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Alexander duality theorem plays a vital role in [7] to show that the second
Betti number of the minimal graded resolution of the Stanley–Reisner ring K[∆]
of a simplicial complex ∆ is independent of the base field K. On the other hand,
a beautiful theorem by Eagon and Reiner [2] guarantees that the Stanley–Reisner
ideal I∆ of ∆ has a linear resolution if and only if the Alexander dual ∆∨ of ∆ is
Cohen–Macaulay.

With a survey of the recent papers [3], [4], [5] and [6], my talk will demonstrate
how Alexander duality is used in algebraic combinatorics. More precisely,

• Let L be a finite meet-semilattice, P the set of join-irreducible elements
of L, and K[{xq, yq}q∈P ] the polynomial ring over a field K. We associate
each α ∈ L with the squarefree monomial uα =

∏
q≤α xq

∏
q 6≤α yq. Let

∆L denote the simplicial complex on {xq, yq}q∈P whose Stanley–Reisner
ideal is generated by those monomials uα with α ∈ L. In the former part
of my talk, combinatorics and algebra on the Alexander dual ∆∨

L of ∆L

will be discussed.

• One of the fascinating results in classical graph theory is Dirac’s theorem
on chordal graphs ([1]). In the latter part of my talk, it will be shown
that, via Hilbert–Burch theorem together with Eagon–Reiner theorem,
Alexander duality naturally yields a new and algebraic proof of Dirac’s
theorem.

No special knowledge is required to enjoy my talk.
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