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Abstract. We prove that the set of partitions with distinct parts of a given positive integer under dominance
ordering can be considered as a configuration space of a discrete dynamical model with two transition rules
and with initial configuration being the singleton partition. This allows us to characterize its lattice structure,
fixed point, longest chains as well as their length, using Chip Firing Game theory. Finally, two extensions

and their applications are discussed.

Résumé. Nous montrons que l’ensemble des partitions avec differents parts d’un entier donné n muni
de l’ordre de dominance peut être considérećomm l’espace de configurations d’un système dynamique discret
avec deux règles de transitions et avec la configuration initialle étant la partition (n). Cela nous permet de

caractériser sa structure de treillis, son point fixe, les châines les plus longues ainsi que leurs longueur, en
utilisant la theorie de Chip Firing Game. Enfin, deux extensions et leurs applications sont données.

1. Introduction

A partition of a positive integer n is a sequence of non-increasing positive integers a = (a1, . . . am) such
that a1 + · · · + am = n. The set of all such partitions of n is denoted by P(n). P(n) is equipped with
a partial order called dominance order as follows : a ≥ b if its partial sums is greater than that of b, i.e.
∑j

i=1 ai ≥
∑j

i=1 bi. This order has been showed to have many applications to problems in combinatorics
as well as group representation theory, among other fields. The structure of this poset was studied by
Brylawski [Bry73] who showed in particular that it is a lattice. Since then, other properties such as
maximal chains, fixed point have also been characterized in [Bry73, GK86, GK93]. In [LP01], Phan and
Latapy constructed its infinite extension and obtained a construction algorithm.

In this paper, we study the structure of an interesting class SP(n) of partitions of n called strict
partitions, or partitions with distinct parts, from the point of view of discrete dynamical systems. For any
strict partition a of n, one can apply on a the following transition rules so that the resulting partition is also
strict :

• Vertical transition (V-transition):

(a1, . . . , ai, ai+1, . . . , an)→ (a1, . . . , ai − 1, ai+1 + 1, . . . , an),

if ai − ai+1 ≥ 3.
• Horizontal transition (H-transition):

(a1, . . . , p + l + 1, p + l− 1, p + l − 2, . . . , p + 2, p + 1, p− 1, . . . , an)→
(a1, . . . , p + l, p + l − 1, p + l − 2, . . . , p + 2, p + 1, p, . . . , an).
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Figure 1. Vertical transition and horizontal transition

These rules then define a partial order on SP(n) by declaring that b ≤S a if b can be obtained from a

via a sequence of transitions. In particular, we will show that all strict partitions can be obtained in this
way if the initial configuration is the singleton partition (n). Moreover, the poset SP(n) which corresponds
to the above order and initial configuration (n) turns out to be the same as the poset SP(n) with dominance
order, so that the two orders can now be identified. We then show that SP(n) is also a lattice, but it is not
a sublattice of P(n). Furthermore, unlike P(n), SP(n) is not self-dual. Using the fact that our dynamical
model can be viewed as a “composition” of two Chip Firing Games in the sense of [BL92] (see also [LP01],
[GMP02]), we are able to characterize explicitly the fixed point, longest chains as well as their length in
SP(n). Finally, we present two generalizations : We obtain similar results for the set of k-strict partitions,
i.e. partitions where two parts differ by at least k > 0. We also obtain an infinite extension of SP(n) and
an algorithm to construct SP(n + 1) from SP(n) in linear time.

2. Lattice structure of SP(n)

Theorem 2.1. The set SP(n) is exactly the set of all strict partitions reachables from (n) by applying
two transitions rule V and H. .

Proof. Let a = (a1, . . . , am) be a strict partition. It suffices to show that if a is different from (n)
itself, then there exist another strict partition a′ such that one can recover a by applying a transition on a′.

First of all, observe that if there is a subsequence (ai, ai+1, . . . , aj) of consecutive numbers in a, where
i = 1, or else ai−1 − ai ≥ 2, similarly j = m or else aj − aj+1 ≥ 2. Then we can choose

a′ = (a1, . . . , ai−1, ai + 1, ai+1, . . . , aj−1, aj − 1, aj+1, . . . , am),

so that a′ is again strict. Furthermore, one recovers a from a′ by applying a H-transition.
On the other hand, if no such subsequence exists, then a1 − a2 ≥ 2 and either m = 2 or a2 − a3 ≥ 2. In

this case, we can simply choose
a′ = (a1 + 1, a2 − 1, a3, . . . , am).

It is easy to check that a′ is a strict partition and that a V-transition applied on a′ at the first position gives
back a. The theorem is proved. �

Proposition 2.2. SP(n) is a subposet of P(n).

Proof. It is sufficient to show that if a, b ∈ SP(n) and a > b then a >S b, i.e. there exists a sequence
of transitions from a to b. For this purpose, it suffices to prove that one can apply a transition on a to obtain
a new strict partition a′ such that one still has a′ ≥ b.

Since a > b, we have
∑j

i=1 ai ≥
∑j

i=1 bi for all 1 ≤ j ≤ n. Let j be the smallest index where aj > bj .

Then let ` be the smallest index such that ` > j and
∑l

i=1 ai =
∑l

i=1 bi. Such a number ` exists because
` = n satisfies both conditions above. It is clear that al < bl because of the choice of `.

We claim that we can apply a transition on a at some positions between j and `, so that the newly
constructed partition a′ are identical with a outside this range . If this is possible, then we are done, because
it is easy to verify, using the definition of j and `,that a′ > b in P(n).
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To construct a′, observe that if there is an index j ≤ i ≤ ` such that ai − ai+1 ≥ 3, then a V-transition
can be applied at position i and we are done.

Suppose now that ai − ai+1 ≤ 2 for all j ≤ i < `. Since b is a strict partition and bi ≥ 1 for all i, we
have b` − bj ≥ `− j. But a` > b` and aj , bj , hence a` − aj ≥ `− j + 2. It follows that there exists at least
two indices j ≤ r < s < ` such that ar − ar+1 = as − as+1 = 2. Furthermore, by choosing a different pair of
indices if necessary, we can even assume that ai−ai+1 = 1 for all r < i < s. But in this case, the subsequence
(ar, . . . , as) is of exactly the form where one can apply a H-transition. The proof is finished. �

Because of the above result, we can now write b ≤ a instead of b ≤S a for any two strict partition a and
b.

Theorem 2.3. SP(n) is a lattice. Moreover, the meet operation in SP(n) is the same as that in P(n),
i.e. a ∧S b = a ∧ b for any two strict partitions a and b.

Proof. Since SP(n) contains a maximal element, it is enough to prove that any pair of element in
SP(n) has a greatest lower bound. Of course, their greatest lower bound c = a∧ b in P(n) does exist, but is
it true that c is again a strict partition? We will show that this is the case for any pair of strict partitions a

and b.
By definition, c is a partition defined by the formulae

m
∑

i=1

ci = min(

m
∑

i=1

ai,

m
∑

i=1

bi)

for all 1 ≤ m. Suppose that cm > 0. Without loss of generality, assume that
∑m

i=1 ci =
∑m

i=1 ai. Then
cm+1 ≤ am+1 while am ≤ cm. Thus cm+1 < cm because am+1 < am. Hence c is also a strict partition. The
proof above clearly also implies that the meet operation in SP(n) is the same as that in P(n). �

Remark 2.4. SP(n) is not a sublattice of P(n). In fact, the joint operations in SP(n) and P(n) are
different. For example, (8, 4, 3, 1) ∨ (7, 5, 4) = (8, 4, 4) which is not a strict partition. Nevertheless, we still
have a ∨S b ≥ a ∨ b for any a and b.

Since SP(n) is a lattice, it has an unique minimal element (or fixed point). We finish this section by
giving an explicit formula for this minimal partition. Let p be the unique number such that

1

2
p(p + 1) ≤ n <

1

2
(p + 1)(p + 2).

Then let q = n− 1
2p(p + 1). One verifies easily that q < p. Now let Π be the following partition

Π = ((p + 1), p, . . . , (p− q + 2), (p− q), (p− q − 1), . . . , 2, 1).(2.1)

It is evident that Π is a strict partition on which no transition can be applied. Thus we have the following
proposition:

Proposition 2.5. Π is the fixed point of the lattice SP(n).

3. Longest chains

In this section, we characterize longest chains in SP(n) as well as their length. The longest chains in
P(n) were characterized by Greene and Kleitman [GK86] where they introduced the notion of VH-chain
(i.e. a chain of V-transitions followed by a chain of H-transitions) and proved that all VH-chains are longest
chains. It turns out that the same is true for strict partitions. Our proof, however, is different. The proof
in [GK86] makes use of a series of delicate lemmas which basically consider the differences of consecutive
parts of partitions. We believe that our proof, which is based on the theory of Chip Firing Game on directed
graph (CFG) [BL92], is simpler and probably can be adapted in other contexts.
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3.1. V(H)-chain. Let us first introduce some definitions. A V(resp. H)-chain is a chain of V(resp.
H)-transitions, and a VH-chain is a concatenation of a V-chain and a H-chain. If there is a V-chain from a
strict partition a to another b, then we say that b is V-reachable from a. But a partition c is H-reachable
from d means that there is an H-transitions from d back to c, or equivalently an inverse H-transition from c

to d.
We will also need the two functions V-weight wV (a) and H-weight wH (a) on a strict partition a. From

the Ferrers diagram for a, let

(3.1) wV (a) =
∑

(i− 1)ai

and

(3.2) wH(a) =
∑

(k − 1)ãk,

where ãk is the number of cells (i, j) on the segment i + j = k + 1, i ≥ 0, j ≥ 0. It is easy to see that a
V-transition increases V-weight by 1, but decrease H-weight by at least 1. On the other hand, an H-transition
decreases H-weight by 1, and increases V-weight by at least 1. This simple observation shows that V-chains
(or H-chains) between two partitions are longest chains.

3.2. Chip Firing Game. We now give a brief overview of the theory of Chip Firing Game (CFG
for short). In particular, we show that the dynamical model consisting of only the V-transition (resp. H-
transition) are examples of CFG. For more details account of theory of Chip Firing Game, we refer to
[BLS91, BL92, LP01, GLM+ar].

A Chip Firing Game is a discrete dynamical system defined on a (directed) graph G = (V, E), where
each configuration consists of a partition of n chips on the vertices V , and obeys the following rule, called
firing rule: a vertex containing at least at many chips as its outgoing degree (i.e. the number of outgoing
edges) transfers one chip along each of its outgoing edges.

This rule defines a natural partial order on the space of configurations by declaring that a configuration
b is smaller than a if b can be obtained from a by iterating the firing rule. A fixed point of a CFG is a
configuration where no firing is possible. The following is the fundamental result in the theory of CFG,

Theorem 3.1. [BL92, LP01] The set of all configurations reachable from the initial one of a CFG with
no closed component is a lattice.

A closed component of a graph is a strongly connected component without outgoing edge.
One can also characterize the natural order defined above using the notion of shot vector. If b < a, then

the shot vector k(a, b) is the vector in N
|V | whose entry kv(a, b) is the number of firings at vertex v to obtain

b from a. This vector depends only on a and b but not on a chosen sequence of firings. We then have:

Lemma 3.2. [LP01] Let c and d be two configurations reachable from the same initial configuration a

in a CFG. Then c ≥ d if and only if kv(a, c) ≤ kv(a, d) for all vertices v ∈ V .

Here are two important examples of CFG.
Example V: The dynamical model consisting to only the V-transition is a CFG. Indeed, consider the graph
G = (V, E) with n + 1 vertices defined pictorially as follows:

v0◦←v1◦�v2◦ . . . �
vn◦

Thus each vertex of G, beside v0 and vn has outgoing degree 2. Now let a be a configuration i.e. a strict
partition of n, we put di = ai − ai+1 − 1 chips at vertex vi for all i ≥ 1 and no chip at v0.

The necessary condition to apply a V-transition at position i on a is ai − ai+1 ≥ 3, or equivalently
di ≥ 2 which is the same as the condition to apply the CFG firing rule on vi. It is easy to see that the
space of reachable configurations of this CFG is exactly the set of partitions that are V-reachable from a.
In particular, the unique fixed point of this CFG corresponds to the smallest partition which is V-reachable
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from a. In fact, in any interval b ≤ a in SP(n) there exists a unique smallest strict partition bacb which is
V-reachable from a.

Example H: The inverse H-transition defines a CFG on the same graph as in previous example in a similar
way. For each initial configuration b, we put d̃i = b̃i − b̃i+1 chips at vertex vi for all i ≥ 1 and no chip at v0.

Here b̃i is defined as in (3.1). One verifies again that the space of configurations of this game is the set of
H-reachable from b and the fixed point corresponds to unique greatest partition which is H-reachable from
b. Furthermore, there is a unique greatest strict partition dbea which is H-reachable from b in any interval
b ≤ a.

The reader of [GK86] may find it interesting to compare the definition of H-transition there and ours, as
in Example H. While an H-transition in the sense of [GK86] is dual to a V-transition in the usual sense (row
vs column), our H-transition is defined in terms of the “diagonal” in the Ferrers diagram of the corresponding
partition.

3.3. VH-chains are longest chains. First of all, it is not hard to show, as in [GK86, Lemma 3] that
any longest chain must be a VH-chain. The point is that any sequence of two transitions (H,V) (H follows
by V) equals sequence of the form either (V,H) or (V,V,H), proof by direct inspection. Thus for any chain
of transitions between two partitions, there is a VH-chain of at least the same length.

It remains to show that any VH-chain is a longest chain. We begin with the following key lemma which
explains the relevance of dominance order.

Lemma 3.3. Let c and d be two partitions which are V-reachable from a. If d ≤ c, then d is V-reachable
from c.

Proof. We compute the shot vector k(a, c) and k(a, d) in the corresponding CFG. It is easy to see

that ki(a, c) = ki−1(a, c) + ai − ci for all i ≥ 1, which implies that ki(a, c) =
∑i

j=1 aj −
∑i

j=1 cj . Similarly,

ki(a, d) =
∑i

j=1 aj −
∑i

j=1 dj . On the other hand,
∑i

j=1 cj ≥
∑i

j=1 dj because c ≥ d. It follows that

ki(a, c) ≤ ki(a, d) and so d is V-reachable from c by Lemma 3.2. �

Lemma 3.4. If a ≥ b, then bacb is H-reachable from b and dbea is V-reachable from a.

Proof. There is a VH-chain from bacb to b. Since bacb is the smallest strict partition which is V-
reachable from a in interval a ≤ b, there can not be no V-transition in this chain and bacb is H-reachable
from b. Similar argument applied for dbea. �

As an immediate corollary, we see that there is a VH-chain a → dbea → b from a to b of length
wV (a, dbea) + wH(dbea, b).

We can now state the main result of this section:

Theorem 3.5. All VH-chains from a to b in SP(n) have the same length and this length is maximal.

Proof. Suppose that a
V−→c

H−→b is a VH-chain from a to b with length wV (c)−wV (a)+wH(b)−wH(c).
We will show that it has the same length as that of the VH-chain a

V−→ dbea H−→ b. In particular, its length
only depends on a and b and is maximal.

It is clear from the definition of bacb and dbea that bacb ≤ c ≤ dbea. Since both dbea and c are
V-reachable from a and dbea ≥ c, then there is a V-chain from dbea to c by Lemma 2. On the other
hand, there is also an H-chain from dbea to c because dbea is the minimum element of the lattice of all
H-reachable strict partitions from b which contains c. The two chains are both of maximal length, hence
wV (c)− wV (dbea) = wH(dbea)− wH(c). The required result immediately follows from the equalities :

wV (c)− wV (a) =wV (dbea)− wV (a) + wV (c)− wV (dbea)

wH (c)− wH(b) =wH(dbea)− wH(b)− (wH (dbea)− wH (c)).
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3.4. The length of a longest chain. Once we know all VH-chains are longest chains, it is suffi-
cient to calculate the length of a well-chosen VH-chains from (n) to Π. The VH-chain that we will use is
(n)

V−→ b(n)cΠ H−→ Π. For the point P = b(n)cΠ, which is the fixed point of the CFG in Example V with
initial configuration (n), together with the length of the V-chain from (n) → b(n)cΠ was already computed
in [GMP02]. Our model corresponds to the model named L(n, 3) in that article. To describe P and
wV ((n), P ), first write n in the form n = k(k + 1) + `(k + 1) + h, where 0 ≤ ` ≤ 1, 0 ≤ h ≤ k. The integers
k, `, h are all uniquely determined from n. We have

Proposition 3.6.

(3.3) P = (` + 2k, ` + 2(k − 1), . . . , ` + 2h, ` + 2(h− 1) + 1, . . . , ` + 2 + 1, ` + 1),

and

(3.4) wV (P ) =
(k − 1)k(k + 1)

3
+ `

k(k + 1)

2
+ h

2k − h + 1

2
.

We can now state the following result:

Proposition 3.7. Let p, q the unique integers such that n = 1
2p(p + 1) + q, 0 ≤ q ≤ p and let k, `, h the

unique integers such that n = k(k + 1) + `(k + 1) + h, 0 ≤ ` ≤ 1, 0 ≤ h ≤ k. We have the following formula
for the length L of longest chains in SP(n):

L =
k(k + 1)(8k − 5)

6
+ 2`k(k + 1) + (2k + l)h− (p− 1)p(p + 1)

3
− qp.

Proof. Since L = wV (P ) + wH (P )− wH (Π), we have from (2.1) and (3.2):

wH (Π) =

p
∑

i=1

(i− 1)i + qp =
(p− 1)p(p + 1)

3
+ qp.

and from (3.3) and (3.2):

wH(P ) =

k
∑

i=1

(i− 1)i +

1
∑

i=k

(2k − i)i + l

2k
∑

i=k

i +

h−1
∑

i=0

(k + ` + i)

=
1

2
k(k + 1)(2k − 1) +

3

2
`k(k + 1) +

1

2
(2k + 2` + h− 1)h.

�

4. Infinite extension of SP(n)

It is natural to ask whether one can construct the lattice SP(n + 1) from SP(n). More generally, what
is the precise relationship between the lattices SP(n) for various n. Our solution to these questions is to
assemble them together into a lattice SP(∞) called lattice of strict partitions of infinity. Indeed, this lattice
is constructed in a similar way as SP(n) by pretending that n can be as large as needed. More precisely,
it is the lattice obtained from the dynamical system with two transitions rules as those for SP(n), and the
initial configuration is infinity. Equivalently, one can also define SP(∞) in terms of dominance order : A
strict partition of infinity is just a sequence of finitely many strictly decreasing positive integers, except the
first entry : (∞, a2, a3, . . . ak). The partial order is defined by declaring that a ≥∞ b if

∑

i≥j ai ≤
∑

i≥j bi

for all j ≥ 2. By convention, we put an = 0 for n > k.
Many results presented in this section are obtained initially in the case normal partitions in [LP99].

However, the proofs are not completely similar since we must be careful that our operations are within the
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Figure 2. A longest chain in SP(23): P = (8, 6, 5, 3, 1) and Π = (7, 6, 4, 3, 2, 1). A longest
chain in SP(23) is a chain containing a V-chain from (23) to P and an H-chain from P to
Π, and its length is wH(8, 6, 5, 3, 1)+wV (8, 6, 5, 3, 1)−wV (7, 6, 4, 3, 2, 1) = 29−0+85−82 =
32.

set of strict partition. In fact, even though SP(n) can be embedded in a P(n), the structure of the infinite
lattices or infinity trees are different.

4.1. Notations and definitions. If a = (a1, a2, . . . , ak) is a strict partition, then the partition obtained
from a by adding one grain on its i-th column is denoted by a↓i . Notice that a↓i is not necessarily a strict

partition. If S is a set of strict partitions, then S↓i denotes the set {a↓i |a ∈ S}. We denote a
i−→ b if b

is obtained from a by applying a transition at position i and by Succ(a) the set of configurations directly
reachable from a.

Write di(a) = ai − ai+1 with the convention that ak+1 = 0. We say that a has a cliff at position i if
di(a) ≥ 3. If there exists an ` > i such that dj(a) = 1 for all i ≤ j < ` and d`(a) = 2, then we say that a

has a slippery plateau at i with length (` − i). Likewise, a has a non-slippery plateau at i if dj(a) = 1 for
all i ≤ j < ` and it has a cliff at `. The integer ` − i is called the length of the non-slippery plateau at i.
The partition a has a (non)-slippery step at i if there is a strict partition b such that b↓i = a and b has a
(non)-slippery plateau at i. See Figure 3 for some illustrations. The set of elements of SP(n) that begin

Figure 3. From left to right: a cliff, a slippery step, a non-slippery step, a slippery plateau
and a non-slippery plateau.

with a cliff, a slippery step, a non-slippery step, a slippery plateau of length l and a non-slippery plateau of
length l are denoted by C, SS, nSS, SPl, nSPl respectively.

4.2. Constructing SP(n + 1) from SP(n). Let a = (a1, a2, . . . , ak) be a strict partition. It is clear
that a↓1 is again a strict partition. This define an embedding π : SP(n)→ SP(n)↓1 ⊂ SP(n + 1) which can
be proved, by using infimum formula of SP(n) and SP(n + 1), as a lattice map.

Proposition 4.1. SP(n)↓1 is a sublattice of SP(n + 1).
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Our next result characterizes the remaining elements of SP(n + 1) that are not in SP(n)↓1 .

Theorem 4.2. For all n ≥ 1, we have

SP(n + 1) = SP(n)↓1 t SS↓2 t nSS↓2 tl SP
↓l+1

l .

Proof. It is easy to check that each element in one of the sets SP(n)↓1 , SS↓2 , nSS↓2 and SP
↓l+1

l is an
element of SP(n + 1), and that these sets are disjoint.

Now let us consider an element b of SP(n + 1). If b begins with a cliff or a step then b is in SP(n)↓1 .
If b begins with a slippery plateau of length 2 then b is in SS↓2 , if b begins with a non-slippery of length 2

then b is in nSS↓2 . And if b begins with a plateau of length l + 1, l ≥ 2, then b is in SP
↓l+1

l .

Finally, we describe an algorithm to compute the successors of any given element of SP(n + 1), thus
giving a complete construction of SP(n + 1) from SP(n).

Proposition 4.3. Let x be an element of SP(n + 1).

(1) Suppose x = a↓1 ∈ SP(n)↓1 .
• If a is in C or nSP then Succ(a↓1) = Succ(a)↓1 ,
• If a is in SPl then Succ(a↓1) = Succ(a)↓1 ∪ {a↓l+1},
• If a is in SS then let b be such that a

1−→ b. We have Succ(a↓1) = (Succ(a) \ {b})↓1 ∪ {a↓2}.
(2) If x = a↓2 ∈ SS↓2 where a ∈ SS: Let b be such that a

1−→ b, then Succ(a↓2) = (Succ(a) \ {b})↓2 ∪
{b↓1}.

(3) If x = a↓2 ∈ nSS↓2 with a ∈ nSS, then Succ(a↓2) = Succ(a)↓2 .

(4) Finally, if x = a↓l+1 ∈ SP
↓l+1

l for some a ∈ SPl, then

• If a has a cliff at l + 1 or a non-slippery step at l, then Succ(a↓l+1) = Succ(a)↓l+1 ,

• If a has a slippery step at l, let b such that a
l−→ b in SP(n), then Succ(a↓l+1) = (Succ(a) \

{b})↓l+1 ∪ {b↓l}.

Proof. We will give the proof for the two most difficult cases (1) and (4). Consider x = a↓1 where
a ∈ C : notice first that the transitions possible from a on columns other than the first one are still possible
from a↓1 , and on the other hand the addition of one grain on a cliff does not allow any new transition from
the first column, since such a transition was already possible.

In the last case: x = a↓l+1 where a ∈ SP
↓l+1

l and a has a slippery step of length l′ at l. Then, a
l−→ b in

SP(n). The possible transitions from a↓l+1 are the same as the possible ones from a, except the transition
on the column l. All the elements directly reachable from a except b have a slippery plateau at 1, therefore

the elements of (Succ(a) \ {b})↓l+1 ∈ Succ(a↓l+1) The only one missing transition is: a↓l+1
l+1−→ a↓l+l′+1 . But

we can verify that a↓l+l′+1 = b↓l .

Proposition 4.3 makes it possible to write an algorithm to construct the lattice SP(n + 1) in linear time
(with respect to its size).

4.3. The infinite lattice SP(∞). Imagine that (∞) is the initial configuration where the first column
contains infinitely many grains and all the other columns contain no grain. Then the transitions V and H

defined in the first section can be performed on (∞) just as if it is finite, and we call SP(∞) as the set of
all the configurations reachable from (∞). A typical element a of SP(∞) has the form (∞, a2, a3, . . . , ak).
As in the previous section, we find that the dominance ordering on SP(∞) (when the first component is
ignored) is equivalent to the order induced by the dynamical model. The first partitions in SP(∞) are given
in Figure 4, along with their covering relations (the first component, equal to ∞, is not represented on this
diagram).
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Figure 4. The first elements and transitions of SP(∞). As shown on this figure for n = 10,
we will see two ways to find parts of SP(∞) isomorphic to SP(n) for any n.

We start by showing that SP(∞) is a lattice. We also obtain a formula for the minimum in SP(∞).
Furthermore, for any n, there are two different ways to find sublattices of SP(∞) isomorphic to SP(n). We
will also give a way to compute some other special sublattices of SP(∞), using its self-similarity.

Theorem 4.4. The set SP(∞) is a lattice. Moreover, for any two elements a = (∞, a2, . . . , ak) and
b = (∞, b2, . . . , b`) of SP(∞), then infSP(∞)(a, b) = c in SP(∞), where c is defined by:

ci = max(
∑

j≥i

aj ,
∑

j≥i

bj)−
∑

j>i

cj for all i such that 2 ≤ i ≤ max(k, l).

Proof. One just needs to check that c is an element of SP(∞), i.e. c1 =∞ and ci > ci+1 for all i > 1.

Now for any n > 1, there are two canonical embeddings of SP(n) in SP(∞), defined by

π : SP(n) −→ SP(∞)
a = (a1, a2, . . . , ak) 7→ π(a) = (∞, a2, . . . , ak)
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χ : SP(n) −→ SP(∞)
a = (a1, a2, . . . , ak) 7→ χ(a) = (∞, a1, a2, . . . , ak)

Theorem 4.5. Both π and χ are embedding of lattices.

Proof. The first embedding π comes from our result in the Proposition 1. The second is clear by noting

that for all a, b ∈ SP(n), a
l−→ b if and only if χ(a)

l+1−→ χ(b) in SP(∞).

Corollary 4.6. Let

SP(≤ n) =
⊔

0≤i≤n

SP(i),

then SP(≤ n) is a sublattice of SP(∞) (by the embedding χ).

So by using the embedding χ, one can consider SP(∞) as the union disjoint of SP(n) for all n, SP(∞) =
⊔

n≥0 SP(n).

4.4. Self-reference property: the infinite binary tree TB(∞). Observe that each element a of
SP(n + 1) can be obtained from an element b of SP(n) by addition of one grain at some position i; that

is a = b↓i . We will represent this relation by a tree where a ∈ SP(n + 1) is a child of b ∈ SP(n) if and

only if a = b↓i for some i ≥ 0, and we label the edge b −→ a by i. We denote this tree by ST (∞). The
root of ST (∞) is the empty partition. We will describe two ways to compute all strict partitions of a given
positive integer n in ST (∞). As an application, we derive an efficient and simple algorithm to compute
them. Moreover, this tree has a special property which we called ’self-reference’ from which we can deduce
a recursive formula for the cardinality of SP(n) and some special classes of strict partitions.

First of all, it is easy to see from the construction of SP(n + 1) from SP(n) that the each node a ∈
⊔

n≥0 SP(n) has at least one child, which is a↓1 . Furthermore, if a begins with a slippery plateau of length

l, then it has another child which is the element a↓l+1 . It follows that ST (∞) is a binary tree. We will call
left child the first of two children, and right child the other (if it exists). We call the level n of the tree the
set of elements of depth n. The first levels of ST (∞) are shown in Figure 5.

By using the embedding χ and π in Theorem 4.5, we have:

Proposition 4.7. The level n of ST (∞) is exactly the set of the elements of SP(n). Moreover the set
SP(n) is in a bijection with a subtree of ST (∞) having the same root.

We will now give a recursive description of ST (∞). This will allow us to obtain a new recursive formula
to calculate the cardinality of SP(n), as well as for some special classes of strict partitions. We first define a
certain kind of subtrees of ST (∞). Afterward, we show how the whole structure of ST (∞) can be described
in terms of such subtrees.

We call Xk subtree any left subtree of an element beginning with a slippery plateau of length k. Moreover,
we define X0 as a simple node.
The next proposition shows that all the Xk subtrees are isomorphic (see Figure 6).

Proposition 4.8. A Xk subtree, with k ≥ 1, is composed by a chain of k + 1 nodes (the rightmost
chain) whose edges are labeled 1, 2, . . . , k and whose i-th node having an out going edge labeled with 1 to a
Xi subtree for all i between 1 and k.

This recursive structure and the above propositions allows us to give a compact representation of the
tree ST (∞) by a chain (see Figure 7).
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Figure 5. The first levels of the tree ST (∞) (to clarify the picture, the labels are omitted).
As shown on this figure for n = 10, we will see two ways to find the elements of SP(n) in
ST (∞) for any n.

3 4 k−2 k−1 k2

x3 x x xk−2 k−1 kx1

1 1 1 1 1 1

x2

X =k

Figure 6. Self-referencing structure of Xk subtrees.

Theorem 4.9. The tree ST (∞) can be represented by the infinite chain
(), 1, 2, 21, 31, 32, 321, . . . , (n− 1, n− 2, . . . , 1), (n, n− 2, . . . , 2, 1), . . . ,
(n, n− 1, . . . , 3, 2), (n, n− 1, . . . , 3, 2, 1), . . . with corresponding edges
1, 1, 2, 1, 2, 3, . . . , 1, 2, . . . , n, . . .; each node before an edge k having an out going edge labeled with 1 to the
root of a Xk−1 subtree.

Moreover, we can prove a stronger property of each subtree in this chain:

Theorem 4.10. The subtree (of the form (k, k − 1, . . . 2, 1)
1−→ Xk) of ST (∞) contains exactly the

partitions of length k.



12 LE MINH HA AND PHAN THI HA DUONG

1 1 2 1 2 3 1 2 3 4 11 2 4321432431421321323121

x
1
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x

Figure 7. Representation of ST (∞) as a chain.

Different to the case of infinite tree of partitions, the distance of this root to the root of ST (∞) is equal to
k(k−1)

2 . We can now state our last result:

Theorem 4.11. Let c(l, k) denote the number of paths in a Xk tree originating from the root and having
length l. We have:

c(l, k) =

{

1 if l = 0 or k = 1
∑inf(l,k)

i=1 c(l − i, i) otherwise

Moreover, |SP(n)| =
∑

0≤k≤
√

(2n)+1
c(n− k(k−1

2 , k) and the number of partitions of n with length exactly k

is c(n− k(k−1)
2 , k).
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LIAFA Université Denis Diderot, Paris 7 - Case 7014-2, Place Jussieu-75256 Paris Cedex 05-France

E-mail address: phan@liafa.jussieu.fr


