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Abstract. In [LLT] Lascoux, Leclerc and Thibon introduced symmetric functions Gλ which are spin and
weight generating functions for ribbon tableaux. This article is aimed at studying these functions in analogy
with Schur functions. In particular we will describe:
• a Pieri and dual-Pieri formula for ribbon functions,
• a ribbon Murnaghan-Nakayama formula,
• ribbon Cauchy and dual Cauchy identities,
• and a

�
-algebra isomorphism ωn : Λ(q) → Λ(q) which sends each Gλ to Gλ′ .

We will show that the ribbon Pieri and Murnaghan-Nakayama rules are formally equivalent in a purely
combinatorial manner. We will also connect the ribbon Cauchy and Pieri formulae to the combinatorics of
ribbon insertion as studied by Shimozono and White [SW2]. In particular we give complete combinatorial
proofs for the domino n = 2 case.
Résumé. Dans [LLT], Lascoux, Leclerc et Thibon ont introduit des fonctions symétriques Gλ qui sont les
series formelles pour tableaux des rubans, selon la rotation et le poids. Cet article est visé à l’étude de ces
fonctions dans l’analogie avec les fonctions de Schur. En particulier nous décrirons:
• des formules ruban-Pieri et dual-ruban-Pieri,
• une formule de ruban Murnagham-Nakayama,
• les identités ruban-Cauchy et dual-ruban-Cauchy pour fonctions de ruban,
• et un isomorphisme

�
-algèbre ωn : Λ(q) → Λ(q) qui envoie chaque Gλ à Gλ′ .

Nous montrerons que les règles Pieri de et Murnagham-Nakayama sont formellement équivalents dans une
manière purement combinatoire. Nous connecterons aussi les formules ruban-Cauchy et ruban-Pieri au
combinatoire d’insertion des rubans, comme étudié par Shimozono et White [SW2]. En particulier, nous
donnons les preuves combinatoires complétes pour le cas domino n = 2.

Introduction

This abstract is a much shortened version of the paper [Lam1]. It has been rewritten with the focus
placed on combinatorial aspects. Many results and essentially all the proofs together with the representation
theoretic details have been removed.

Let n ≥ 1 be a fixed integer and λ a partition with empty n-core. In analogy with the combinatorial
definition of the Schur functions, Lascoux, Leclerc and Thibon [LLT] have defined a family of symmetric
functions Gλ(X ; q) ∈ Λ(q) by:

Gλ(X ; q) =
∑

T

qs(T )xw(T )

where the sum is over all semistandard ribbon tableaux of shape λ, and s(T ) and w(T ) are the spin and
weight of T respectively. The definition of a semistandard ribbon tableau is analagous to the definition of
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2 THOMAS LAM

semistandard Young tableaux, with boxes replaced by ribbons (or border strips) of length n. We shall loosely
call the functions Gλ(X ; q) ribbon functions.

3

2

3

3

11 4

Figure 1. A semistandard 3-ribbon tableau with shape (7, 6, 4, 3, 1), weight (2, 1, 3, 1) and
spin 7.

When q = 1 the ribbon functions become products of usual Schur functions. However, when the
parameter q is introduced, it is no longer obvious that the functions Gλ(X ; q) are symmetric. The main
aim of this paper will be to develop the theory of ribbon functions in the same way Schur functions are
studied in the ring of symmetric functions. We shall see that the appropriate ‘ribbon’ analogues of the power
sum, homogeneous and elementary symmetric functions is given by the the plethysm

f 7→ f [(1 + q2 + · · ·+ q2n−2)X ].

We show that this leads to a ribbon Pieri rule in a natural way and also define ‘border ribbon strips’
which lead to a ribbon Murnaghan-Nakayama rule. These two rules are connected by showing that they are
formally equivalent in a combinatorial fashion. The plethysm of the Cauchy kernel leads to a Cauchy and
dual-Cauchy identity. We also describe a C-algebra isomorphism ωn : Λ(q) → Λ(q) which sends each skew
ribbon function to the ribbon function corresponding to the conjugate.

It is well known that the corresponding formulae are important for Schur functions in representation
theory and algebraic geometry.

Much of the interest in the ribbon functions has been focused on the q-Littlewood Richardson coefficients
cµ
λ(q) of the expansion of Gλ(X ; q) in the Schur basis:

Gλ(X ; q) =
∑

µ

cµ
λ(q)sµ(X).

These are q-analogues of Littlewood Richardson coefficients. Using results of Varagnolo and Vasserot [VV],
Leclerc and Thibon [LT] have shown that these coefficients are parabolic Kazhdan-Lusztig polynomials of
type A. Results of Kashiwara and Tanisaki [KT] then imply that they are polynomials in q with non-
negative coefficients. Much interest has also developed in connecting ribbon tableaux and the q-Littlewood
Richardson coefficients to rigged configurations and the generalised Kostka polynomials defined by Kirillov
and Shimozono [KS], Shimozono and Weyman [SW3], Schilling and Warnaar [SchW] and Shimozono [Shi].

To prove that the functions Gλ(X ; q) were symmetric Lascoux, Leclerc and Thibon connected them to

Fock space representation F of the quantum affine algebra Uq(ŝln). The crucial property of F is an action of

a Heisenberg algebra H , commuting with the action of Uq(ŝln), discovered by Kashiwara, Miwa and Stern

[KMS]. In particular, they showed that as a Uq(ŝln)×H-module, F decomposes as

F ∼= VΛ0
⊗ C(q)[H−]

where VΛ0
is the highest weight representation of Uq(ŝln) with highest weight Λ0 and C(q)[H−] is the usual

Fock space representation of the Heisenberg algebra.
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In [Lam1], the connection between ribbon functions and the action of the Heisenberg algebra is made
explicit by showing that the map Φ : F→ C(q)[H−] defined by

|λ〉 7→ Gλ

is a map of H-modules, after identifying C(q)[H−] with the ring of symmetric functions Λ(q) in the usual
way. The map Φ has the further remarkable property that it changes certain linear maps into algebra maps
(for example leading to ωn). Via the map Φ, the action of the Heisenberg algebra leads to the ribbon
Murnaghan-Nakayama and Pieri rules. Unfortunately, we will not be able to explore this aspect of the
subject in this abstract.

We shall also connect our study of ribbon functions to more combinatorial aspects of ribbon tableaux.
Using the domino insertion of Barbasch and Vogan, Garfinkle and Shimozon and White [BV, Gar, SW] we
will give combinatorial proofs of the Pieri and Murnaghan-Nakayama formulae. The Cauchy and dual-Cauchy
identities were observed earlier in [Lam]. Shimozono and White [SW2] have defined a ribbon-Schensted
algorithm for n > 2 which is also compatible with spin on ribbon tableaux. As we shall discuss, this algorithm
gives a combinatorial proof of the first ribbon Pieri formula for k = 1, but appears to be insufficient to prove
either the Cauchy identity or the higher Pieri rules.

Acknowledgements. This work is part of my dissertation written under the guidance of Richard
Stanley. I am indebted to him for suggesting the study of ribbon tableaux and for providing me with
assistance throughout. I would also like to thank Mark Shimozono and Ole Warnaar for pointing out a
number of references.

1. Partitions and Tableaux

A distinguished integer n ≥ 1 will be fixed throughout the whole article. When n = 1, the reader may
check that we recover the classical theory of Schur functions. We will use the usual notation and definitions
for partitions, compositions, horizontal strips, border strips, standard and semistandard Young tableaux
which can be found in [EC2, Mac].

Let b be a border strip. The height h(b) is the number of rows in b, minus 1. When a border strip has n
squares for the distinguished (fixed) integer n, we will call it a ribbon. The height of the ribbon r will then
be called its spin s(r). The reader should be cautioned that in the literature the spin is usually defined as
half of this.

Let λ be a partition. Its n-core, obtained from λ by removal of n-ribbons (until we are no longer able

to), is denoted λ̃. The n-quotient of λ will be denoted (λ(0), . . . , λ(n−1)). We shall write P for the set of

partitions. We will use Pδ to denote the set of partitions λ such that λ̃ = δ for an n-core δ = δ̃.
A ribbon tableau T of shape λ/µ is a tiling of λ/µ by n-ribbons and a filling of each ribbon with a

positive integer (see Figure 1). We will use the convention that a ribbon tableau of shape λ where λ̃ 6= ∅ is

simply a ribbon tableau of shape λ/λ̃. A ribbon tableau is semistandard if for each i

(1) removing all ribbons labelled j for j > i gives a valid skew shape λ≤i/µ and,
(2) the subtableau containing only the ribbons labelled i form a horizontal n-ribbon strip.

A horizontal n-ribbon strip is a skew shape tiled by ribbons such that the topright-most square of every
ribbon touches the northern edge of the shape (see Figure 2). If such a tiling exists, it is necessarily unique.
If the numbers occuring in a ribbon tableau are exactly {1, 2, . . . , m}, for some m, then the tableau is called
standard.

We will often think of a ribbon tableau as a chain of partitions

λ̃ = µ0 ⊂ µ1 ⊂ · · · ⊂ µr = λ

where each µi+1/µi is a horizontal ribbon strip. The partitions µi here are not to be confused with the
n-quotient of µ.
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Figure 2. A horizontal 4-ribbon strip with spin 5.

The spin s(T ) of a ribbon tableau T is the sum of the spins of its ribbons. The weight w(T ) of a tableau
is the composition counting the occurences of each value in T .

All these concepts and statistics on ribbon tableau can be described in terms of the n-quotient (see
[SSW]).

2. Symmetric Functions

In this section we briefly review some standard notation in symmetric function theory. The reader is
referred to [Mac] for further details.

Let ΛZ denote the ring of symmetric functions with coefficients in Z. Recall that ΛZ has a distinguished
integral basis sλ known as the Schur functions. Nearly all the results of this paper can be stated in ΛZ[q],
but some intermediate steps may require working in Λ = ΛC so we will use that as our symmetric function
ring from now on. We will write Λ(q) for ΛC ⊗C C(q).

It is well known that the Schur functions sλ are orthogonal with respect to a natural inner product 〈 , 〉
on Λ and are unique up to signed permutation. We will denote the homogeneous, elementary, monomial and
power sum symmetric functions by hλ, eλ, mλ and pλ respectively. Recall that we have 〈hλ, mµ〉 = δλµ and

〈pλ, pµ〉 = zλδλµ where zλ = 1m1(λ)m1(λ)!2m2(λ)m2(λ)! · · · . Each of {pi}, {ei} and {hi} generate Λ. We will
write X to mean (x1, x2, . . .). Thus sλ(X) = sλ(x1, x2, . . .).

Let f ∈ Λ. We will recall the definition of the plethysm g 7→ g[f ]. Write g =
∑

λ cλpλ. Then we have

g[f ] =
∑

λ

cλ

l(λ)∏

i=1

f(xλi

1 , xλi

2 , . . .).

Thus the plethysm by f is the (unique) algebra isomorphism of Λ which sends pk 7→ f(xk
1 , xk

2 , . . .). When
f(x1, x2, . . . ; q) ∈ Λ(q) for the distinguished element q, we define the plethysm as pk 7→ f(xk

1 , xk
2 , . . . ; qk).

Thus plethysm does not commute with spcialising q to a complex number.
For example, the plethysm by (1 + q)p1 is given by sending

pk 7→ (1 + qk)pk

and extending to an algebra isomorphism Λ(q) → Λ(q). In such situations we will write f [(1 + q)X ] for
f [(1 + q)p1].

We will be particularly concerned with the plethysm given by (1 + q2 + · · ·+ q2n−2)p1. We will use Υq,n

to denote the map Λ(q)→ Λ(q) given by f 7→ f [(1 + q2 + · · ·+ q2n−2)X ].

3. Ribbon Functions

We will now define the central objects of this paper as introduced by Lascoux, Leclerc and Thibon in
[LLT].
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Definition 3.1. Let λ/µ be a skew partition, tileable by n-ribbons. Define the symmetric functions
Gλ/µ ∈ Λ(q) as:

Gλ/µ(X ; q) =
∑

T

qs(T )xw(T )

where the sum is over all semistandard ribbon tableaux T of shape λ/µ and xα = xα1

1 xα2

2 · · · . When λ
is a partition with non-empty n-core, we write Gλ for Gλ/λ̃. These functions will be loosely called ribbon

functions.

The fact that the functions Gλ/µ are symmetric is not obvious from the combinatorial definition. The
proof requires the use of the action of the Heisenberg algebra on the Fock space of the quantum affine algebra

Uq(ŝln).

Theorem 3.2 ([LLT]). The functions Gλ/µ(X ; q) are symmetric functions.

Definition 3.3. Let λ/µ be a skew shape tileable by n-ribbons. Then define

Kλ/µ,α(q) =
∑

T

qs(T ),

the spin generating function of all semistandard ribbon tableaux T of shape λ/µ and weight α. Similarly let

Lλ/µ,α(q) =
∑

T

qs(T )

summed over all column semistandard ribbon tableaux of shape λ/µ and weight α. A ribbon tableau is
column semistandard if its conjugate is semistandard.

Thus Gλ/µ(X ; q) =
∑

αKλ/µ,α(q)xα. We will now define border ribbon strips.

Definition 3.4. A border ribbon strip T is a connected skew shape λ/µ with a distinguished tiling by
disjoint non-empty horizontal ribbon strips T1, . . . , Ta such that the diagram T+i = ∪j≤iTj is a valid skew
shape for every i and for each connected component C of Ti we have

(1) The shape of C ∪ Ti−1 is not a horizontal ribbon strip. Thus C has to ‘touch’ Ti−1 ‘from below’.
(2) No sub horizontal ribbon strip C ′ of C which can be added to Ti−1 satisfies the above property.

Since C is connected, this is equivalent to saying that only the rightmost ribbon of C touches Ti−1.

We further require that T1 is connected. The height h(Ti) of the horizontal ribbon strip Ti is the number of
its components. The height h(T ) of the border ribbon strip is defined as h(T ) = (

∑
i h(Ti)) − 1. The size

of the border ribbon strip T is then the total number of ribbons in ∪iTi. A border ribbon strip tableau is
a chain T = λ0 ⊂ λ1 · · · ⊂ λr of shapes such that λi/λi−1 has been given the structure of a border ribbon
strip. The type of T = {λi} is then the composition α with αi equal to the size of λi/λi−1.

Define X
µ/λ
ν as

X µ/λ
ν (q) =

∑

T

(−1)h(T )qs(T )

summed over all border ribbon strip tableaux of shape µ/λ and type ν.

Note that this definition reduces to the usual definition of a border strip and border strip tableau when
n = 1, in which case all the horizontal strips Ti are actually connected.

Example 3.5. Let n = 2 and λ = (4, 2, 2, 1). Suppose S is a border ribbon strip such that S1 has shape
(7, 5, 2, 1)/(4, 2, 2, 1), and thus it has size 3 and spin 1. We will now determine all the possible horizontal
ribbon strips which may form S2. It suffices to find the possible connected components that may be added.
The domino (9, 5, 2, 1)/(7, 5, 2, 1) may not be added since its union with S1 is a horizontal ribbon strip,
violating the conditions of the definition. The domino strip (8, 8, 2, 1)/(7, 5, 2, 1) is not allowed since the
domino (8, 8, 2, 1)/(7, 7, 2, 1) can be removed and we still obtain a strip which touches S1.

The legitimate connected horizontal ribbon strips C which can be added are (7, 7, 2, 1)/(7, 5, 2, 1),
(7, 5, 3, 3, 2, 1)/(7, 5, 2, 1) and (7, 5, 4, 1)/(7, 5, 2, 1) as shown in Figure 3. Thus assuming S2 is non-empty,
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there are 5 choices for S2, corresponding to taking some compatible combination of the three connected
horizontal ribbon strips above.

S1

S1

S1

C

C

C

C

S1

S1

S1

S1

S1

S1

C

Figure 3. Connected horizontal strips C which can be added to S1 = (7, 5, 2, 1)/(4, 2, 2, 1)
to form a border ribbon strip. The resulting border ribbon strips all have height 1.

Example 3.6. As before let n = 2. We will calculate X
λ/µ
5 (q) for λ = (5, 5, 2) and µ = (2). The relevant

border ribbon strips S are (successive differences of the following chains denote the Si)

• (2) ⊂ (5, 5, 2) with height 0 and spin 5,
• (2) ⊂ (5, 3, 2) ⊂ (5, 5, 2) with height 1 and spin 3,
• (2) ⊂ (5, 5) ⊂ (5, 5, 2) with height 1 and spin 3,
• (2) ⊂ (5, 3) ⊂ (5, 5, 2) with height 2 and spin 1.

Thus

X
λ/µ
5 (q) = q5 − 2q3 + q.

4. The Murnaghan-Nakayama Rule

The core calculation of the paper [Lam1] (performed using the action of the Heisenberg algebra on the

Fock space of Uq(ŝln)) is the ribbon Murnaghan-Nakayama Rule.

Theorem 4.1 (Murnaghan-Nakayama Rule). Let k ≥ 1 be an integer and ν be a partition. Then

(4.1)
(
1 + q2k + · · ·+ q2k(n−1)

)
pkGν(X ; q) =

∑

µ

X
µ/ν
k (q)Gµ(X ; q).

Also

k
∂

∂pk
Gν(X ; q) =

∑

µ

X
ν/µ
k (q)Gµ(X ; q).

Example 4.2. Let n = 2 and consider (1+ q4)p2 · 1. By the ribbon Murnaghan-Nakyama rule (G0 = 1),
this should equal to

G(4) + qG(3,1) + (q2 − 1)G(2,2) − qG(2,1,1) − q2G(1,1,1,1).

We can compute directly that

G(4) = h2, G(3,1) = qh2, G(2,1,1) = qe2

G(2,2) = q2h2 + e2, G(1,1,1,1) = q2e2,

verifying Theorem 4.1 directly.
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5. Murnaghan-Nakayama and Pieri

We now show that the ‘ribbon Murnaghan-Nakayama’ and ‘ribbon Pieri’ (to be made explicit in Section
6) rules are formally equivalent. In the case n = 1 we obtain a direct combinatorial proof that the usual
Pieri and Murnaghan-Nakayama rules are equivalent.

Lemma 5.1. The power sum and homogeneous symmetric functions satisfy the following equation

mhm = pm−1h1 + pm−2h2 + · · ·+ pm.

Proof. See (2.10) in [Mac]. �

Let V be a vector space over C(q) and vλ be vectors in V labelled by partitions. Recall the definitions of

X
µ/λ
k (q), Kµ/λ,k(q) and Lµ/λ,k(q) from Section 3. Suppose {Pk} are commuting linear operators satisfying

Pkvλ =
∑

µ

X
µ/λ
k (q)vµ for all k

then we will say that the Murnaghan-Nakayama rule holds.
Suppose {Hk} are commuting linear operators on V satisfying

Hkvλ =
∑

µ

Kµ/λ,k(q)vµ for all k,

then we will say that Pieri formula holds.
Suppose {Ek} are commuting linear operators on V satisfying

Ekvλ =
∑

µ

Lµ/λ,k(q)vµ for all k,

then we will say that dual-Pieri formula holds.
If the skew shapes µ/λ are replaced by λ/µ in the above formulae, we get adjoint versions of these

formulae which can be thought of as lowering operators. Thus if a set of commuting linear operators
{
P⊥

k

}

satisfies

P⊥
k vλ =

∑

µ

X
λ/µ
k (q)vµ for all k

then we will say the lowering Murnaghan-Nakayama rule holds, and similarly for
{
E⊥

k

}
and

{
H⊥

k

}
.

Proposition 5.2. Fix n ≥ 1 as usual. Let {Hk} and {Pk} be commuting sets of linear operators
satisfying the relations between hk and pk in Λ. Then the ribbon Murnaghan-Nakayama rule holds for {Pk}
if and only if the ribbon Pieri rule holds for {Hk}.

(Sketch of Proof). The idea is to use Lemma 5.1 and to proceed by induction on k. Thus suppose
that the Murnaghan-Nakayama rule holds for {Pk} and the ribbon Pieri rule holds for Hi for i ≤ k. Then
writing

kHk = Hk−1P1 + · · ·+ Pk

we see that the action of kHk on vλ can be described in terms of ordered pairs (S, T ) consisting of a border
ribbon strip S and horizontal ribbon strip T (such that S is added first to λ then T later).

For the case n = 1, an involution α can be defined on such pairs (S, T ) which changes the sign of
(−1)h(S). This involution α is given by

(1) If the ‘bottom’ horizontal strip S1 of S is such that T ∪ S1 is a horizontal strip then we set
α(S, T ) = (S − S1, T ∪ S1)

(2) Otherwise T ‘touches’ S from below. Let α(S, T ) = (S ∪ T1, T − T1) where T1 is the unique sub
horizontal strip which can be attached to S to form another border strip.
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In both cases the height of the border strip will change and one can check that this is an involution when
it is well defined. The contributions of these strips to kHkvλ cancel out since the total shape λ ∪ S ∪ T is
fixed. The involution fails to be defined in the situation that S and T are both horizontal strips such that
S ∪ T is also a horizontal strip. This case gives exactly the contribution to kHk, proving the inductive step.

The case for general n is more complicated, but the idea is similar. �

In fact we have the following theorem [Lam1].

Theorem 5.3. Let {Hi}, {Ei} and {Pi} be commuting operators on a vector space V over C(q) satisfy
the relations of hi, ei and pi in Λ. Let vλ be a set of vectors in V indexed by partitions. Suppose that
one of the Pieri, dual-Pieri and Murnaghan-Nakayama holds, then all three holds. The same is true for the
lowering operators satisfying the same relation.

6. Ribbon Pieri Formulae

Let n ≥ 1 be a fixed integer. Define the formal power series

H(t) =
∏

i

n−1∏

k=0

1

1− xiq2kt

E(t) =
∏

i

n−1∏

k=0

(
1 + xiq

2kt
)
.

As usual we may define symmetric functions hk and ek by H(t) =
∑

k hktk and similarly for ek. Note that
we have suppressed the integer n from the notation. We shall see later that the definitions of these power
series are completely natural in the context of Robinson-Schensted ribbon insertion.

In plethystic notation, hk = hk[(1 + q2 + · · ·+ q(2n−2))X ] and ek = ek[(1 + q2 + · · ·+ q(2n−2))X ]. The
following theorem is an immediate consequence of Theorem 5.3 and Theorem 4.1.

Theorem 6.1 (Ribbon Pieri Rule). Let λ be a partition. Then

(6.1) hkGλ(X ; q) =
∑

µ

qs(µ/λ)Gµ(X ; q)

where the sum is over all partitions µ such that µ/λ is a horizontal n-ribbon strip with k ribbons. Here
s(µ/λ) refers to the spin of the unique tableau which is a horizontal ribbon strip of shape µ/λ. Also

ekGλ(X ; q) =
∑

µ

qs(µ/λ)Gµ(X ; q)

where the sum is over all partitions µ such that µ/λ is a vertical n-ribbon strip with k ribbons. Here s(µ/λ)
refers to the spin of the unique tableau which is a vertical ribbon strip of shape µ/λ.

Note that by Theorem 6.1, we have

hk =
∑

λ

qmspin(λ)Gλ(X ; q)

where the sum is over all λ with no n-core such that |λ| = kn with no more than n rows and mspin(λ) is the
maximum spin of a ribbon tableau of shape λ. A similar formula holds for ek.

Example 6.2. Let n = 3, k = 2 and λ = (3, 1). Then

h2G(3,1) = G(9,1) + qG(6,2,2) + q2G(4,4,2) + q2G(6,1,1,1,1) + q3G(3,3,2,1,1) + q4G(3,2,2,2,1).
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We should remark that dual-Pieri formulae also follows and is equivalent to a cospin branching formula
of [SSW]. These dual formulae are in some sense easier as they essentially only rely on the fact that ribbon
functions are symmetric.

7. The Ribbon Involution ωn and the Ribbon Cauchy Identity

We now define an involution wn on Λ(q) which is essentially the involution v 7→ v′ on the Fock space F

of [LT]. However, this involution will turn out to be not just a semi-linear involution, but also a C-algebra
isomorphism of Λ(q).

Definition 7.1. Define the ribbon involution wn : Λ(q) → Λ(q) as the semi-linear map satisfying
wn(q) = q−1 and

wn(sλ) = q(n−1)|λ|sλ′ .

Theorem 7.2. The map wn is an C-algebra homomorphism which is an involution. It maps Gλ/µ into
G(λ/µ)′ for every skew shape λ/µ.

The proof of the first statement is not difficult. The proof of the second statement requires the use of
calculations in the Fock Space F which are generalisations of those in [LT], together with symmetric function
manipulations.

Let us write the formal power series

Ω(X ; q) =
∏

i,j

n−1∏

k=0

1

1− xiyjq2k

Ω̃(X ; q) =
∏

i,j

n−1∏

k=0

(
1 + xiyjq

2k
)
.

Then we have:

Theorem 7.3 (Ribbon Cauchy Identity). Fix n as usual and a n-core δ. Then

Ω(X ; q) =
∑
Gλ(X ; q)Gλ(Y ; q)

and

Ω̃ =
∑

λ∈Pδ

q(n−1)|λ/λ̃|Gλ′(X ; q)Gλ(Y ; q−1).

where the sum is over all λ such that λ̃ = δ.

Note that this does not imply that the Gλ form an orthonormal basis under a certain inner product, as
they are not linearly independent.

(Sketch of Proof). Using results relating the Fock Space F and Λ(q) in [Lam1] we have

sλ[(1 + q2 + · · ·+ q2n−2)X ] =
∑

µ

cλ
µ(q)Gµ(X ; q)

where the sum is over all µ ∈ Pδ . Now multiply both sides by sλ(Y ) and sum over λ, giving the Cauchy
identity. The dual Cauchy identity can be obtained via a calculation involving ωn. �

The factor of q(n−1)|λ/λ̃| can be explained combinatorially by the fact that s(T ′) = q(n−1)|λ/λ̃|− s(T ) for
a ribbon tableau T and its conjugate T ′ satisfying sh(T ) = λ.
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8. Connections with Ribbon Insertion

In this section we put the ribbon Pieri formula (Theorem 6.1) and ribbon Cauchy identity (Theorem
7.3) in the context of ribbon Robinson-Schensted-Knuth (RSK) insertion, where both will be proven combi-
natorially and completely for the case n = 2.

8.1. Robinson-Schensted-Knuth for usual Young tableaux. Recall that the Robinson-Schensted
bijection gives a bijection between permutations w ∈ Sm and pairs of standard Young tableaux (see [EC2]):

w 7→ (P (w), Q(w)) .

The semistandard generalisation of this is a bijection between biwords w and pairs of semistandard tableaux
(P (w), Q(w)) of the same shape. This immediately implies the usual Cauchy identity.

In fact the bijection is realised by the insertion algorithm which produces a semistandard tableau T ′ =
(T ← i) given a semistandard tableau T and a number i to insert. An increasing insertion property of
Robinson-Schensted-Knuth insertion guarantees that Q(w) will be semistandard. Let i < j. The increasing
insertion property is the fact that the insertion path of i will always lie to the left of the path of j (if i is
inserted before j). This property is crucial to a combinatorial proof (see [EC2, p. 341]) of the Pieri rule:

hksλ =
∑

µ

sµ.

We may interpret hk as the generating function for a k-tuple of increasing positive integers (i1 ≤ i2 ≤ · · · ≤
ik), and sλ as the weight generating function of tableaux T with shape λ, as usual. Then a bijection from
the left hand side to the right hand side is obtained by associating to a pair ((i1, · · · , ik), T ) the tableau

T ′ = ((· · · ((T ← i1)← i2) · · · )← ik).

The increasing insertion property guarantees that sh(T ′)/λ is indeed a horizontal strip.

8.2. Domino insertion. The above discussion also leads to proofs for the domino n = 2 tableaux case.
Barbasch and Vogan [BV] have defined domino insertion in connection with the primitive ideals of classical
lie algebras. This was put into the usual bumping description by Garfinkle [Gar]. Recently, Shimozono and
White [SW] have extended Garfinkle’s description to the semistandard case and connected it with mixed
insertion. They also observed that it had the crucial color-to-spin property. A straightforward extension to
the non-empty 2-core case was presented in [Lam].

A colored biletter is an ordered triple (c, i, j) where c ∈ {0, 1} is the color and i, j ∈ {1, 2, . . .}. A colored
biword ω is a multiset of colored biletters canonically ordered in some way, usually denoted in an array:

w =




c1 · · · cm

i1 · · · im
j1 · · · jm




Theorem 8.1. Fix a 2-core δ. There is a bijection between colored biwords w of length m with two
colors {0, 1} and pairs (Pd(w), Qd(w)) of semistandard domino tableaux with the same shape λ ∈ Pδ and
|λ| = 2m + |δ| with the following properties:

• The bijection has the color-to-spin property:

(8.1) tc(w) = s(Pd(w)) + s(Qd(w))

where tc(w) is the twice the sum of the colors in the top line of w.
• The weight of Pd(w) is the weight of the lowest line of w. The weight of Qd(w) is the weight of

the middle line of w.
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In fact the bijection is realized by an insertion procedure (denoted (T ← γi) where T is a domino
tableau and γi is either a horizontal or vertical domino labelled i) analogous to the usual Robinson-Schensted
insertion.

This bijection immediately leads to the domino Cauchy identity (n = 2 in Theorem 7.3). In [Lam], we
have also described two dual domino insertion algorithms which are bijections between ‘dual colored biwords’
and pairs of semistandard tableaux of conjugate shape. This proves the dual domino Cauchy formula.

It further turns out that domino insertion has the following domino increasing insertion property. This
was first shown by Shimozono and White by connecting domino insertion with mixed insertion. [Lam] gives
a different proof using growth diagrams. This domino increasing insertion property can be described by
specifying a total order < on dominoes as follows (γi denotes a domino labelled i)

(1) If γi is horizontal and γj vertical then γi > γj .
(2) If γi and γj are both horizontal then γi > γj if and only if i > j.
(3) If γi and γj are both vertical then γi > γj if and only if i < j.

Under this order, domino insertion also has a increasing insertion property,

Lemma 8.2. Let T be a domino tableau without the labels i and j. Set T ′ = (T ← γi) and T ′′ = (T ′ ← γj)
for some dominoes γi and γj . Then sh(T ′/T ) lies to the left of sh(T ′′/T ′) if and only if γi < γj .

Similarly, the dual domino insertion has a property which is dual to this. This increasing property is
retained when the bijection is extended to the semistandard case (see [SW, Lam] for details).

Proposition 8.3. Semistandard domino insertion gives a combinatorial proof of the Pieri rule (Theorem
6.1) for n = 2. Dual semistandard domino insertion gives a combinatorial proof of the dual Pieri rule for
n = 2.

Proof. From the formal power series H(t), it is easy to see that hk is the weight generating function

for multisets Γ = {γi}
k
i=1 of labelled dominoes of size k, where the weight of a labelled domino γi is given by

w(γi) = q2s(γi)xi.

Now fix a shape λ. Let S1 be the set of pairs (Γ, T ) where Γ is a multiset of dominoes of size k and
T is a semistandard domino tableau of shape λ. Let S2 be the set of semistandard tableaux T ′ such that
sh(T ′)/λ is a horizontal domino strip of size k. We define a map α : S1 → S2 by

α(Γ, T ) = ((· · · ((T ← γ1))← γ2) · · · )← γk),

where γi runs over the dominoes within Γ. Here the dominoes are inserted in the order of the increasing
insertion property described above ensuring that the change in shape sh(T ′)/sh(T ) is a horizontal strip.
Taking the weights of these sets and using the color-to-spin property of domino insertion we see obtain
Theorem 6.1 for n = 2. Using Theorem 8.1 one sees that α is a bijection. The proof for the dual case is

exactly analagous. �

8.3. Shimozono and White’s ribbon insertion. Shimozono and White [SW2] have described a
ribbon insertion algorithm for general n. This can be described in a traditional bumping fashion or in terms
of Fomin’s growth diagrams [Fom1, Fom2].

The ribbon insertion algorithm of [SW2] has the usual weight preserving properties, but also the spin
to color property (8.1) which an earlier ribbon-RSK algorithm of Stanton and White [SW1] did not have.
However, the algorithm stops short of being a bijection between colored biwords (with n colors) and pairs
of semistandard ribbon tableaux. The algorithm is only described as a bijection π between colored words
w (not biwords) and a pair (Pr(w), Qr(w)) where Pr(w) is a semistandard ribbon tableau and Qr(w) is
a standard ribbon tableau. In particular the Cauchy identity of Theorem 7.3 does not immediately follow.
The algorithm also does not seem to possess a ribbon increasing insertion property. However one can at
least salvage the following, which is just the first Pieri rule.
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Proposition 8.4. Shimozono and White’s bijection π gives a combinatorial proof that

(1 + q2 + . . . + q2(n−1))h1Gλ(X ; q) =
∑

µ

qs(µ/λ)Gµ(X ; q)

where the sum is over all µ such that µ/λ is a n-ribbon.

Proof. As before we construct a weight preserving bijection between the two sides of the Pieri rule by:

(T, (c, j)) 7→ T ′ = (T ← (c, j)).

Here (c, j) denotes an n-ribbon with color (or spin) c and label j. The color c ranges from 0 to n− 1 and h1

is just the generating function for the labels j. �

Shimozono and White’s ribbon insertion is determined by forcing all ribbons to bump by rows to another
ribbon of the same spin (at least in the standard case). It is possible however to insist that all ribbons of
a particular spin bump by columns instead. Unfortunately, it appears that none of these algorithms have a
ribbon increasing insertion property.
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