St be the stack associated with a call COMPUTE�(R,S(R)) occurring in COEFF.
Then, St does not contain two identical calls.

Proof. (By contradiction) Let COMPUTE�(Outh, Inh) be the first repeated occurrence of a call, that
is, h = min{0 ≤ i ≤ l | ∃ δ > 0, Outi = Outi−δ ∧ Ini = Ini−δ}. Without loss of generality, we suppose that
Inh = W (Outh). Consider the 8-connected sequence S that is a subsequence of Seq,

S = Outh−δ,Outh−δ+1, . . . ,Outh,
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together with the 4-connected subsequence of Ŝeq,

Ŝ = Steph−δ, Steph−δ+1, . . . , Steph−1, Inh.

We recall that for R ∈ Ŝ the set Coeffφ(R) is known and that for each R ∈ Ŝ (R ∈ S) there exists Q ∈ S

(Q ∈ Ŝ) such that R�Q. Note that both sequences are “closed”, that is, their first and last squares coincide.

Moreover, we have {S} ∩ {Ŝ} = ∅.

Let be R0 = R(e− 1, e− 1) and for each closed sequence S denote by Inside(S) the set of all the squares in
SQ(R) that lie in the area surrounded by S. Then, it is immediate to observe that we have only two cases:

Ŝ ⊆ Inside(S): This means that if R ∈ Ŝ it is impossible to find a 4-connected sequence TR = R0, . . . , R

such that {TR} ∩ {S} = ∅. On the other hand, we know that for every R ∈ Ŝ there exists a
4-connected sequence TR from R0 to R, consisting of squares in SQ(R), such that for Q in TR the

set Coeffφ(Q) has been computed (see the sequence
̂̂
Seq in the proof of Lemma 4.1). Therefore, we

have Ŝ 6⊆ Inside(S).

S ⊆ Inside(Ŝ): Let be k1, k2 ∈ N such that
{
Nk1(Ek2(R0)) ∈ S
Nh1(Eh2(R0)) ∈ S ⇒ k1 + k2 ≤ h1 + h2

Let be Outh = Nk1(Ek2 (R0)). Since S ⊆ Inside(Ŝ), it is immediate to prove that S(Outh) and

W (Outh) belong to Ŝ. More precisely, because Ŝ is 4-connected, it follows that

Ŝ = Inh, . . . , S(Outh), SW (Outh),W (Outh), . . . , Inh.

Then, the call that computes Coeffφ(SW (Outh)) must be COMPUTE�(Outh, Inh). By observing
the code of COMPUTE�, we note that if COMPUTE�(Outh, Inh) computes Coeffφ(SW (Outh))
then it has previously computed Coeffφ(S(Outh)) and it necessarely computes also Coeffφ(W (Outh)).
So, this call would terminate without any recursion.

�

The following lemma states that we can develop a suitable data structure for storing all the coefficients
that are computed by the algorithm. More precisely, we have:

Lemma 4.4. The data structure Coeffφ[] can be implemented in space O(i+j) and accessed in time O(1).

Proof. Coeffφ[] can be easily implemented as a dynamic data structure representing a graph. We give
here an outline for such implementation.
Let be

d = max{degn(pr(n, k)), degn(p0(n, k)), degn(qs(n, k)), degn(q0(n, k))}

the integer univocally associated with an instance 〈N ,K,B, I, i, j〉 and let be ζ = 4d(e + 1). Note that for
every integer k we have ]{Nk(Eh(R(e− 1, e− 1))) ∈ SQZ(R)} ≤ ζ. Since we have to consider also squares
that belong to the border of a cluster, for each k we have at most 9ζ squares Rkh = Nk(Eh(R(e− 1, e− 1)))
such that Coeffφ(Rkh) is computed. So, an immediate implementation for the sets Coeffφ() is based on
a list of lists. More precisely, we have a primary double linked list whose length is bj/ec + 1. The k-th
node of this list contains a link to the list for the sets Coeffφ(Rkh): this is a list whose length is less or
equal to 9ζ. Then, it is immediate to note that we access to Coeffφ[Rkh] in constant time if the procedure
COMPUTE�(Rkh, In) is equipped with a suitable link to the k-th node of the main list. �

Theorem 4.5. The total number of calls to COMPUTE� during the execution of COEFF(i, j) is O(i+j).
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Proof. Recall that R = R(ı, ) = N bj/ec(Ebi/ec(R(e− 1, e− 1))) and let

COMPUTE�(R1, S(R1)), . . . ,COMPUTE�(Rt, S(Rt))

be the sequence of calls observed in COEFF(i, j) (t = O(j)). Moreover, let be

TOT =
{
COMPUTE�(R, T (R)) |R ∈ SQZ(R), T ∈ {N,E, S,W}

}
,

and, for 1 ≤ k ≤ t,

TOTk = {C ∈ TOT |C is a recursive call originated by COMPUTE�(Rk, S(Rk))} .

Note that COMPUTE�(Rk, S(Rk)) recursively generates calls of type COMPUTE�(R,Q) with R ∈ ClRk

Rk
,

such that Coeffφ(R) has not been previously computed by COMPUTE�(Rl, S(Rl)) with 1 ≤ l < k. In other
words, TOTl ∩ TOTm = ∅, for l 6= m.
Lemma 4.3 guarantees that the number of recursive calls generated by COMPUTE�(Rk, S(Rk)) is exactly
]TOTk. Hence, recalling Lemma 3.6, the total number of calls is

t∑

k=1

]TOTk = ]

t⋃

k=1

TOTk ≤ ]TOT = 4 · ]SQZ(R) = O(ı+ ) = O(i+ j)

�

At last, we have:

Theorem 4.6. COEFF(i, j) runs in time O(i+ j) and in space O(i+ j).

Proof. By Th. 4.5 we know that procedure COMPUTE� is called O(i + j) times. By inspecting the
code we note that each call consists of a constant number of operations because the cost of accessing Coeffφ[]
is O(1) (see Lemma 4.4). Moreover, the space requirement is bounded by the sum of the maximum stack
size and the size of the data structure for Coeffφ[]. So, we conclude that COEFF(i, j) runs in time O(i+ j)
using O(i+ j) space. �

5. Conclusions

In this paper we have presented an algorithm that computes the coefficient [xiyj ]φ(x, y) of a rational
formal series φ(x, y) working in time and space O(i + j) under the uniform cost criterion. If we adopt the
logarithmic cost criterion, we expect that the complexity of the algorithm becomes O((i + j)2), since the
growing of the coefficients [xnyk]φ(x, y) is at most exponential (i.e. the cost of a single arithmetical operation
is at most linear).

Two remarks are worthwhile with respect to such algorithm: the first is related to the computation of
the recurrences, the second deals with the size e of the squares. We pointed out that the recurrences can
be obtained through an elimination process in a noncommutative algebra. Actually, in order to compute a
Gröebner Basis in the shift algebra Q〈n, k, En, Ek〉, we took advantage of the package ‘Mgfun’, running under
Maple and implemented by Chyzak ([5]). This step can be quite expensive and so it would be interesting to
look for a method that directly computes the recurrences from the linear representation of a rational series.

With respect to the size e, let us show an upper bound for its value. Consider a rational function

φ = P (x,y)
Q(x,y) and let dx (dy) be the degree of P ·Q in x (y). A system of independent recurrence equations is

obtained by converting the holonomic system
{

(∂xP Q− P ∂xQ) ∂xφ = 0
(∂yP Q− P ∂yQ) ∂xφ + (∂xP Q− P ∂xQ) ∂yφ = 0

into operators of the shift algebra. The degree in En and Ek of such operators is respectively dx and dy.
By applying the Zeilberger’s elimination algorithm ([14]), we obtain operators depending either on En or on
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Ek. Their degrees in En and Ek are at most quadratic with respect to dx and dy (see Section 5.3 in [14]).
Then, we have e = O((max{dx, dy})

2).
Last but not least, it might be interesting to study whether the technique we have presented can be

modified in order to deal with a number of variables greater that two. We point out that the straightforward
extension of this method to the 3-D case does not work (in the 3-D case the set of the values that the
algorithm considers as initial conditions has not size O(1)). Moreover, as our method is related to the theory
of the holonomic series, it would be useful to generalize it in order to get an efficient algorithm for the
Coefficient Problem for holonomic series.
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