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Abstract

We say that a permutation π is a Motzkin permutation if it avoids 132 and there do not exist a < b

such that πa < πb < πb+1. We study the distribution of several statistics on Motzkin permutations,

including the length of the longest increasing and decreasing subsequences and the number of rises

and descents. We also enumerate Motzkin permutations with additional restrictions and study the

distribution of occurrences of fairly general patterns in this class of permutations.

Résumé

On dit qu’une permutation π est une permutation de Motzkin si elle évite le motif 132 et s’il n’existe

pas a < b tels que πa < πb < πb+1. Nous étudions la distribution de plusieurs statistiques sur per-

mutations de Motzkin, entre autres la longueur des sous-suites croissantes et décroissantes les plus

longues et le nombre de montées et descentes. Nous énumérons aussi des permutations de Motzkin

avec des contraintes supplémentaires et nous étudions la distribution du nombre d’occurrences de

motifs assez généraux dans cette classe de permutations.

2000 Mathematics Subject Classification: Primary 05A05, 05A15; Secondary 30B70, 42C05

1. Introduction

1.1. Background. Let α ∈ Sn and τ ∈ Sk be two permutations. We say that α contains τ if there
exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that (αi1 , . . . , αik

) is order-isomorphic to τ ; in such a
context τ is usually called a pattern. We say that α avoids τ , or is τ -avoiding , if such a subsequence does
not exist. The set of all τ -avoiding permutations in Sn is denoted Sn(τ). For an arbitrary finite collection of
patterns T , we say that α avoids T if α avoids any τ ∈ T ; the corresponding subset of Sn is denoted Sn(T ).

While the case of permutations avoiding a single pattern has attracted much attention, the case of
multiple pattern avoidance remains less investigated. In particular, it is natural, as the next step, to consider
permutations avoiding pairs of patterns τ1, τ2. This problem was solved completely for τ1, τ2 ∈ S3 (see [24])
and for τ1 ∈ S3 and τ2 ∈ S4 (see [25]). Several recent papers [5, 15, 11, 16, 17, 18] deal with the case
τ1 ∈ S3, τ2 ∈ Sk for various pairs τ1, τ2. Another natural question is to study permutations avoiding τ1 and
containing τ2 exactly r times. Such a problem for certain τ1, τ2 ∈ S3 and r = 1 was investigated in [20], and
for certain τ1 ∈ S3, τ2 ∈ Sk in [22, 15, 11]. The tools involved in these papers include Catalan numbers,
Chebyshev polynomials, and continued fractions.

In [1] Babson and Steingŕımsson introduced generalized patterns that allow the requirement that two
adjacent letters in a pattern must be adjacent in the permutation. In this context, we write a classical pattern
with dashes between any two adjacent letters of the pattern (for example, 1423 as 1-4-2-3). If we omit the
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dash between two letters, we mean that for it to be an occurrence in a permutation π, the corresponding
letters of π have to be adjacent. For example, in an occurrence of the pattern 12-3-4 in a permutation π,
the letters in π that correspond to 1 and 2 are adjacent. For instance, the permutation π = 3542617 has
only one occurrence of the pattern 12-3-4, namely the subsequence 3567, whereas π has two occurrences of
the pattern 1-2-3-4, namely the subsequences 3567 and 3467. Claesson [3] presented a complete solution for
the number of permutations avoiding any single 3-letter generalized pattern with exactly one adjacent pair
of letters. Elizalde and Noy [8] studied some cases of avoidance of patterns where all letters have to occur
in consecutive positions. Claesson and Mansour [4] (see also [12, 13, 14]) presented a complete solution
for the number of permutations avoiding any pair of 3-letter generalized patterns with exactly one adjacent
pair of letters. Besides, Kitaev [9] investigated simultaneous avoidance of two or more 3-letter generalized
patterns without internal dashes.

A remark about notation: throughout the paper, a pattern represented with no dashes will always denote
a classical pattern (i.e., with no requirement about elements being consecutive). All the generalized patterns
that we will consider will have at least one dash.

1.2. Basic tools. Catalan numbers are defined by Cn = 1
n+1

(
2n
n

)
for all n ≥ 0. The generating function

for the Catalan numbers is given by C(x) = 1−√1−4x
2x

.
Chebyshev polynomials of the second kind (in what follows just Chebyshev polynomials) are defined by

Ur(cos θ) = sin(r+1)θ
sin θ

for r ≥ 0. Clearly, Ur(t) is a polynomial of degree r in t with integer coefficients, and
the following recurrence holds:

(1) U0(t) = 1, U1(t) = 2t, and Ur(t) = 2tUr−1(t)− Ur−2(t) for all r ≥ 2.

The same recurrence is used to define Ur(t) for r < 0 (for example, U−1(t) = 0 and U−2(t) = −1). Chebyshev
polynomials were invented for the needs of approximation theory, but are also widely used in various other
branches of mathematics, including algebra, combinatorics, and number theory (see [21]). Apparently, the
relation between restricted permutations and Chebyshev polynomials was discovered for the first time by
Chow and West in [5], and later by Mansour and Vainshtein [15, 16, 17, 18], Krattenthaler [11].

Recall that a Dyck path of length 2n is a lattice path in Z
2 between (0, 0) and (2n, 0) consisting of

up-steps (1, 1) and down-steps (1,−1) which never goes below the x-axis. Denote by Dn the set of Dyck
paths of length 2n, and by D =

⋃
n≥0Dn the class of all Dyck paths. If D ∈ Dn, we will write |D| = n.

Recall that a Motzkin path of length n is a lattice path in Z
2 between (0, 0) and (n, 0) consisting of up-steps

(1, 1), down-steps (1,−1) and horizontal steps (1, 0) which never goes below the x-axis. Denote by Mn the
set of Motzkin paths with n steps, and let M =

⋃
n≥0Mn. We will write |M | = n if M ∈ Mn. Sometimes

it will be convenient to encode each up-step by a letter u, each down-step by d, and each horizontal step
by h. Denote by Mn = |Mn| the n-th Motzkin number. The generating function for these numbers is

M(x) = 1−x−
√

1−2x−3x2

2x2 .
Define a Motzkin permutation π to be a 132-avoiding permutation in which there do not exist indices

a < b such that πa < πb < πb+1. In such a context, πa, πb, πb+1 is called an occurrence of the pattern 1-23
(for instance, see [3]). For example, there are exactly 4 Motzkin permutations of length 3, namely, 213, 231,
312, and 321. The set of all Motzkin permutations in Sn we denote by Mn. The main reason for the term
“Motzkin permutation” is that |Mn| = Mn, as we will see in Section 2.

It follows from the definition that the set Mn is the same as the set of 132-avoiding permutations π ∈ Sn

where there is no a such that πa < πa+1 < πa+2. Indeed, assume that π ∈ Sn(132) has an occurrence of
1-23, say πa < πb < πb+1 with a < b. Now, if πb−1 > πb, then π would have an occurrence of 132, namely
πaπb−1πb+1. Therefore, πb−1 < πb < πb+1, so π has three consecutive increasing elements.

For any subset A ⊆ Sn and any pattern α, define A(α) := A ∩ Sn(α). For example, Mn(α) denotes the
set of Motzkin permutations of length n that avoid α.
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1.3. Organization of the paper. In Section 2 we exhibit a bijection between the set of Motzkin
permutations and the set of Motzkin paths. Then we use it to obtain generating functions of Motzkin
permutations with respect to the length of the longest decreasing and increasing subsequences together with
the number of rises. The section ends with another application of the bijection, to the enumeration of fixed
points in permutations avoiding simultaneously 231 and 32-1.

In Section 3 we consider additional restrictions on Motzkin permutations. Using a block decomposition,
we enumerate Motzkin permutations avoiding the pattern 12 . . . k, and we find the distribution of occurrences
of this pattern in Motzkin permutations. Then we obtain generating functions for Motzkin permutations
avoiding patterns of more general shape. We conclude the section considering two classes of generalized
patterns (as described above), and we study its distribution in Motzkin permutations.

2. The bijection Θ : Mn −→Mn

In this section we establish a bijection Θ between Motzkin permutations and Motzkin paths. This
bijection allows us to give the distribution of some interesting statistics on the set of Motzkin permutations.

2.1. The bijection Θ. We can give a bijection Θ between Mn and Mn. For that we use first the
following bijection ϕ from Sn(132) toDn, which is essentially due to Krattenthaler [11]. Consider π ∈ Sn(132)
given as an n× n array with crosses in the squares (i, πi). Take the path with up and right steps that goes
from the lower-left corner to the upper-right corner, leaving all the crosses to the right, and staying always
as close to the diagonal connecting these two corners as possible. Then ϕ(π) is the Dyck path obtained
from this path by reading an up-step every time the path goes up and a down-step every time it goes right.
Figure 1 shows an example when π = 67435281.
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Figure 1. The bijection ϕ.

There is an easy way to recover π from ϕ(π). Assume we are given the path from the lower-left corner
to the upper-right corner or the array. Row by row, put a cross in the leftmost square to the right of this
path such that there is exactly one cross in each column. This gives us π back.

One can see that π ∈ Sn(132) avoids 1-23 if and only if the Dyck path ϕ(π) does not contain three
consecutive up-steps (a triple rise). Indeed, assume that ϕ(π) has three consecutive up-steps. Then, the
path from the lower-left corner to the upper-right corner of the array has three consecutive vertical steps.
The crosses in the corresponding three rows give three consecutive increasing elements in π (this follows from
the definition of the inverse of ϕ), and hence an occurrence of 1-23.

Reciprocally, assume now that π has an occurrence of 1-23. The path from the lower-left to the upper-
right corner of the array of π must have two consecutive vertical steps in the rows of the crosses corresponding
to ‘2’ and ‘3’. But if ϕ(π) has no triple rise, the next step of this path must be horizontal, and the cross
corresponding to ‘2’ must be right below it. But then all the crosses above this cross are to the right of it,
which contradicts the fact that this was an occurrence of 1-23.

Denote by En the set of Dyck paths of length 2n with no triple rise. We have given a bijection between
Mn and En. The second step is to exhibit a bijection between En and Mn, so that Θ will be defined as the
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composition of the two bijections. Given D ∈ En, divide it in n blocks, splitting after each down-step. Since
D has no triple rises, each block is of one of these three forms: uud, ud, d. From left to right, transform the
blocks according to the rule

(2) uud→ u, ud→ h, d→ d.

We obtain a Motzkin path of length n. This step is clearly a bijection.
Up to reflection of the Motkin path over a vertical line, Θ is essentially the same bijection that was given

by Claesson [3] between Mn andMn, using a recursive definition.

2.2. Statistics in Mn. Here we show applications of the bijection Θ to give generating functions for
several statistics in Motzkin permutations. For a permutation π, denote by lis(π) and lds(π) respectively
the length of the longest increasing subsequence and the length of the longest decreasing subsequence of π.
The following lemma follows from the definitions of the bijections and from the properties of ϕ (see [11]).

Lemma 1. Let π ∈Mn, let D = ϕ(π) ∈ Dn, and let M = Θ(π) ∈Mn. We have

(1) lds(π) = #{peaks of D} = #{steps u in M}+ #{steps h in M},
(2) lis(π) = height of D = height of M + 1,
(3) #{rises of π} = #{double rises of D} = #{steps u in M}.

Theorem 2. The generating function for Motzkin permutations with respect to the length of the longest
decreasing subsequence and to the number of rises is

A(v, y, x) :=
∑

n≥0

∑
π∈Mn

vlds(π)y#{rises of π}xn =
1− vx−

√
1− 2vx + (v2 − 4vy)x2

2vyx2
.

Moreover,

A(v, y, x) =
∑

n≥0

∑
m≥0

1

n + 1

(
2n

n

)(
m + 2n

2n

)
xm+2nvm+nyn.

Proof. By Lemma 1, we can express A as

A(v, y, x) =
∑

M∈M
v#{steps u in M}+#{steps h in M}y#{steps u in M}x|M |.

Using the standard decomposition of Motzkin paths, we obtain the following equation for the generating
function A.

A(v, y, x) = 1 + vxA(v, y, x) + vyx2A2(v, y, x).(3)

Indeed, any nonempty M ∈ M can be written uniquely in one of the following two forms: (1) M = hM1

and (2) M = uM1dM2, where M1, M2, M3 are arbitrary Motzkin paths. In the first case, the number of
horizontal steps of hM1 is one more than in M1, the number of up steps is the same, and |hM1| = |M1|+1, so
we get the term vxA(v, y, x). Similarly, the second case gives the term vyx2A2(v, y, x). Solving equation (3)
we get the desired expression. �

Theorem 3. For k > 0, let Bk(v, y, x) :=
∑

n≥0

∑
π∈Mn(12...(k+1)) vlds(π)y#{rises of π}xn be the gen-

erating function for Motzkin permutations avoiding 12 . . . (k + 1) with respect to the length of the longest
decreasing subsequence and to the number of rises. Then we have the recurrence

Bk(v, y, x) =
1

1− vx− vyx2Bk−1(v, y, x)
,
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with B1(v, y, x) = 1
1−vx

. Thus, Bk can be expressed as

Bk(v, y, x) =
1

1− vx− vyx2

. . .

1− vx− vyx2

1− vx

,

where the fraction has k levels, or in terms of Chebyshev polynomials of the second kind, as

Bk(v, y, x) =
Uk−1

(
1−vx
2x
√

vy

)

x
√

vyUk

(
1−vx
2x
√

vy

) .

Proof. The condition that π avoids 12 . . . (k+1) is equivalent to the condition lis(π) ≤ k. By Lemma 1,
permutations in Mn satisfying this condition are mapped by Θ to Motzkin paths of height strictly less than
k. Thus, we can express Bk as

Bk(v, y, x) =
∑

M∈M of height<k

v#{steps u in M}+#{steps h in M}y#{steps u in M}x|M |.

For k > 1, we use again the standard decomposition of Motzkin paths. In the first of the above cases, the
height of hM1 is the same as the height of M1. However, in the second case, in order for the height of
uM2dM3 to be less than k, the height of M2 has to be less than k − 1. So we obtain the equation

Bk(v, y, x) = 1 + vxBk(v, y, x) + vyx2Bk−1(v, y, x)Bk(v, y, x).

For k = 1, the path can have only horizontal steps, so we get B1(v, y, x) = 1
1−vx

. Now, using the above
recurrence and Equation 1 we get the desired result. �

2.3. Fixed points in the reversal of Motzkin permutations. Here we show another application
of Θ. A slight modification of it will allow us to enumerate fixed points in another class of pattern-avoiding
permutations closely related to Motzkin permutations. For any π = π1π2 . . . πn ∈ Sn, denote its reversal
by πR = πn . . . π2π1. Let M

R
n := {π ∈ Sn : πR ∈ Mn}. In terms of pattern avoidance, M

R
n is the set of

permutations that avoid 231 and 32-1 simultaneously, that is, the set of 231-avoiding permutations π ∈ Sn

where there do not exist a < b such that πa−1 > πa > πb. Recall that i is called a fixed point of π if πi = i.

Theorem 4. The generating function
∑

n≥0

∑
π∈MR

n
wfp(π)xn for permutations avoiding simultaneously

231 and 32-1 with respect to to the number of fixed points is

1

1− wx − x2

1− x−M0(w − 1)x2 − x2

1− x−M1(w − 1)x3 − x2

1−x−M2(w−1)x4− x2

. ..

,(4)

where after the second level, the coefficient of (w − 1)xn+2 is the Motzkin number Mn.

Proof. We have the following composition of bijections:

M
R
n ←→ Mn ←→ En ←→ Mn

π 7→ πR 7→ ϕ(πR) 7→ Θ(πR)
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The idea of the proof is to look at how the fixed points of π are transformed by each of these bijections.
For this we use the definition of tunnel of a Dyck path given in [6], and generalize it to Motzkin paths.

A tunnel of M ∈ M (resp. D ∈ D) is a horizontal segment between two lattice points of the path that
intersects M (resp. D) only in these two points, and stays always below the path. Tunnels are in obvious
one-to-one correspondence with decompositions of the path as M = XuY dZ (resp. D = XuY dZ), where
Y ∈ M (resp. Y ∈ D). In the decomposition, the tunnel is the segment that goes from the beginning of
the u to the end of the d. Clearly such a decomposition can be given for each up-step u, so the number of
tunnels of a path equals its number of up-steps. The length of a tunnel is just its length as a segment, and
the height is its y-coordinate.

Fixed points of π are mapped by the reversal operation to elements j such that πR
j = n+1− j, which in

the array of πR correspond to crosses on the diagonal between the bottom-left and top-right corners. Each
cross in this array naturally corresponds to a tunnel of the Dyck path ϕ(πR), namely the one determined by
the vertical step in the same row as the cross and the horizontal step in the same column as the cross. It is
not hard to see (and is also shown in [7]) that crosses on the diagonal between the bottom-left and top-right
corners correspond in the Dyck path to tunnels T satisfying the condition height(T ) + 1 = 1

2 length(T ).
The next step is to see how these tunnels are transformed by the bijection from En to Mn. Tunnels of

height 0 and length 2 in the Dyck path D := ϕ(πR) are just hills ud landing on the x-axis. By the rule (3)
they are mapped to horizontal steps at height 0 in the Motzkin path M := Θ(πR). Assume now that k ≥ 1.
A tunnel T of height k and length 2(k +1) in D corresponds to a decomposition D = XuY dZ where X ends
at height k and Y ∈ D2k. Note that Y has to begin with an up-step (since it is a nonempty Dyck path)
followed by a down-step, otherwise D would have a triple rise. Thus, we can write D = XuudY ′dZ where

Y ′ ∈ D2(k−1). When we apply to D the bijection given by rule (3), X is mapped to an initial segment X̃

of a Motzkin path ending at height k, uud is mapped to u, Y ′ is mapped to a Motzkin path Ỹ ′ ∈ Mk−1 of
length k − 1, the d following Y ′ is mapped to d (since it is preceded by another d), and Z is mapped to a

final segment Z̃ of a Motzkin path going from height k to the x-axis. Thus, we have that M = X̃uỸ ′dZ̃.
It follows that tunnels T of D satisfying height(T ) + 1 = 1

2 length(T ) are transformed by the bijection into

tunnels T̃ of M satisfying height(T̃ ) + 1 = length(T̃ ). We will call good tunnels the tunnels of M satisfying
this last condition. It remains to show that the generating function for Motzkin paths where w marks the
number of good tunnels plus the number of horizontal steps at height 0, and x marks the length of the path,
is given by (4).

To do this we imitate the technique used in [7] to enumerate fixed points in 231-avoiding permutations.
We will separate good tunnels according to their height. It is important to notice that if a good tunnel of
M corresponds to a decomposition M = XuY dZ, then M has no good tunnels inside the part given by Y .
In other words, the orthogonal projections on the x-axis of all the good tunnels of a given Motzkin path are
disjoint. Clearly, they are also disjoint from horizontal steps at height 0. This observation allows us to give
a continued fraction expression for our generating function.

For every k ≥ 1, let gtk(M) be the number of tunnels of M of height k and length k + 1. Let hor(M)
be the number of horizontal steps at height 0. We have seen that for π ∈ M

R
n , fp(π) = hor(Θ(πR)) +∑

k≥1 gtk(Θ(πR)). We will show now that for every k ≥ 1, the generating function for Motzkin paths where

w marks the statistic hor(M) + gt1(M) + · · ·+ gtk−1(M) is given by the continued fraction (4) truncated at
level k, with the (k + 1)-st level replaced with M(x).

A Motzkin path M can be written uniquely as a sequence of horizontal steps h and elevated Motzkin
paths uM ′d, where M ′ ∈ M. In terms of the generating function M(x) =

∑
M∈M x|M |, this translates into

the equation M(x) = 1
1−x−x2M(x) . The generating function where w marks horizontal steps at height 0 is

just

∑
M∈M

whor(M)x|M | =
1

1− wx− x2M(x)
.
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If we want w to mark also good tunnels at height 1, each M ′ from the elevated paths above has to be
decomposed as a sequence of horizontal steps and elevated Motzkin paths uM ′′d. In this decomposition, a
tunnel of height 1 and length 2 is produced by each empty M ′′, so we have

(5)
∑

M∈M
whor(M)+gt1(M)x|M | =

1

1− wx− x2

1− x− x2[w − 1 + M(x)]

.

Indeed, the M0(= 1) possible empty paths M ′′ have to be accounted as w, not as 1.
Let us now enumerate simultaneously horizontal steps at height 0 and good tunnels at heights 1 and 2.

We can rewrite (5) as
1

1− wx− x2

1− x− x2

[
w − 1 +

1

1− x− x2M(x)

]
.

Combinatorially, this corresponds to expressing each M ′′ as a sequence of horizontal steps and elevated
paths uM ′′′d, where M ′′′ ∈ M. Notice that since uM ′′′d starts at height 2, a tunnel of height 2 and length
3 is created whenever M ′′′ ∈ M1. Thus, if we want w to mark also these tunnels, such an M ′′′ has to be
accounted as wx, not x. The corresponding generating function is

∑

M∈M
whor(M)+gt1(M)+gt2(M)x|M | =

1

1− wx − x2

1− x− x2

[
w − 1 +

1

1− x− x2[(w − 1)x + M(x)]

]
.

Now it is clear how iterating this process indefinitely we obtain the continued fraction (4). From the
generating function where w marks hor(M) + gt1(M) + · · ·+ gtk(M), we can obtain the one where w marks
hor(M) + gt1(M) + · · ·+ gtk+1(M) by replacing the M(x) at the lowest level with

1

1− x− x2[Mk(w − 1)xk + M(x)]
,

to account for tunnels of height k and length k + 1, which in the decomposition correspond to elevated
Motzkin paths at height k. �

3. Restricted Motzkin permutations

In this section we consider those Motzkin permutations in Mn that avoid an another pattern τ . More
generally, we enumerate Motzkin permutations according to the number of occurrences of τ . Subsection 3.2
deals with the increasing pattern τ = 12 . . . k. In Subsection 3.3 we show that if τ has a certain form, we
can express the generating function for τ -avoiding Motzkin permutations in terms of the the corresponding
generating functions for some subpatterns of τ . Finally, Subsection 3.4 studies the case of the generalized
patterns 12-3- . . . -k and 21-3- . . . -k.

We begin by setting some notation. Let Mτ (n) be the number of Motzkin permutations in Mn(τ),
and let Nτ (x) =

∑
n≥0 Mτ (n)xn be the corresponding generating function. Let π ∈ Mn. Using the block

decomposition approach (see [18]), we have two possible block decompositions of π. These decompositions
are described in Lemma 5, which is the basis for all the results in this section.

Lemma 5. Let π ∈Mn. Then one of the following holds:
(i) π = (n, β) where β ∈Mn−1,
(ii) there exists t, 2 ≤ t ≤ n, such that π = (α, n− t + 1, n, β), where

(α1 − (n− t + 1), . . . , αt−2 − (n− t + 1)) ∈Mt−2 and β ∈Mn−t.
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Proof. Given π ∈Mn, take j so that πj = n. Then π = (π′, n, π′′), and the condition that π avoids 132
is equivalent to π′ being a permutation of the numbers n− j +1, n− j +2, . . . , n−1, π′′ being a permutation
of the numbers 1, 2, . . . , n− j, and both π′ and π′′ being 132-avoiding. On the other hand, it is easy to see
that if π′ is nonempty, then π avoids 1-23 if and only if the minimal entry of π′ is adjacent to n, and both
π′ and π′′ avoid 1-23. Therefore, π avoids 132 and 1-23 if and only if either (i) or (ii) hold. �

3.1. The pattern τ = ∅. Here we show the simplest application of Lemma 5, to enumerate Motzkin
permutations of a given length. This also follows from the bijection to Motzkin paths in Section 2.

Proposition 6. The number of Motzkin permutations of length n is given by Mn, the n-th Motzkin
number.

Proof. As a consequence of Lemma 5, there are two possible block decompositions of an arbitrary
Motzkin permutation π ∈ Mn. Let us write an equation for N∅(x). The first (resp. second) of the block
decompositions above contributes as xN∅(x) (resp. x2N2

∅ (x)). Therefore N∅(x) = 1 + xN∅(x) + x2N2
∅ (x),

where 1 is the contribution of the empty Motzkin permutation. Hence, N∅(x) is the generating function for
the Motzkin numbers Mn, as claimed. �

3.2. The pattern τ = 12 . . . k. For the first values of k, we have from the definitions that N1(x) = 1
and N12(x) = 1

1−x
. Here we consider the case τ = 12 . . . k for arbitrary k. From Theorem 3 we get the

following expression for Nτ , for which we also give a direct derivation using the block decomposition of
Motzkin permutations.

Theorem 7. For all k ≥ 2, N12...k(x) =
Uk−2( 1−x

2x )
xUk−1( 1−x

2x )
.

Proof. By Lemma 5, we have two possibilities for the block decomposition of an arbitrary Motzkin
permutation π ∈ Mn. Let us write an equation for N12...k(x). The contribution of the first (resp. second)
block decomposition is xN12...k(x) (resp. x2N12...(k−1)(x)N12...k(x)). Therefore,

N12...k(x) = 1 + xN12...k(x) + x2N12...k(x)N12...(k−1)(x),

where 1 comes from the empty Motzkin permutation. Now, using induction on k and the recursion (1) we
get the desired result. �

This theorem can be generalized as follows. Let N(x1, x2, . . .) be the generating function
∑

n≥0

∑
π∈Mn

∏
j≥1

x
12...j(π)
j ,

where 12 . . . j(π) is the number of occurrences of the pattern 12 . . . j in π.

Theorem 8. The generating function
∑

n≥0

∑
π∈Mn

∏
j≥1 x

12...j(π)
j is given by the following continued

fraction:
1

1− x1 −
x2

1x2

1− x1x2 −
x2

1x
3
2x3

1− x1x
2
2x3 −

x2
1x

5
2x

4
3x4

. . .

,

in which the n-th numerator is
∏n+1

i=1 x
( n

i−1)+(n−1

i−1)
i and the monomial in the n-th denominator is

∏n

i=1 x
(n−1

i−1)
i .

Proof. By Lemma 5, we have two possibilities for the block decomposition of an arbitrary Motzkin
permutation π ∈Mn. Let us write an equation for N(x1, x2, . . .). The contribution of the first decomposition
is x1N(x1, x2, . . .), and the second decomposition gives x2

1x2N(x1x2, x2x3, . . .)N(x1, x2, . . .). Therefore,

N(x1, x2, . . .) = 1 + x1N(x1, x2, . . .) + x2
1x2N(x1x2, x2x3, . . .)N(x1, x2, . . .),
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where 1 is the contribution of the empty Motzkin permutation. The theorem follows now by induction. �

3.2.1. Counting occurrences of the pattern 12 . . . k in a Motzkin permutation. Using Theorem 8 we can
enumerate occurrences of the pattern 12 . . . k in Motzkin permutations.

Theorem 9. Fix k ≥ 2. The generating function for the number of Motzkin permutations which contain
12 . . . k exactly r, r = 1, 2, . . . , k, times is given by

(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

))r−1

Ur+1
k−1

(
1−x
2x

) .

Proof. Let x1 = x, xk = y, and xj = 1 for all j 6= 1, k. Let Gk(x, y) be the function obtained from
N(x1, x2, . . .) after this substitution. Theorem 8 gives

Gk(x, y) =
1

1− x− x2

. . . −
. . .

1− x− x2y

1− xy − x2yk+1

. . .

.

So, Gk(x, y) can be expressed as follows. For all k ≥ 2,

Gk(x, y) =
1

1− x− x2Gk−1(x, y)
,

and there exists a continued fraction H(x, y) such that G1(x, y) = y

1−xy−yk+1H(x,y)
. Now, using induction

on k together with (1) we get that there exists a formal power series J(x, y) such that

Gk(x, y) =
Uk−2

(
1−x
2x

)
−

(
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

))
y

xUk−1

(
1−x
2x

)
− x

(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

))
y

+ yk+1J(x, y).

The series expansion of Gk(x, y) about the point y = 0 gives

Gk(x, y) =
[
Uk−2

(
1−x
2x

)
−

(
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

))
y
]
· ∑

r≥0

(Uk−2( 1−x
2x )−xUk−3( 1−x

2x ))r

xUr+1

k−1(
1−x
2x )

yr + yk+1J(x, y).

Hence, by using the identities U2
k (t) − Uk−1(t)Uk+1(t) = 1 and Uk(t)Uk−1(t) − Uk−2(t)Uk+1(t) = 2t we get

the desired result. �

3.2.2. More statistics on Motzkin permutations. We can use the above theorem to find the generating
function for the number of Motzkin permutations with respect to various statistics.

For another application of Theorem 8, recall that i is a free rise of π if there exists j such that πi < πj .
We denote the number of free rises of π by fr(π). Using Theorem 8 for x1 = x, x2 = q, and xj = 1 for
j ≥ 3, we get the following result.

Corollary 10. The generating function
∑

n≥0

∑
π∈Mn

xnqfr(π) is given by the following continued
fraction:

1

1− x− x2q

1− xq − x2q3

1− xq2 − x2q5

. . .

,

in which the n-th numerator is x2q2n−1 and the monomial in the n-th denominator is xqn−1.
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For our next application, recall that πj is a right-to-left maximum of a permutation π if πi < πj for all
i > j. We denote the number of right-to-left maxima of π by rlm(π).

Corollary 11. The generating function
∑

n≥0

∑
π∈Mn

xnqrlm(π) is given by the following continued
fraction:

1

1− xq − x2q

1− x− x2

1− x− x2

. . .

.

Moreover,
∑

n≥0

∑
π∈Mn

xnqlrm(π) =
∑

m≥0 xm(1 + xM(x))mqm.

Proof. Using Theorem 8 for x1 = xq, and x2j = x−1
2j+1 = q−1 for j ≥ 1, together with [2, Proposition 5]

we get the first equation as claimed. The second equation follows from the fact that the continued fraction

1

1− x− x2

1− x− x2

. . .

is given by the generating function for the Motzkin numbers, namely M(x). �

3.3. General restriction. Let us find the generating function for those Motzkin permutations which
avoid τ in terms of the generating function for Motzkin permutations avoiding ρ, where ρ is a permutation
obtained by removing some entries from τ .

Theorem 12. Let k ≥ 4, τ = (ρ′, 1, k) ∈ Mk, and let ρ ∈ Mk−2 be the permutation obtained by
decreasing each entry of ρ′ by 1. Then

Nτ (x) =
1

1− x− x2Nρ(x)
.

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty Motzkin permu-
tation in Mn. Let us write an equation for Nτ (x). The contribution of the first decomposition is xNτ (x),
and from the second decomposition we get x2Nρ(x)Nτ (x). Hence Nτ (x) = 1 + xNτ (x) + x2Nρ(x)Nτ (x),
where 1 corresponds to the empty Motzkin permutation. Solving the above equation we get the desired
result. �

For example, using Theorem 12 for τ = 23 . . . (k − 1)1k (ρ = 12 . . . (k − 2)) we have

N23...(k−1)1k(x) =
1

1− x− x2N12...(k−2)(x)
.

Hence, by Theorem 7 together with (1) we get

N23...(k−1)1k(x) =
Uk−3

(
1−x
2x

)

xUk−2

(
1−x
2x

) .

Corollary 13. For all k ≥ 1,

Nk(k+1)(k−1)(k+2)(k−2)(k+3)...1(2k)(x) =
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

) ,

and

N(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x) =
Uk

(
1−x
2x

)
+ Uk−1

(
1−x
2x

)

x
(
Uk+1

(
1−x
2x

)
+ Uk

(
1−x
2x

)) .
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Proof. Theorem 12 for τ = k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k) gives

Nτ (x) =
1

1− x− x2N(k−1)k(k−2)(k+1)(k−3)(k+2)...1(2k−2)(x)
.

Now we argue by induction on k, using (1) and the fact that N12(x) = 1
1−x

. Similarly, we get the explicit

formula for N(k+1)k(k+2)(k−1)(k+3)...1(2k+1)(x). �

Theorem 7 and Corollary 13 suggest that there should exist a bijection between the sets Mn(12 . . . (k+1))
and Mn(k(k + 1)(k − 1)(k + 2)(k − 2)(k + 3) . . . 1(2k)). Finding it remains an interesting open question.

Theorem 14. Let τ = (ρ′, t, k, θ′, 1, t− 1) ∈ Mk such that ρ′a > t > θ′b for all a, b. Let ρ and θ be the
permutations obtained by decreasing each entry of ρ′ by t and decreasing each entry of θ′ by 1, respectively.
Then

Nτ (x) =
1− x2Nρ(x)Ñθ(x)

1− x− x2(Nρ(x) + Ñθ(x))
,

where Ñθ(x) = 1
1−x−x2Nθ(x) .

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty Motzkin per-
mutation π ∈ Mn. Let us write an equation for Nτ (x). The contribution of the first decomposition is

xNτ (x). The second decomposition contributes x2Nρ(x)Nτ (x) if α avoids ρ, and x2(Nτ (x) −Nρ(x))Ñθ(x)
if α contains ρ. This last case follows from Theorem 12, since if α contains ρ, β has to avoid (θ, 1, t − 1).
Hence,

Nτ (x) = 1 + xNτ (x) + x2Nρ(x)Nτ (x) + x2(Nτ (x)−Nρ(x))Ñθ(x),

where 1 is the contribution of the empty Motzkin permutation. Solving the above equation we get the desired
result. �

For example, for τ = 546213 (τ = ρ46θ13), Theorem 14 gives Nτ (x) = 1−2x
(1−x)(1−2x−x2) .

The last two theorems can be generalized as follows.

Theorem 15. Let τ = (τ1, t1 + 1, t0, τ
2, t2 + 1, t1, . . . , τ

m, tm + 1, tm−1) where tj−1 > τ j
a > tj for all a

and j. We define σj = (τ1, t1 +1, t0, . . . , τ
j) for j = 2, . . . , m, σ0 = ∅, and θj = (τ j , tj +1, tj−1, . . . , τ

m, tm +
1, tm−1) for j = 1, 2, . . . , m. Then

Nτ (x) = 1 + xNτ (x) + x2
m∑

j=1

(Nσj (x) −Nσj−1)Nθj (x).

(By convention, if ρ is a permutation of {i+1,i+2,. . . ,i+l}, then Nρ is defined as Nρ′ , where ρ′ is obtained
from ρ decreasing each entry by i.)

Proof. By Lemma 5, we have two possibilities for block decomposition of a nonempty Motzkin per-
mutation π ∈ Mn. Let us write an equation for Nτ (x). The contribution of the first decomposition is
xNτ (x). The second decomposition contributes x2(Nσj (x) − Nσj−1 (x))Nθj (x) if α avoids σj and contains
σj−1 (which happens exactly for one value of j), because in this case β must avoid θj . Therefore, adding
all the possibilities of contributions with the contribution 1 for the empty Motzkin permutation we get the
desired result. �

For example, this theorem can be used together with Theorem 7 to give the following result.

Corollary 16. (i) For all k ≥ 3, N(k−1)k12...(k−2)(x) =
Uk−3( 1−x

2x )
xUk−2( 1−x

2x )
;

(ii) For all k ≥ 4, N(k−1)(k−2)k12...(k−3)(x) =
Uk−4( 1−x

2x )−xUk−5( 1−x
2x )

x(Uk−3( 1−x
2x )−xUk−4( 1−x

2x ))
;
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(iii) For all 1 ≤ t ≤ k − 3, N(t+2)(t+3)...(k−1)(t+1)k12...t(x) =
Uk−4( 1−x

2x )
xUk−3( 1−x

2x )
.

3.4. Generalized patterns. In this section we consider the case of generalized patterns (see Subsec-
tion 1.1), and we study some statistics on Motzkin permutations.

3.4.1. Counting occurrences of the generalized patterns 12-3- . . . -k and 21-3- . . . -k. We denote by F (t, X, Y )

= F (t, x2, x3, . . . , y2, y3, . . .) the generating function
∑

n≥0

∑
π∈Mn

tn
∏

j≥2 x
12-3-...-j(π)
j y

21-3-...-j(π)
j , where

12-3- . . . -j(π) and 21-3- . . . -j(π) are the number of occurrences of the pattern 12-3- . . . -j and 21-3- . . . -j in
π, respectively.

Theorem 17. We have

F (t, X, Y ) = 1− t

ty2 −
1

1 + tx2(1− y2y3) + tx2y2y3F (t, X ′, Y ′)

,

where X ′ = (x2x3, x3x4, . . .) and Y ′ = (y2y3, y3y4, . . .). In other words, the generating function
F (t, x2, x3, . . . , y2, y3, . . .) is given by the continued fraction

1− t

ty2 −
1

1 + tx2 −
t2x2y2y3

ty2y3 −
1

1 + tx2x3 −
t2x2x3y2y

2
3y4

ty2y
2
3y4 −

1

1 + tx2x
2
3x4 −

t2x2x
2
3x4y2y

3
3y

3
4y5

. . .

.

Proof. As usual, we consider the two possible block decompositions of a nonempty Motzkin permuta-
tion π ∈Mn (see Lemma 5). Let us write an equation for F (t, X, Y ). The contribution of the first decomposi-
tion is t+ty2(F (t, X, Y )−1). The contribution of the second decomposition gives t2x2, t2x2y2(F (t, X, Y )−1),
t2x2y2y3(F (t, X ′, Y ′)−1), and t2x2y

2
2y3(F (t, X, Y )−1)(F (t, X ′, Y ′)−1) for the four possibilities α = β = ∅,

α = ∅ 6= β, β = ∅ 6= α, and β, α 6= ∅, respectively. Hence,

F (t, X, Y ) = 1 + t + ty2(F (t, X, Y )− 1) + t2x2 + t2x2y2y3(F (t, X ′Y ′)− 1)
+t2x2y2(F (t, X, Y )− 1) + t2x2y

2
2y3(F (t, X, Y )− 1)(F (t, X ′, Y ′)− 1),

where 1 is as usual the contribution of the empty Motzkin permutation. Simplifying the above equation we
get

F (t, X, Y ) = 1− t

ty2 −
1

1 + tx2(1− y2y3) + tx2y2y3F (t, X ′, Y ′)

.

The second part of the theorem now follows by induction. �

As a corollary of Theorem 17 we recover the distribution of the number of rises and number of descents
on the set of Motzkin permutations, which also follows easily from Theorem 2.

Corollary 18. We have

∑
n≥0

∑
π∈Mn

tnp#{rises in π}q#{descents in π} =
1− qt− 2pq(1− q)t2 −

√
(1− qt)2 − 4pqt2

2pq2t2
.

As an application of Theorem 17 let us consider the case of Motzkin permutations which contain either
12-3- . . . -k or 21-3- . . . -k exactly r times. Using the same arguments as in the proof of Theorem 9, we can
apply Theorem 17 to obtain the following result.



RESTRICTED MOTZKIN PERMUTATIONS 13

Theorem 19. Fix k ≥ 2. Let Nτ (x; r) be the generating function for the number of Motzkin permutations
which contain τ exactly r times. Then

N12-3-...-k(x; 0) =
Uk−1

(
1−x
2x

)

xUk

(
1−x
2x

) , N21-3-...-k(x; 0) =
Uk−3

(
1−x
2x

)
− xUk−4

(
1−x
2x

)

x
(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

)) ,

and for all r = 1, 2, . . . , k − 1,

N12-3-...-k(x; r) =
xr−1Ur−1

k−2

(
1−x
2x

)

(1− x)rUr+1
k−1

(
1−x
2x

) , N21-3-...-k(x; r) =
xr(1 + x)rUr−1

k−2

(
1−x
2x

)
(
Uk−2

(
1−x
2x

)
− xUk−3

(
1−x
2x

))r+1 .

Acknowledgements. We would like to thank Marc Noy for helpful comments and suggestions. The first author

was partially supported by a MAE fellowship.

References
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