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Abstract. It is known that a Coxeter group W , partially ordered by the Bruhat order, is a
graded poset, with rank function given by the length, and that it is EL-shellable, hence Cohen-
Macaulay, and Eulerian. In this work we consider the subposet of W induced by the set of
involutions of W , denoted by Invol(W ). Our main result is that, if W is a classical Weyl
group, then the poset Invol(W ) is graded, with rank function given by the average between
the length and the absolute length, and that it is EL-shellable, hence Cohen-Macaulay, and
Eulerian. In particular we obtain, as new results, a combinatorial description of the covering re-
lation in the Bruhat order of the hyperoctahedral group and the even-signed permutation group,
and a combinatorial description of the absolute length of the involutions in classical Weyl groups.

Résumé. Il est bien connu qu’un groupe de Coxeter W , munis de l’ordre de Bruhat, est un poset
gradué, avec fonction rang donnée par la longueur, et qu’il est EL-shellable, donc de Cohen-
Macaulay, et Eulerien. Dans cet article on considère le sous-poset induit par l’ensemble des
involutions de W , noté Invol(W ). Nous montrons que, si W est un groupe de Weyl classique,

alors le poset Invol(W ) est gradué, avec fonction rang égale à la moyenne entre la longueur
et la longueur absolue, et qu’il est EL-shellable, donc de Cohen-Macaulay, et Eulerien. Nous
obtenons en particulier deux résultats nouveaux: une description combinatoire de la relation de
couverture dans l’ordre de Bruhat de Bn et Dn, et une description combinatoire de la longueur
absolue des involutions dans les groupes de Weyl classiques.

1. Introduction

It is known that a Coxeter group W , partially ordered by the Bruhat order, is a graded poset,
with rank function given by the length, and that it is EL-shellable, hence Cohen-Macaulay, and
Eulerian. The aim of this work is to investigate whether a particular subposet of W , namely that
induced by the set of involutions of W , which we denote by Invol(W ), is endowed with similar
properties.

The problem arises from a geometric question. It is known that the symmetric group, partially
ordered by the Bruhat order, encodes the cell decomposition of Schubert varieties. Richardson
and Springer ([RS1], [RS2]) introduced a vast generalization of this partial order, in relation to
the cell decomposition of certain symmetric varieties. In a particular case they obtained the poset
Invol(Sn).

In this work the problem is completely solved for an important class of Coxeter groups, namely
that of classical Weyl groups. Our main result is that, if W is a classical Weyl group, then the
poset Invol(W ) is graded, with rank function given by the average between the length and the
absolute length, and that it is EL-shellable, hence Cohen-Macaulay, and Eulerian.

The proofs (see [Inc1], [Inc2], [Inc3] for details) are combinatorial and use the descriptions of
classical Weyl groups in terms of permutation groups: the symmetric group for type An, the
hyperoctahedral group for type Bn and the even-signed permutation group for type Dn.
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In particular we obtain, as new results, a combinatorial description of the covering relation in
the Bruhat order of the hyperoctahedral group and the even-signed permutation group, and a
combinatorial description of the absolute length of the involutions in classical Weyl groups.

Finally it is conjectured that the result proved for classical Weyl groups actually holds for every
Coxeter group.

2. Notation and preliminaries

We let N = {1, 2, 3, . . .} and Z be the set of integers. For n, m ∈ Z, with n ≤ m, we let
[n, m] = {n, n + 1, . . . , m}. For n ∈ N, we let [n] = [1, n] and [±n] = [−n, n]\{0}.

2.1. Posets. We follow [Sta1, Chapter 3] for poset notation and terminology. In particular
we denote by C the covering relation: x C y means that x < y and there is no z such that
x < z < y. A poset is bounded if it has a minimum and a maximum, denoted by 0̂ and 1̂
respectively. If x, y ∈ P , with x ≤ y, we let [x, y] = {z ∈ P : x ≤ z ≤ y}, and we call it an interval

of P . If x, y ∈ P , with x < y, a chain from x to y of length k is a (k + 1)-tuple (x0, x1, ..., xk) such
that x = x0 < x1 < ... < xk = y. A chain x0 < x1 < ... < xk is said to be saturated if all the
relations in it are covering relations (x0 C x1 C ... C xk).
A poset is said to be graded of rank n if it is finite, bounded and if all maximal chains of P have the
same length n. If P is a graded poset of rank n, then there is a unique rank function ρ : P → [0, n]

such that ρ(0̂) = 0, ρ(1̂) = n and ρ(y) = ρ(x) + 1 whenever y covers x in P . Conversely, if P is
finite and bounded, and if such a function exists, then P is graded of rank n.
Let P be a graded poset and let Q be a totally ordered set. An EL-labelling of P is a function
λ : {(x, y) ∈ P 2 : x C y} → Q such that for every x, y ∈ P , with x < y, two properties hold:

1. there is exactly one saturated chain from x to y with non decreasing labels:

x = x0 C
λ1

x1 C
λ2

. . . C
λk

xk = y,

with λ1 ≤ λ2 ≤ . . . ≤ λk;
2. this chain has the lexicographically minimal labelling: if

x = y0 C
µ1

y1 C
µ2

. . . C
µk

yk = y

is a saturated chain from x to y different from the previous one, then

(λ1, λ2, . . . , λk) < (µ1, µ2, . . . , µk).

A graded poset P is said to be EL-shellable if it has an EL-labelling.
Connections between EL-shellable posets and shellable complexes, Cohen-Macaulay complexes
and Cohen-Macaulay rings can be found, for example, in [Bac], [BGS], [Bjö], [Gar], [Hoc],
[Rei] and [Sta2]. Here we only recall the following important result, due to Björner.

Theorem 2.1. Let P be a graded poset. If P is EL-shellable then P is shellable and hence
Cohen-Macaulay.

A graded poset P with rank function ρ is said to be Eulerian if

|{z ∈ [x, y] : ρ(z) is even}| = {z ∈ [x, y] : ρ(z)| is odd}|,

for every x, y ∈ P such that x < y.
In an EL-shellable poset there is a necessary and sufficient condition for the poset to be Eulerian.
We state it in the following form (see [Bjö, Theorem 2.7] and [Sta3, Theorem 1.2] for proofs of
more general results).

Theorem 2.2. Let P be a graded EL-shellable poset and let λ be an EL-labelling of P . Then P

is Eulerian if and only if for every x, y ∈ P , with x < y, there is exactly one saturated chain from
x to y with decreasing labels.
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2.2. Coxeter groups. About Coxeter groups we recall some basic definitions. Let W be a
Coxeter group, with set of generators S. The length of an element w ∈ W , denoted by l(w), is the
minimal k such that w can be written as a product of k generators.
A reflection in a Coxeter group W is a conjugate of some element in S. The set of all reflections
is usually denoted by T :

T = {wsw−1 : s ∈ S, w ∈ W}.

The absolute length of an element w ∈ W , denoted by al(w), is the minimal k such that w can be
written as a product of k reflections.

2.3. Bruhat order. Let W be a Coxeter group with set of generators S. Let u, v ∈ W .
Then u → v if and only if v = ut, with t ∈ T , and l(u) < l(v). The Bruhat order of W is the
partial order relation so defined: given u, v ∈ W , then u ≤ v if and only if there is a chain

u = u0 → u1 → u2 → . . . → uk = v.

The Bruhat order of Coxeter groups has been studied extensively (see, e.g., [BW], [Deo], [Ede],
[Ful], [Pro], [Rea], [Ver]). In particular it is known that it gives to W the structure of a graded
poset, whose rank function is the length. It has been also proved that this poset is EL-shellable,
hence Cohen-Macaulay (see [Ede], [Pro], [BW]), and Eulerian (see [Ver]).1 The aim of this work
is to investigate whether the induced subposet Invol(W ) is endowed with similar properties. The
problem is solved for classical Weyl groups, to which next subsection is dedicated.

2.4. Classical Weyl groups. The finite irreducible Coxeter groups have been completely
classified (see, e.g., [BB], [Hum]). Among them we find the classical Weyl groups, which have
nice combinatorial descriptions in terms of permutation groups: the symmetric group Sn is a
representative for type An−1, the hyperoctahedral group Bn for type Bn and the even-signed
permutation group Dn for type Dn.

2.4.1. The symmetric group. We denote by Sn the symmetric group, defined by

Sn = {σ : [n] → [n] : σ is a bijection}

and we call its elements permutations. To denote a permutation σ ∈ Sn we often use the one-line

notation: we write σ = σ1σ2 . . . σn, to mean that σ(i) = σi for every i ∈ [n]. We also write σ in
disjoint cycle form, omitting to write the 1-cycles of σ: for example, if σ = 364152, then we also
write σ = (1, 3, 4)(2, 6). Given σ, τ ∈ Sn, we let στ = σ ◦ τ (composition of functions) so that, for
example, (1, 2)(2, 3) = (1, 2, 3). Given σ ∈ Sn, the diagram of σ is a square of n × n cells, with
the cell (i, j) (that is, the cell in column i and row j, with the convention that the first column is
the leftmost one and the first row is the lowest one) filled with a dot if and only if σ (i) = j. For
example, in Figure 1 the diagram of σ = 35124 ∈ S5 is represented.
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Figure 1. Diagram of σ = 35124 ∈ S5.

The diagonal of the diagram is the set of cells {(i, i) : i ∈ [n]}.
As a set of generators for Sn, we take S = {s1, s2, . . . , sn−1}, where si = (i, i + 1) for every
i ∈ [n − 1]. It is known that the symmetric group Sn, with this set of generators, is a Coxeter
group of type An−1 (see, e.g., [BB]).
The length of a permutation σ ∈ Sn is given by

l(σ) = inv(σ),
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where

inv(σ) = |{(i, j) ∈ [n]2 : i < j, σ(i) > σ(j)}|

is the number of inversions of σ.
In the symmetric group the reflections are the transpositions:

T = {(i, j) ∈ [n]2 : i < j}.

In order to give a characterization of the covering relation in the Bruhat order of the symmetric
group, we introduce the following definition.

Definition 2.3. Let σ ∈ Sn. A rise of σ is a pair (i, j) ∈ [n]2 such that

1. i < j,
2. σ(i) < σ(j).

A rise (i, j) is said to be free if there is no k ∈ [n] such that

1. i < k < j,
2. σ(i) < σ(k) < σ(j).

For example, the rises of σ = 35124 ∈ S5 are (1, 2), (1, 5), (3, 4), (3, 5) and (4, 5). They are all free
except (3, 5). The following is a well-known result.

Proposition 2.4. Let σ, τ ∈ Sn, with σ < τ . Then σ C τ in Sn if and only if

τ = σ(i, j),

where (i, j) is a free rise of σ.

2.4.2. The hyperoctahedral group. We denote by S±n the symmetric group on the set [±n]:

S±n = {σ : [±n] → [±n] : σ is a bijection}

(which is clearly isomorphic to S2n), and by Bn the hyperoctahedral group, defined by

Bn = {σ ∈ S±n : σ(−i) = −σ(i) for every i ∈ [n]}

and we call its elements signed permutations. To denote a signed permutation σ ∈ Bn we use
the window notation: we write σ = [σ1, σ2, . . . , σn], to mean that σ(i) = σi for every i ∈ [n]
(the images of the negative entries are then uniquely determined). We also denote σ by the
sequence |σ1| |σ2| . . . |σn|, with the negative entries underlined. For example, 3 2 1 denotes the
signed permutation [−3,−2, 1]. We also write σ in disjoint cycle form. Signed permutations
are particular permutations of the set [±n], so they inherit the notion of diagram. Note that the
diagram of a signed permutation is symmetric with respect to the center. In Figure 2, the diagram
of σ = 321 ∈ B3 is represented.
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Figure 2. Diagram of σ = 32 1 ∈ B3.

The (main) diagonal of the diagram is the set of cells {(i, i) : i ∈ [±n]}, and the antidiagonal is
the set of cells {(i,−i) : i ∈ [±n]}.
As a set of generators for Bn, we take S = {s0, s1, . . . , sn−1}, where s0 = (1,−1) and si =
(i, i + 1)(−i,−i− 1) for every i ∈ [n − 1]. It is known that the hyperoctahedral group Bn, with
this set of generators, is a Coxeter group of type Bn (see, e.g., [BB]).
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There are various known formulas for computing the length in Bn (see, e.g., [BB]). In [Inc2] we
introduced a new one: the length of σ ∈ Bn is given by

(2.1) lB(σ) =
inv(σ) + neg(σ)

2
,

where

inv(σ) = |{(i, j) ∈ [±n]2 : i < j, σ(i) > σ(j)}|

(the length of σ in the symmetric group S±n), and

neg(σ) = |{i ∈ [n] : σ(i) < 0}|.

For example, for σ = 3 21 ∈ B3, we have inv(σ) = 8, neg(σ) = 2, so lB(σ) = 5.
Finally, it is known (see, e.g., [BB]) that the set of reflections of Bn is

T = {(i,−i) : i ∈ [n]} ∪ {(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n}.

2.4.3. The even-signed permutation group. We denote by Dn the even-signed permutation

group, defined by

Dn = {σ ∈ Bn : neg(σ) is even}.

Notation and terminology are ineherited from the hyperoctahedral group. For example the signed
permutation σ = 3 21, whose diagram is represented in Figure 2, is also in D3.
As a set of generators for Dn, we take S = {s0, s1, . . . , sn−1}, where s0 = (1,−2)(−1, 2) and
si = (i, i+1)(−i,−i−1) for every i ∈ [n−1]. It is known that the even-signed permutation group
Dn, with this set of generators, is a Coxeter group of type Dn (see, e.g., [BB]).
About the length function in Dn, it is known (see, e.g., [BB]) that

lD(σ) = lB(σ)− neg(σ).

Thus, by (2.1), the length of σ ∈ Dn is given by

lD(σ) =
inv(σ)− neg(σ)

2
.

For example, for σ = 3 21 ∈ D3, we have lD(σ) = 3.
Finally, it is known (see, e.g., [BB]) that the set of reflections of Dn is

T = {(i, j)(−i,−j) : 1 ≤ i < |j| ≤ n}.

3. The main problem

It is known that a Coxeter group W , partially ordered by the Bruhat order, is a graded poset,
with rank function given by the length, and that it is also EL-shellable, hence Cohen-Macaulay,
and Eulerian.1 The aim of this work is to investigate whether a particular subposet of W , namely
that induced by the set of involutions of W , is endowed with similar properties.

3.1. Motivation. The problem arises from a geometric question. It is known that the sym-
metric group, partially ordered by the Bruhat order, encodes the cell decomposition of Schubert
varieties (see [Ful]). In 1990 Richardson and Springer (see [RS1] and [RS2]) considered a vast
generalization of this partial order, in relation to the cell decomposition of certain symmetric
varieties. In a particular case they obtained the subposet of Sn induced by the involutions.

3.2. An example. In Figure 3 the example of the poset S4 with the induced subposet
Invol(S4) is illustrated. Even in this simple case it is not obvious why the poset Invol(S4) is
graded and who the rank function is. Note that, for example, the involutions 2143 and 4231 have
distance 3 in the Hasse diagram of S4, while they are in covering relation in Invol(S4).
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Figure 3. From S4 to Invol(S4).

3.3. The main result. The following is the main result of this work.

Theorem 3.1. Let W be a classical Weyl group. The poset Invol(W ) is

1. graded, with rank function given by

ρ(w) =
l(w) + al(w)

2
,

for every w ∈ Invol(W );

2. EL-shellable, hence Cohen-Macaulay;

3. Eulerian.

We will give a sketch of the proof in Section 5.
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4. Preliminary results

In this section we discuss some new results, which play a crucial role in the proof of the main
result of this work. Precisely, we describe the covering relation in the groups Bn and Dn, and we
give a combinatorial description of the absolute length of the involutions in classical Weyl groups.

4.1. Covering relation in the Bruhat order of Bn and Dn.

Definition 4.1. Let σ ∈ Bn. A rise (i, j) of σ is central if

(0, 0) ∈ [i, j]× [σ(i), σ(j)].

A central rise (i, j) of σ is symmetric if j = −i.

The characterization of the covering relation in Bn is then the following.

Theorem 4.2. Let σ, τ ∈ Bn. Then σ C τ in Bn if and only if either

1. τ = σ(i, j)(−i,−j), where (i, j) is a not central free rise of σ, or
2. τ = σ(i,−i), where (i,−i) is a central symmetric free rise of σ.

Theorem 4.2 is illustrated in Figure 4, where black dots and white dots denote respectively σ and
τ , inside the gray areas there are no other dots of σ and τ than those indicated, and the diagrams
of the two permutations are supposed to be the same anywhere else.

1.

PSfrag replacements
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Figure 4. Covering relation in Bn.

For the even-signed permutation group we introduce the following definition.

Definition 4.3. Let σ ∈ Dn. A central rise (i, j) is semifree if

{k ∈ [i, j] : σ(k) ∈ [σ(i), σ(j)]} = {i,−j, j}.

An example of central semifree rise is illustrated in Figure 5 (3).

Theorem 4.4. Let σ, τ ∈ Dn. Then σ C τ in Dn if and only if

τ = σ(i, j)(−i,−j),

where (i, j) is either

1. a not central free rise of σ, or
2. a central not symmetric free rise of σ, or
3. a central semifree rise of σ.

Theorem 4.4 is illustrated in Figure 5, with the same notation as in Figure 4.

1.
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Figure 5. Covering relation in Dn.
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4.2. Absolute length of involutions in classical Weyl groups. In classical Weyl groups
there is a nice combinatorial description for the absolute length of the involutions. In the symmetric
group it is simply given by the number of excedances. Note that an involution of Sn has the
diagram symmetric with respect to the diagonal.

Proposition 4.5. Let σ ∈ Invol(Sn). Then

al(σ) = exc(σ),

where

exc(σ) = |{i ∈ [n] : σ(i) > i}|

is the number of excedances of σ.

For example, for σ = 32154 ∈ Invol(5), we have al(σ) = exc(σ) = 2. In fact

σ = (1, 3)
︸ ︷︷ ︸

t1

· (4, 5)
︸ ︷︷ ︸

t2

is a minimal decomposition of σ as a product of reflections of S5.

We now define a new statistic on a signed permutation σ.
Note that an involution of Bn has the diagram symmetric
with respect to both the diagonals.

Definition 4.6. Let σ ∈ Bn. The number of deficiencies-

not-antideficiencies of σ is

dna(σ) = |{i ∈ [n] : −i ≤ σ(i) < i}|.

For example, consider σ = 4 731 5 62 ∈ B7, whose diagram
is shown in Figure 6. Looking at the picture, dna(σ) is the
number of dots which lie in the gray area. In this case

dna(σ) = 4. Figure 6. The dna statistic.

A surprising fact is that in the hyperoctahedral group and in the even-signed permutation group,
the combinatorial description for the absolute length of an involution is exactly the same: in both
cases it is given by the dna statistic. But the reasons are different.

Proposition 4.7. Let σ ∈ Invol(Bn). Then

alB(σ) = dna(σ).

For example, for the involution of Figure 6, we have alB(σ) = dna(σ) = 4. In fact

(4.1) σ = (1, 4)(−1,−4)
︸ ︷︷ ︸

t1

· (7,−2)(−7, 2)
︸ ︷︷ ︸

t2

· (3,−3)
︸ ︷︷ ︸

t3

· (6,−6)
︸ ︷︷ ︸

t4

is a minimal decomposition of σ as a product of reflections of B7.

Proposition 4.8. Let σ ∈ Invol(Dn). Then

alD(σ) = dna(σ).

For example, for the involution of Figure 6, which is also in Invol(D7), we have alD(σ) = dna(σ) =
4. Note that the decomposition in (4.1) does not work in D7, since (3,−3) and (6,−6) are not
elements of D7. But in general an involution σ of Dn necessarily has an even number of antifixed
points (that is, indices i > 0 such that σ(i) = −i), so we can consider them in pairs. In the
example, σ has the two antifixed points 3 and 6 and

σ = (1, 4)(−1,−4)
︸ ︷︷ ︸

t1

· (7,−2)(−7, 2)
︸ ︷︷ ︸

t2

· (3, 6)(−3,−6)
︸ ︷︷ ︸

t3

· (3,−6)(−3, 6)
︸ ︷︷ ︸

t4

is a minimal decomposition of σ as a product of reflections of D7.
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5. Sketch of proofs

5.1. Gradedness. To prove that the posets Invol(Sn), Invol(Bn) and Invol(Dn) are graded
with rank function ρ we follow two steps:

1. we first give a characterization of the covering relation in the poset (this is done starting
from the description of the covering relation in Sn, Bn and Dn);

2. then we prove that in every covering relation the variation of ρ is 1 (this is done using
the combinatorial description of the absolute length of the involutions).

The following are the characterizations of the covering relations in the posets.

Theorem 5.1. Let σ, τ ∈ Invol(Sn). Then σ C τ in Invol(Sn) if and only if there exists a
rectangle R = [i, j]× [σ(i), τ(i)] such that σ and τ have the same diagram except for the dots in
R, and in its symmetric with respect to the diagonal, for which the situation, depending on the
position of R with respect to the diagonal, is described in Figure 7: black dots and white dots
denote respectively σ and τ , and the rectangle R (darker gray rectangle) contains no other dots
of σ and τ than those indicated.

1.
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Figure 7. Covering relation in Invol(Sn).

Looking at the diagram of a signed permutation, with orbit of an object (which can be a dot, a
cell or a rectangle of cells), we mean the set made of that object and its symmetric with respect
to the main diagonal, to the antidiagonal and to the center.

Theorem 5.2. Let σ, τ ∈ Invol(Bn). Then σ C τ in Invol(Bn) if and only if there exists a
rectangle R = [i, j] × [σ(i), τ(i)] such that σ and τ have the same diagram except for the dots
in R, and in the rectangles of its orbit, for which the situation, depending on the position of R

with respect to the antidiagonal and to the main diagonal, is described in Figure 8, with the same
notation as in Figure 7.
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Figure 8. Covering relation in Invol(Bn).

The case of (σ, τ) is (Ah, Mk), with h, k ∈ [6], where Ah and Mk refer to the cases of Figure 8.
Note that for geometrical reasons not all the 36 pairs are possible cases. In Figure 9 two examples
are shown.

Theorem 5.3. Let σ, τ ∈ Invol(Dn). Then σ C τ in Invol(Dn) if and only if there exists a
rectangle R = [i, j]× [σ(i), τ(i)], either not central or central not symmetric, such that the same
conditions as in Theorem 5.2 are satisfied, with the exceptions, if R is central not symmetric, that:
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(A6, M3) (A4, M6)

Figure 9. Two examples of covering relation in Invol(Bn).

1. in cases (A6, M1) and (A6, M3), picture A6 is replaced by picture A6′, and in cases
(A1, M6) and (A3, M6), picture M6 is replaced by picture M6′, as shown in Figure 10;

A6′.
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i j

Figure 10. Covering relation in Invol(Dn): new cases.

2. in the remaining cases, (A3, M4), (A4, M3), (A4, M4), (A4, M6), (A6, M4), the presence
in R of one more dot either of σ or of τ , which is in the orbit of one of those indicated
in the pictures, is allowed.

In Figure 11 two examples are shown.

(A6′, M3) (A4, M6)

Figure 11. Two examples of covering relation in Invol(Dn).

In the following the gradedness of the posets is stated.

Theorem 5.4. The poset Invol(Sn) is graded, with rank function given by

ρ(σ) =
inv(σ) + exc(σ)

2
,

for every σ ∈ Invol(Sn). In particular Invol(Sn) has rank

ρ(Invol(Sn)) =

⌊
n2

4

⌋

.
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Theorem 5.5. The poset Invol(Bn) is graded, with rank function given by

ρ(σ) =
inv(σ) + neg(σ) + 2dna(σ)

4
,

for every σ ∈ Invol(Bn). In particular Invol(Bn) has rank

ρ(Invol(Bn)) =
n2 + n

2
.

Theorem 5.6. The poset Invol(Dn) is graded, with rank function given by

ρ(σ) =
inv(σ)− neg(σ) + 2dna(σ)

4
,

for every σ ∈ Invol(Dn). In particular Invol(Dn) has rank

ρ(Invol(Dn)) =

⌊
n2

2

⌋

.

5.2. EL-shellability and Eulerianity. Let P be one of Invol(Sn), Invol(Bn) or Invol(Dn).
The characterization of the covering relation gives rise in a natural way to the definition of a
“standard labelling” of P . In fact, for every σ, τ ∈ P , with σ C τ , we call main rectangle of the
pair (σ, τ) the rectangle R = [i, j] × [σ(i), τ(i)], mentioned in each of the Theorems 5.1, 5.2 and
5.3. Note that this rectangle necessarily is unique. Then we can give the following definition.

Definition 5.7. The standard labelling of P is the function

λ : {(σ, τ) ∈ P 2 : σ C τ} → {(i, j) ∈ I2 : i < j}

(where I = [n] if P = Invol(Sn), and I = [±n] otherwise) so defined: for every σ, τ ∈ P , with
σ C τ , if R = [i, j]× [σ(i), τ(i)] is the main rectangle of (σ, τ), then we set

λ(σ, τ) = (i, j).

To prove that the poset P is EL-shellable, we show that the standard labelling actually is an
EL-labelling. This is proved first describing the lexicographically minimal saturated chains, and
then showing that those are the unique with the property of having non decreasing labels.

Theorem 5.8. The poset P is EL-shellable, hence Cohen-Macaulay.

To prove that the poset P is Eulerian, we show that the standard labelling satisfies the condition
of Theorem 2.2, that is, for every σ, τ ∈ P , with σ < τ , there is a unique saturated chain from σ

to τ with decreasing labels. This is proved starting from the EL-shellability and considering the
lexicographically minimal descending chains.

Theorem 5.9. The poset P is Eulerian.

6. Conjecture

It is natural to conjecture that our main result actually holds for every Coxeter group.
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Conjecture 7.1. Let W be a Coxeter group. The poset Invol(W ) is

1. graded, with rank function given by

ρ(w) =
l(w) + al(w)

2
,

for every w ∈ Invol(W );

2. EL-shellable, hence Cohen-Macaulay;

3. Eulerian.1

After a preliminary investigation on the affine Weyl groups (which also have nice combinatorial
descriptions), we feel that our techniques may be applied also to this class of Coxeter groups.
There is another class of Coxeter groups, which are not Weyl groups, for which the result is valid:
the class of dihedral groups.
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