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Abstract. We construct a family of posets, called signed Birkhoff posets, that may be viewed as signed
analogs of distributive lattices. Our posets are generally not lattices, but they are shown to posses many
combinatorial properties corresponding to well known properties of distributive lattices. They have the
additional virtue of being face posets of regular cell decompositions of spheres. We give a combinatorial

description the cd-index of a signed Birkhoff poset in terms of peak sets of linear extensions of an associated
labeled poset. Our description is closely related to a result of Billera, Ehrenborg, and Readdy’s expressing
the cd-index of an oriented matroid in terms of the flag f-vector of the underlying geometric lattice. As an
analog of the Distributive Lattice Conjecture, we conjecture that the chain polynomial of a signed Birkhoff
poset has only real zeros.

1. Introduction

This paper introduces a signed analog of the standard construction of a distributive lattice J(P ) from a
finite poset P . Beginning with the work of Birkhoff [Bi], distributive lattices have been well studied from a
combinatorial viewpoint. Nowadays they are often analyzed in conjunction with notions such as P -partitions,
linear extensions, and R-labelings; see, e.g., [Sta4, Chapter 3]. Our construction will give rise to a family
of Eulerian posets that are amenable to similar types of analyses. Stembridge’s enriched P -partitions [Ste]
turn out to play a role in the enumeration theory of these posets that is analogous to the role of Stanley’s
P -partitions [Sta1] for distributive lattices. Our enumerative analysis is motivated by the work of Billera,
Ehrenborg, and Readdy on the cd-index of oriented matroids [BER]. Although the posets that we construct
are not directly related to face lattices of oriented matroids, the flag vectors of these two classes of posets
are seen to have some remarkably similar properties.

Given a positive integer n and a poset P on the set [n] := {1, 2, . . . , n} partially ordered by ≤P , let ±P
be the poset on {±1, . . . ,±n} ordered so that p <±P q if and only if |p| <P |q|. A filter of a poset Q is a
subset X of Q such that whenever q ∈ X and q <Q q′ then q′ ∈ X . The Birkhoff transform of P is the
poset (distributive lattice) J(P ) consisting of the filters of P ordered by reverse inclusion.1 Define a signed
P -filter to be a filter X of ±P such that if p is a minimal element of X then −p 6∈ X. We now define the
main object of study.
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1Usually J(P ) is defined as the poset of order ideals of P under inclusion, rather than as the filters under reverse inclusion;

these two definitions yield isomorphic posets. Filters turn out to be more convenient for us notationally.
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Definition 1.1. The signed Birkhoff transform of P is the poset B(P ) consisting of all signed P -filters
ordered by inclusion.

Note that one could define the signed Birkhoff transform more abstractly without identifying P with

[n]. This identification is made here for notational convenience and without loss of generality. Let B̂(P )

denote the poset B(P ) with a unique maximal element 1̂ added. Any poset of the form B(P ) or B̂(P )

is called a signed Birkhoff poset.2 For clarity we sometimes call B̂(P ) a graded signed Birkhoff poset (cf.
Proposition 2.2).

Figure 1 illustrates both the ordinary and signed Birkhoff transforms of a three element poset. Filters
in the figure are denoted by 〈p1, . . . , pm〉, where p1, . . . , pm are the minimal generators of the filter. Let us
also point out two interesting families of examples. First recall that the face poset P (Γ) of a finite regular
cell complex Γ is the poset of cells of Γ, along with the empty cell, ordered by inclusion of their closures.

Example 1.2. If P is an n-element chain, then B(P ) is isomorphic to the face poset of a regular cell
decomposition of the (n − 1)-sphere with exactly two cells in each dimension. Such a poset is sometimes
called a ladder.

Example 1.3. If P is an n-element antichain, then B(P ) is isomorphic to the face poset of the boundary
of an n-dimensional hyperoctahedron.

Our main results are summarized below.
In Section 2 we discuss basic structural properties of signed Birkhoff posets, the highlight being a “pairing

procedure” (Theorem 2.5) that allows one to recover P uniquely (up to isomorphism) from B(P ). This is
analogous in part to Birkhoff’s fundamental theorem for finite distributive lattices, which asserts that every
finite distributive lattice L is isomorphic to the poset of order ideals of the subposet of join irreducibles of L.
Presently lacking in this analogy is an intrinsic characterization of signed Birkhoff posets that avoids reference

to an underlying poset P . Interestingly, B̂(P ) is not a lattice unless P is an antichain (Proposition 2.1), so
the pairing procedure does not involve lattice notions such as join irreducibility.

Section 3 deals with shellability properties of signed Birkhoff posets. We show that the edge-labeling

of B̂(P ) induced by a natural labeling of P is an EL-labeling and a dual R-labeling (Theorem 3.1). This

implies that B̂(P ) is Gorenstein∗ for every P . The Gorenstein∗ property is also a consequence of the fact
that B(P ) is the face poset of a regular shellable decomposition of a sphere (Theorem 3.4). This result,

first established by Billera and the author, is proved here by showing that B̂(P ) admits a recursive coatom
ordering (Theorem 3.3) then invoking a theorem of Björner’s on cellular interpretations of posets [Bj2].

Section 4 covers enumerative aspects of signed Birkhoff posets. Let P0 denote the poset P with a unique
minimal element added. We establish the identity (Theorem 4.1)

(1.1) 2F �

B(P )∗ = K̃P0

relating Ehrenborg’s F -quasisymmetric function (which encodes the flag f -vector) of the dual poset B̂(P )∗

to the weight enumerator for enriched P0-partitions. This fundamental identity follows easily from Stem-
bridge’s original work on enriched P -partitions [Ste] as well as from Bergeron, Mykytiuk, Sottile, and van
Willigenburg’s theory of Eulerian Pieri operators [BMSW, Section 7]. The latter work is relevant because of
the close connection between the signed Birkhoff transform and the doubled réseau of a distributive lattice.

A corollary of (1.1) is a description of the zeta polynomial of B̂(P ) in terms of the enriched order polyno-
mial of P0. Using recent work of Billera, Hsiao, and van Willigenburg [BHW] connecting the cd-index to

Stembridge’s peak algebra, we derive from (1.1) a combinatorial interpretation of the cd-index of B̂(P ) in
terms of peak sets of linear extensions of P0 (Theorem 4.4). Our description implies that the cd-index of

B̂(P ) is coefficient-wise maximized when P is an antichain and minimized when P is a chain. There is an

2To our knowledge, there is no direct connection between signed Birkhoff posets and the hyperoctahedral analogs of posets,
called signed posets, introduced by Reiner [R].
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Figure 1. (a) A naturally labeled poset P ; (b) the induced labeled poset ±P ; (c) the dual
Birkhoff transforms J(P )∗ (without top element) and J(P0)

∗ (with top element), with edge-
labeling induced by P ; (d) the signed Birkhoff transform B(P ) (without top element) and

B̂(P ) (with top element), with edge-labeling induced by P.

elegant reformulation of (1.1) that directly relates the cd-index of a signed Birkhoff poset to the flag f -vector
of its underlying distributive lattice (Theorem 4.12). Our formula is essentially identical to the expression
provided by Billera, Ehrenborg, and Readdy [BER] relating the cd-index of an oriented matroid to the flag
f -vector of its geometric lattice of flats (Theorem 4.11).

In Section 5 we conjecture that the chain polynomial of B̂(P ) has only real zeros. This is a signed
analog of the Distributive Lattice Conjecture, which is equivalent to the Neggers-Stanley Poset Conjecture
for naturally labeled posets [Br1]. We show that ours is equivalent to Stembridge’s Enriched Poset Conjecture
for naturally labeled posets having a unique minimal element.

All posets in this paper are assumed to be finite unless otherwise indicated. A graded poset is always
assumed to have a unique minimal element 0̂ and a unique maximal element 1̂. Unexplained terminology
and further background related to posets can be found in [Sta4, Chapter 3].
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2. Signed Birkhoff posets

Assume throughout this section that n > 0 is fixed and P is a poset on [n] ordered by ≤P . Sometimes
P is called a labeled poset. Say that P is naturally labeled if p <P q implies p < q as integers. Let P0 denote
the labeled poset obtained from P by adding a unique minimal element labeled 0.

2.1. Basic properties. Some familiar properties of ordinary Birkhoff transforms carry over to signed
transforms without much difficulty. For instance, as with the identity J(P t Q) ∼= J(P ) × J(Q), it is
straightforward to show that

(2.1) B(P tQ) ∼= B(P )×B(Q),

where t and × denote, respectively, the disjoint union and cartesian product operations for posets.
Unlike the class of distributive lattices, the class of signed Birkhoff posets is not closed under taking

intervals. For instance, the poset in Figure 1(d) has several intervals that are isomorphic to the Boolean
lattice of rank 3, which itself is not a signed Birkhoff poset. The following result points to another significant
difference between these two classes of posets.

Proposition 2.1. B̂(P ) is a lattice if and only if P is an antichain.

In the sequel it will be useful to relate ordinary and signed transforms via the order-reversing surjective

map ϕ : B̂(P ) → J(P0) defined by

ϕ(X) =

{
{|p| : p ∈ X} if X ∈ B(P ),

P0 if X = 1̂.

Note that ϕ restricts to a map from B(P ) onto J(P ).
The cover relations in J(P ) are precisely those relations of the form A ∪ {p} < A for some maximal

element p of P\A. Thus J(P ) is graded of rank n with rank function given by rk(A) = n − #A. The
corresponding assertions for signed Birkhoff posets follow easily:

Proposition 2.2. The cover relations in B(P ) are precisely those relations of the form X < X ∪ 〈p〉
such that p and −p are maximal elements of ±P\X or, equivalently, |p| is a maximal element of P\ϕ(X).

Thus B̂(P ) is a graded poset of rank n + 1 with rank function given by rk(X) = #ϕ(X).

It is a basic property of the Birkhoff transform that a sequence (p1, . . . , pn) ∈ P×n is in L(P ), the set
of linear extensions of P , if and only if {p1, . . . , pn} < {p2, . . . , pn} < · · · < {pn} < ∅ is a maximal chain
of J(P ). By Proposition 2.2, if c = {∅ = X0 l X1 l · · · l Xn} is a maximal chain of B(P ) then there
exists a sequence λ(c) = (p1, . . . , pn) ∈ (±P )×n such that Xi = Xi−1 ∪ 〈pi〉 for all i. Such sequences can be
characterized as “signed linear extensions” of P :

Proposition 2.3. Let π ∈ (±P )×n. Then π = λ(c) for some (unique) maximal chain c of B(P ) if and
only if π = εσ for some (ε, σ) ∈ {±1}×n ×L(P ).

Remark 2.4. The doubled réseau δJ(P ) studied by Bergeron, et al. in [BMSW] is the directed graph

obtained by replacing each labeled edge A ∪ {p}
p
→ A in the Hasse diagram of J(P ) with the two labeled

edges A ∪ {p}
p

⇒
−p

A. In light of Proposition 2.3, we may view signed Birkhoff posets as “poset realizations”

of doubled réseaux of distributive lattices. It is then possible to infer a direct connection between flag

enumeration in B̂(P ) and weight enumeration of enriched P -partitions via the theory of Eulerian Pieri
operators developed in [BMSW, Section 7]; see Theorem 4.1 and Remark 4.2.
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2.2. The pairing procedure. Let B = B(P ). We describe a procedure for recovering P from B.
Define an equivalence relation on B by putting X ≡ X ′ if and only if X and X ′ cover exactly the same set of
elements, so in particular X and X ′ are of the same rank. Let T1, . . . , Tm be the non-singleton equivalence
classes in B/ ≡, indexed so that i < j whenever the elements of Ti have rank greater than those of Tj . Our
goal is to inductively construct posets B1, . . . , Bm whose isomorphism types depend only on the isomorphism
type of B; the result is that Bm

∼= P ∗.
It is easy to see that 〈p〉 ≡ 〈−p〉 for all p ∈ P and that every Ti is the union of sets of the form {〈p〉, 〈−p〉}.

Fix a partition of T1 into blocks of size two and let B1 be the antichain consisting of these blocks. Assume
by induction that the poset Bi−1 has been constructed for some i > 1. Given X, X ′ ∈ Ti, write X ≡i X ′

provided that for every j < i and Y ∈ Tj we have X < Y if and only if X ′ < Y. Each equivalence class in
Ti/ ≡i has even size because 〈p〉 ≡i 〈−p〉 for any p. Now partition each equivalence class in Ti/ ≡i arbitrarily
into blocks of size two. Define the poset Bi by adjoining these two-element blocks to Bi−1 and, for any such
block {X, X ′} and any {Y, Y ′} ∈ Bi−1, putting {X, X ′} <Bi

{Y, Y ′} if and only if X and X ′ are both less
than Y and Y ′.

Theorem 2.5. The pairing procedure, when applied to B(P ), always produces a poset that is isomorphic
to P ∗. Thus P is uniquely determined by B(P ) (up to isomorphism).

Example 2.6. Let B = B(P ) be the poset from Figure 1(d). Then the pairing procedure yields the
following:

1. T1 = {〈2〉, 〈−2〉};
2. T2 = {〈1〉, 〈−1〉, 〈3〉, 〈−3〉};
3. B1 is the one-element antichain {{〈2〉, 〈−2〉}};
4. T2/ ≡2= {{〈1〉, 〈−1〉}, {〈3〉, 〈−3〉}};
5. B2 is the poset on the set {〈2〉, 〈−2〉}, {〈1〉, 〈−1〉}, {〈3〉, 〈−3〉}with exactly one relation, {〈3〉, 〈−3〉} <B2

{〈2〉, 〈−2〉}.

Note that B2 is isomorphic to P ∗ via the map {〈p〉, 〈−p〉} 7→ |p|.

3. Shellability and sphericity

Assume throughout this section that n > 0 is fixed and P is a poset on [n].

3.1. EL-shellability. An edge-labeling of a poset is a map from its cover relations to the integers. The
edge-labeling of J(P ) induced by P is defined by mapping each cover relation A∪{p}lA to p. Similarly, the
edge-labeling of B(P ) induced by P is defined by mapping the cover relation X l X ∪ 〈p〉 to p. We extend

this to an edge-labeling of B̂(P ) by mapping each cover relation of the form X l 1̂ to 0. Figure 1 illustrates
induced edge-labelings.

Let λ be an edge-labeling of a graded poset Q. Given a maximal chain c = {q0 l q1 l · · ·l qm} of some
interval [q0, qm] of Q, say that c is increasing if its label-sequence λ(c) := (λ(q0, q1), . . . , λ(qm−1, qm)) is a
weakly increasing sequence, and say that c is decreasing if λ(c) is a strictly decreasing sequence. Call λ an
R-labeling if every interval I has a unique increasing chain, which we denote by aI . Call λ an EL-labeling if it
is an R-labeling and for every interval I, λ(aI ) is lexicographically smaller than λ(c) for any other maximal
chain c of I. Call λ a dual R-labeling of it is an R-labeling of the dual poset Q∗. If Q has an EL-labeling,
then the lexicographic ordering of its maximal chains determines a shelling of the order complex of Q [Bj1].
For this reason we call such a poset EL-shellable. If P is naturally labeled, then the induced edge-labeling
of J(P ) is well-known (and easily shown) to be an EL-labeling.

Theorem 3.1. If P is naturally labeled then the induced edge-labeling of B̂(P ) is both an EL-labeling
and a dual R-labeling.

A graded poset Q with rank function rk is called Eulerian if its Möbius function satisfies µQ(p, q) =

(−1)rk(q)−rk(p) for every p ≤Q q. It is called Cohen-Macaulay (over the rationals) if the homology of the order
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Figure 2. A cell decomposition of the 2-sphere into four 0-cells, six 1-cells, and four 2-cells.
The face poset of this sphere is the signed Birkhoff poset in Figure 1(d).

complex (i.e. simplicial complex of chains) of every open interval in Q vanishes below the top dimension.
Say that Q is Gorenstein∗ if it is Eulerian and Cohen-Macaulauy.

Corollary 3.2. B̂(P ) is Gorenstein∗.

3.2. Recursive coatom ordering. Sphericity. Let Q be a graded poset. A coatom of Q is an
element covered by 1̂. Let coat(Q) denote the set of coatoms of Q. Following [BW], we say that Q admits a
recursive coatom ordering if its rank is 1, or if its rank is greater than 1 and there is an ordering x1, x2, . . . , xm

of its coatoms such that the following conditions hold:

(i) For all j = 1, . . . , m, [0̂, xj ] admits a recursive coatom ordering in which the elements in coat([0̂, xj ])∩(
∪i<jcoat([0̂, xi])

)
come first.

(ii) For all i < j, if y < xi, xj then there exist k < j and z ∈ B̂(P ) such that y ≤ z l xk, xj .

Theorem 3.3. B̂(P ) admits a recursive coatom ordering.

The recursive coatom ordering property is a purely combinatorial formulation of the concept of shel-
lability for a regular cell complex. It also generalizes the notion of EL-shellability. For a graded poset
Q,

Q is EL-shellable =⇒ Q∗ admits a recursive coatom ordering.

These shelling properties make it possible to interpret intervals in signed Birkhoff posets (and their duals)

as regular decompositions of spheres. Given a finite regular cell complex Γ, let P̂ (Γ) denote the face poset
P (Γ) with a unique maximal element added. Call a graded poset thin if every interval of rank 2 has size 4.

Björner [Bj2] showed that a graded poset Q of rank n is isomorphic to P̂ (Γ) for Γ a shellable regular cell
decomposition of the (n − 2)-sphere if and only if Q is thin and admits a recursive coatom ordering. It is
easy to prove directly that graded signed Birkhoff posets are thin. (This also follows from the fact that they
are Eulerian.) Thus Björner’s theorem together with Theorem 3.1 and Theorem 3.3 yield the following:

Theorem 3.4 (Billera and Hsiao). Let [X, Y ] be an interval in B̂(P ) or B̂(P )∗. Then [X, Y ] is isomor-
phic to the face poset of a shellable regular decomposition of the (rk (Y )− rk(X)− 2)-sphere.

Figure 2 illustrates a cell complex whose face poset is the signed Birkhoff poset from Figure 1(d).

Remark 3.5. A different proof that B(P ) is the face poset of a regular sphere was originally found by
Billera and the author via an explicit geometric description of the cell decomposition. The geometric aspects
of signed Birkhoff posets will be studied in greater detail elsewhere. We thank Sergey Fomin for pointing us
to Björner’s result.
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4. Enumerative properties

4.1. Quasisymmetric generating functions. Let Q =
⊕

n≥0Q
n denote the graded algebra of quasi-

symmetric functions over Q in the variables x1, x2, . . . The vector space Qn consists of those homogeneous
power series in Q[[x1, x2, . . .]] of degree n for which the coefficients of xa1

1 xa2
2 · · ·xak

k and xa1

i1
xa2

i1
· · ·xak

ik
are

equal whenever i1 < · · · < ik and a1, . . . , ak is a sequence of positive integers summing to n. Set Q0 = Q.
For each n ≥ 1, the fundamental basis for Qn is the linear basis consisting of the 2n−1 elements

LS :=
∑

i1≤···≤in:
j∈S⇒ij <ij+1

xi1xi2 · · ·xin
(S ⊆ [n− 1]).

This notation suppresses the dependence of LS on n. See [Sta5] for general background and references on
quasisymmetric functions.

Let Q be a graded poset (with 0̂ and 1̂) of rank n with rank function rk . If s ≤ t ∈ Q then write
rk(s, t) = rk(t) − rk (s). To study the flag enumerative invariants of Q, it will be useful to work with the
following quasisymmetric generating function introduced by Ehrenborg [E1]:

FQ :=
∑

k≥1,

0̂=t0≤t1≤···≤tk−1<tk=1̂

x
rk(t0,t1)
1 x

rk(t1,t2)
2 · · ·x

rk(tk−1,tk)
k ,

where the sum is over all multichains of Q from 0̂ to 1̂ in which 1̂ occurs exactly once. We review some
essential facts about this generating function.

Recall that the descent set of a sequence σ = (σ1, σ2, . . . , σn) of integers is defined by Des(σ) := {i ∈
[n− 1] : σi > σi+1}. If Q has an R-labeling λ, then

(4.1) FQ =
∑

c

LDes(λ(c)),

where the sum is over all maximal chains c of Q. In general, when Q does not necessarily have an R-labeling,
the vector of coefficients of FQ in the fundamental basis is the flag h-vector of Q.

Given a poset P , let A(P ) denote the set of P -partitions; i.e. order-preserving maps from P to the
positive integers.3 The weight enumerator for P -partitions is the quasisymmetric function

KP :=
∑

σ∈A(P )

xσ(1)xσ(2) · · ·xσ(n).

Gessel [G] first studied quasisymmetric weight enumerators for more general objects called (P, ω)-partitions
[Sta1], the motivation being that these weight enumerators generalize Schur functions in a combinatorially
useful way. It is easy to verify using (4.1) (see [Sta5, page 359]) that

(4.2) FJ(P ) = KP .

Theorem 4.1 below expresses a similar relationship between F �

B(P )∗ and Stembridge’s enriched weight enu-
merator.

4.2. Enumeration in the peak algebra. The peak set of a sequence σ = (σ1, . . . , σn) of integers is
defined to be

Peak (σ) := {i ∈ {2, 3, . . . , n− 1} : σi−1 < σi > σi+1}.

3What we call a P -partition here is what Stanley [Sta1] originally calls a reverse P -partition.
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Let Peakn denote the set of all possible peak sets of sequences of length n. Thus, S ∈ Peak n if and only if
(i) 1, n 6∈ S and (ii) i ∈ S implies i− 1 6∈ S. For each S ∈ Peakn, the peak function θS ∈ Q

n is defined by

θS := 2#S+1
∑

T⊆[n−1]:S⊆TM(T+1)

LT ,

where T M U := (T\U) ∪ (U\T ) and T + 1 := {i + 1 : i ∈ T}. The peak functions are linearly independent
and span a proper subalgebra Π of Q, called the peak algebra [Ste].

Let ±P be the linear order −1 ≺ +1 ≺ −2 ≺ +2 ≺ −3 ≺ +3 ≺ · · · on the set of non-zero integers. An
enriched P -partition of a poset P is an order-preserving map σ : P → ±P such that if σ(p) = σ(q) then
σ(p) > 0. Let E(P ) denote the set of enriched P -partitions. The enriched weight enumerator for P -partitions
is the quasisymmetric function

K̃P :=
∑

σ∈E(P )

x|σ(1)|x|σ(2)| · · ·x|σ(n)|.

Stembridge [Ste] originally defined enriched weight enumerators in the more general context of enriched
(P, ω)-partitions.4 His theory of enriched (P, ω)-partitions was motivated by the study of Schur’s Q-functions.
A basic property of enriched weight enumerators is that

(4.3) K̃P =
∑

σ∈L(P )

θPeak(σ)

when P is naturally labeled.

Theorem 4.1. For any poset P,

2F �

B(P )∗ = K̃P0 .

Proof. We may assume without loss of generality that P is a naturally labeled poset on [n]. It follows
from [Ste, Theorem 3.6 and (1.4)] that

K̃P0 =
∑

(ε,σ)∈{±1}×(n+1)×L(P0)

LDes(εσ)(4.4)

= 2
∑

(ε,σ)∈{±1}×n×L(P )

LDes(0.εσ).

The last expression equals 2F �

B(P )∗ by Proposition 2.3 and the fact that, by Theorem 3.1, the induced

edge-labeling of B̂(P )∗ is an R-labeling. �

Remark 4.2. In [BMSW, Example 7.5] it is observed that K̃P0 =
∑

c LDes(c), the sum being over all
maximal chains in the doubled reséau δJ(P0). This formula is essentially (4.4) and thus provides an alternate
approach to proving Theorem 4.1. Yet another proof can be adapted from that of [BER, Theorem 3.1]; see
Remark 4.13.

The enriched order polynomial Ω′(P, m) is the number of enriched P -partitions σ : P → ±P such that
σ(p) 4 m for all p ∈ P . As an enriched analog of the familiar equation Z(J(P ), m) = Ω(P, m) relating the
zeta polynomial of J(P ) to the order polynomial of P [Sta4], we obtain the following:

Corollary 4.3. For any poset P,

2 Z(B̂(P ), m) = Ω′(P0, m).

4Our definition of an enriched P -partition agrees with Stembridge’s original definition of an enriched (P,ω)-partition when
ω is a natural labeling of P .
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4.3. The cd-index. Theorem 4.1 may be used to give a combinatorial interpretation of the cd-index

of B̂(P ), as we now explain. For a graded poset Q of rank n, let (fS(Q) : S ⊆ [n − 1]) denote the flag
f -vector of Q; i.e., fS(Q) is the number of chains of size #S in Q whose elements have ranks precisely in S.
Define a polynomial of degree n− 1 in the non-commuting variables a and b of degree 1 by

ΨQ :=
∑

S⊆[n−1]

fS(Q)uS ,

where uS = u1 · · ·un−1, ui = b if i ∈ S and ui = a−b if i 6∈ S. Fine [BK] observed that when Q is Eulerian,
ΨQ can be written as a polynomial in the variables c = a+b and d = ab+ba, called the cd-index of Q; for
a sampling of work on the cd-index, see [Sta3], [BER], [BE], [ER], and [E2]. If Γ is a cell complex such

that P̂ (Γ) is Eulerian, we may refer to Ψ �

P (Γ) as the cd-index of Γ or P (Γ).

To connect the cd-index to our work, we set up a one-to-one correspondence w 7→ Sw between the set
of cd-words of degree n− 1 and Peakn given by

ca1dca2d · · · cakdcak+1 7→ {deg(ca1d), deg(ca1dca2d), . . . , deg(ca1d · · · cakd)}.

For fixed n, let wS denote the cd-word of degree n− 1 associated to the peak set S ∈ Peakn. For instance,
Scddccdc = {3, 5, 9} ∈ Peak 11 and w{3,5,9} = cddccdc. Given an Eulerian poset Q of rank n and a cd-word
w of degree n− 1, let [w] denote the coefficient of the word w in ΨQ. A link between the cd-index and the
peak algebra is provided by the identity [BHW, Corollary 2.2]

(4.5) FQ =
∑

S∈Peakn

[wS ]

21+#S
· θS .

This formula together with Theorem 4.1 and (4.3) yield the following:

Theorem 4.4. For a naturally labeled poset P ,

Ψ �

B(P )∗ =
∑

σ∈L(P0)

2#Peak(σ)wPeak(σ).

In particular, the cd-indices of B̂(P )∗ and B̂(P ) have non-negative coefficients.

Note that ΨQ∗ is obtained from ΨQ by changing every cd-word w to w∗, the word consisting of the
letters of w in reverse order [BER].

Example 4.5. If P is the poset from Figure 1(a) then

Ψ �

B(P )∗ = wPeak(0123) + wPeak(0213) + wPeak(0231)

= w∅ + 2w{2} + 2w{3}

= ccc + 2dc + 2cd

and
Ψ �

B(P ) = ccc∗ + 2dc∗ + 2cd∗ = ccc + 2cd + 2dc.

Theorem 4.4 provides further evidence for Stanley’s Gorensetin∗ conjecture [Sta3, Conjecture 2.1], which
is known to hold for face lattices of convex polytopes and oriented matroids:

Conjecture 4.6 (Stanley). The coefficients of the cd-index of a Gorenstein∗ poset are non-negative.

Remark 4.7. Conjecture 4.6 has received special attention in connection with a conjecture of Charney
and Davis [CD] on the sign of the quantity

κ(Γ) := 1−
1

2
f0 +

1

4
f1 − · · ·+

(
−

1

2

)d+1

fd,

where fi is the number of i-cells of the d-dimensional cell complex Γ. The Charney-Davis Conjecture predicts
that (−1)mκ(Γ) ≥ 0 whenever Γ is a flag complex triangulating a (2m− 1)-sphere. If Γ is the order complex
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of P\{0̂, 1̂}, where P is an Eulerian poset of rank 2m + 1, then (−1)m22mκ(Γ) is the coefficient of dm of the
cd-index of P ; see [Sta2] for additional details. For the face poset Q of a cell complex Γ, the order complex

of Q\{0̂} is a flag complex and is the barycentric subdivision of Γ. Thus Theorem 4.4 proves a special case of
the Charney-Davis Conjecture by supplying a combinatorial interpretation of the quantity (−1)mκ(Γ) when
Γ is the barycentric subdivision of a cellular sphere whose face poset is a signed Birkhoff poset.

Let S
0
n be the set of permutations of 0, 1, . . . , n that start with 0. Taking P to be the antichain on [n]

in Theorem 4.4 yields [BER, Proposition 8.1]:

Corollary 4.8 (Billera, Ehrenborg, and Readdy). Let Cn be the face lattice of the n-dimensional cube.
Then

ΨCn
=

∑

π∈S0
n

2#Peak(π)wPeak(π).

On the other hand, if P is an n-element chain then a direct computation shows that Ψ �

B(P ) = cn. For

an arbitrary, naturally labeled poset P on [n], L(P0) is a subset of S
0
n. Thus Theorem 4.4 and Corollary 4.8

imply the following:

Corollary 4.9. The cd-index of a signed Birkhoff poset of rank n + 1 is coefficient-wise maximized by
the cd-index of the n-dimensional hyperoctahedron and minimized by cn. In other words, Ψ �

B(P ) is coefficient-

wise maximized when P is an antichain minimized when P is a chain.

4.4. Comparisons with oriented matroids. Let Γ be a cell complex whose face poset is isomorphic
to B(P ) for some P . Let m be the number of minimal elements of P . The number of maximal cells of Γ is
clearly 2m, which equals

(4.6)
∑

x∈J(P )

|µJ(P )(0̂, x)|,

where µJ(P ) is the Möbius function of J(P ). This is easily proved using well-known properties of the Möbius
function of a distributive lattice; see, e.g., [Sta4, Example 3.9.6].

Formula (4.6) is reminiscent of a famous result of Zaslavsky’s expressing the f -vector of a hyperplane
arrangement in terms of its intersection lattice [Z]. He showed in particular that the number of regions in

a hyperplane arrangement is
∑

x∈L |µL(0̂, x)|, where L is the intersection lattice. This result holds more
generally in the setting of oriented matroids, where the intersection lattice is now replaced by the geometric
lattice of flats. We refer the reader to [BLSWZ] for background and references in this area. Note that
whereas a signed Birkhoff poset is completely determined by its underlying distributive lattice, an oriented
matroid is not necessarily determined by its geometric lattice. In this respect, Zaslavsky’s formula is more
surprising, and indeed more subtle, than (4.6). Bayer and Sturmfels [BS] extended Zaslavsky’s result by
showing that the entire flag f -vector of an oriented matroid depends only on the underlying geometric lattice.
The dependency is formulated explicitly in [BLSWZ, Proposition 4.6.2] in terms of the zero map, which
“forgets the signs” of covectors. Using ϕ in place of the zero map, we have an essentially identical formula:

Proposition 4.10. Let Ak < Ak−1 < · · · < A0 = ∅ be a chain in J(P ). The number of chains in the
preimage of c under the map ϕ : B(P ) → J(P ) is

#ϕ−1(c) =
k∏

i=1

∑

B∈J(P )
Ai≤B≤Ai−1

|µJ(P )(Ai, B)|.

Billera, Ehrenborg, and Readdy described explicitly the cd-index of an oriented matroid in terms of the
flag f -vector of the underlying geometric lattice [BER]. To state their result, let us define a linear map
ϑ : Q → Π on the basis {LS} by

ϑ(LDes(σ)) = θPeak(σ)
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for any fixed n ≥ 1 and any sequence of σ = (σ1, . . . , σn). We set ϑ(1) = 1. It is easy to see that ϑ is
well-defined. Stembridge [Ste] introduced ϑ as a means of relating the weight enumerator of P -partitions to
that of enriched P -partitions. A basic consequence of the definition of ϑ is that

(4.7) ϑ(KP ) = K̃P

for any poset P . It is also possible to view ϑ as a specialization of a family of maps on noncommutative
symmetric functions defined by Krob, Leclerc, and Thibon [KLT]. Many properties about these maps are
proved in their work, and connections to the peak algebra are explained in [BHT].

The following is [BER, Theorem 3.1], stated in the present form in [BHW, Proposition 3.5]:

Theorem 4.11 (Billera, Ehrenborg, and Readdy). For the geometric lattice L of an oriented matroid
O,

2FT∗ = ϑ(FL0),

where T is the face lattice of O.

By comparison, using (4.2) and (4.7) we can restate Theorem 4.1 as follows:

Theorem 4.12. For any poset P,

2F �

B(P )∗ = ϑ(FJ(P0)).

Theorem 4.12 summarizes the relationship between the flag enumerative invariants of a signed Birkhoff
poset and its underlying distributive lattice.

Remark 4.13. It is possible to prove Theorem 4.12 (and hence Theorem 4.1) by adapting Billera,
Ehrenborg, and Readdy’s proof of [BER, Theorem 3.1], with Proposition 4.10 now playing the role of
[BLSWZ, Proposition 4.6.2].

5. An analog of the Distributive Lattice Conjecture

The chain polynomial of a graded poset Q of rank n is defined by C(Q, t) :=
∑n

i=0 cit
i, where ci is

the number of chains in Q of length i from 0̂ to 1̂. We state a well-known reformulation of a conjecture of
Neggers [N] from 1978:

Conjecture 5.1 (The Distributive Lattice Conjecture). The chain polynomial of a distributive lattice
has only real zeros.

For a poset P on [n], n > 0, define W (P, t) :=
∑

σ∈L(P ) t#Des(σ)+1. It is a standard exercise to show

that if P is naturally labeled then (1− t)nC(J(P ), t/(1− t)) = W (P, t). Thus C(J(P ), t) has only real zeros
if and only if W (P, t) does. More generally, the Neggers-Stanley Poset Conjecture predicts that W (P, t) has
only real zeros for any labeling of P . It is a classical result that a polynomial with non-negative coefficients
has only real zeros if and only if its coefficients form a Pólya frequency sequence. This would imply, in the
case of W (P, t), that the coefficients form a log-concave, unimodal sequence. We refer the reader to [Br1],
[Br2], and [RW] for results and references related to the Neggers-Stanley Conjecture and Pólya frequency
sequences.

The following is a signed analog of the Distributive Lattice Conjecture:

Conjecture 5.2. For any poset P , C(B̂(P ), t) has only real zeros.

We make some observations in support of this conjecture. In the enumerative theory of P -partitions,
W (P, t) arises as the numerator of the rational generating function

∑
m≥0 Ω(P, m)tm [Sta1]. Likewise, in

the enumerative theory of enriched P -partitions, one has the identity [Ste, Theorem 4.1]

(5.1)
∑

m≥0

Ω′(P, m)tm =
1

2

(1 + t)n+1

(1− t)n+1
·W ′

(
P,

4t

(1 + t)2

)
,
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where W ′(P, t) :=
∑

σ∈L(P ) t#Peak(σ)+1 and P has n elements. Stembridge’s Enriched Poset Conjecture

[Ste, Conjecture 4.3] predicts that W ′(P, t) has only real zeros for any labeled poset P . This is known to
be true when P is a disjoint union of labeled chains [Ste, Corollary 4.6] and has been verified for all labeled
posets of size up to 7 and all naturally labeled posets of size 8. The relevance to our work is explained by
the following:

Proposition 5.3. For a naturally labeled poset P, W ′(P0, t) has only real zeros if and only if C(B̂(P ), t)
has only real zeros.

Remark 5.4. Proposition 5.3 shows that Conjecture 5.2 is a special case of the Enriched Poset Conjec-
ture. Brenti’s work [Br1] indicates the usefulness of the distributive-lattice approach to the Neggers-Stanley
Conjecture for naturally labeled posets. We hope that some progress can be made on the Enriched Poset
Conjecture in light of Proposition 5.3.
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