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A characterization of the simply-laced FC-finite Coxeter groups
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Abstract. We call an element of a Coxeter group fully covering if its length is equal to the number of the
elements covered by it. For the Coxeter groups of type A, an element is fully covering if and only if it is
321-avoiding. In this sense it can be regarded as an extended notion of 321-avoiding. It also can be seen
from the definition that a fully covering element is always fully commutative. Also, we call a Coxeter group

bi-full when an element of the group is fully commutative if and only if it is fully covering. We show that
the bi-full Coxeter groups are of type A, D, E. Note that we do not restrict the type E to E6, E7, and E8.
In other words, Coxeter groups of type E9, E10, . . . are also bi-full. According to a result of Fan, a Coxeter
group is a simply-laced FC-finite Coxeter group if and only if it is a bi-full Coxeter group.

1. Introduction

It is needless to say that the notion of Coxeter groups appears in various mathematical fields and have
widely interested people, but they, themselves, are still very interesting objects for study. It is also well
known that the Coxeter groups of type A, D, E6, E7, and E8, i.e. simply laced Weyl groups, share a lot of
interesting properties and attract many researchers. Usually, when we say the groups of type En, we often
tend to restrict ourselves to n = 6, 7 and 8 cases. However, we sometimes find that the general Coxeter groups
of type En, which are not restricted to n = 6, 7, 8, also share some very interesting properties. For example,
we can mention FC-finite Coxeter groups. An element of a Coxeter group is said to be fully commutative if
any reduced expression for it can be obtained from any other by transposing adjacent commuting generators.
A FC-finite Coxeter group is, by definition, a Coxeter group which has a finite number of fully commutative
elements. C. K. Fan proved that the simply-laced FC-finite irreducible Coxeter groups are only of type A, D,
and E, and vice versa ([3, Proposition 2.]). Here, of course, the Coxeter groups of type E means of type En,
which are not restricted to n = 6, 7, 8.

In this paper, we call an element of a Coxeter group fully covering if its length equals the number of
elements covered by it. This notion was already appeared in [4, Theorem 1]. Further we say a Coxeter group
is bi-full when each element of the group is fully commutative if and only if it is fully covering. The purpose
of our paper is to characterize the bi-full Coxeter groups. Although it is a consequence of the result by Fan,
that the Coxeter groups of type A, D, E6, E7, and E8 are bi-full (see [4, Theorem 1]) and the Coxeter group

of type Ã2 is not bi-full (see [4, Conclusion]), his results do not give a complete characterization of all the
bi-full Coxeter groups. In fact, one of our main goals in this paper is to prove that the irreducible bi-full
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Coxeter groups are only of type A, D, E and vice versa. Accordingly it immediately implies that a Coxeter
group is a simply-laced FC-finite if and only if it is bi-full (see Theorem 2.9).

Now we recall some notation from the symmetric groups. An element σ of the symmetric group of
degree n is called a 321-avoiding if there is no triple 1 ≤ i < j < k ≤ n such that σ(i) > σ(j) > σ(k).
Our original motivation is to regard the notion of “fully covering” as an extension of that of 321-avoiding
(see [1]) to any Coxeter groups. In fact, it is a consequence of some well known facts that, if we restrict
our attention to the Coxeter groups of type A, then a permutation is fully covering if and only if it is
321-avoiding. Actually, this observation was the starting point of our research. We should note that there
is another interesting extension of the notion of 321-avoiding. In [5], Green extended the notion to the
affine permutation groups from another point of view, whereas our extension, i.e. fully covering, and his
definition of 321-avoiding in the affine permutation groups are not equivalent. Indeed, he defined the notion
of 321-avoiding permutations for any affine permutation groups and showed that an element is 321-avoiding
if and only if it is fully commutative. In [6, Thm. 5.1] Hagiwara proved that a 321-avoiding permutation in
an affine permutation group is a minuscule element of the group, and vice versa. Meanwhile, it is not hard
to see that, for the affine permutation groups, fully covering implies fully commutative, but the reverse is
not true.

We conclude this section by making a remark on the Kazhdan-Lusztig theory. Let W be any Coxeter
group and let x, w be elements of W . Let p1(x, w) denote the coefficient of degree 1 in the Kazhdan-Lusztig
polynomial Px,w for the interval [x, w] in the Bruhat ordering of W . M. Dyer showed that p1(e, w) =
c−(w) − |supp(w)| and p1(e, w) ≥ 0 (see [2]). Thus, if W is of type A, D, E and w is a fully commutative
element of W , then we can rewrite this result as p1(e, w) = `(w)− |supp(w)|.

This paper is organized as follows: In §2, we recall and provide some basic terminology. In §3, we collect
some important properties of a fully commutative element. In §4, we show that Coxeter groups of type A,
D, and E are bi-full. Moreover, we show that a Coxeter group which is neither of type A, D nor E cannot
be bi-full.

2. Preliminaries and Notations

Now we start with notation and preliminaries again from scratch as this paper become more compre-
hensive even though it might be slightly repetitious. Throughout this paper, we assume that (W, S) always
denote a Coxeter system with finite generator set S and Coxeter matrix M = [m(s, t)]s,t∈S . Thus m(s, t) is
the order of st in W (possibly m(s, t) = ∞). When m(s, t) = 2, we say s and t commute. The Coxeter graph

Γ of (W, S) is, by definition, the simple graph with vertex set S and edges between two non-commuting
generators. We may regard (Γ, M) as a weighted graph by interpreting the entries of M as a weight function
on the edges of Γ, and call it the Coxeter diagram of (W, S). We illustrate a Coxeter diagram by labeling
an edge (s, t) of the Coxeter graph Γ with m(s, t) when m(s, t) ≥ 4.

We denote the set of integers by Z and denote the set of positive integers by Z>0. For a positive integer
n, we put [n] := {1, 2, . . . , n}. For a set A, we denote its cardinality by |A| or ]A.

Notation 2.1. Let w be an element of W and let e be the identity of W . A length function ` is a
mapping from W to Z defined by `(e) equals 0 and `(w) equals the smallest m such that there exist elements
s1, s2, . . . , sm of S satisfying w = s1s2 . . . sm for w 6= e. We call l(w) the length of w. Let x1, x2, . . . , xm be
elements of W . If we have w = x1x2 . . . xm and `(x1x2 . . . xm) = `(x1) + `(x2) + · · · + `(xm), then we call
(x1, x2, . . . , xm) an extended reduced word for w and w = x1x2 . . . xm an extended reduced expression for w.
Note that we do not assume that x1, x2, . . . , xm belong to S. In particular, we call the word (x1, x2, . . . , xm)
a reduced word for w and w = x1x2 . . . xm a reduced expression for w if xi ∈ S for i = 1, 2, . . . , m and
`(w) = m.

Definition 2.2. Let (W, S) and M = [m(s, t)]s,t∈S be as above.
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(i) If {m(s, t)|s, t ∈ S} ⊆ {1, 2, 3}, then we say (W, S) (resp. W ) is a simply-laced Coxeter system
(resp. a simply-laced Coxeter group).

(ii) If there exist elements s1, s2, . . . , sm of S (m ≥ 3) such that m(sm, s1) ≥ 3, m(si, si+1) ≥ 3 for all
i ∈ [m− 1], then we say (W, S) (and W ) is cyclic. If not, then we say it is acyclic.

(iii) If the Coxeter graph Γ of (W, S) is connected, then we say (W, S) (and W ) is irreducible.

Definition 2.3. Let (W, S) be a Coxeter system whose Coxeter diagram is given by Figure 1 (resp.
Figure 2). Then we call (W, S) a Coxeter system of type Er+4 for r ≥ 2 (resp. type Dr+3 for r ≥ 1).

s s p p p s s s s

s

α1 α2 αr u β2 β1

γ

Figure 1. Coxeter diagram of type Er+4

s s p p p s s s

s

α1 α2 αr u β

γ

Figure 2. Coxeter diagram of type Dr+3

For integers m ≥ 0 and s, t ∈ S, set 〈s, t〉m to be the word (s, t, s, t, s, . . . )
︸ ︷︷ ︸

m

of length m. We introduce

an equivalence relation ≈ between the words of S generated by the braid relations 〈s, t〉m(s,t) ≈ 〈t, s〉m(s,t)

for all s, t ∈ S such that m(s, t) < ∞. It is an important fact that any reduced word for w can be obtained
from any other by the braid relations, i.e. the set of reduced words for w consists of one equivalence class
with respect to ≈. Following [9], we also introduce a weaker equivalence relation ∼ on the set of the words
of S generated by the relations (s, t) ∼ (t, s) for all s, t ∈ S such that m(s, t) = 2. We say that w is fully

commutative if the set of reduced words for w consists of just one equivalence class with respect to ∼, i.e.
any reduced word for w can be obtained from any other by transposing adjacent commuting pairs. For a
Coxeter group W , we put

W FC := {w ∈ W |w is fully commutative}.

If the cardinality of W FC is finite, then we say (W, S) is (resp. W ) a FC-finite Coxeter system (resp. a
FC-finite Coxeter group).

From now on, we denote a Coxeter group of type X by W (X).

Theorem 2.4 (C. K. Fan). If W is an irreducible simply-laced FC-finite Coxeter group, then W should
be one of W (An), W (Dn+3) and W (En+5) for some n ≥ 1 (see [3]).

We recall the definition of the Bruhat ordering. Let T := {wsw−1|s ∈ S, w ∈ W} be the set of reflections
in W . Write y → z if z = yt for some t ∈ T with `(y) < `(z). Then define y < z if there is a sequence
y = w0 → w1 → · · · → wm = z. It is clear that the resulting relation y ≤ z is a partial ordering of W , and
we call it the Bruhat ordering. We say z covers y (or equivalently y is covered by z), denote by y <· z, if
y < z and `(y) = `(z)− 1.

The following is a well known characterization of the Bruhat ordering which is called the subword

property. Give a reduced expression w = s1s2 · · · sm for w ∈ W , let us call the products (not necessarily
reduced, and possibly empty) of the form si1si2 . . . siq

(1 ≤ i1 < i2 < · · · < iq ≤ m) the subexpressions of
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s1s2 · · · sm. Let w = s1 . . . sm be a fixed, but arbitrary reduced expression for w ∈ W . Then x ≤ w if and
only if x can be obtained as a subexpression of this reduced expression.

The ordering handled in this paper is always assumed to be the Bruhat ordering.

Notation 2.5. For w ∈ W , we put

supp(w) : = {s ∈ S|s ≤ w},

C−(w) : = {x ∈ W |x<· w},

c−(w) : = |C−(w)|.

Definition 2.6. For w ∈ W , we call w fully covering if `(w) = c−(w).

By the above subword property, the reader easily see that w ∈ W is fully covering if and only if, given
any reduced expression w = s1 · · · sm, deleting any one generator from this expression always reduce its
length by 1.

If w ∈ W is not fully commutative, then there exists a reduced expression w = s1 . . . sm including a
braid relation 〈s, t〉m(s,t) with m(s, t) ≥ 3. Thus, by discarding one of s or t from this braid relation, we
obtain an element w′ < w of the form w′ = s1 . . . ŝi . . . sm which is not reduced. This immediately shows w
is not fully covering, and implies the following proposition.

Proposition 2.7. A fully covering element w of W is fully commutative.

The reverse is not always true, and we will give some examples later. If the reverse is true, i.e. a fully
commutative element w ∈ W is always fully covering, we say W (resp. (W, S)) is a bi-full Coxeter group
(resp. a bi-full Coxeter system).

Remark 2.8. Let (W1, S1), (W2, S2) be bi-full Coxeter systems (resp. FC-finite Coxeter systems). If we
have S1 ∩ S2 = ∅ and s1s2 = s2s1 for any (s1, s2) ∈ S1 × S2 then (W1W2, S1 ∪ S2) is also a bi-full Coxeter
system (resp. a FC-finite Coxeter system).

The main result of this paper is the following theorem.

Theorem 2.9. W is a simply-laced FC-finite Coxeter group if and only if W is a bi-full Coxeter group.

By Remark 2.8, we can easily reduce Theorem 2.9 to the irreducible cases. By Theorem 2.4, we already
know that an irreducible simply-laced FC-finite Coxeter group must be one of type A, D or E. Thus it is
enough to show the following theorem to complete the proof of Theorem 2.9.

Theorem 2.10. Let W be an irreducible Coxeter group. Then, W is bi-full if and only if it is either of
type A, D or E.

By Proposition 2.7, if the following two claims hold then we can obtain Theorem 2.10.

Claim 1. Any fully commutative element of the Coxeter group of type E is fully covering (Theorem 4.3).

Claim 2. If W is neither of type A, D nor E, then there is an element in W which is fully commutative,
but not fully covering (Theorem 4.9).

We often use the following notation and facts which the reader may be already familiar with (see [8]).
For any subset J ⊂ S, let WJ = 〈J〉 denote the subgroup of W generated by all s ∈ J , which is usually
called the parabolic subgroup of W generated by J . Put W J = {x ∈ W |`(xy) = `(x) + `(y) for all y ∈ WJ}
and JW = {x ∈ W |`(yx) = `(y) + `(x) for all y ∈ WJ}, then the following fact shows W J (resp. JW ) is the
set of left (resp. right) coset representatives of W with respect to WJ .

Fact 2.11. (i) For any w ∈ W , there is a unique pair (x, y) ∈ W J ×WJ such that w = xy.
(ii) For any w ∈ W , there is a unique pair (y, z) ∈ WJ × JW such that w = yz.
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3. Properties of fully commutative elements

In this section, we collect some basic and important properties of fully commutative elements which will
be concerned with the rest of the paper. Throughout this section we assume that W always denotes any
Coxeter group if there is no special mention.

By the definition of the fully commutativity, we have the following.

Lemma 3.1.

(i) Let w be an element of W . Let s1s2 . . . sm and s′1s
′
2 . . . s′m be reduced expressions for w. If w is

fully commutative then we have

{s1, s2, . . . , sm} = {s′1, s
′
2, . . . , s

′
m} as multisets.

(ii) Assume m(s, t) is odd or 2 for any s, t ∈ S. For any w ∈ W , w is fully commutative if and
only if we have {s1, s2, . . . , sm} = {s′1, s

′
2, . . . , s

′
m} as multisets for any reduced expressions w =

s1s2 . . . sm = s′1s
′
2 . . . s′m.

(iii) An element is fully commutative if it has a unique reduced expression.
(iv) Let xyz be an extended reduced expression for w. If w is fully commutative then y is also fully

commutative.
(v) Let W be a simply-laced Coxeter group and let w be an element of W . Then w is not fully com-

mutative if and only if there is a reduced expression s1s2 . . . sm for w such that si = si+2 for some
1 ≤ i ≤ m− 2.

The following lemma is a key lemma of this paper.

Lemma 3.2. Let w be a fully commutative element and let s1s2 . . . sr be a reduced expression for w
(r ≥ 2). If we have w = ss1s2 . . . sr−1 for some s ∈ S then we have the followings:

(i) s = sr,
(ii) ssj = sjs for any j ∈ [r − 1],
(iii) s 6≤ s1s2 . . . sr−1.

The following corollary is useful to find an element which is fully commutative and is not fully covering.

Corollary 3.3. Let w be an element of W and let s1, s2, . . . , sm be elements of S such that w =
s1s2 . . . sm. Note that we do not assume that s1s2 . . . sm is a reduced expression for w. We define a condition
(FC) as follows:

(FC) If there exists a pair (i, j) of integers such that i < j and si = sj , then there exists a pair (a, b) of
integers such that i < a < b < j, sasi 6= sisa and sbsi 6= sisb.

Then we have the followings.

(i) If s1s2 . . . sm satisfies the condition (FC) then s1s2 . . . sm is a reduced expression for w and w is
fully commutative.

(ii) If W is a simply-laced Coxeter group, s1s2 . . . sm is a reduced expression for w and w is fully
commutative, then s1s2 . . . sm satisfies the condition (FC).

By Corollary 3.3, we have the following.

Corollary 3.4. Let W be a simply-laced Coxeter group and let w be an element of W such that
`(w2) = 2`(w) and w2 is fully commutative. Then for any k ∈ Z>0 we have `(wk) = k`(w) and wk is fully
commutative. In particular, W is not a FC-finite Coxeter group.

The following lemma holds for any Coxeter system (W, S).

Lemma 3.5. Let (W, S) be a Coxeter system and let x be an element of W . Let s1, s2 be elements of S
such that s1s2x is an extended reduced expression and that s2s1s2 is reduced (i.e. m(s1, s2) ≥ 3). If we have
s1 6∈ supp(x) then s2s1s2x is an extended reduced expression.
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The following lemma holds for any simply-laced Coxeter system.

Lemma 3.6. Let (W, S) be a simply-laced Coxeter system, and let w be a fully commutative element of
W . If s1s2 . . . sm is a reduced expression for w, then s1ŝ2s3 . . . sm is reduced.

4. Main results

There is a method to derive the following proposition from a well-known fact on 321-avoiding per-
mutations of the symmetric groups. However, here we give a sketch of our proof without the notion of
321-avoiding.

Proposition 4.1. Let W be a Weyl group of type An. Then a fully commutative element w of W is
fully covering.

Let (s1, s2, . . . , sm) ∈ S∗ be any word from S (i.e. an element of the free monoid generated by S), and
let α be an element of S. Then we use the notation:

gα((s1, s2, . . . , sm)) := ]{i ∈ [m] | si = α}.

By Lemma 3.1(i), when w is fully commutative, we can define

gα(w) := gα((s1, s2, . . . , sm))

without ambiguity where (s1, s2, . . . , sm) is a reduced word for w.

Lemma 4.2. Let w = s1s2 . . . sm be a reduced expression for w ∈ W . Let {α1, α2, . . . , αr} be a subset of
supp(w) satisfying the following conditions (1),(2), and (3).

(1) αis = sαi for any i ∈ [r] and for any s ∈ supp(w) − {α1, α2, . . . , αr}.
(2) 〈α1, α2, . . . , αr〉 is a Weyl group of type Ar, whose Coxeter graph is given by Figure 3. (i.e.

{α1, α2, . . . , αr} is a connected component of the Coxeter graph of W and α1 is one of its end-
points.)

p p ps s s s

α1 α2 αr−1 αr

Figure 3. Coxeter diagram of type Ar

(3) gα1
((s1, s2, . . . , sm)) ≥ 2.

Then w is not fully commutative.

Here we don’t have enough space to give a detailed proof of this lemma, which the reader can find in
our original paper [7]. The proof of Proposition 4.1 reduce to this lemma. This fact was the starting point
of our main result. In fact the idea of the proof of the following theorem resides in a similar method for type
E, while the proof needs more complicated computations. Thus it is worth describing the proof in the case
of type A.

Theorem 4.3. Let W be a Coxeter group of type E and let w be an element of W . If w is fully
commutative then w is fully covering.

By a similar argument as above, the proof of Theorem 4.3 reduce to the following two lemmas, which is
a fundamental idea of our proof. Thus the proofs of the following lemmas are main goal of our paper.

Lemma 4.4. Let (W, S) be a Coxeter system of type Dr+3, whose Coxeter graph is given by Figure 2
(r ≥ 1). (i.e. α1, β and γ are the endpoints designated in the figure.) Put J := S − {α1}. Let w ∈ JW
be a fully commutative element and let s1s2 . . . sm be a reduced expression for w. If supp(w) includes the
endpoints α1, β, γ, then the followings hold.

(i) r + 3 ≤ m, s1s2 . . . sr+3 = α1α2 . . . αruβγ.
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(ii) For any s ∈ J , sw is not fully commutative.
(iii) m ≤ 2r + 4.
(iv) If m ≥ r + 4 then we have sr+4sr+5 . . . sm = uαrαr−1 . . . α2r+5−m where αr+1 = u.

Lemma 4.5. Let (W, S) be a Coxeter system of type Er+4 (r ≥ 1) whose Coxeter graph is designated in
Figure 1 (i.e. α1, β1 and γ are the endpoints in the figure). Put J := S − {α1}. Let w ∈ JW be a fully
commutative element and let s1s2 . . . sm be a reduced expression for w. Then the followings hold.

(i) If supp(w) includes all the end points α1, β1 and γ, then sw is not fully commutative for all s ∈ J .
(ii) Assume that we have α1, β2, γ ∈ supp(w), β1 6∈ supp(w) and s ∈ J . If sw is fully commutative then

we have s = β1.
(iii) Assume that we have gα1

(w) ≥ 2 and we have s ∈ J such that sw is fully commutative. Then we
have w = α1α2 . . . αruγβ2uαr . . . α2α1 and s = β1.

(iv) Assume that we have gα1
(w) ≥ 3 and we have w ∈ JW ∩ W J . Then there exists an element v of

WS−{α1,α2} such that

(α1α2 . . . αruγβ2uαrαr−1 . . . α2)α1β1vβ1(α2 . . . αruγβ2uαrαr−1 . . . α1)

is an extended reduced expression for w and that β1vβ1 ∈ S−{β1}W ∩W S−{β1}.

Remark 4.6. Let w be an element of a Coxeter group. In [4], w is said to be short-braid avoiding if and
only if any reduced expression s1s2 . . . sm for w satisfies si 6= si+2 for all i ∈ [m− 2]. It is easy to see that a
fully covering element is short-braid avoiding, and that a short-braid avoiding element is fully commutative.
By the same method as the one adopted in the proof of [4, Theorem 1] and Theorem 4.3, we can easily
obtain the following which includes Fan’s result [4, Theorem 1]. Let (W, S) be a Coxeter system and let
(W0, S0) be a Coxeter system defined by S0 := S as a set and m(s, t) := 3 if m(s, t) ≥ 3 in W for s, t ∈ S0.
If W0 is a Coxeter group of type A, D or E then for w ∈ W , w is a short-braid avoiding element if and only
if w is a fully covering element.

Although it is already shown by Fan that a Coxeter group of type E is FC-finite, we can give an explicit
upper bound for the maximum length of fully commutative elements.

Proposition 4.7. For n ≥ 3, we have

max{`(w)|w ∈ W (En)FC} ≤ 2n−1 − 1,

where we put W (E3) := 〈β1, β2, γ〉. In particular, we have |W (En)FC | < ∞.

Remark 4.8. In [10], H. Tagawa showed that we have max{c−(x)|x ∈ W (An)} = b(n + 1)2/4c, where
bac is the largest integer equal or less than a. By the formula, it is easy to show that we have max{`(x)|x ∈
W (An)FC} = b(n + 1)2/4c. Note that it does not hold on case of type D. In fact, we have max{c−(x)|x ∈
W (D4)} = 8 > 6 = max{`(x)|x ∈ W (D4)

FC}.

Moreover, we can show the following.

Theorem 4.9. Let W be an irreducible Coxeter group which is neither of type A, D nor E. Then W is
not a bi-full Coxeter group. In other words, there is an element of W which is fully commutative and which
is not fully covering. In particular, if W is a simply-laced Coxeter group then we have |W FC | = ∞.

This theorem is easily obtained by the following proposition.

Proposition 4.10. Let (W1, S1) (resp. (W2, S2), (W3, S3), (W4, S4), (W5, S5)) be a Coxeter system of

type Ãn (n ≥ 2) (resp. D̃r+3 (r ≥ 1), Ẽ6, Ẽ7, I2(m) (m ≥ 4)). Then for each 1 ≤ i ≤ 5 there exists
an element wi of Wi such that wi is fully commutative and wi is not fully covering. Furthermore we have
|W FC

i | = ∞ for any 1 ≤ i ≤ 4.
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