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Abstract. Let k be a field of characteristic zero and let f ∈ k[x]. The m-th cyclic resultant of f is rm =
Res(f, xm

− 1). We characterize polynomials having the same set of nonzero cyclic resultants. Generically,
for a polynomial f of degree d, there are exactly 2d−1 distinct degree d polynomials with the same set of
cyclic resultants as f . However, in the generic monic case, degree d polynomials are uniquely determined by
their cyclic resultants. Moreover, two reciprocal (“palindromic”) polynomials giving rise to the same set of
nonzero rm are equal. The reciprocal case was stated many years ago (for k =

�
) and has many applications

stemming from such disparate fields as dynamics, number theory, and Lagrangian mechanics. In the process,
we also prove a unique factorization result in semigroup algebras involving products of binomials.

1. Introduction

Let k be a field of characteristic zero and let f(x) = a0x
d + a1x

d−1 + · · · + ad ∈ k[x]. The m-th
cyclic resultant of f is rm(f) = Res(f, xm − 1). We are primarily interested here in the fibers of the map
r : k[x] → kN given by f 7→ (rm)

∞
m=0. In particular, what are the conditions for two polynomials to give rise

to the same set of cyclic resultants? For technical reasons, we will only consider polynomials f that do not
have a root of unity as a zero. With this restriction, a polynomial will map to a set of all nonzero cyclic
resultants.

One motivation for the study of cyclic resultants comes from the theory of dynamical systems. Sequences
of the form rm arise as the cardinalities of sets of periodic points for toral endomorphisms. Let f be monic of
degree d with integral coefficients and let X = Td = Rd/Zd denote the d-dimensional additive torus. Then,
the companion matrix Af of f acts on X by multiplication mod 1; that is, it defines a map T : X → X
given by

T (x) = Afx mod 1.

Let Perm(T ) = {x ∈ Td : Tm(x) = x} be the set of points fixed under the map Tm. Under the ergodicity
condition that no zero of f is a root of unity, it follows (see [3]) that |Perm(T )| = | det(Am

f −I)|, in which I is

the d-by-d identity matrix, and both of these quantities are given by |rm(f)|. As a consequence of our results,
we characterize when the sequence |Perm(T )| determines the spectrum of the linear map A : Rd → Rd that
lifts T .

In connection with number theory, such sequences were also studied by Pierce and Lehmer [3] in the
hope of using them to produce large primes. As a simple example, the polynomial f(x) = x − 2 gives the
Mersenne sequence Mm = 2m − 1. Indeed, we have Mm = | det(Am

f − I)|, and these numbers are precisely
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the cardinalities of the sets Perm(T ) for the map T (x) = 2x mod 1. Further motivation comes from knot
theory [9] and Lagrangian mechanics [6, 7].

The principal result in the direction of our main characterization theorem was discovered by Fried [4]
although certain implications of Fried’s result were known to Stark [2]. One of our motivations for this work
was to present a complete and satisfactory proof of this result. Fried’s argument in [4], while elegant, is
difficult to read and not as complete as one would like. Given a polynomial f of degree d, the reversal of f
is the polynomial xdf(1/x). Additionally, f is called reciprocal if ai = ad−i for 0 ≤ i ≤ d (sometimes such
a polynomial is called palindromic). Alternatively, f is reciprocal if it is equal to its own reversal. Fried’s
result may be stated as follows.

Theorem 1.1 (Fried). Let p(x) = a0x
d + · · · + ad−1x + ad ∈ R[x] be a real reciprocal polynomial of

even degree d with a0 > 0, and let rm be the m-th cyclic resultants of p. Then, |rm| uniquely determine this

polynomial of degree d as long as the rm are never 0.

2. Statement of Results

As far as we know, the general (non-reciprocal) case has not received much attention. We begin by
stating our main characterization theorem for cyclic resultants.

Theorem 2.1. Let k be a field of characteristic zero, and let f and g be polynomials in k[x]. Then, f
and g generate the same sequence of nonzero cyclic resultants if and only if there exist u, v ∈ k[x] with deg(u)
even, u(0) 6= 0, and nonnegative integers l1 ≡ l2 (mod 2) such that

f(x) = xl1v(x)u(x−1)xdeg(u)

g(x) = xl2v(x)u(x).

Although the theorem statement appears somewhat technical, we present a natural interpretation of the
result. Suppose that g(x) = xl2v(x)u(x) is a factorization of a polynomial g with nonzero cyclic resultants.
Then, another polynomial f giving rise to this same sequence of resultants is obtained from v by multiplication
with the reversal of u and a factor xl1 in which l1 ∈ N has the same parity as l2. In other words, f(x) =
xl1v(x)u(x−1)xdeg(u), and all such f must arise in this manner.

Example 2.2. One can check that the polynomials

f(x) = x3 − 10x2 + 31x− 30

g(x) = 15x5 − 38x4 + 17x3 − 2x2

both generate the same cyclic resultants. This follows from the factorizations

f(x) = (x − 2)
(
15x2 − 8x+ 1

)

g(x) = x2(x− 2)
(
x2 − 8x+ 15

)
.

The following is a direct corollary of our main theorem to the generic case.

Corollary 2.3. Let k be a field of characteristic zero and let g be a generic polynomial in k[x] of degree
d. Then, there are exactly 2d−1 distinct degree d polynomials with the same set of cyclic resultants as g.

Proof. If g is generic, then g will not have a root of unity as a zero nor will g(0) = 0. Theorem 2.1,
therefore, implies that any other degree d polynomial f ∈ k[x] giving rise to the same set of cyclic resultants
is determined by choosing an even cardinality subset of the roots of g. Such polynomials will be distinct
since g is generic. Since there are 2d subsets of the roots of g and half of them have even cardinality, the
theorem follows. �
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Example 2.4. Let g(x) = (x− 2)(x− 3)(x− 5) = x3 − 10x2 + 31x− 30. Then, there are 23−1 − 1 = 3
other degree 3 polynomials with the same set of cyclic resultants as g. They are:

15x3 − 38x2 + 17x− 2

10x3 − 37x2 + 22x− 3

6x3 − 35x2 + 26x− 5.

If one is interested in the case of generic monic polynomials, then Theorem 2.1 also implies the following
uniqueness result.

Corollary 2.5. Let k be a field of characteristic zero and let g be a generic monic polynomial in k[x]
of degree d. Then, there is only one monic, degree d polynomial with the same set of cyclic resultants as g.

Proof. Again, since g is generic, it will not have a root of unity as a zero nor will g(0) = 0. Theorem
2.1 forces a constraint on the roots of g for there to be a different polynomial f with the same set of cyclic
resultants as g. Namely, a subset of the roots of f has product 1, a non-generic situation. �

As to be expected, there are analogs of Theorem 2.1 and Corollary 2.5 to the real case involving absolute
values.

Theorem 2.6. Let f and g be polynomials in R[x]. If f and g generate the same sequence of nonzero

cyclic resultant absolute values, then there exist u, v ∈ C[x] with u(0) 6= 0 and nonnegative integers l1, l2 such

that

f(x) = ± xl1v(x)u(x−1)xdeg(u)

g(x) = xl2v(x)u(x).

Corollary 2.7. Let g be a generic monic polynomial in R[x] of degree d. Then, g is the only monic,
degree d polynomial in R[x] with the same set of cyclic resultant absolute values as g.

The generic real case without the monic assumption is somewhat more subtle than that of Corollary 2.3.
The difficulty is that we are restricted to polynomials in R[x]. However, there is the following

Corollary 2.8. Let g be a generic polynomial in R[x] of degree d. Then there are exactly 2dd/2e+1

distinct degree d polynomials in R[x] with the same set of cyclic resultant absolute values as g.

Proof. If d is even, then genericity implies that all of the roots of g will be nonreal. In particular, it
follows from Theorem 2.6 (and genericity) that any other degree d polynomial f ∈ R[x] giving rise to the
same set of cyclic resultant absolute values is determined by choosing a subset of the d/2 pairs of conjugate
roots of g and a sign. This gives us a count of 2d/2+1 distinct real polynomials. When d is odd, g will
have exactly one real root, and a similar counting argument gives us 2dd/2e+1 for the number of distinct real
polynomials in this case. This proves the corollary. �

A surprising consequence of this result is that the number of polynomials with equal sets of cyclic
resultant absolute values is significantly smaller than the number predicted in Corollary 2.3.

Example 2.9. Let g(x) = (x−2)(x+i+2)(x−i+2) = x3+2x2−3x−10. Then, there are 2d3/2e+1−1 = 7
other degree 3 real polynomials with the same set of cyclic resultant absolute values as g. They are:

−x3 − 2x2 + 3x+ 10

±(−2x3 − 7x2 − 6x+ 5)

±(5x3 − 6x2 − 7x− 2)

±(−10x3 − 3x2 + 2x+ 1).
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It is important to realize that while

f(x) =(1− 2x)(1 + (i+ 2)x)(x − i+ 2)

= (−4− 2 i)x3 − (10− i)x2 + (2 + 2 i)x+ 2− i

has the same set of actual cyclic resultants (by Theorem 2.1), it does not appear in the count above since it
is not in R[x].

As an illustration of the usefulness of Theorem 2.1, we prove a uniqueness result involving cyclic resultants
of reciprocal polynomials. Fried’s result also follows in the same way using Theorem 2.6 in place of Theorem
2.1.

Corollary 2.10. Let f and g be reciprocal polynomials with equal sets of nonzero cyclic resultants.
Then, f = g.

Proof. Let f and g be reciprocal polynomials having the same set of nonzero cyclic resultants. Applying
Theorem 2.1, it follows that d = deg(f) = deg(g) and that

f(x) = v(x)u(x−1)xdeg(u)

g(x) = v(x)u(x)

(l1 = l2 = 0 since f(0), g(0) 6= 0). But then,

u(x−1)

u(x)
xdeg(u) =

f(x)

g(x)

=
xdf(x−1)

xdg(x−1)

=
u(x)

u(x−1)
x−deg(u).

In particular, u(x) = ±u(x−1)xdeg(u). If u(x) = u(x−1)xdeg(u), then f = g as desired. In the other case, it
follows that f = −g. But then Res(f ,x− 1) = Res(g,x− 1) = −Res(f ,x− 1) is a contradiction to f having
all nonzero cyclic resultants. This completes the proof. �

We now switch to the seemingly unrelated topic of binomial factorizations in semigroup algebras. The
relationship to cyclic resultants will become clear later. Let A be a finitely generated abelian group and let
a1, . . . , an be distinguished generators of A. Let Q be the semigroup generated by a1, . . . , an. If k is a field,
the semigroup algebra k[Q] is the k-algebra with vector space basis {sa : a ∈ Q} and multiplication defined
by sa · sb = sa+b. Let L denote the kernel of the homomorphism Zn onto A. The lattice ideal associated
with L is the following ideal in S = k[x1, . . . , xn]:

IL = 〈xu − xv : u, v ∈ Nn with u− v ∈ L〉.

It is a well-known fact that k[Q] ∼= S/IL (e.g. see [8]). We are primarily concerned here with certain
kinds of factorizations in k[Q].

Question 2.11. When is a product of binomials in k[Q] equal to another product of binomials?

The answer to this question is turns out to be fundamental for the study of cyclic resultants. Our main
result in this direction is a certain kind of unique factorization of binomials in k[Q].

Theorem 2.12. Let k be a field of characteristic zero and let α ∈ k. Suppose that

s
a

e∏

i=1

(sui − s
vi) = αsb

f∏

i=1

(sxi − s
yi)
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are two factorizations of binomials in the ring k[Q]. Furthermore, suppose that for each i, ui − vi (xi − yi)
has infinite order as an element of A. Then, α = ±1, e = f , and up to permutation, for each i, there are

elements ci, di ∈ Q such that s
ci(sui − s

vi) = ±s
di(sxi − s

yi).

Of course, when each side has a factor of zero, the theorem fails. There are other obstructions, however,
that make necessary the supplemental hypotheses concerning order. For example, take k = Q, and let
A = Z/2Z. Then, k[Q] = k[A] ∼= Q[s]/〈s2 − 1〉, and we have that

(1− s)(1− s) = 2(1− s).

This theorem also fails when the characteristic is not 0.

Example 2.13. L = {0}, IL = 〈0〉, A = Z, Q = N, k = Z/3Z,

(1− t3) = (1− t)(1− t)(1− t).

One might wonder what happens when the binomials are not of the form su−sv . The following example
exhibits some of the difficulty in formulating a general statement.

Example 2.14. L = {(0, b) ∈ Z2 : b is even}, IL = 〈s2 − 1〉 ⊆ k[s, t], A = Z ⊕ Z/2Z, Q = N ⊕ Z/2Z,
k = Q(i). Then,

(1− t4) = (1− st)(1 + st)(1− ist)(1 + ist) = (1− st2)(1 + st2)

are three different binomial factorizations of the same semigroup algebra element.

Example 2.15. L = {0}, IL = 〈0〉, A = Z, Q = N, k = C. If
r∏

i=1

(1− tmi) =

s∏

i=1

(1− tni)

for positive integers mi,ni, then r = s and up to permutation, mi = ni for all i.

We now are in a position to outline our strategy for characterizing those polynomials f and g having the
same set of nonzero cyclic resultants (this strategy is similar to the one employed in [4]). Given a polynomial

f and its sequence of rm, we construct the generating function Ef (z) = exp
(
−
∑

m≥1 rm
zm

m

)
. This series

turns out to be rational with coefficients depending explicitly on the roots of f . Since f and g are assumed
to have the same set of rm, it follows that their corresponding rational functions Ef and Eg are equal. Let G
be the (multiplicative) group of units in the algebraic closure of k. Then, the divisors of these two rational
functions are group ring elements in Z[G] and their equality forces a certain binomial group ring factorization
that is analyzed explicitly. The results above follow from this final analysis.

3. Binomial Factorizations in Semigroup Algebras

To prove our factorization result, we will pass to the full group algebra k[A]. As above, we represent
elements τ ∈ k[A] as τ =

∑m
i=1 αis

gi , in which αi ∈ k and gi ∈ A. The following lemma is quite well-known.

Lemma 3.1. If α ∈ k∗ and g ∈ A has infinite order, then 1− αsg ∈ k[A] is not a 0-divisor.

Proof. Let α ∈ k∗, g ∈ A and τ =
∑m

i=1 αis
gi 6= 0 be such that

τ = αsgτ = αs2gτ = αs3gτ = · · · .

Suppose that α1 6= 0. Then, the elements sg1 , sg1+g , sg1+2g , . . . appear in τ with nonzero coefficient, and
since g has infinite order, these elements are all distinct. It follows, therefore, that τ cannot be a finite sum,
and this contradiction finishes the proof. �

Since the proof of the main theorem involves multiple steps, we record several facts that will be useful
later. The first result is a verification of the factorization theorem for a generalization of the situation in
Example 2.15.
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Lemma 3.2. Let k be a field of characteristic zero and let C be an abelian group. Let k[C] be the

group algebra with k-vector space basis given by {sc : c ∈ C} and set R = k[C][t, t−1]. Suppose that

c1, . . . , ce, d1, . . . , df , b ∈ C, m1, . . . ,me, n1, . . . , nf are nonzero integers, q ∈ Z, and z ∈ k are such that

e∏

i=1

(1− s
citmi) = zsbtq

f∏

i=1

(1− s
ditni)

holds in R. Then, e = f and after a permutation, for each i, either s
citmi = s

ditni or s
citmi = s

−dit−ni .

Proof. Let sgn : Z \ {0} → {−1, 1} denote the standard sign map sgn(n) = n/|n| and set γ = zsbtq .
Rewrite the left-hand side of the given equality as:

e∏

i=1

(1− scitmi) =
∏

sgn(mi)=−1

−scitmi

e∏

i=1

(
1− ssgn(mi)cit|mi|

)
.

Similarly for the right-hand side, we have:

f∏

i=1

(1− sditni) =
∏

sgn(ni)=−1

−sditni

f∏

i=1

(
1− ssgn(ni)dit|ni|

)
.

Next, set

η = γ
∏

sgn(mi)=−1

−s−cit−mi

∏

sgn(ni)=−1

−sditni

so that our original equation may be written as

e∏

i=1

(
1− ssgn(mi)cit|mi|

)
= η

f∏

i=1

(
1− ssgn(ni)dit|ni|

)
.

Comparing the lowest degree term (with respect to t) on both sides, it follows that η = 1. It is enough,
therefore, to prove the claim in the case when

(3.1)

e∏

i=1

(1− scitmi) =

f∏

i=1

(
1− sditni

)

and the mi, ni are positive. Without loss of generality, suppose the lowest degree nonconstant term on both
sides of (3.1) is tm1 with coefficient −sc1 − · · · − scu on the left and −sd1 − · · · − sdv on the right. Here, u
(v) corresponds to the number of mi (ni) with mi = m1 (ni = m1).

Since the set of distinct monomials {sc : c ∈ C} is a k-vector space basis for the ring k[C], equality of
the tm1 coefficients above implies that u = v and that up to permutation, scj = sdj for j = 1, . . . , u (recall
that the characteristic of k is zero). Using Lemma 3.1 and induction completes the proof. �

Lemma 3.3. Let P = (pij) be a d-by-n integer matrix such that every row has at least one nonzero

integer. Then, there exists v ∈ Zn such that the vector Pv does not contain a zero entry.

Proof. Let P be a d-by-n integer matrix as in the hypothesis of the lemma, and for h ∈ Z, let
vh = (1, h, h2, . . . , hn−1)T . Assume, by way of contradiction, that Pv contains a zero entry for all v ∈ Zn.
Then, in particular, this is true for all vh as above. By the (infinite) pigeon-hole principle, there exists an
infinite set of h ∈ Z such that (without loss of generality) the first entry of Pvh is zero. But then,

f(h) :=

n∑

i=1

p1ih
i−1 = 0
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for infinitely many values of h. It follows, therefore, that f(h) is the zero polynomial, contradicting our
hypothesis and completing the proof. �

Lemma 3.3 will be useful in verifying the following fact.

Lemma 3.4. Let A be a finitely generated abelian group and a1, . . . , ad elements in A of infinite order.

Then, there exists a homomorphism φ : A→ Z such that φ(ai) 6= 0 for all i.

Proof. Write A = B ⊕C, in which C is a finite group and B is free of rank n. If n = 0, then there are
no elements of infinite order; therefore, we may assume that the rank of B is positive. Since a1, . . . , ad have
infinite order, their images in the natural projection π : A→ B are nonzero. It follows that we may assume
that A is free and ai are nonzero elements of A.

Let e1, . . . , en be a basis for A, and write

at = pt1e1 + · · ·+ ptnen

for (unique) integers pij ∈ Z. To determine a homomorphism φ : A → Z as in the lemma, we must find
integers φ(e1), . . . , φ(en) such that

0 6= p11φ(e1) + · · ·+ p1nφ(en)

· · · · · · · · · · · · · · · · · · · · · · · ·

0 6= pd1φ(e1) + · · ·+ pdnφ(en).

(3.2)

This, of course, is precisely the consequence of Lemma 3.3 applied to the matrix P = (pij), finishing the
proof. �

Recall that a trivial unit in the group ring k[A] is an element of the form αsa in which α ∈ k∗ and a ∈ A.
The main content of Theorem 2.12 is contained in the following result. The technique of embedding k[A]
into a Laurent polynomial ring is also used by Fried in [4].

Lemma 3.5. Let A be an abelian group and let k be a field of characteristic 0. Two factorizations in

k[A],
e∏

i=1

(1− s
gi) = η

f∏

i=1

(
1− s

hi
)
,

in which η is a trivial unit and gi, hi ∈ A all have infinite order are equal if and only if e = f and there is

some nonnegative integer p such that, up to permutation,

(1) gi = hi for i = 1, . . . , p
(2) gi = −hi for i = p+ 1, . . . , e
(3) η = (−1)e−p

s
gp+1+···+ge .

Proof. The if-direction of the claim is a straightforward calculation. Therefore, suppose that one has
two factorizations as in the lemma. It is clear we may assume that A is finitely generated. By Lemma 3.4,
there exists a homomorphism φ : A→ Z such that φ(gi), φ(hi) 6= 0 for all i. The ring k[A] may be embedded
into the Laurent ring, R = k[A][t, t−1], by way of

ψ

(
m∑

i=1

αis
ai

)
=

m∑

i=1

αis
aitφ(ai).

Write η = αsb. Then, applying this homomorphism to the original factorization, we have

e∏

i=1

(
1− sgi tφ(gi)

)
= αsbtφ(b)

f∏

i=1

(
1− shitφ(hi)

)
.

Lemma 3.2 now applies to give us that e = f and there is an integer p such that up to permutation,
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(1) gi = hi for i = 1, . . . , p
(2) gi = −hi for i = p+ 1, . . . , e.

We are therefore left with verifying statement (3) of the lemma. Using Lemma 3.1, we may cancel equal
terms in our original factorization, leaving us with the following equation:

e∏

i=p+1

(1− sgi) = η

e∏

i=p+1

(1− s−gi)

= η(−1)e−p
e∏

i=p+1

s−gi

e∏

i=p+1

(1− sgi).

Finally, one more application of Lemma 3.1 gives us that η = (−1)e−psgp+1+···+ge as desired. This finishes
the proof. �

We may now prove Theorem 2.12.

Proof of Theorem 2.12. Let

sa
e∏

i=1

(sui − svi) = αsb

f∏

i=1

(sxi − syi)

be two factorizations in the ring k[Q]. View this expression in k[A] and factor each element of the form
(su − sv) as su (1− sv−u). By assumption, each such v−u has infinite order. Now, apply Lemma 3.5, giving
us that α = ±1, e = f , and that after a permutation, for each i either svi−ui = syi−xi or svi−ui = sxi−yi . It
easily follows from this that for each i, there are elements ci, di ∈ Q such that sci(sui −svi) = ±sdi(sxi −syi).
This completes the proof of the theorem. �

4. Cyclic Resultants and Rational Functions

We begin with some preliminaries concerning cyclic resultants. Let f(x) = a0x
d + a1x

d−1 + · · ·+ ad be
a degree d polynomial over k, and let the companion matrix for f be given by:

A =




0 0 · · · 0 −ad/a0

1 0 · · · 0 −ad−1/a0

0 1 · · · 0 −ad−2/a0

0
...

. . .
...

...
0 0 · · · 1 −a1/a0



.

Also, let I denote the d-by-d identity matrix. Then, we may write [1, p. 77]

(4.1) rm = am
0 det (Am − I) .

Extending to a splitting field of f , this equation can also be expressed as,

(4.2) rm = am
0

d∏

i=1

(αm
i − 1),

in which α1, . . . , αd are the roots of f(x).
Let ei(y1, . . . , yd) be the i-th elementary symmetric function in the variables y1, . . . , yd (we set e0 = 1).

Then, we know that ai = (−1)ia0ei(α1, . . . , αd) and that

(4.3) rm = am
0

d∑

i=0

(−1)ied−i (αm
1 , . . . , α

m
d ).

We first record an auxiliary result.
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Lemma 4.1. Let Fk(z) =
∏

1≤i1<···<ik≤d

(1− a0αi1 · · ·αik
z) with F0(z) = 1− a0z. Then,

∞∑

m=1

am
0 ek (αm

1 , . . . , α
m
n ) zm = −z ·

F ′
k

Fk
,

in which F ′
k denotes dFk

dz .

Proof. For k = 0, the equation is easily verified. When k > 0, the calculation is still fairly straightfor-
ward:

∞∑

m=1

am
0 ek (αm

1 , . . . , α
m
d ) zm =

∞∑

m=1

∑

i1<···<ik

am
0 α

m
i1 · · ·α

m
ik
· zm

=
∑

i1<···<ik

∞∑

m=1

am
0 α

m
i1 · · ·α

m
ik
· zm

=
∑

i1<···<ik

a0αi1 · · ·αik
z

1− a0αi1 · · ·αik
z

=

−z · d
dz

[
∏

i1<···<ik

(1− a0αi1 · · ·αik
z)

]

∏
i1<···<ik

(1− a0αi1 · · ·αik
z)

= −z ·
F ′

k

Fk
.

�

We may now state and prove the rationality result mentioned in the introduction.

Lemma 4.2. Rf (z) =
∑∞

m=1 rmz
m is a rational function in z.

Proof. We simply compute that

∞∑

m=1

rmz
m =

∞∑

m=1

d∑

i=0

(−1)iam
0 ed−i (αm

1 , . . . , α
m
d ) · zm

=

d∑

i=0

(−1)i
∞∑

m=1

am
0 ed−i (αm

1 , . . . , α
m
d ) · zm

= −z ·

d∑

i=0

(−1)i ·
F ′

d−i

Fd−i
.

�

Let us remark at this point that Lemma 4.2 implies the following curious determinantal identity.

Corollary 4.3. Let d be a positive integer and set n = 2d + 1. Then,

A =

(
d∏

l=1

(
αn+i−j

l − 1
))n

i,j=1

has determinant 0.
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Proof. Let rm =
∏d

l=1 (αm
l − 1) for m ∈ {1, 2, . . .}. From above,

∑∞
m=1 rmz

m is a rational function of

z with numerator and denominator each having degree at most 2d. This implies a linear recurrence for the
rm of length at most 2d, and therefore it follows that det(A) = 0. �

Manipulating the expression for Rf (z) occurring in Lemma 4.2, we also have the following fact.

Corollary 4.4. If d is even, let Gd = FdFd−2···F0

Fd−1Fd−3···F1
and if d is odd, let Gd = FdFd−2···F1

Fd−1Fd−3···F0
. Then,

∞∑

m=1

rmz
m = −z

G′
d

Gd
.

In particular, it follows that

(4.4) exp

(
−

∞∑

m=1

rm
zm

m

)
= Gd.

Example 4.5. Let f(x) = x2−5x+6 = (x−2)(x−3). Then, rm = (2m−1)(3m−1) and F0(z) = 1− z,
F1(z) = (1− 2z)(1− 3z), F2(z) = 1− 6z. Thus,

Rf (z) = −z

(
F ′

2

F2
−
F ′

1

F1
+
F ′

0

F0

)
=

6z

1− 6z
−

2z

1− 2z
−

3z

1− 3z
+

z

1− z

and

exp

(
−

∞∑

m=1

rm
zm

m

)
=

(1− 6z)(1− z)

(1− 2z)(1− 3z)
.

Following [4], we discuss how to deal with absolute values in the k = R case. Let f ∈ R[x] have degree
d such that the rm as defined above are all nonzero. We examine the sign of rm using equation (4.2).
First notice that a complex conjugate pair of roots of f does not affect the sign of rm. A real root α of f
contributes a sign factor of +1 if α > 1, −1 if −1 < α < 1, and (−1)m if α < −1. Let E be the number of
zeroes of f in (−1, 1) and let D be the number of zeroes in (−∞,−1). Also, set ε = (−1)E and δ = (−1)D.
Then, it follows that

rm
|rm|

= ε · δm.

In particular,

(4.5) |rm| = ε(δa0)
m

d∏

i=1

(αm
i − 1).

In other words, the sequence of |rm| is obtained by multiplying each cyclic resultant of the polynomial

f̃ := δf = δa0x
d + δa1x

d−1 + · · · + δad by ε. Denoting by G̃d the rational function determined by f̃ as in
(4.4), it follows that

(4.6) exp

(
−

∞∑

m=1

|rm|
zm

m

)
=
(
G̃d

)ε

.

5. Proofs of the Main Theorems

Let G be the multiplicative group generated by the nonzero roots α1, . . . , αd of f . Vector space basis
elements of the group ring k[G] will be represented by [α], α ∈ G. The divisor (in k[G]) of the rational
function Gd defined by Corollary 4.4 is

(5.1) (−1)d+1

(
∑

k odd

∑

i1<···<ik

[
(a0αi1 · · ·αik

)
−1
]
−
∑

k even

∑

i1<···<ik

[
(a0αi1 · · ·αik

)
−1
])
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=
[
a−1
0

] d∏

i=1

([
α−1

i

]
− [1]

)
.

Let us remark that for ease of presentation above, when k = 0, we have assigned

∑

i1<···<ik

[
(a0αi1 · · ·αik

)
−1
]

= [a−1
0 ],

which corresponds to the factor of F0(z) = 1 − a0z in Gd. With this computation in hand, we now prove
our main theorems.

Proof of Theorem 2.1. Examining the statement of the theorem, we may assume that k is alge-
braically closed. Let f and g be polynomials in k[x] such that the multiplicity of 0 as a root of f (g) is l1
(l2). Then, f(x) = xl1(a0x

d1 + · · · + ad1
) and g(x) = xl2(b0x

d2 + · · · + bd2
) in which a0 and b0 are not 0.

Let α1, . . . , αd1
and β1, . . . , βd2

be the nonzero roots of f and g, respectively, and let G be the multiplicative
group generated by these elements. Since f(x) and g(x) both generate the same sequence of cyclic resultants,
it follows that the divisor (in the group ring k[G]) of their corresponding rational functions (see (4.4)) are
equal. By above, such divisors factor, giving us that

(−1)d1 [a−1
0 ]

d1∏

i=1

(
[1]− [α−1

i ]
)

= (−1)d2 [b−1
0 ]

d2∏

i=1

(
[1]− [β−1

i ]
)
.

Since we have assumed that f and g generate a set of nonzero cyclic resultants, neither of them can have
a root of unity as a zero. Therefore, Lemma 3.5 applies to give us that d := d1 = d2 and that up to a
permutation, there is a nonnegative integer p such that

(1) αi = βi for i = 1, . . . , p
(2) αi = β−1

i for i = p+ 1, . . . , d

(3) (−1)d−p = 1, a0b
−1
0 = βp+1 · · ·βd.

Set u(x) = (x− βp+1) · · · (x− βd), which has even degree, and let v(x) = b0(x− β1) · · · (x− βp) (note that if
p = 0, then v(x) = b0) so that g(x) = xl2v(x)u(x). Now,

u(x−1)xdeg(u) = (−1)d−pβp+1 · · ·βd(x− β−1
p+1) · · · (x − β−1

d ),

and thus

f(x) = xl1a0b
−1
0 v(x)(x − β−1

p+1) · · · (x− β−1
d )

= xl1v(x)u(x−1)xdeg(u).

It remains only to argue that l1 ≡ l2 (mod 2). However, from formula (4.2) with m = 1, it is easily seen
that (−1)l1 = (−1)l2 . The converse is also straightforward from (4.2), and this completes the proof of the
theorem. �

The proof of Theorem 2.6 is similar, employing equation (4.6) in place of (4.4).

Proof of Theorem 2.6. Since multiplication of a real polynomial by a power of x does not change
the absolute value of a cyclic resultant, we may assume f, g ∈ R[x] have distinct roots. The result now
follows from (4.6) and the argument used to prove the if-direction of Theorem 2.1. �
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6. Algorithms Related to Cyclic Resultants

In the proof of Theorem 2.1, the multiplicative group generated by the roots of f played an important
role; which leads us to the following natural question. Given a polynomial f ∈ Z[x] of degree d, can one
devise an algorithm to determine the structure of the group G generated by the roots of f? Of course, G
will be a direct sum of a free abelian group and a finite cyclic group, so one possible output would consist of
two numbers: the rank of the free part and the order of the cyclic component. Another description would
be to give generators for the lattice L, where L is the kernel of the homomorphism sending the generators
of Zd to the roots of f .

It turns out that an algorithm does indeed exist, however, it is exponential in d. The result is due to
Ge [5], although our question is a special case of a more general problem he studied. Given a finite list of
nonzero elements of an algebraic number field K, Ge has an algorithm that determines a generating set for
the group of all multiplicative relations between those elements (and therefore the structure of the subgroup
they generate). It would be nice to know if there is a better (polynomial) time procedure to solve our special
case, however, we do not know of any work in this direction.
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[7] A. Iantchenko, J. Sjöstrand, and M. Zworski, Birkhoff normal forms in semi-classical inverse problems, preprint.
[8] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra, Springer, 2004.
[9] W. H. Stevens, Recursion formulas for some abelian knot invariants, Journal of Knot Theory and Its Ramifications, Vol.

9, No. 3 (2000) 413-422.

Department of Mathematics, University of California, Berkeley, CA 94720.

E-mail address: chillar@math.berkeley.edu


