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Abstract. We give a new combinatorial model for the crystal graphs of an affine Lie algebra
� � , unifying

Littelmann’s path model with the Kyoto path model. The vertices of the crystal graph are represented by
certain infinitely looping paths which we call skeins.

We apply this model to the case when the corresponding finite-dimensional algebra � has a minuscule
representation (classical type and E6, E7). We prove that the basic level-one representation of

� � , when
considered as a representation of � , is an infinite tensor product of fundamental representations of � .

This is the infinite limit of a finer result: that the finite-dimensional Demazure submodules of the basic
representation are finite tensor products. The corresponding Demazure characters give generalizations of
the Hall-Littlewood polynomials.

This paper is an extended abstract of [Mag].

1. Littelmann’s path model

Littelmann’s combinatorial model [Lit1],[Lit2],[LLM2] for the representations of a Kac-Moody algebra
g is a vast generalization of Young tableaux. Littelmann’s paths and path operators give a flexible construc-
tion of the crystal graphs associated to quantum g-modules by Kashiwara [K1] and Lusztig [Lus] (see also
[Jos],[HK]). We briefly sketch Littelmann’s theory.

For concreteness, let g be a complex simple Lie algebra. For our purposes, we define a g-crystal as a set B
with a weight function, wt : B → ⊕r

i=1Z$i, as well as partially defined crystal operators e1, . . . , er,f1, . . . , fr :
B → B satisfying:

wt(fi(b)) = wt(b)− αi and ei(b) = b′ ⇐⇒ fi(b
′) = b .

Here $1, . . . , $r are the fundamental weights and α1, . . . , αr are the roots of g. A dominant element is a
b ∈ B such that ei(b) is not defined for any i. We say that a crystal B is a model for a g-module V if the
formal character of B is equal to the character of V , and the dominant elements of B correspond to the
highest-weight vectors of V . That is:

char(V ) =
∑

b∈B ewt(b) and V ∼=
⊕

b dom V (wt(b)) ,

where the second sum is over the dominant elements of B. Clearly, a g-module V is determined up to
isomorphism by any model B.

We construct such g-crystals B consisting of polygonal paths in the vector space of weights, h∗
R

:=
⊕r

i=1R$i. Specifically:
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• The elements of B are certain continuous piecewise-linear mappings π : [0, 1]→ h∗
R
, up to reparametriza-

tion, with initial point π(0) = 0. We use the notation π = (v1 ? v2 ? · · · ? vk), where v1, . . . , vk ∈ h∗
R

are vectors, to denote the polygonal path starting at 0 and moving linearly to v1, then to v1+v2,
etc.

• The weight of a path is its endpoint:

wt(π) := π(1) = v1+ · · ·+vk .
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• The crystal lowering operator fi is defined as follows (and there is a similar definition of the raising
operator ei). Let ? denote the natural associative operation of concatenation of paths, and let any
linear map w : h∗

R
→ h∗

R
act pointwise on paths: w(π) := (w(v1) ? · · · ? w(vk)). We will divide a

path π into three well-defined sub-paths, π = π1 ?π2 ?π3, and reflect the middle piece by the simple
reflection si:

fiπ := π1 ? siπ2 ? π3 .

The pieces π1, π2, π3 are determined according to the behavior of the i-height function hi(t) =
hπ

i (t) := 〈π(t), α∨i 〉. As the point π(t) moves along the path from π(0) = 0 to π(1) = wt(π), this
function may attain its minimum value hi(t) = M several times. If, after the last minimum point,
hi(t) never rises to the value M+1, then fiπ is undefined. Otherwise, we define π2 as the last
sub-path of π on which M ≤ hi(t) ≤M+1, and π1, π3 as the remaining initial and final pieces of
π.

A key advantage of the path model is that the crystal operators, while complicated, are universally
defined for all paths. Hence a path crystal is completely specified by giving its set of paths B.

Also, the dominant elements have a neat pictorial characterization, as the paths π which never leave the
fundamental Weyl chamber: that is, hπ

i (t) ≥ 0 for all t ∈ [0, 1] and all i = 1, . . . , r. For simplicity we restrict
ourselves to integral dominant paths, meaning that all the steps are integral weights: v1, . . . , vk ∈ ⊕

r
i=1Z$i.

(For arbitrary dominant paths, see [Lit2].)
Littelmann’s Character Theorem [Lit2] states that if π is any integral dominant path with weight λ,

then the set of paths B(π) generated from π by f1, . . . , fr is a model for the irreducible g-module V (λ). (This
B(π) is also closed under e1, . . . , er.) Note that we can choose any integral path π which stays within the
Weyl chamber and ends at λ, and each such choice gives a different (but isomorphic) path crystal modelling
V (λ). In principle, any reasonable indexing set for a basis of V (λ) should be in natural bijection with B(π)
for some choice of π. For example, classical Young tableaux correspond to choosing the steps vj to be
coordinate vectors in h∗

R
∼= Rn.

Furthermore, we have Littelmann’s Product Theorem [Lit2]: if π1, . . . , πm are dominant integral paths
of respective weight λ1,. . . , λm, then B(π1) ? · · · ? B(πm), the set of all concatenations, is a model for the
tensor product V (λ1)⊗ · · · ⊗ V (λm).

Everything we have said also holds for the corresponding affine algebra [Kac, Ch. 6 and 7]:

ĝ = g⊗C[t, t−1] ⊕ CK ⊕ Cd,

provided we replace the roots α1, . . . , αr of g by the roots α0, α1, . . . , αr of ĝ ; and the weights $1, . . . , $r

of g by the weights Λ0, Λ1, . . . , Λr of ĝ. We also replace the vector space h∗
R

by ĥ∗
R

:= ⊕r
i=0RΛi ⊕ Rδ, where

δ is the non-divisible positive imaginary root of ĝ. (Indeed, Littelmann’s theory works uniformly for all
symmetrizable Kac-Moody algebras.) We denote representations and path crystals of g as V (λ) and B, and

the corresponding objects for ĝ as V̂ (Λ) and B̂.

We can also model the affine Demazure module V̂z(Λ) := U(n̂+) · vzΛ, where n̂+ is the algebra spanned

by the positive weight-spaces of ĝ, z ∈ Ŵ is a Weyl group element, and vzΛ is a non-zero vector of extremal
weight zΛ in V̂ (Λ). Demazure modules are always finite-dimensional vector spaces. If z = si1 · · · sim

is a
reduced decomposition and π is an integral dominant path of weight Λ, we define the Demazure path crystal:

B̂z(π) := {fk1

i1
· · · fkm

im

π | k1, . . . , km ≥ 0} .

Because of the local nilpotence of the lowering operators, this is always a finite set.
Then the formal character of B̂z(π) is equal to the character of V̂z(Λ), and π is the unique dominant path

[Lit1]. Now suppose z = t−λ∨ , an anti-dominant translation in Ŵ , so that V̂λ∨(Λ) := V̂z(Λ) is a g-submodule

of V̂ (Λ); and consider B̂λ∨(π) := B̂z(π) as a g-crystal by forgetting the action of f0, e0 and projecting the
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affine weight function to h∗
R
. Then Littelmann’s Restriction Theorem [Lit2] implies that the g-crystal B̂λ∨(π)

is a model for the g-module V̂λ∨(Λ).

2. The Skein model

For the case of an affine algebra ĝ, we introduce a generalization of Littelmann’s model by allowing
certain infinite paths.

Let us introduce a notation for a path π which emphasizes the vector steps going toward the endpoint
Λ = wt(π) rather than away from the starting point 0. Define

π = (? vk ? · · · ? v1`Λ) := (v′? vk ? · · · ? v1) ,

the path with endpoint Λ, last step v1, etc, and first step v′ := Λ−(vk+ · · ·+v1), a makeweight to assure
that the steps add up to Λ.

A skein is an infinite list:

π = (· · · ? v2 ? v1`Λ) ,

where Λ ∈ ⊕r
i=0ZΛi and vj ∈ h∗

R
(not ĥ∗

R
), subject to conditions (i) and (ii) below. For i = 0, . . . , r and

k > 0, define:

hi[k] := 〈Λ−(v1+ · · ·+vk), α∨i 〉 .

We require:
(i) For each i and all k � 0, we have hi[k] ≥ 0.
(ii) For each i, there are infinitely many k such that hi[k] = 0.

We think of the skein π as a “projective limit” of the paths

π[k] := (? vk ? · · · ? v1`Λ) as k →∞ .

The conditions on π assure that only a finite number of steps of π lie outside the fundamental chamber Ĉ,
and that π touches each wall of Ĉ infinitely many times. Note that π stays always at the level ` = 〈Λ, K〉.

Lemma 2.1. For a skein π and i = 0, . . . , r, one of the following is true:

(i) fi(π[k]) is undefined for all k�0;

(ii) there is a unique skein π′ such that π′[k] = fi(π[k]) for all k�0.

In the second case, we define fiπ := π′.

Proof. Recall that a path π is i-neutral if hπ
i (t) ≥ 0 for all t and hπ

i (1) = 0. For a fixed i, divide π into
a concatenation: π = (· · · ? π2 ? π1 ? π0`Λ), where each πj is an i-neutral finite path except for π0, which is
an arbitrary finite path. Now it is clear that if fi(π0) is undefined, then (i) holds. Otherwise (ii) holds and

fiπ = (· · · ? π2 ? π1 ? fi(π0)`Λ−αi ) .

�

We can immediately carry over the definitions of the path model to skeins, including that of (Demazure)
path crystals. For example, we say that π is an integral dominant skein if π[k] is integral dominant for
k�0, and hence for all k. There exist integral dominant skeins of level ` = 1 only when g has a minuscule
coweight. We cannot concatenate two skeins, but we can concatenate a skein π1 and a path π0: that is,
π1 ? π0 := ( π1?π0 ` wt(π1)+ wt(π0) ) .

Proposition 2.1. For an integral dominant skein π of weight Λ, the crystal B̂(π) is a model for V̂ (Λ),

and B̂z(π) is a model for the Demazure module V̂z(Λ).
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Proof. Given an integral dominant skein π and a Weyl group element z ∈ W̃ , we can divide π = π1 ?π0

in such a way that the Demazure operator B̂z acts on π by reflecting intervals in π0 rather than π1. This
gives an isomorphism between the Demazure crystals generated by the path wt(π1) ? π0 and by the skein π:

B̂z(wt(π1) ? π0)
∼
→ B̂z(π1 ? π0) = B̂z(π)

wt(π1) ? π′ 7→ π1 ? π′ .

This proves the assertion about Demazure modules.
Now, given an infinite chain of Weyl group elements z1<z2< · · · , we have the morphisms of ĝ-crystals:

B̂z1
(Λ)

∼
← B̂z1

(wt(π1) ? π0)
∼
→ B̂z1

(π)
∩ ∩

B̂z2
(Λ)

∼
← B̂z2

(wt(π′1) ? π′0)
∼
→ B̂z2

(π)
∩ ∩
...

...
...

B̂(Λ) B̂(π)

Here B̂z(Λ) denotes the canonical path crystal of Lakshmibai-Seshadri paths, generated from the straight-line
path (Λ). Since the ĝ crystals at the bottom are the unions of their Demazure crystals, they are isomorphic:

B̂(Λ) ∼= B̂(π). �

3. Product theorems

As before, we let ĝ be the untwisted affine Kac-Moody algebra corresponding the to the complex simple
algebra g. The basic representation V̂ (Λ0), the fundamental representation corresponding to the distin-
guished node of the extended Dynkin diagram, is the simplest and most important ĝ-module (cf. [Kac,
Ch. 14],[PS, Ch. 10]).

One of its remarkable properties is the Tensor Product Phenomenon. In many cases, the Demazure
modules V̂z(Λ0) ⊂ V̂ (Λ0) are representations of the finite-dimensional algebra g, and they factor into a

tensor product of many small g-modules. Hence the full V̂ (Λ0) could be constructed by extending the
g-structure on the semi-infinite tensor power V ⊗ V ⊗ · · · of a small g-module V .

The Kyoto school of Jimbo, Kashiwara, et al. has established this phenomenon in many cases (and for a

large class of ĝ-modules V̂ (Λ)) via the theory of perfect crystals [KKMMNN], [KMOTU1], [KMOTU2],
[HK], [K2] a development of their earlier theory of semi-infinite paths [DJKMO]. See especially [HKKOT].
Pappas and Rapoport [PR] have given a geometric version of the phenomenon for type A: they construct a
flat deformation of Schubert varieties of the affine Grassmannian into a product of finite Grassmannians.

We extend the Tensor Product Phenomenon for V̂ (Λ0) to the non-classical types E6 and E7 by a
uniform method which applies whenever g possesses a minuscule representation, or more precisely a minuscule
coweight. We shall rely on a key property of such coweights which may be taken as the definition. Let X̂
be the extended Dynkin diagram (the diagram of ĝ). A coweight $∨ of g is minuscule if and only if it

is a fundamental coweight $∨ = $∨i and there exists an automorphism σ of X̂ taking the node i to the
distinguished node 0. Such automorphisms exist in types A, B, C, D, E6, E7.

We let V (λ) denote the irreducible g-module with highest weight λ, and V (λ)∗ its dual module. Our
main representation-theoretic result is:

Theorem 3.1. Let λ∨ be an element of the coroot lattice of g which is a sum:

λ∨ = λ∨1 + · · ·+ λ∨m,

where λ∨1, · · · , λ
∨
m are minuscule fundamental coweights (not necessarily distinct), with corresponding fun-

damental weights λ1, · · · , λm. Let V̂λ∨(Λ0) ⊂ V̂ (Λ0) be the Demazure module corresponding to the anti-
dominant translation t−λ∨ in the affine Weyl group.
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Then there is an isomorphism of g-modules:

V̂λ∨(Λ0) ∼= V (λ1)
∗ ⊗ · · · ⊗ V (λm)∗ .

Now fix a minuscule coweight $∨ and its corresponding fundamental weight $. Let N be the smallest
positive integer such that N$∨ lies in the coroot lattice of g. Then we have the following characterization
of the basic irreducible ĝ-module:

Theorem 3.2. The tensor power VN :=V ($)⊗N possesses non-zero g-invariant vectors. Fix such a
vector vN , and define the g-module V ⊗∞ as the direct limit of the sequence:

VN ↪→ V ⊗2
N ↪→ V ⊗3

N ↪→ · · ·

where each inclusion is defined by: v 7→ vN ⊗ v.
Then V̂ (Λ0) is isomorphic as a g-module to V ⊗∞.

It would be interesting to define the action of the full algebra ĝ on V ⊗∞, and thus give a uniform
“path construction” of the basic representation (cf. [DJKMO]): that is, to define the raising and lowering
operators E0, F0, as well as the energy operator d. Combinatorial definitions of the energy for g of classical
type produce generalizations of the Hall-Littlewood and Kostka-Foulkes polynomials (c.f. [Oka]), with
connections to Macdonald polynomials [San], [Ion].

4. Crystal theorems

We prove Theorem 3 by reducing it to an identity of paths: we construct a path crystal for the affine
Demazure module which is at the same time a path crystal for the tensor product.

For λ a dominant weight, define its dual weight λ∗ by the dual g-module: V (λ∗) = V (λ)∗.

Theorem 4.1. Let λ∨ be as in Theorem 3, and let B(λ) denote the path crystal generated by the straight-
line path (λ). Then the set of concatenated paths Λ0 ?B(λ∗1) ? · · · ?B(λ∗m) is a path crystal for the Demazure

module V̂λ∨(Λ0). In fact, there is a unique ĝ-dominant path π with weight Λ0 such that:

B̂λ∨(π) = Λ0 ? B(λ∗1) ? · · · ? B(λ∗m) mod Rδ .

This is to be understood as an equality of sets of paths in ĥ∗
R

mod Rδ, and hence an isomorphism of ĝ-crystals.

Proof. Let σj be the automorphism of the diagram X̂ corresponding to the minuscule coweight λ∨j for

j = 1, . . . , m. This also defines an automorphism of ĥ∗ by σ(Λi) = Λσ(i). We define πm inductively as the
last of a sequence of paths π0, π1, . . . , πm:

π0 := Λ0, πj := σ−1
j (πj−1 ? λ∗j ) .

We may picture the path πm as jumping from 0 up to level Λ0, winding horizontally around the fundamental
alcove A ⊂ h∗

R
+Λ0, and ending at Λ0.

We prove the Theorem by showing that the Demazure operator B̂λ∨ = B̂λ∨
1
B̂λ∨

2
· · · B̂λ∨

m

“unwinds” πm

starting from its endpoint. The dual weights enter because λ∗j = −σj(λj).

The key fact is that the linear mapping σi preserves the set of paths B(λ∗j ) for all i, j. This is obvious
if V (λ∗j ) is a minuscule representation, but the general case requires some work using results of Stembridge

[Ste]. �

Theorem 3 now follows immediately. Indeed, siΛ0 = Λ0 for i = 1, . . . , r, so fi(Λ0 ? π′) = Λ0 ? fi(π
′)

for any path π′. Thus the right-hand side of the equation in the Theorem is isomorphic as a g-crystal to
B(λ∗1) ? · · · ? B(λ∗m), which models V (λ1)

∗ ⊗ · · · ⊗ V (λr)
∗. See [GM] for methods of enumerating the paths

in this crystal (and hence computing the dimension of the corresponding representation).
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Theorem 4 follows as a corollary. We describe the crystal graph of the semi-infinite tensor product by
the appropriate skein-crystal. We thus recover the Kyoto path model for classical g, and our results are
equally valid for E6, E7.

Theorem 4.2. Let $∨, N be as in Theorem 4. Define the m-fold concatenation Bm = B($∗)?· · ·?B($∗).
Then Λ0 ? BN contains a unique ĝ-dominant path Λ0 ? πN .

Define the skein π := (· · · ? πN ? πN ? πN`Λ0), which satisfies π ? πN = π. Then the ĝ-crystal of V̂ (Λ0)
is given by the skein-crystal:

B̂(π) =
⋃

m≥1

π ? Bm .

That is, B̂(π) is the set of all semi-infinite paths which are equal to π except for a finite length near the
end, and all of whose vector steps lie in B($∗).

5. Example: E6

Referring to Bourbaki [Bour], we write the extended Dynkin diagram X̂ = Ê6:

◦ 0
|
• 2
|

•—•—•—•—•
1 3 4 5 6

The simple roots are defined inside R6 with standard basis ε1, . . . , ε6. (Our ε6 is 1√
3
(−ε6−ε7+ε8) in Bourbaki’s

notation.) They are:

α1 = 1
2 (ε1+ε2+ε3+ε4 + ε5)+

√
3

2 ε6, α2 = ε1+ε2,

α3 = ε2−ε1, α4 = ε3−ε2, α5 = ε4−ε3, α6 = ε5−ε4 .

Since E6 is simply laced, the coroots and coweights may be identified with the roots and weights, with the
natural pairing given by the standard dot product on R6.

We focus on the minuscule coweight $∨1 corresponding to the diagram automorphism σ with σ(1) = 0
and σ(0) = 6. In this case, the corresponding fundamental representation V ($1) is also minuscule, meaning
that all of its weights are extremal weights λ ∈ W (E6)·$1. The roots α2, · · · , α6 generate the root sub-
system D5 ⊂ E6, and the reflection subgroup W (D5) = StabW (E6)($1) acts by permuting ε1, . . . , ε5 (the
subgroup W (A4) = S5) and by changing an even number of signs ±ε1, . . . ,±ε5. We have dim V ($1) =
|W (E6)/W (D5)| = 27. The weights are:

$1=
2
√

3
3 ε6,

S5·
1
2 (−ε1+ε2+ε3+ε4+ε5) +

√
3

6 ε6,

S5·
1
2 (−ε1−ε2−ε3+ε4+ε5) +

√
3

6 ε6,

− 1
2 (ε1+ε2+ε3+ε4+ε5) +

√
3

6 ε6,

±S5·ε1 −
√

3
3 ε6 .

The lowest weight is −$6 = −ε5−
√

3
3 ε6, so that V ($1)

∗ = V ($6) and $∗
1 = $6.

The simplest path crystal for V ($∗
1) is the set of 27 straight-line paths from 0 to the negatives of the

above extremal weights:
B($∗

1) = { (v) | v ∈ −W (E6)·$1 }

We have 3$∨1 ∈ ⊕
6
i=1Rα∨i the coroot lattice, so that N = 3 in Theorem 4, and this N is also the order of

the automorphism σ. The path crystal B3 := B($∗
1) ? B($∗

1) ? B($∗
1), the set of all 3-step walks with steps

chosen from the 27 weights of V ($∗
1), is a model for V ($∗

1)
⊗3.
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By Theorem 5, Λ0 ? B3 contains a unique ĝ-dominant path Λ0 ? π3, where

π3 := ($6) ? ($1−$6) ? (−$1) .

In this case, π3 has the even stronger property that it is the unique g-dominant path of weight 0, so that it
corresponds to the one-dimensional space of g-invariant vectors in V ($∗

1)
⊗3.

Now Theorem 5 states that the affine Demazure module V̂3m$∨
1
(Λ0) is modelled by the ĝ-path crystal:

B3m = {(Λ0 ? v1 ? · · · ? v3m) | vj ∈ −W (E6)·$1} ,

the set of all 3m-step walks in Λ0⊕R6 starting at Λ0, with steps chosen from the 27 weights of V ($∗
1). This

path crystal is generated from its unique ĝ-dominant path Λ0?π3? · · · ?π3. Considering it as a g-crystal, we
have B3m

∼= B ? m
3 , which shows that V̂3m$∨

1
(Λ0) ∼= V ($∗

1)⊗3m as g-modules.

By Theorem 6, the ĝ-crystal of the basic ĝ-module V̂ (Λ0) is given by the set of all infinite walks (skeins)
of the form:

π = Λ0 ? π3 ? · · · ? π3︸ ︷︷ ︸
infinite

? v1 ? · · · ? v3m ,

with m > 0 and vj ∈ −W (E6)·$1. The endpoint of such a skein is wt(π) := Λ0+v1+ · · ·+v3m. The crystal
operators fi are defined just as for finite paths. Acting near the end of the skein, they unwind the coils π3

one at a time, right-to-left. As a g-module, V̂ (Λ0) is an infinite tensor power of V ($∗
1).
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